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1 Introduction

The objective of this paper is to explore the log-concavity and its generalizations
for the distinct partition function. A sequence {a,, },>¢ of real numbers is said to be
log-concave if for n > 1,

a2 > 101 (1.1)

Note that log-concavity is also known as the Turdn inequalities. There are many
generalizations of log-concavity. One prominent generalization involves the theory
of Jensen polynomials, see, for example, [10-12,29]. The Jensen polynomials J&"(X)
of degree d and shift n associated to the sequence {a;, },>o are defined by

d

JaM(X) = ; (Z-)anJriX :

When d = 2 and shift n — 1, the Jensen polynomial J>"~!(X) reduces to
T2 HX) = oy + 20, X + a1 X2

It is clear that {a,},>0 is log-concave at n if and only if J>"~*(X) has only real
roots. In general, we say that the sequence {a,, },>o satisfies the order d > 3 Turan
inequality at n if and only if J%"~*(X) has only real roots. In particular, when



d = 3, the sequence {a;, },>0 is said to satisfy the third-order Turan inequalities if
forn > 1,

4(a? — O[n_lan+1)(0é72.b+1 — U Onga) > (O — Qo102 (1.2)

It should be noted that the Turan inequalities and its generalizations arise in the
study of the Maclaurin coefficients of real entire functions in Laguerre-Polya class,

see, for example, [11], [28] and [29]. The Turdn inequalities and the third-order
Turdn inequalities for the partition function were initially investigated by Chen [0],
DeSalvo and Pak [13] and Nicolas [2]. Recall that a partition of n is a finite list of

nondecreasing positive integers A = (A1, Ag, ..., A.) such that \y + Ao+ -+ A\, = n.
Let p(n) denote the number of partitions of n. DeSalvo and Pak [13] and Nicolas [2]
independently proved that the partition function p(n) is log-concave for n > 26.
Chen [0] conjectured that p(n) satisfies the third-order Turdn inequalities for n > 95,
which was proved by Chen, Jia, and Wang [7]. Chen, Jia, and Wang [7] further
conjectured that for d > 4, there exists a positive integer N,(d) such that p(n)
satisfies the order d Turdn inequalities for n > N, (d), that is, the Jensen polynomial
J¢m=1(X) associated to p(n) has only real roots for n > N,(d). Griffin, Ono, Rolen,
and Zagier [18] showed that for all d > 1, the Jensen polynomial J%"~!(X) associated
to p(n) has only real roots when n — co. More recently, Turdn inequalities for other
partition functions have been extensively investigated, see, for example, Bringmann,
Kane, Rolen, and Tripp [5], Dong, Ji, and Jia [15], Engel [16], Liu and Zhang [23],
Jia [21] and Ono, Pujahari, and Rolen [25].

The goal of this paper is to investigate the Turan inequalities and the third-order
Turdn inequalities for the distinct partition function. Let ¢(n) denote the number of
partitions of n with distinct parts. For example, there are eight partitions of 9 with
distinct parts:

(9), (8,1), (7,2), (6,3), (6,2,1), (5,4), (5,3,1), (4,3,2).
It is known from Euler’s partition theorem that g(n) also counts the number of
partitions of n with odd parts, see Andrews [2, Chapter 1] or Euler [17] .
The generating function for g(n) is given by
>_ama =110+ =]l —z
, i

n>0 7j=1

Using the circle method, Hagis [19] and Hua [20] established a Rademacher-type
formula for ¢(n) in terms of Kloosterman sums and Bessel functions. Based on this
formula, Craig and Pun [9] showed that ¢(n) satisfies the order d Turdn inequalities
for sufficiently large n by employing a general result of Griffin, Ono, Rolen, and
Zagier [138]. They also made the following conjecture.

Conjecture 1.1 (Craig-Pun). The function q(n) is log-concave for n > 33 and
satisfies the third-order Turdn inequalities for n > 121.



The main objective of this paper is to confirm Conjecture 1.1. Instead of using
the Rademacher-type formula for ¢(n) due to Hagis [19] and Hua [20], we explore the
utility of Chern’s asymptotic formulas for n-quotients [8] in establishing the proof
of Conjecture 1.1.

Appealing to Chern’s asymptotic formulas, we obtain an asymptotic formula for
q(n) with an effective bound on the error term. To state our bound, we adopt the

following notation:
m/24n 4+ 1

v(n) = ——. 1.3
n) = 22 (1.3
We have the following asymptotic formula for g(n).
Theorem 1.2. For v(n) > 21, or equivalently, n > 135,
V2r?
= I R 1.4
1) = pats /) + R(), (1.4
where 11(s) is the first modified Bessel function of the first kind defined as
S ! 1
h@%:—/(1—ﬂp&%u (1.5)
T J-1

and

) < e (452 L)

Using Theorem 1.2, we establish an upper bound and a lower bound for ¢(n)
which are required in the proof of Conjecture 1.1.

Theorem 1.3. Let

oo i (n). (1.7)

M(n) (1 - V(ﬂ)b,) < q(n) < M(n) (1 + V(i)(j,) . (1.8)

Let
g(n —1)g(n +1)

q(n)?
It is evident from (1.1) that ¢(n) is log-concave for n > 33 is equivalent to Q(n) < 1

for n > 33. Using (1.2), one can check that ¢(n) satisfies the third order Turan
inequalities for n > 121 whenever

41-QM)(1-Qn+1)) —(1-Qn)Q(n+1))* >0 (1.10)

for n > 121. Hence to prove Conjecture 1.1, it suffices to establish efficient lower
and upper bounds for @(n). By resorting to Theorem 1.3, we obtain

Q(n) = (1.9)
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Theorem 1.4. Let

m m mt
Eqln):=1- 36v(n)? * 12v(n)*  32v(n)> (1.11)
Then for v(n) > 67,
135 126 + &
Eq(n) = 55 < Qln) < Eoln) + ﬁ (1.12)

Subsequently, we demonstrate that Conjecture 1.1 can be inferred from Theorem
1.4. As a result, We arrive at the following consequence.

Theorem 1.5. For n > 121, the cubic polynomial
g(n — 1) + 3¢(n)z + 3q(n + 1)z* + q(n + 2)2

has only real roots.

The paper is organized as follows. In Section 2, we derive some inequalities in-
volving the first modified Bessel function of the first kind, which are necessary in
the proof of Theorem 1.4. In Section 3, we first prove Theorem 1.2 with the aid
of Chern’s asymptotic formulas for n-quotients and then use Theorem 1.2 to prove
Theorem 1.3. Section 4 is dedicated to deriving Theorem 1.4 through the utilization
of Theorem 1.3 and the inequalities on the first modified Bessel function of the first
kind established in Section 2. In Section 5, we confirm Conjecture 1.1 with the aid of
Theorem 1.4. We conclude in Section 6 with some problems for further investigation.

2 Explicit bounds for [;(s)

To apply the inequality stated in Theorem 1.3 to the proof of Conjecture 1.1, we
need to establish specific inequalities related to the first modified Bessel function
I,(s) of the first kind. Before doing this, let us first recall the definitions of the
Gamma function I'(a) and the upper incomplete Gamma function I'(a, s), see [I,
Chapter 6].

The Gamma function I'(a) is defined by

[(a) :/ t"temtde.
0

It is known that .
I'a+1)=al'(a) and T (5) =/,

see [27, pp. 32-34].



The upper incomplete Gamma function I'(a, s) is defined by

F(a,s):/ t* e tdt.

The following estimate on I'(a, s) can be derived from the proof of Proposition 2.6
of Pinelis [20] which is required in the proof of Lemma 2.2. For a > 1 and s > a,

['(a,s) <as*'e™®.

(2.1)

The first inequality on I (s) for the proof of Conjecture 1.1 is due to Bringmann,

Kane, Rolen, and Tripp [5, Lemma 2.2].

Lemma 2.1 (Bringmann-Kane-Rolen-Tripp). For s > 1,

2
I(s) < 1/ —¢".
s

We also need the further estimate on I;(s).

Lemma 2.2. Let

1 1 472 2
Bi(s) = 1— 3 ) 05 725 72765

Then for s > 26,

= (Er(s) - E) < h(s) € <= (EI<S> ; ﬁ) |

Proof. We start with the integral definition (1.5) of I1(s),

S ! 1 S 0 1
Li(s) = —/ (1 —t*)2edt + —/ (1 —t*)zedt.
0 T

T -1
It is clear that

0
f/ (1 —t2)%estdt‘ <2

i i

We next estimate the first integral in (2.5). Setting u = 1 — ¢, we have

S

1
/ (2 — u)%u%e’sudu.
0

Using Taylor’s formula, we find that

u? ud Sut Tu®

(2—u)%:\/§

8s 12852 102453 32768s% 26214455

u
T8 16v2  64vB  1024v3  4096v32 (&)

(2.2)

(2.3)

(2.4)



€0 =g (3520

D=

21 11
) E _ _@(2 —¢)"2 forsome &€ (0,1). (2.9)

Substituting (2.8) into (2.7), we obtain

ﬁse&f TS S I S N S B DU A PR
U2 — U2 — —u? — uz — uz — (% e U
T 0 4 128 2048 8192

©

\/5868 /Oo /OO % 1 % 1 g 1 % 5 g 7 % 7sud
= — U2 —-U?2 — —UuU?2 — —uz?2 — uz — u e u
T 0 1 4 32 128 2048 8192

(2.10)

7r
Evaluating the first integral Il(l)(s) in (2.10) yields the main term:

](1)(>_\/§868/Oo % 1% 1 g 1 % 5) g 7 % —sug
U\ T T3 T st T o0as" T st )¢

N ﬁfr /0°° ((Su)é - (e - 32132 (su)? = g (5w

°(su)
—(SU SU
204854 81925

() -5 () -5 (5) -t ()

5 11 7 13
— r({=)\— (=
20485 <2) 819255 <2)>
e 3 15 105 4725 72765 2.11)
~ V2rs 8s 1285 1024s3  32768s%  262144s5 ) '



We proceed to evaluate the second integral [1(2)(5) in (2.10):

1(2)(8) — V2se? /OO uz — lu _ lu% — Lu% _ 0 us — ! u? | e du
! B T ) 4 32 128 2048 8192

G
_@(8”) 810255 (8“)2) e d(su)

V2e* 3 1_(5 1 1 9
— r(2 (2 r r(2
N ( (2’8) T <2’S) T30 ’S) T 1288 <2’S)

7
2
5 11 7 13
r(= r(=2
504851 (2’S>+819255 (2’S>)’

njw

[T
|
—
V)
<
~
Nlco
|

[

(2<-1)\/§es 3+1 5+1 7+1 9+ 5 11+ 7 13 Jee
—_— —_— . — —_— . — —_— . — —_— — —_— . — Se
T Vst \2 4 2 2 2 128 2 2048 2 8192 2
37495v/2 13
= —— fi > —. 2.12
16384r "7 2 (2.12)
It remains to estimate Ifg)(s) in (2.10). From (2.9), we see that
s 1 21 13 5 0
1) = [ [ et eran] < o [ e (o)
2157 ¢*
_ 2% ¢ 15
10247 2
2837835
= “Tel, (2.13)

— 5 2
131072/
Combining (2.6), (2.11), (2.12) and (2.13), we derive that for s > 1,

e’ 3 15 105 4725 72765
Ii(s) = 1—— — - - - 2.14
1) = 75 ( 8s 12852  1024s® 327685 26214435> tris), (214)
where
s 37495v/2 2837835 1
< = -5 8
P = 2+ Toasar T By ¢
e 1 ([+V2s L BT ) o 2837835+/2
=—" = s2e — | -
Vors S\ \ 7 ' 81927 131072
To prove (2.4), it suffices to show that for s > 26,
e’ 31
r(s)| < C— 2.15
r(s)] < ol (2.15)
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Define

V2s 37495 R 2837835v/2
f(s) = + +
VT 81921 131072

Observe that

) = st e V2 E (12288+/2 — 7499) o 87435
NG 8192\/7 163847 | -

Since f'(s) < 0 for s > 8, we deduce that f(s) is decreasing when s > 8. This implies
that when s > 26,
£(5) < £(26) ~ 30.8068 < 31.

Hence the inequality (2.15) is valid. Combining (2.14) and (2.15), we are led to (2.4)
in Lemma 2.2. This completes the proof. ]

By utilizing Lemma 2.2, we derive the following inequalities on [ (v(n—1))1; (v(n+
1))/I;(v(n))?, which are essential for establishing Theorem 1.4.

Lemma 2.3. For v(n) > 60,

Li(v(n—1))L(v(n+1)) v(n) B m 5
I (v(n))? = Vvin—1r(n+1) <1 36v(n)? 2592V(n)7>
m 129
. (1 © 32w(n)® V(n)6) (2.16)
and
Li(v(n—1))1(v(n+1)) v(n) (1 m e )
Ii(v(n))? =1 +1) 36v(n)® | 1296v(n)

Proof. Using (2.4), we find that for v(n) > 26,

L(v(n—1)L(v(n+1)) v(n) V(=) +v(nt)=2v(n) [ ()
I (v(n))? Z Vv(n —1v(n +1) Lin) — (2.18)
and
h(v(n— D) (v(n + 1) V) vt s
Li(v(n))? = Vrv(n—1v(n+1) Bln), (2.19)

W
where v(n) and Fj(s) are defined as (1.3)
(Br(vin = 1) = 5525 ) (Erv(n +1)) = 7525

(Brv(n)) + 52%)

and (2.3) respectively,

L(n) =

(2.20)



and

) (EI(V(n — 1) + W) (EI( (n+1))+ ,,<n311)e>
(Brtwtn) - 535) |

(2.21)

To obtain (2.16) and (2.17), we intend to estimate exp(v(n — 1) + v(n + 1) — 2v(n)),
L(n) and R(n) in terms of v(n). From the definition (1.3) of v(n), we see that for
v(n) > 2,

2 T2

vin—1)=/v()? -, vn+1)=4/v(n)? + 5 (2.22)

Observe that for v(n) > 2,

2 d 76 58

1
6v(n) T2v(n)®  432u(n)®  10368v(n)7 0 (1/(71)8)

vin—1)=v(n) —

and

w2 t 76 58

1
6v(n)  T2v(n)3 * 43205(n)  10368v(n)7 0 (I/(n)8> ’

vin+1)=v(n) +

so it is readily checked that for v(n) > 3,

dy(n) <v(n —1) < u,(n), (2.23)
1,(n) <v(n+1) < ,(n), (2.24)
where
d B 2 m 6 578
o) =v(n) = GeS ~ T T By 518t
wn) = vln) — e T T
61/(2n) 721/(471) 432y(n) . (2.25)
dy(n) = v(n) + AR — ~ e
6v(n) T2v(n)? 432u(n)  5184w(n)7

6v(n)  72u0(n)3 432v(n)5'

With (2.23) and (2.24) in hands, we are now in a position to bound exp(v(n —1)
+v(n+1) —2v(n)), L(n) and R(n) in terms of v(n).

We first estimate exp(v(n — 1) + v(n+ 1) — 2v(n)). Applying (2.23) and (2.24),
we find that for v(n) > 3,

wt 58 d

“360(n)  25920(n)7 <v(n—1)+vn+1)—2v(n) < EIO0




It follows that for v(n) > 3,

exp(v(n — 1) + v(n + 1) — 20(n)) < exp (_36:—(71)3) (2.26)
and
exp(v(n —1)+v(n+1) —2v(n)) > exp <_36:(n)3 — 25927;(71)7) . (2.27)

Note that for s < 0,
l+s<e* <1+s+ s

Hence we derive that

7T4 7T4 7T8
i 2.28
P ( 36V(n)3> S T 360 12960(n)° (2.28)
and md 578 4 578
- - 1— - . 2.29
xp ( 360(n)? 2592U(n)7) 7T 36u(n)®  25920(n) (2:29)
Combining (2.26) and (2.28) yields that for v(n) > 3,
G G 2.30
—1 1) —2 1— . .
Using (2.27) together with (2.29), we find that for v(n) > 3,
4 5 8
exp((n—1)+v(n+1)—2w(n) >1— — a (2.31)

36v(n)®  2592v(n)7

Next, we estimate L(n) and R(n). Let

1 3 15
Pi(n) = - 15— Zv(n—D,(n) — —v(n —1)*
H(n) v(n— 1)Su(n + 1) (”(" ) = gvin = Du(n) = ggv(n —1)
105 4725 72765
— —1D?uy(n) — ———v(n —1)% — »(n) — 31
To2a” ("~ D7) = sozegv(n = U7 = ooyt () )
< (v +1)° = Su(n + D3ay(n) — —2v(n + 1) — -2 (04 1), (n)
8 128 1024
4725 72765
o= 1)2 - i, (n) — 31 2.32
276" Y~ o 3 > (2.32)
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Pn) = oo 1>61V(n 7 (V<n ) gy(n —1)idy(n) — %V(n e
—11002541/(n —1)%d,(n) — ;27%1/(71 — 1)~ 27622716454dv(n) + 31)
« <V(n 41y — gy(n +1)tdy(n) — %V(n +1)t— 1100254y(n +1)%d,(n)
—;g%y(n 12— 27622716454@(71) + 31) | (2.33)

Applying (2.23) and (2.24) into (2.20) and (2.21), it is not difficult to check that for
v(n) > 3,

) 1C) — (2.34)
(Bivm) + 725)
and
R(n) < b (n) (2.35)

a1\
(Bir(v(n) - ;25)
To bound L(n) and R(n) in terms of v(n), we shall show that for v(n) > 60,
P 4 12
l(n) 221_327T 5 96
(E:v) + 75) v v

v(n)°

_ 32v(n)® — 'v(n) — 4128

) (2.36)
and
P,(n) SO v
<Ez(u(n)) - V(:)ﬁ)fi)z o s vy
_ 320(n)° — w'(n) + 3872 -

32v(n)b ’

which are equivalent to showing that for v(n) > 60,

320(n)S Py(n) — (320(n)® — 7'u(n) — 4128) <E1(y(n)) L3t > 20 (238)

and

(32v(n)® — m'v(n) + 3872) (Ef(y(n)) - ) —32v(n)®P.(n) > 0. (2.39)

11



Substituting (2.22) and (2.25) into (2.32) and (2.33), we find that

320(n)*Fi(n) — (320(n)° = m'v(n) — 4128) <E1(V(n)) - ?71))
Ziﬁzo ajV(”)j

- v(n)4v(n —1)%v(n +1)6 (2.40)
and
31 )7 .
(32v(n)° — 7v(n) + 3872) <EI(V(n>> - V(n)ﬁ) — 320(n)°P,(n)
_ 20 bjv () o

v(n)“v(n —1)v(n+1)8°

where a; and b; are real numbers. Here we just list the values of ag4, ass, asgs, boa,
bQ5 and 6262

17574 1974 47t
=78 — = —1608 — —— =160 — —
Q24 64 A25 16 A26 3
17574 1974 47t
boy = 102 + o1 bos = 16 = - 96.

It can be readily checked that for any 0 < j < 23 and v(n) > 27,
—lajlv(n)! = —laz|v(n)*

and .
—[bjlv(n)! > —[baa|v(n)*.
It follows that for v(n) > 27,

Z a;v(n) > — Z ;| v(n)? + axsv(n)®® + agev(n)®
> —25|aga| v(n)** + agsv(n)® + agr(n)*
and

26
> bi(n) > - Z [0 ()7 + basp(n)* + bag(1)*°
=0

> —25 |bos| v(n)?* 4 bosv(n)? + bogr(n)?.
Moreover, one can easily check that for v(n) > 60,

—25 |ag| 1/(71)24 + a25l/(n)25 + agﬁy(n)% >0

12



and
—25 |b24| V(TL)24 + bg5y(n)25 + bQGV(TL)26 Z 0.

Hence (2.38) and (2.39) hold for v(n) > 60, and so (2.36) and (2.37) hold for
v(n) > 60. Substituting (2.36) into (2.34), we derive that for v(n) > 60,

m 129
L(n)>1-— — . 2.42
() 2 1= 33~ o) (242)
Plugging (2.37) into (2.35), we deduce that for v(n) > 60,
4 121
Rn)<1-——— + . (2.43)

= 32w(n)® " v(n)s

Applying (2.30), (2.31), (2.42) and (2.43) into (2.18) and (2.19), we are lead to (2.16)
and (2.17). This completes the proof. ]

3 Proofs of Theorem 1.2 and Theorem 1.3

To prove Theorem 1.2, we first derive an asymptotic formula for ¢(n) with an
explicit bound by specializing an asymptotic formula for n-quotients G(q) due to
Chern [3]. Define

R
Glg) = G(™) = [J(a™: ™), (3.1)
r=1
where m = (my,...,mg) is a sequence of R distinct positive integers and § =
(01,...,0g) is a sequence of R non-zero integers. Here and throughout this paper,

we have adopted the standard notation on g-series [2].

@@ =[[0-a) and (@0 = [J0 - ag’),

In order to state Chern’s result, we need a few preliminary definitions. Assume
that h and j are positive integers with ged(h, j) = 1, set

1 R R
A1 = _52167“7 A2 = z;mr(sra
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A= Y ex —mhi—mias o i (3.2)
S P k —~ " \ged(m,, k) ged(m,, k) ) | '

0<h<k
ged(h,k)=1

where s(h, j) is the Dedekind sum defined by

wa-5 (- (1D (- [5)0)

Let L = lem(my,...,mg). We divide the set {1,2---, L} into two disjoint sub-

sets:
Loo:={1 <1< L:A;3() >0},

We write

G(q) =) _g(n)q"

n>0
Chern [3] obtained an asymptotic formula for g(n) with A; <0.
Define

/

17 AI = 07

2\/§a A1 = _%7
]EA1(S) = 3

slog(s + 1), Ay =—1,

sT2ATIC(—AY), otherwise,

\
where ((-) is Riemann zeta-function.

Theorem 3.1 (Chern). If Ay <0 and the inequality

s, () 5 550

1<r<R m, - 24
holds for all 1 <1 < L, then for positive integers N and n > —%, we have
2n+ A\ 7
n —+ Ao 2
=F 2w A4 (1
o) = B+ Y 2w (250

14
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(3.5)



where

00 < TN e (3 (4 52) W) 3 At e (24007)

A
n+ 2_42 leLso
Ay 5
+ 2exp | 27 n—i—ﬂ N Ea,(N)

TAs(1) o~ A exp (—mged?(m,, 1) /m,)
x(Z A4(l)exp< ol +Z )

= (1 - exp (—mged*(my, 1)/m,))’

— > Al exp (%ﬁf”) ,

and I,(s) is the v-th modified Bessel function of the first kind.

We are now in a position to prove Theorem 1.2 by means of Theorem 3.1.

Proof of Theorem 1.2. Recall that

= n (%)
2 almi" = (4 Qoo

n=0

so we have m = (1,2) and 6 = (—1,1). It is straightforward to compute that A; = 0,
and Ay = 1. We also have L = 2. The values of A3(l) and Ay(l) for 1 <1 < L are
listed in Table 1. Hence L£-¢ = {1}. It can be readily checked that (3.4) is always
true for 1 <[] < 2.

Table 1: The values of As(l) and Ay(l) for 1 <1< 2.

Hence, by Theorem 3.1, we have

V2?2 v(n)\ Ai(n
() = B+ o 3 (%) ),

1<k<N
2k

15



where v(n) is defined as in (1.3), and

—IN? 1 2
|E(n)|§2+iexp (27T< +24) N_2> \é_exp +2exp( < ) _2>
24

5 {\/5 (1 N exp(—m) N exp(—7/2)

2 PN T M —ep(em)? T (1 - exp(—7/2))?

. (__+ ep(-m) | ew(-2m) )_ @exp<1>},

24 (1 —exp(—m))?2 (1 —exp(—2m))2 2

Assume that N = |v(n)]. Observe that

<1 and

+2exp (1?2) {%ﬁ P (Zg e fii(p_(i)w»? T f};i;_(if/)@)z)

+exp< ;4 +1 ep(cm) | exp(—2m) ) - \/iexp (Z&s)} <173,

1 —exp(—m))? (1 —exp(—2m))? 2

Hence, we conclude that for v(n) > 4,

— E(n V212 v(n)\ Ag(n)
i) = B0+ s 3 )le( o), (3.

1<k<|v(n
2tk

where |E(n)| < 173.
Observing that ;ll(n) =1, so by (3.6), we have

aln) = ﬁ?n)h(u(n)) + R(n).
where R
R(n) = B(n) + gf?n) oo (@) A’“T(“). (3.7)

3<k<|v(n)]
21k

Hence, in order to show Theorem 1.2, it suffices to show that for v(n) > 21,

) < e (452, 39
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By the definition of Ay (n), we derive that for n >0 and k > 1,
[Ax(n)] < F,

since |e?™| = 1 for any s € R. It yields

V272 v(n)\ Ax(n) V212 v(n)
ver < )
12v(n) Z & < k ) k| 7 12v(n) Z h ( k >
3<k<|v(n)] askelvn)
2H€ 21k

oV (), (u(n) )

~ 12v(n) 2 3
V212 v(n)
=" [1( 3 )
Invoking (2.2), we derive that
V212 v(n)\ Ax(n) V32 v(n)
120(n) Sgkngll( k ) Eo| S 12V(n)éexp( 3 ) (3:9)

2k

Substituting (3.9) into (3.7), we deduce that for v(n) > 4,

V3n2 v(n)
RO < 175+ 0 exp( y ) | (3.10)

We proceed to show that for v(n) > 21,

3
\/57”1 xp (ﬁ) >~ 173 (3.11)
12v(n)? 3
Define
692v/3 1 s
r(s) := +—S2 exp (——)
T2 3
It is evident that
346 S
9= =2 (e syenn (<2).
r'(s) \/gwgsi( s+ 3)exp 3

Since 7/(s) < 0 when s > 2, we deduce that r(s) is decreasing when s > 2. This
implies that
r(v(n)) <r(21) <1

for v(n) > 21. So the inequality (3.11) is valid. Applying (3.11) to (3.10), we are led
to (3.8). This completes the proof. ]
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We conclude this section with the proof of Theorem 1.3 with the aid of Theorem
1.2.

Proof of Theorem 1.5. Define

\/gﬂ'% v(n) v(n
Gn) = 6v/(n)2 exp( 3 ) _ [6v(n) exp( (3)> (3.12)
e hm) T L) '

Thanks to Theorem 1.2, we have
M(n)(1 —G(n)) < q(n) < M(n)(1+ G(n)).

To show (1.8), it is enough to prove that for v(n) > 38,

1
G < . 3.13
)< oo (3.13)
Using Lemma 2.2, we find that for s > 26,
L(s) > e’ 1 3 15 105 4725 72765 31
s - — — — — - — ).
! ~ \/27s 8s  128s2  1024s3  32768s*  262144s> 6
Note that for s > 4
1 _ 15 _ 105 _ 4725 _ 72765 _ 31 >0
s  128s2  1024s3  32768s*  262144s5 s6 = 7
so for s > 26,
e’ 1
Ii(s) > 1——. 3.14
0z = (1-5) (314
Substituting (3.14) into (3.12), we derive that for v(n) > 26,
2v3 2
G(n) < \/_—Vgn)exp _2vn) : (3.15)
L - 2v(n) 3

Based on the following observation:

(1—2ytn)> (l—i—V(ln)):l—i—ﬁ(y(n)—l)zl for w(n) > 1,

we find that (3.15) can be further bounded by

G(n) < 23u(n) (1 + ﬁ) exp <_2”§”)) | (3.16)
We claim that for v(n) > 43,
2v/3 exp (— 2”;”)) < 2V(1n>7, (3.17)
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which can be recast as

4V3u(n)" exp (— 2”?()”)) <1.

Define

L(s) := 4v/3s7 exp (—2§> .

Since for s > %,

2 2
L'(s) = 4V3exp (—g) 50 (_§S + 7) <0,

we deduce that L(s) is decreasing when s > 2. It follows that for v(n) > 43,

L(v(n)) = 4V3v(n)" exp (—QVT(n)> < L(43) < 1,

and so (3.17) holds when v(n) > 43. Hence the claim is verified.
Applying (3.17) to (3.16), we derive that for v(n) > 43,

1 1 1
6 < v (14 705) 2 <

This completes the proof. 1

4 Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4 with the aid of Theorem 1.3 and
Lemma 2.3.

Proof of Theorem 1./. Recall that

Define
M(n—1)M(n+1)

M(n)? ’
where M (n) is defined as in (1.7). From Theorem 1.3, we see that for v(n) > 43,

A(n) =

(4.1)

A(n)Lg(n) < Q(n) < A(n)Rq(n), (4.2)

where

<1_V7'L1— 6) <1_V7’L1 6)
B 1) ) (43)




and

<1_|_1/ni 6) <1+yn1 6)
1) 1) (44

1 2
Q‘WW>

To obtain (1.12), we proceed to estimate A(n), Lg(n) and Rg(n) in terms of v(n).
We first consider A(n). Substituting (1.7) into (4.1), we find that

v(n)*1i(v(n = 1)) 1(v(n + 1))

Ro(n) =

Aln) = v(n — Dv(n + DL(v(n))? (45)
Applying Lemma 2.3 to (4.5), we deduce that for v(n) > 60,
v(n)? B m B 5
A(n) > Jon = Po(n £ 1 (1 36v(n)3 2592u(n)7)
m 129
(' s o) 4)
and
v(n)? . ™
A(n) < N IR (1 36v(n)3 i 1296V(n)6)
w4 121
X (1 o V(ﬂ)ﬁ) . (4.7)
We claim that for v(n) > 8,
L+ ml 77r8 v(n)? <14 m N 7® (4.8)
12v(n)* 864V \/1/ —1Bv(n+1)3 — 12v(n)* * 123v(n)8’

which is equivalent to

12 _
v(n)? —v(n — 1D (n+1)° (1+12yn 8641/ )

4.9)

| /\
o

12
— —1)° 1)°(1
v(n) v(n v(n+ ( + 120(n 1231/ )

Recall that

vin—1)=14/v(n)? — %2 and v(n+1)=1/v(n)?+ %2

It can be calculated that

v(n)'? —v(n —1)%(n+1)° <1 * 12:(n)4 * 86417:(n)8>

7.‘.12

~ 1062398266736641/(n)*

(1340897918976 (n)* + 279353733127 v/(n)*®

+15519651847%1(n)?* — 15519651847 %v(n)?° — 608160967 %/ (n)*°
—38731777°%v(n)"* + 6257797 v (n)® + 339577 v (n)* + 24017%%)  (4.10)
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and

v(n)* —v(n—1)v(n +1)° (1 * 12:(n)4 " 1237;(71)8)

71_8

©427157404899841/(n)3? (
—29427569197%1(n)?® — 1754207557 21(n)** + 1639187797 '61/(n)*

4823367264v(n)*® — 1413961181287 1/(n)*?

16413999720 (n)'¢ 4 4181927 w(n)'? — 66144781 (n)®
—35847%%v(n)* — 2567%°) . (4.11)
Note that for v(n) > 4,
15519651847°v(n)** — 15519651847 %1 (n)*
— 608160967 '°1/(n)'® — 38731777%°1(n)'? > 0, (4.12)
and for v(n) > 8,

48233672641 (n)*® — 1413961181287 1/(n)*?
— 2942756919781 (n)?® — 1754207557 21(n)** > 0, (4.13)
4181927%*v(n)"? — 66144721 (n)® — 35841%*(n)* — 25670 > 0.

Applying (4.12) to (4.10) and applying (4.13) to (4.11), we conclude that (4.9) holds
for v(n) > 8, which implies (4.8) holds for v(n) > 8, and so the claim is verified.
Substituting (4.8) into (4.6) and (4.7), we get that for v(n) > 60,

o> (1+ s+ ) (- s ~ T

8 (1 - 32:(2)5 - ul(i?(f) (4.14)

and

A < (1+ o+ ) (1 3 * T0)

4 121
X <1 — o) + V(n)6) . (4.15)
> 47

We proceed to show that for v(n)

LQ(TL) Z 1-—

S (4.16)



Applying (2.22) into (4.3) and (4.4), we find that

and

Assume that
¢(s) =729s* — 12157 5% + 7290s'® 4 817°s'® — 21877 s™ + (3645 —
+ 24378510 — 12157%s% — 97'2s% 4- 1357%s? — 5712
and
Y(s) =729s** — 12157 5% — 7290s" + 817°s'® + 218771 s + (3645 —
— 2437510 — 12157%s% 4 97'2s® + 1357 s — 57'2.

It can be checked that

and

5 —¢ (v(n))
Rg(n) — = .
o) (1 + I/(n)6) v(n)8 (v (n)* — 7T4)3 (v(n)s — 1)2

Moreover, it is not difficult to show that ¢ (s) > 0 for s > 4 and
B(s) — (s) = 14580s" — 43747 s™ + 4867°%5'0 — 1871%5° > 0
for s > 2. Hence we derive that for v(n) > 4,
¢ (v(n)) > ¢ (v(n)) = 0.
It follows that (4.16) is valid.

37'('12) 812

371'12) 812

(4.18)

(4.19)

Substituting (4.14), (4.15) and (4.16) into (4.2), we derive that for v(n) > 60,

4 T8 t 57°
Q= (14 5 sagr) (U Sor ~ momver

(- s o) (- o)

)

(4.20)



and

An) < (1 " 12:<4n>4 ’ 1237;8@)8) (1 ) 36:<4n>3 " 1295(”)6)

X (1 . 32:(4n)5 + Vl(i;) (1 + ﬁ) . (4.21)

To prove Theorem 1.4, it is enough to show that for v(n) > 67,

d T8 mt 578
1+ 7T 1-— —
12v(n)* * 864v(n)8 36v(n)?  2592v(n)7

" (1 - 32:<4n>5 - 153) (1 - %)

d t d 135

1-— — — 4.22
T3P T 12en)t 32u(np ) (4.22)
and
m e mt e
1 11—
( T T 123y(n)8> ( 360(n) 1296V(n)6>
o (1- m n 121 14 >
32v(n)®>  v(n)s v(n)b
m mt m 126 + 1556
1 _ 1296 4.93
S TEGmE T 2ot 32y | (n)e (4.23)
We first show (4.22). Observe that
m 7S m 58
1+ + 1 - =
12v(n)* ~ 864v(n)® 36v(n)?  2592v(n)”
m 129 )
x (11—
32v(n)®  v(n)b v(n)b
m m mt 135
36v(n)? ~ 12v(n)*  32v(n)®> wv(n)b
4.24
~ T16636160(n)77 Z s (4.24)

where ¢; are real numbers. Here we just list the values of cig, ¢, cor:

C19 = 6428167, 99 = —3041287%, 91 = 71663616.

Clearly,

Z cjv(n)! > — Z cjlv(n) + eaov(n)®® + cayv(n)?!.
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Moreover, it can be checked that for 0 < j < 18 and v(n) > 4,

—lejlv(n)! > —lerslv(n)"™.

On the other hand, It is not difficult to check that for v(n) > 67,
6211/(71)2 + CQ(ﬂ/(TL) — 20‘019’ > 0.

Assembling all these results above, we conclude that for v(n) > 67,
21
chz/(n)j > (ca1v(n)? + coov(n) — 20|c19]) v(n)* > 0.
=0

This proves (4.22).
Similarly, to justify (4.23), we first note that

mt 7d mt 7®
1 1—
< * 12v(n)4 - 123v(n)8> < 36v(n)? * 1296V(n)6>

(- e ) ()

- < 4 7 7 126 + %)

b= 36v(n)? i 12v(n)*  32u(n)? * v(n)b

19

1 .
= — d; J 4.25
204042241/ (n) ; ()’ (4.25)
where d; are real numbers. Here we also list the values of the last three coefficients:
dir = 531367%,  dig = —1836007%, dig = 472327°. (4.26)
It is transparent that

19 17
> dp(ny > = |d;lv(n) + disv(n)'® + digr(n)". (4.27)

j=0 J=0

Moreover, it can be checked that for 0 < j < 16 and v(n) > 2,
—|d;|v(n)! > —|dz|v(n)"

and for v(n) > 7,
dlgy(n)2 + dlgu(n) — 18|d17| > 0.

Hence we conclude that for v(n) > 67,
19
Zdju(n)j > (digr(n)? + digv(n) — 18|di7|) v(n)'" > 0,
=0

and so (4.23) is valid.

Substituting (4.22) and (4.23) into (4.20) and (4.21), we arrive at (1.12). This
completes the proof. |
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5 Proof of Conjecture 1.1

In this section, we confirm Conjecture 1.1 by resorting to Theorem 1.4. Before
doing this, we need to recall the following lemma given by Jia [21].

Lemma 5.1 (Jia). Let u and v be two positive real numbers such that @ <u<
v<l1. If
u+ /(1 —u)?>wv,

then we have
4(1 —u)(1 —v) — (1 —uv)* > 0.

Proof of Conjecture 1.1. We first prove that ¢(n) is log-concave for n > 33. It is
equivalent to proving that for n > 33,

Q) < 1.
By Theorem 1.4, we see that for v(n) > 67,

7r4 7r4 T 126+ oo
1-— — 1296 1
Qn) < 36v(n)? * 12v(n)*  32v(n)® * v(n)b (5.1)

It is easy to check that for v(n) > 44,

m m

— <0
36v(n)3 * 12v(n)* —

and

w126+ 55

~ 32u(n)? N v(n)§ =
Hence, we conclude that Q(n) < 1 for n > 1365. It can be checked that Q(n) < 1
for 33 < n < 1365. Therefore, we derive that Q(n) < 1 for n > 33, and so ¢(n) is
log-concave for n > 33.

To prove that g(n) satisfies the third order Turdn inequalities for n > 121, it is
equivalent to demonstrating that for n > 121,

41-Qn)(1-Q(n+1)) — (1 -Q(n)Q(n+1))* > 0. (5-2)

It can be directly checked that (5.2) is true when 121 < n < 1365, so it is enough to
prove that (5.2) holds for n > 1365. Since Q(n + 1) < 1 for n > 32, and by Lemma
5.1, we see that it suffices to prove that for n > 1365,

VoL < < 53)

and



Using Theorem 1.4, we see that for v(n) > 67,

t v v 135

~ 36v(n)? * 12v(n)*  32w(n)®  v(n)s
It is easy to check that for v(n) > 5,
m m 135

12v(n)*  32v(n)>  wv(n)® >0

Qn) > 1

and

4 4 _
1-— T >1- T > V5 1.
360 (n)? 36 - 53 2
Hence we deduce that for v(n) > 67,

V5 —1
Q(n) > 5
Using Theorem 1.4 again, we find that for v(n) > 67,
! m m 135
_ 1— _ _
Qin+1)=Qn) > ( v+ 18 120in+ 1)t 32(n+ 1P pin+ 1)6)
7r8
B - 7.[.4 N 7.(.4 B 7-(-4 n 126 + 1296 ' (55>
36v(n)®  12v(n)*  32v(n)® v(n)b
Note that for v(n) > 3,
(1 R S
vin+1)3 v(n)®  4v(n)®’
1 - 1 272
vin+1)* " v(n)*  3v(n)d’ (5.6)
1 - 1
vin+1)5 " v(n)b’
1 - 1
vin+1)8 " v(n)s

\

Applying (5.6) to (5.5), we derive that for v(n) > 67,

1 1 s m + —5t i 55+ 135
_ > - o
Q(n+1) —Q(n) 361(n)3 + 12v(n)* v(n)® v(n)®
1 - N A -’ N 126 + %
36v(n)3  12v(n)*  32v(n)° v(n)°
w8 8
o MR
144v(n)> v(n) ‘
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It can be checked that for v(n) > 49,

' 261+ 55 + B _
144v(n)® v(n)® ’

so we get that for v(n) > 67,

Qn+1) = Q(n) >0,
and (5.3) is verified since v(n) = 67 whenever n = 1365.

To prove (5.4), using Theorem 1.4 again, we find that for v(n) > 67,

A+ —Qm < (1ot ™ 10y
" " 36v(n+ 1P  12v(n+ 1) 32w(n+ 1)  wv(n+ 1)
. m N ™ 135
36v(n)®  12v(n)*  32v(n)® v(n)S
m 1 1 mt 1 1
36 \v(n)? wv(n+1)3 12 \v(n)* v(n+1)*
1 1 126 + 2= 135
— - . 5.7
* 32 <1/(n)5 v(n+ 1)5) * vin+1)6  v(n)s (5:7)
It can be checked that for v(n) > 0,
(1 1 2
v(n)® vin+1)3  2u(n)®’
1 1
— <0 5.8
vin+1)* v(n)* 7 (5:8)
1 1 - 1
L v(n)®  vin+1)5  wv(n)d
and for v(n) > 55,
126 + 1555 135 - 126 + 1556 + 135 - 2 (5.9)
vin+1)6  v(n)s v(n)® 2v(n)> '
Applying (5.8) and (5.9) to (5.7), we derive that for v(n) > 67,
ml 2 mt 1 2
1) — .t 4T
Qn+1) = Q) < 36 2v(n)® * 32 v(n)® * 2v(n)d
T S
=J2 32 3 y(?;j)f’ 2 (5.10)



It remains to show that for v(n) > 67,

7T6 7'I'4 7'('2
ntm Tty

(1-Q(n))* > Top (5.11)
Since for v(n) > 67,

4 4 4 s
m m m _ 126 + 1555

~ 36v(n)®  12v(n) * 32v(n)® v(n)é 7

1-Q(n)

and for v(n) > 44, it can be checked that

w126+ g
32v(n)® v(n)S
and
m 1
> J—

" 12u(n)? 4v(n)3
Hence we deduce that for v(n) > 67,

m 1 -9
1— > - = > 0. 5.12
Q) 36v(n)?  4v(n)®  36v(n)? (5.12)
It can be easily checked that for v(n) > 31,
7T6 7'('4 7T2

216v(n)? 0k

Combining (5.12) and (5.13), we obtain (5.11), and so (5.4) is valid when v(n) > 67.
This completes the proof. 1

6 Concluding Remarks

Let pr(n) denote the number of partitions of n in which none of the parts are
multiples of k. By definition, we see that

O L kn
S e = [T
n>0 n=1 q

When k = 2, this partition function pg(n) reduces to ¢(n). In [9], Craig and Pun also
conjectured that the minimal number Ny, and M}, such that py(n) is log-concave for
n > Ny and satisfies the third-order Turan inequalities for n > M, where k = 3,4, 5.
More precisely, Craig and Pun [9] conjectured that

N3 - 58, N4 - 17, N5 =42
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and
Ms =185, M, =64, Ms=137.

Based on Chern’s asymptotic formulas for n-quotients, and using the similar argu-
ment in this paper, we could show that their conjectured values are true. Here we
omit the details. However, our method can not be applied to find the values N
and My, for any fixed k such that pg(n) is log-concave for n > Nj and satisfies the
third-order Turdn inequalities for n > M. It would be interesting to find a unified
way to determine such N, and My in terms of k.

Last but not least, we would like to mention that while studying the third-
order Turdn inequalities for p(n), Chen [0] undertook a comprehensive study on
inequalities pertaining to invariants of a binary form. In particular, he considered
the following three invariants of the quartic binary form

2
A(ag, ay, as, as, ay) = apay — 4aaz + 3as,
B _ 3 2 2 2
(CL(), ap, ag, as, CL4) = — Qo204 + Qo -+ apGs -+ a1a4 — 20410203,
3 2
I (CLO, ay, ag, as, CL4) = A (a‘07 ai, as, as, a4) - 27B (a’O? ai, as, as, CL4) .

Chen [6] conjectured both the partition function p(n) and the spt-function spt(n)
satisfy the inequalities derived from the invariants of the quartic binary form for
large n. For the definition of the spt-function, please see Andrews [3] or Chen [0].
Chen’s conjectured inequalities on the partition function p(n) have recently been
proved by Banerjee [1], Jia and Wang [22] and Wang and Yang [30].

In the same vein, we will present corresponding conjectures on g(n).

Conjecture 6.1. Let a,, = q(n), then

A(ap_1,0n, Gyi1, Gpia, pyz) > 0, for n > 230,
B(an—1,an, Gni1, Gnia, Gnrg) > 0, forn > 272,
I(an_1,an,ani1, Qnro, anrg) >0, for n > 267.
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leading to an improvement of an earlier version. This work was supported by the
National Science Foundation of China.
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