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1 Introduction

The study of unimodality of polynomials (or combinatorial sequences) has drawn great at-
tention in recent decades. There is a remarkable diversity of applicable tools, ranging from
analytic to topological, and from representation theory to probabilistic analysis. In this pa-
per, we establish the unimodality of the polynomials defined in (1.6) by refining the method
of Odlyzko-Richmond [13]. Recall that a polynomial

a0+a1q+---+a]\;q”
with integer coefficients is called unimodal if for some 0 < 57 < N,
ap < ay < - <A 2> Qjgy 200 2 AN,

and is called symmetric if forall 0 < 7 < N,
aj = AN—j-

See [20, p. 124, Ex. 50]. It is well-known that the Gaussian polynomials

m _ (1= =g (1 =g
k (I=g)(1=¢*--(1—q")




are symmetric and unimodal, as conjectured by Caylay [7] in 1856 and confirmed by Sylvester
[22] in 1878 based on semi-invariants of binary forms. For more information, we refer
to [6,12,14,16].

R. C. Entringer may be the first to investigate the unimodality of polynomials by an
analytical method. By extending the argument of van Lint [11], Entringer [9] showed that
the polynomials

(1+a)* (1 +¢*)* - (1+¢")?

are unimodal for n > 1. This method was greatly extended by Odlyzko and Richmond [13]
to establish the almost unimodality of a class of polynomials of the form

(I+q¢")(1+q")---(14+q¢™)

when n is large enough, where {a;}3°, is a non-decreasing sequence of positive integers.

More precisely, let

n

N n
[Ta+q%)=> bum)g™,  where N =Y a, (1.1)

i=1 m=0 i=1

Odlyzko and Richmond showed that under suitable conditions (conditions (I) and (II) in Roth
and Szekeres [17, p. 241]) on the infinite sequence {a;}, the polynomials (1.1) are almost
unimodal for n sufficiently large, that is, when n — oo,

where A is some fixed constant and K = N/2or K = (N + 1) /2.

When a; = i for 1 < ¢ < nin (1.1), Odlyzko and Richmond [13] verified that the
inequality (1.2) holds for A = 1 when n > 60. It can be checked that inequality (1.2)
also holds for A = 1 when n < 59. Hence Odlyzko and Richmond concluded that the
polynomials

1+ +¢*)---(1+q") (1.3)

are unimodal for n > 1. The first proof of the unimodality of the polynomials (1.3) was given
by Hughes [10] with the aid of Lie algebra results. Stanley [19] provided an alternative proof
by using the Hard Lefschetz Theorem. Stanley [18] also established the general result of this
type based on a result of Dynkin [8].

When a; = 2t — 1 for 1 < ¢ < nin (1.1), Almkvist [1] proved that the inequality (1.2)
holds for A = 3 when n > 83. This leads to the polynomials

(I+q)(1+¢) - (1+¢") (1.4)
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are unimodal for n > 27, except at the coefficient of ¢*> and g2 conjectured by Stan-
ley [19]. Pak and Panova [15] showed that the polynomials (1.4) are strict unimodal by
interpreting the differences between numbers of certain partitions as Kronecker coefficients

of representations of S,,.

In [1], Almkvist also made the following conjecture.

Conjecture 1.1 (Almkvist) For evenr > 2 or odd r > 3 and n > 11, the polynomials

1 qu

| G (15)

k=1

are unimodal.

When r = 2, the polynomials (1.5) reduces to the polynomials (1.3). Almkvist [2] first
showed that the conjecture is true when r = 4 by refining the method of Odlyzko-Richmond
[13]. Subsequently, Almkvist [3] showed that the conjecture is true when 3 < r < 20,
r = 100 and 101.

In this paper, we establish the unimodality of the following polynomials.

Theorem 1.2 For n > 0, the polynomials

n

H(l +q3k+1)(1 +q3k+2) (16)
k=0

are symmetric and unimodal.

It is worth mentioning that Borwein conjectured that the coefficients of the polynomials

n

H(l _ q3k+1)(1 _ q3k+2)

k=0
have a repeating sign pattern of + — —, which has been called as Borwein’s conjecture, see
Andrews [4]. Recently, Borwein’s conjecture has been proved by Wang [23] by an analytical
method.

2 Preliminaries

In this section, we collect several identities and inequalities which will be useful in the proof
of Theorem 1.2.

e = cos(r) + isin(x), (2.1)



cos(2x) = 2cos*(x) — 1 (2.2)

=1 — 2sin®*(z), (2.3)
sin(2z) = 2sin(z) cos(x), (2.4)
2sin(a) cos() = sin(a + 5) + sin(a — 5), (2.5)
sin(z) > ze ™3 for 0 <z <2, (2.6)
cos(z) > e for |z| <1, (v = —logcos(1) = 0.615626....), (2.7)
3
- "% <sin(z) <z for x>0, (2.8)
| cos(x)| < exp (—% sin®(z) — isin‘l(x)) for = >0, (2.9)
)] <o, 210
sin(z)
=\ ~n_sin(@n+1z) 1
;sm (kz) = 5 pyes + (2.11)
SN ~3n sin((2n+1)z)  sin((2n+1)22) 3
;Sm (ko) =5 = 4sin(z) 16sin(27) | 16 @12)

The identity (2.1) is Euler’s identity, see [21, p. 4]. For the formulas (2.2)—(2.5) of trigono-
metric functions, please see [5, Chapter 8]. The inequalities (2.6)—(2.10) were proved by
Odlyzko and Richmond [13, p. 81].

It remains to show (2.11) and (2.12).

Proofs of (2.11) and (2.12). First, by (2.5), we obtain

2sin(z) <% + Z cos(2kx))

= sin(x) 4 2sin(x) cos(2z) + 2sin(z) cos(4x) + - - - + 2sin(x) cos(2nx)

29 sin(z) + (sin(3z) — sin(x)) + (sin(5x) — sin(3z))

+ -+ (sin((2n + 1)x) — sin((2n — 1))
= sin((2n + 1)z).

Hence, we have

sin((2n + 1)z)

u 1
> cos(2kz) = ren@) 7 (2.13)
k=1




Using (2.3) and (2.13), we deduce that

Zsm (kx) @ E - 5 cos(2kx)
k=1

o 1(sin((2n+1)x) 1)

2 2 2sin(z) 2
_n_sin((2n+ l)x) n 1
2 4sin(x) 4’

which is (2.11).

The identity (2.12) can be derived in the same way. To wit,

~ 23) x— (1 — cos(2kz) 2
Zsm (kx) = Z (—2
k=1 k=1

3n 1 1
@D gn ~3 cos(2kzx) + 3 cos(4kz)
k=1 k=1
@iz 3n 1 (sin((2n+1)z) 1 N 1 (sin((2n+1)2z) 1
8 2 2 sin () 2) 8 2sin(2z) 2
~3n sin((2n+1)z) | sin((2n+1)22) 3
-8 4 sin(z) 16 sin(22) 16’
in agreement with (2.12). This completes the proof. 1
3 Proof of Theorem 1.2
Let d, = 3(n + 1) and define
n dn
Bu(q) = [J(1+ ™)1+ %) = an(m)g™. (3.1)
k=0 m=0

In order to prove Theorem 1.2, we first show the following lemma.

Lemma 3.1 Ifn>1and3" <m<(";1 then

a,(m) —a,(m—1) > 0. (3.2)



Proof. We first show that (3.2) holds for n > 168 and % <m< w Putting ¢ = ¥
in (3.1), by (2.1), (2.2) and (2.4), we derive that

n

Bn(62i9> _ H(l + (€2i9)3k+1)(1 + <€2i9)3k+2>

D T] (1+ cos (2(3k + 1)9) + isin(2(3h + 1)9)
k=0

x (1 + cos (2(3k + 2)0) + isin(2(3k + 2)0))

(2L ﬁ (2 cos?((3k + 1)0) + 2isin((3k + 1)8) cos((3k + 1)0))

x (2 cos®((3k + 2)0) + 2isin((3k + 2)6) cos((3k + 2)0))

@b ﬁ 4 cos((3k + 1)0) cos((3k + 2)0) exp(i(3k + 1)0) exp(i(3k + 2)0)

k=0

= 4" exp(id,0) | [ cos((3k + 1)6) cos((3k + 2)6). (3.3)
k=0
Using Taylor’s theorem [21, p. 47-49], we find that
1 % BTL €2i9 ;
i) = o [ 2 )

21 J_ =
2

p— l /2 Bn (eQiG) e—2im9d6)

T

NIE

33 ? /" exp(i(d, —2m)0 )ﬁcos((?)k: + 1)0) cos((3k + 2)0)dd

SR

en 477 /_ * (cos((dn — 2m)0) + isin((dy — 2m)0)) T cos((3k + 1)6) cos((3k + 2)6)do.

™
k=0

INIEY

Observe that

/’2' sin((d,, — 2m)0) ﬁ cos((3k + 1)) cos((3k + 2)0)dé = 0,

[NIE]

we have therefore,

22n+3

a,(m) = /02 cos((d, —2m)0 Hcos ((3k + 1)) cos((3k + 2)0)d6.

™

We next show that

0 3n? 3 1)2
—au(m) >0 for n>168 and %gmg%,

o (3.4)
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from which, it follows that (3.2) is valid for n > 168 and 22> < yn < 307

It is easy to see that

s

AR / " 9sin ((d,, — 2m)0) ﬁcos((3k 1+ 1)) cos((3k + 2)0)de.

n
om T
k=0

Let d,, — 2m = u, and let
I(pn) = /2 6 sin (ub) H cos((3k + 1)) cos((3k + 2)0)d6.
0 k=0

Under the condition that E’Qﬁ <m< M we see that
0<pu=d,—2m < 6n+3. 3.5)
To prove (3.4), it suffices to show that
I,(u) >0 for n>168 and 0 < pu<6n+3. (3.6)

To this end, we write

Inw):{/oﬁ"i‘#/i

6n+4

} 0 sin (ud) ﬁ cos((3k + 1)0) cos((3k + 2)0)dé

= I (1) + I ().
We next show that
IW) > 1P ()| for n>168 and 0 < pu < 6n+ 3, (3.7)

which implies (3.6).

We first evaluate the value of I} (1), which is defined by

V() = /0“4 0sin (u6) | [ cos((3k + 1)6) cos((3k + 2)6)d6. (3.8)
k=0

When 0 < 6 < Tlﬁ, by (3.5), we have

0<wpwhd<2and 0<(3k+1)0 < (3k+2)0 <1 for 0 <k <n,

so that

6 sin (u6) ﬁ cos((3k + 1)0) cos((3k + 2)0)

k=0



n

(2.6)&(2.7) 2092
> pf*exp (—N3 ) exp (—7«92 Z ((8k+1)*+ (3k + 2)2)>

k=0

6 3)%6?
> 16? exp (—%) exp (—76* (6n° + 18n* + 17Tn+5))  (by 0 < pn < 6n+ 3)

12 12 3 18 17 5
ZWQeXp(—HQn?’((EJrﬁJrﬁ)+7<6+—+—+$))>

> 110* exp (—cn392) (by n > 168),

where ¢ = 3.832. Applying (3.9) to (3.8), we find that when n > 168 and 0 < p < 6n + 3,

(3.9)

I () = /0673;4 0 sin (u0) ﬁ cos((3k + 1)0) cos((3k + 2)0)do
" 0 sin () f[ cos((3k + 1)0) cos((3k + 2)8)d6

OO OO

} 1h? exp ( cn362) dé

3n+2

=/
0

> /Sn+2 u92 exp (—cn3¢92) deo
0

M\OJ

& 1
5 e 'dv — / v2ze “dou
5 cn3

(3n+2)2

F
3 5 ( v2e ”dv).
cinz
(37L+2)2

Observe that when n > 168,

\3

cn? c-1683
(B3n+2)2 = (3 x 168 + 2)2’

SO
& & 1 .
2¢ Vdv < v2e ’dv < 1.29 x 10730,
cn3 c-1683
(3n+2)2 (3x168+2)2

Consequently, when n > 168 and 0 < p < 6n + 3,

VT -30
le)(,u) S 2 1.29 x 130 ' ,ug 0.88621 S 0.05?3/1' (3.10)
- 2 x 3.8322 n:  152n3 n2

We now turn to estimate the value of 1} (1), which is defined by

s

I () = i 0 sin (ub) ﬁ cos((3k + 1)) cos((3k + 2)0)dé. (3.11)

6n+4 k=0



ﬁ cos((3k + 1)0) cos((3k +2)0)

2 exp (_% S (sin®((3k + 1)) + sin®((3k + 2)6))

k=0

1 n
-3 > (sin((3k + 1)0) + sin* ((3k + 2)0

= exp (—% (Z sin?(k6) — Zsin2(3k;0)> - i (Z sin’ Zs (3k0) ))

k=1 k=1 k=1 k=1

2.11)&(2.12) exp (_ 11(n+1) 3sin((6n+5)8) sin((6n + 5)20)

16 16sin(0) 64 sin(26)
3sin((2n 4+ 1)30)  sin((2n + 1)66)
- - . = E(n).
16 sin(30) 64 sin(66)
We proceed to prove that
s s
E —0.1 —0.031) f <0< — > 168. 12
(n) < exp(—0.163n — 0.031) for 6n+4_0_2 and n > 168 (3.12)
The proof of (3.12) is divided into two steps. When &= ) <6< 5> using (2.8) and (2.10),
we obtain
11(n+1) 3 1 3 sin((2n + 1)66)
E(n) < —
(n) < exp ( 16 16sin(0) | 6dsin(26) | 16sin(30) | 64sin(60)
(2.8)&(2.10) 11 1 3 1
< exp—(qg—)+ (W)Q + (W)Q
16 <6n:-4 <1 o Gn? >) 64 (:miz (1 o WéQ ))
3 2n +1 71' T
+ — + (by <0< —) .
3 4 4
16(65214 (1_(6ng4) )) 6 6n + 6
(3.13)
Applying

r \2 2 o\ 2
1_(@) >1_(m) >1_(62+4)




to (3.13), we derive that

42n + 43 3 1
+

E(n) <exp| — ol - <6n75r4 (1_(62%#1)2)) +64 (3n7r+2 (1—@))

42n + 43 n 33
=exp | — 2
64 - (37”)
128 (6n+4 (1 - g4 ))

42n + 43 33(6n + 4)
64 + 612
Note that when n > 168,

. 62 .- (Y _ 32
(12n + 8)2 — (12 x 168 +8)2 2048288’

=exp | —

us s
sowhenmgeggandnzw&

B(n) < exp (_427161 13 330n+ ;12 )
1287 (1 — 5pome5)
:exp<<—§+ %9 >n—§+ 33 )
32 64m (1 — =) 64 327 (1 — 22)
< exp (—0.163n — 0.343) . (3.14)

When £ < 0 < 7, by (2.10), we deduce that

11(n+1) 3 sin((6n + 5)26) 3sin((2n + 1)30)
E(n) < _
(n) < exp < 16 16sm(d) 64 sin(26) 165in(30)
sin((2n + 1)60)
64 sin(60)
(ZéO)GX _11(n+1)+ 3 +6n+5+3(2n—|—1)+2n—|—1
= &P 16 16sin(Z) 64 16 64

1

= exp <—%n - §> < exp (—0.187n — 0.031) . (3.15)
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Combining (3.14) and (3.15) yields (3.12). Applying (3.12) to (3.11), and in view of (2.8)
and (3.10), we derive that when n > 168,

(2.8
112 ()] < pexp (—0.163n — 0.031) 6%do

_T
6n+4

3 (1 1
i (g - m) exp (—0.163n — 0.031)
n

3
pr? (1 1 1 1 1
_H (_ _ ) (? + 26n 1 4] + (6n + 17 exp (—0.163n — 0.031)

IN

3 /1 1
<HT 2 (— _ ) exp (—0.163n — 0.031)

3 4 \2 6nt4
G10)  73p3 1 1
< - — 0.163n — 0.031) IV
= 1x0.0583 (2 6n—|—4>eXp( " VL7 ().

Define .
m™n2 1 1
= (2 —0.163n — 0.031).
J(n) = 55,0583 (2 6n +4) exp ( " )

To show (3.7), it remains to show that f(n) < 1 for n > 168. We claim that f'(n) < 0 for
n > 168. Since f(n) > 0 for n > 168, we have

d d F(n) d
el — _— nf(n) — —1 . 1
) = eI = f(n) I () (3.16)
Observe that when n > 168,
9 6
_1 —0.163
T = e B Den 9
9 6

—0.163 < -0.13 < 0.

<
S 2%168 T (3x 168+ 1)(6 x 168+ 4)

Hence, we derive from (3.16) that f'(n) < 0 for n > 168, and the claim is proved. Conse-
quently, f(n) < f(168) < 0.851 when n > 168. Therefore, (3.7) is valid, and so (3.4) is
valid. This leads to (3.2) holds for n > 168 and 3” <m < ("H) . Using Maple, we can
check that (3.2) also holds for n < 168 and 33 <m< 3(7”51) . Thus the lemma is proved. 1

We conclude this paper with the proof of Theorem 1.2.

Proof of Theorem 1.2. When n. > 0, we first show that B,,(q) is a symmetric polynomial.
Replacing ¢ by ¢! in (3.1), we deduce that

n

Bn(qfl) _ H(l + q7(3k+1))<1 + q7(3k+2)>
k=0

11



—dn, H 1 +q 31<;+1 1 + q(3k+2))
k=0

=q " B.(q).

To wit,
B,.(q) = ¢ B,(q¢" "),

from which, it follows that B,,(¢q) is symmetric.

We proceed to show that the polynomial B, (¢) is unimodal by induction on n. When
n = 0, we have
Bo(q) = (1+q)(1+¢*) =1+q+¢ +¢"
Clearly, the coefficients of By(q) are unimodal.
Suppose that B,,_1(q) is unimodal for n > 1, namely, forn > land 1 < m < Ld"—;j ,

ap—1(m) > ap_1(m —1). (3.17)

We intend to show that B,,(q) is unimodal. Since B,,(q) is a symmetric polynomial, it suffices
to show thatforn > land 1 <m < |%& |,

a,(m) > ap,(m—1). (3.18)

Observe that
Bu(q) = (1+ ") (1+¢**?) Ba-1(q),

which implies the following recurrence relation:

an(m) = ap—1(m) + ap—1(m —3n—1) + a,—1(m — 3n — 2) + a,—1(m — 6n — 3).
(3.19)

It’s evident from (3.17) and (3.19) that (3.18) holds forn > land 1 < m < L n- 1j In view
of Lemma 3.1, we see that (3.18) also holds for n > 1 and (71 <m< L : J Hence, we
conclude that (3.18) is valid forn > 1land 1 < m < [%"J, and so B,,(q) is unimodal. Thus,

we complete the proof of Theorem 1.2. 1
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