
Turán inequalities for the broken k-diamond

partition functions

Janet J. W. Dong1, Kathy Q. Ji2 and Dennis X. Q. Jia3

1, 2, 3 Center for Applied Mathematics

Tianjin University

Tianjin 300072, P.R. China

Emails: 1dongjinwei@tju.edu.cn, 2kathyji@tju.edu.cn and 3jxqmail@tju.edu.cn

Abstract. We obtain an asymptotic formula for Andrews and Paule’s broken k-
diamond partition function ∆k(n) where k = 1 or 2. Based on this asymptotic
formula, we derive that ∆k(n) satisfies the order d Turán inequalities for d ≥ 1
and for sufficiently large n when k = 1 or 2 by using a general result of Griffin,
Ono, Rolen and Zagier. We also show that Andrews and Paule’s broken k-diamond
partition function ∆k(n) is log-concave for n ≥ 1 when k = 1 or 2, which implies
that ∆k(a)∆k(b) ≥ ∆k(a+ b) for a, b ≥ 1 when k = 1 or 2.

Keywords: broken k-diamond partition functions, log-concavity, higher order Turán
inequalities, Jensen polynomials

AMS Classification: 11P82, 05A19, 30A10

1 Introduction

The main objective of this paper is to establish Turán inequalities for the num-
ber of broken k-diamond partitions. The notion of broken k-diamond partitions
was introduced by Andrews and Paule [2]. A broken k-diamond partition π =
(b2, . . . , b2k+2, . . . , b(2k+1)l+1, a1, . . . , a2k+2, . . . , a(2k+1)l+1) is a plane partition satis-
fying the relations illustrated in Figure 1, where ai, bi are nonnegative integers and
ai → aj is interpreted as ai ≥ aj. More precisely, each building block in Figure 1 has
the same order structure as shown in Figure 2. We call such block a k-elongated par-
tition diamond of length 1. It should be noted that the broken block (b2, b3, . . . , b2k+2)
is also a k-elongated partition diamond of length 1 from which a source b1 is deleted.

Let ∆k(n) denote the number of broken k-diamond partitions of n. Andrews and
Paule [2] established the following generating function for ∆k(n):

∞
∑

n=0

∆k(n)q
n =

∞
∏

n=1

(1− q2n)
(

1− q(2k+1)n
)

(1− qn)3 (1− q(4k+2)n)
.
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Figure 1: A broken k-diamond of length 2l.
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Figure 2: A k-elongated partition diamond of length 1.

It’s known that ∆k(n) possesses many beautiful arithmetic properties. Many
Ramanujan-like congruences satisfied by ∆1(n) and ∆2(n) were proved by Andrews
and Paule [2] and other authors, see, for example, Chan [8], Chen, Fan and Yu [10],
Hirschhorn [18], Paule and Radu [22] and so on. It should be noted that ∆k(n) are
the coefficients of a modular function over Γ0(4k + 2).

The Turán inequalities arise in the study of real entire functions in Laguerre-Pólya
class, which are closely related to the study of the Riemann hypothesis [15, 24]. A
sequence {αn}n≥0 of real numbers is log-concave if it satisfies the (second order)
Turán inequalities α2

n ≥ αn−1αn+1 for n ≥ 1. We call the sequence {αn}n≥0 satisfies
the third order Turán inequalities if for n ≥ 1,

4(α2
n − αn−1αn+1)(α

2
n+1 − αnαn+2) ≥ (αnαn+1 − αn−1αn+2)

2.

As stated by Chen, Jia and Wang [12] and Griffin, Ono, Rolen and Zagier [17], the
higher order Turán inequalities are conveniently formulated in terms of the Jensen
polynomials. The Jensen polynomials Jd,n

α (X) of degree d and shift n associated to
the sequence {αn}n≥0 are defined by

Jd,n
α (X) =

d
∑

i=0

(

d

i

)

αn+iX
i. (1.1)

When d = 2 and shift n− 1, the Jensen polynomial J2,n−1
α (X) reduces to

J2,n−1
α (X) = αn−1 + 2αnX + αn+1X

2.
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It is clear that {αn}n≥0 is log-concave at n if and only if J2,n−1
α (X) has only real roots.

In general, we say that the sequence {αn}n≥0 satisfies the order d Turán inequality
at n if and only if Jd,n−1

α (X) is hyperbolic. Recall that a polynomial is hyperbolic if
all of its roots are real.

There are several recent works on the Turán inequalities for the partition func-
tions. Nicolas [20] and DeSalvo and Pak [14] proved that the partition function p(n)
is log-concave for n ≥ 26, where p(n) is the number of partitions of n. Chen [11]
conjectured that p(n) satisfies the third order Turán inequalities for n ≥ 95, which
was proved by Chen, Jia and Wang [12]. Chen, Jia and Wang [12] further conjec-
tured that for d ≥ 4, there exists a positive integer Np(d) such that p(n) satisfies the
order d Turán inequalities for n ≥ Np(d), that is, the Jensen polynomial Jd,n−1

p (X)
associated to p(n) is hyperbolic for n ≥ Np(d). Griffin, Ono, Rolen and Zagier [17]
showed that Chen, Jia and Wang’s conjecture is true for sufficiently large n. In fact,
they obtained the following general result:

Theorem 1.1 (Proof of Theorem 7 of [17] ). Let {af(n)}n≥0 be a sequence of positive

real numbers. If

af (n) = Afn
k−1
2 Ik−1(4π

√
mn) +O(nCe2π

√
mn)

as n → ∞ for some non-zero constants Af , m and C, where Iν(s) is the ν-th modified

Bessel function of the first kind. Then for d ≥ 1, the Jensen polynomial Jd,n
af

(X)

associated to af (n) is hyperbolic for sufficiently large n.

Since then, Turán inequalities for other partition functions have been extensively
investigated. For example, Engel [16] showed that the overpartition function p(n) is
log-concave for n ≥ 2 and Liu and Zhang [19] showed that the overpartition function
p(n) satisfies the third order Turán inequalities for n ≥ 16. Recently, Bringmann,
Kane, Rolen and Tripp [6] showed that k-colored partition function pk(n) is log-
concave for n ≥ 6. Craig and Pun [13] showed that the number of the k-regular
partitions of n satisfies the order d ≥ 1 Turán inequalities for sufficiently large
n. Ono, Pujahari and Rolen [21] showed that the number of MacMahon’s plane
partitions of n satisfies the order d ≥ 1 Turán inequalities for sufficiently large n. It
should be noted that Craig and Pun’s result can be viewed as a direct consequence
of Theorem 1.1.

In this paper, we intend to explore Turán inequalities for broken k-diamond
partitions. Appealing to Sussman’s Rademacher-type formula for η-quotients [25] ,
we obtain the following asymptotic formula for ∆k(n), where k = 1 or 2.

Theorem 1.2. For k = 1 or 2, as n → ∞,

∆k(n) =
(5k + 2)π3

18(2k + 1)x2
k(n)

I2

(

√

5k + 2

2k + 1
xk(n)

)

+O

(

x
−5/2
k (n) exp

(
√
5k + 2

2
√
2k + 1

xk(n)

))

,

(1.2)
where I2(s) is the second modified Bessel function of the first kind, and

xk(n) =
π
√

24n− (2k + 2)

6
. (1.3)
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Combining Theorem 1.1 and Theorem 1.2, we derive that for k = 1 or 2 and
d ≥ 1, ∆k(n) satisfies the order d Turán inequalities for sufficiently large n. To wit,

Corollary 1.3. Let ∆k = {∆k(n)}n≥0. For k = 1 or 2 and d ≥ 1, the Jensen

polynomial J
d,n
∆k

(X) associated to ∆k is hyperbolic for sufficiently large n.

It is worth mentioning that there exists a minimal natural number N∆k
(d) such

that Jd,n
∆k

(X) is hyperbolic for n ≥ N∆k
(d). Table 1 provides conjectural values for

N∆k
(d) for 1 ≤ k ≤ 2 and 2 ≤ d ≤ 13.

d 2 3 4 5 6 7 8 9 10 11 12 13

N∆1(d) 0 4 17 41 72 116 171 238 320 415 525 650

N∆2(d) 0 4 17 34 62 99 147 200 272 355 445 552

Table 1: The conjectural values of N∆k
(d) for 1 ≤ k ≤ 2 and 2 ≤ d ≤ 13.

We further prove that N∆k
(2) = 0 where k = 1 or 2. More precisely, we show

that

Theorem 1.4. For k = 1 or 2, ∆k(n) is log-concave for n ≥ 1, that is, for n ≥ 1,

∆2
k(n) ≥ ∆k(n− 1)∆k(n + 1). (1.4)

As noted by Asai, Kubo and Kuo [3] and Sagan [23], we see that Theorem 1.4
implies the following multiplicative properties of ∆k(n).

Corollary 1.5. For k = 1 or 2 and a, b ≥ 1,

∆k(a)∆k(b) ≥ ∆k(a + b).

It should be noted that multiplicative properties of the partition function p(n)
were initially obtained by Bessenrodt and Ono [5]. Subsequently, multiplicative prop-
erties of other partition functions have been established, for example, Beckwith and
Bessenrodt [4] established multiplicative properties of the k-regular partition func-
tions and Bringmann, Kane, Rolen and Tripp [6] acquired multiplicative properties
of the k-colored partition functions, which resolved a conjecture of Chern, Fu and
Tang [9].

This article is organized as follows. In Section 2, we prove Theorem 1.2 with the
aid of Sussman’s Rademacher-type formula for η-quotients. Section 3 is devoted to
the proof of Theorem 1.4. To this end, we derive an upper bound and a lower bound
for ∆k(n) with the aid of Theorem 1.2 and establish an inequality on the second
modified Bessel function of the first kind. In Section 4, we pose some questions and
remarks for future work.
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2 Proof of Theorem 1.2

To prove Theorem 1.2, we first derive Rademacher-type formulas for ∆k(n) (k = 1
or 2) with the aid of Sussman’s Rademacher-type formula for η-quotients [25]. Define

G(q) :=

R
∏

r=1

(qmr ; qmr)δr∞, (2.1)

where m = (m1, . . . , mR) is a sequence of R distinct positive integers and δ =
(δ1, . . . , δR) is a sequence of R non-zero integers. Here and throughout this paper,
we have adopted the standard notation on q-series [1]:

(a; q)n =
n−1
∏

j=0

(1− aqj) and (a; q)∞ =
∞
∏

j=0

(1− aqj).

In order to present Sussman’s result, we need a few preliminary definitions. Let

n0 = −
R
∑

r=1

mrδr.

The function q
n0
24 G(q) is holomorphic in the open unit disk D, so we may write

G(q) = q−
n0
24

∑

n≥0

g(n)qn

for some coefficients g(n). Sussman [25] obtained a Rademacher-type formula for
g(n) with 1

2

∑R
r=1 δr < 0, which is a special case of Bringmann and Ono [7]. Let

c1 = −1

2

R
∑

r=1

δr, c2(j) =
R
∏

r=1

(

gcd(mr, j)

mj

)
δr
2

, c3(j) = −
R
∑

r=1

δr gcd
2(mr, j)

mr
,

Âj(n) =
∑

0≤h<j
gcd(h,j)=1

exp

(

−2πhi

j
− πi

R
∑

r=1

δrs

(

mrh

gcd(mr, j)
,

j

gcd(mr, j)

)

)

, (2.2)

where s(h, j) is the Dedekind sum:

s(h, j) =

j−1
∑

r=1

(

r

j
−
[

r

j

]

− 1

2

)(

hr

j
−
[

hr

j

]

− 1

2

)

.

Theorem 2.1 (Sussman). If c1 > 0 and the periodic function β(j) : N → R given

by

β(j) = min
1≤r≤R

gcd2(mr, j)

mr

− c3(j)

24
(2.3)
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is non-negative, then for n > n0

24
,

g(n) = 2π

(

1

24n− n0

)

c1+1
2 ∑

j≥1
c3(j)≥0

c2(j)c3(j)
c1+1

2 j−1Âj(n)Ic1+1

(

π
√

c3(j)(24n− n0)

6j

)

,

(2.4)

where Iν(s) is the ν-th modified Bessel function of the first kind.

Here and throughout this paper, we adopt the following infinite series definition
of the modified Bessel function of the first kind,

Iν(s) :=

∞
∑

r=0

1

r!Γ(r + ν + 1)

(s

2

)2r+ν

.

By invocation of Theorem 2.1, we attain the following Rademacher-type formula
for ∆k(n) (k = 1 or 2).

Theorem 2.2. For k = 1 or 2 and n ≥ 1,

∆k(n) =
π3

18x2
k(n)

∑

j≥1

αk(j)j
−1Âj(n)I2

(

√

αk(j)xk(n)

j

)

, (2.5)

where xk(n) is defined in (1.3), Âj(n) is defined in (2.2), I2(s) is the second modified

Bessel function of the first kind, and

αk(j) :=



















1 +
gcd2(2k + 1, j)

2k + 1
, j is even,

5

2
− gcd2(2k + 1, j)

4k + 2
, j is odd.

(2.6)

Proof. Recall that

∞
∑

n=0

∆k(n)q
n =

(q2; q2)∞(q2k+1; q2k+1)∞
(q; q)3∞(q4k+2; q4k+2)∞

.

We have
m = (1, 2, 2k + 1, 4k + 2) and δ = (−3, 1, 1,−1),

so that n0 = 2k + 2, c1 = 1, and for j ≥ 1,

c2(j) =

(

gcd(2, j)

2

)
1
2
(

gcd(2k + 1, j)

2k + 1

)
1
2
(

gcd(4k + 2, j)

4k + 2

)− 1
2

=

(

gcd(2, j) gcd(2k + 1, j)

gcd(4k + 2, j)

)
1
2

= 1,
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c3(j) = 3− gcd2(2, j)

2
− gcd2(2k + 1, j)

2k + 1
+

gcd2(4k + 2, j)

4k + 2

=



















1 +
gcd2(2k + 1, j)

2k + 1
, j is even,

5

2
− gcd2(2k + 1, j)

4k + 2
, j is odd,

(2.7)

and

min
1≤r≤4

(

gcd2(mr, j)

mr

)

= min

{

1,
gcd2(2, j)

2
,
gcd2(2k + 1, j)

2k + 1
,
gcd2(2k + 1, j) gcd2(2, j)

4k + 2

}

=























min

{

1,
gcd2(2k + 1, j)

2k + 1

}

, j is even,

min

{

1

2
,
gcd2(2k + 1, j)

4k + 2

}

, j is odd.

(2.8)

Combining (2.7) and (2.8), we get

βk(j) =























min

{

1,
gcd2(2k + 1, j)

2k + 1

}

− 1

24

(

1 +
gcd2(2k + 1, j)

2k + 1

)

, j is even,

min

{

1

2
,
gcd2(2k + 1, j)

4k + 2

}

− 1

24

(

5

2
− gcd2(2k + 1, j)

4k + 2

)

, j is odd.

Set αk(j) = c3(j). From the definitions of αk(j) and βk(j), we see that αk(j) and
βk(j) are periodic functions with period 4k+2. The following table gives the values
of αk(j) and βk(j) for k = 1 or 2 and 1 ≤ j ≤ 4k + 2.

j 1 2 3 4 5 6 7 8 9 10 · · ·
α1(j)

7
3

4
3

1 4
3

7
3

4 7
3

4
3

1 4
3

· · ·
α2(j)

12
5

6
5

12
5

6
5

0 6
5

12
5

6
5

12
5

6 · · ·
β1(j)

5
72

5
18

11
24

5
18

5
72

5
6

5
72

5
18

11
24

5
18

· · ·
β2(j) 0 3

20
0 3

20
1
2

3
20

0 3
20

0 3
4

· · ·

Table 2: The values of αk(j) and βk(j) for k = 1 or k = 2.

From Table 2, we find that αk(j) ≥ 0 and ∆k(n) satisfies the condition in Theo-
rem 2.1 when k = 1 or 2. Hence we derive (2.5) by substituting relevant values into
Theorem 2.1. This completes the proof.
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It should be noted that Theorem 2.1 could not be applied to derive the explicit
formula for ∆k(n) when k ≥ 3. Setting j = 1, we find that

min
1≤r≤4

(

gcd2(mr, j)

mr

)

= min

{

1

2
,

1

4k + 2

}

=
1

4k + 2
,

and

c3(1) =
5

2
− 1

4k + 2
.

But when k ≥ 3,
1

4k + 2
<

1

24

(

5

2
− 1

4k + 2

)

,

which implies that ∆k(n) does not satisfy the condition in Theorem 2.1 when k ≥ 3.
Here and in the sequel, we assume that k = 1 or 2.

We are now in a position to prove Theorem 1.2 by means of Theorem 2.2.

Proof of Theorem 1.2. Define

Mk(n) :=
αk(1)π

3

18x2
k(n)

I2

(

√

αk(1)xk(n)
)

. (2.9)

Observing that Â1(n) = 1 and αk(1) =
5k+2
2k+1

, we obtain from Theorem 2.2 that

∆k(n) = Mk(n) +Rk(n), (2.10)

where

Rk(n) =
π3

18x2
k(n)

∑

j≥2

αk(j)j
−1Âj(n)I2

(

√

αk(j)xk(n)

j

)

.

We next establish an upper bound for |Rk(n)|.
By the definition of Âj(n), we see that for n ≥ 0 and j ≥ 1,

|Âj(n)| ≤ j, (2.11)

since |e2πri| = 1 for any r ∈ R.

In light of the fact that αk(j) is a periodic function with period 4k + 2, we see
from Table 2 that

max
j≥2

k=1,2

αk(j) = max
2≤j≤4k+2

k=1,2

αk(j) = 6. (2.12)
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Combining (2.11) and (2.12), we are led to

|Rk(n)| ≤
π3

18x2
k(n)

∑

j≥2

|αk(j)|j−1|Âj(n)|I2
(

√

αk(j)xk(n)

j

)

≤ π3

3x2
k(n)

∑

j≥2

I2

(

√

αk(j)xk(n)

j

)

=
π3

3x2
k(n)

∑

j≥2
4k+2∤j

I2

(

√

αk(j)xk(n)

j

)

+
π3

3x2
k(n)

∑

j≥2
4k+2|j

I2

(

√

αk(j)xk(n)

j

)

=
π3

3x2
k(n)

∑

j≥2
4k+2∤j

I2

(

√

αk(j)xk(n)

j

)

+
π3

3x2
k(n)

∑

j≥1

I2

(

√

αk(4k + 2)xk(n)

j(4k + 2)

)

.

(2.13)

It is evident that
max
j≥2

4k+2∤j

αk(j) = max
2≤j<4k+2

αk(j) ≤ αk(1)

and
√

αk(4k + 2)

4k + 2
≤
√

αk(1)

2
.

Hence (2.13) can be further bounded by

|Rk(n)| ≤
π3

3x2
k(n)

∑

j≥2

I2

(

√

αk(1)xk(n)

j

)

+
π3

3x2
k(n)

∑

j≥1

I2

(

√

αk(1)xk(n)

2j

)

, (2.14)

since I2(s) is increasing on (0,∞).

Note that for N ≥ 0,

∑

j≥N+1

I2

(

s

j

)

=
∑

j≥N+1

∑

m≥0

1

m!(m+ 2)!

(

s

2j

)2m+2

≤
∫ ∞

N

∑

m≥0

1

m!(m+ 2)!

( s

2t

)2m+2

dt

=
∑

m≥0

1

m!(m+ 2)!

∫ ∞

N

( s

2t

)2m+2

dt

= N
∑

m≥0

1

(2m+ 1)m!(m+ 2)!

( s

2N

)2m+2

≤ N
∑

m≥0

1

(m+ 1)!(m+ 2)!

( s

2N

)2m+2

= N
∑

m≥1

1

m!(m+ 1)!

( s

2N

)2m

9



≤ 2N2

s

∑

m≥0

1

m!(m+ 1)!

( s

2N

)2m+1

=
2N2

s
I1

( s

N

)

.

Thus we obtain from (2.14) that

|Rk(n)| ≤
π3

3x2
k(n)

∑

j≥2

I2

(

√

αk(1)xk(n)

j

)

+
π3

3x2
k(n)

∑

j≥1

I2

(

√

αk(1)xk(n)

2j

)

=
π3

3x2
k(n)

∑

j≥3

I2

(

√

αk(1)xk(n)

j

)

+
π3

3x2
k(n)

∑

j≥2

I2

(

√

αk(1)xk(n)

2j

)

+
2π3

3x2
k(n)

I2

(

√

αk(1)xk(n)

2

)

≤ 8π3

3
√

αk(1)x3
k(n)

I1

(

√

αk(1)xk(n)

2

)

+
4π3

3
√

αk(1)x3
k(n)

I1

(

√

αk(1)xk(n)

2

)

+
2π3

3x2
k(n)

I2

(

√

αk(1)xk(n)

2

)

≤ 4π3

√

αk(1)x
3
k(n)

I1

(

√

αk(1)xk(n)

2

)

+
2π3

3x2
k(n)

I2

(

√

αk(1)xk(n)

2

)

.

Using Lemma 2.2 (1) of Bringmann, Kane, Rolen and Tripp [6], we find that for
s ≥ 1,

I1(s) ≤
√

2

πs
es and I2(s) ≤

√

2

πs
es,

and so

|Rk(n)| ≤
4π3

√

αk(1)x3
k(n)

I1

(

√

αk(1)xk(n)

2

)

+
2π3

3x2
k(n)

I2

(

√

αk(1)xk(n)

2

)

≤
(

4π3

√

αk(1)x
3
k(n)

+
2π3

3x2
k(n)

)

· 2
√

πxk(n)α
1
4
k (1)

exp

(

√

αk(1)xk(n)

2

)

=

(

2
√

αk(1)xk(n)
+

1

3

)

· 4π
5
2

α
1
4
k (1)x

5
2
k (n)

exp

(

√

αk(1)xk(n)

2

)

.

Since
2

√

αk(1)xk(n)
<

2

3

10



for n ≥ 1, we find that for n ≥ 1,

|Rk(n)| ≤
4π

5
2

α
1
4
k (1)x

5
2
k (n)

exp

(

√

αk(1)xk(n)

2

)

. (2.15)

Theorem 1.2 immediately follows from (2.10) and (2.15) upon noting that

xk(n) =
π
√

24n− (2k + 2)

6
→ ∞ as n → ∞,

and the proof is complete.

3 Proof of Theorem 1.4

To prove Theorem 1.4, we establish an upper bound and a lower bound for ∆k(n)
in light of Theorem 2.2 and an inequality on I2(s).

Theorem 3.1. Let xk(n) be defined as in (1.3), let αk(n) be defined as in (2.6) and
let Mk(n) be defined as in (2.9). For k = 1 or 2 and xk(n) ≥ 152, we have

Mk(n)

(

1− 1

x6
k(n)

)

≤ ∆k(n) ≤ Mk(n)

(

1 +
1

x6
k(n)

)

. (3.1)

Proof. Define

Gk(n) :=

4π
5
2

α
1
4
k
(1)x

5
2
k
(n)

exp
(

1
2

√

αk(1)xk(n)
)

αk(1)π3

18x2
k
(n)

I2

(

√

αk(1)xk(n)
) =

72

α
5
4
k (1)

√
πx

1
2
k (n)

·
exp

(

1
2

√

αk(1)xk(n)
)

I2

(

√

αk(1)xk(n)
) .

(3.2)
Using (2.15), we see that

Mk(n)(1−Gk(n)) ≤ ∆k(n) ≤ Mk(n)(1 +Gk(n)).

To show (3.1), it is enough to prove that for xk(n) ≥ 152,

Gk(n) ≤
1

x6
k(n)

. (3.3)

Invoking Lemma 2.2 (4) of Bringmann, Kane, Rolen and Tripp [6], we know that
for s ≥ 231,

∣

∣

∣

∣

I2(s)e
−s
√
2πs− 1 +

15

8s
− 105

128s2
− 315

1024s3

∣

∣

∣

∣

≤ 3968

3s4
. (3.4)

Hence for s ≥ 231,

I2(s) ≥
es√
2πs

(

1− 15

8s
+

105

128s2
+

315

1024s3
− 3968

3s4

)

.

11



Note that
105

128s2
+

315

1024s3
− 3968

3s4
≥ 0

for s ≥ 40, and so

I2(s) ≥
es√
2πs

(

1− 15

8s

)

(3.5)

for s ≥ 231.

Substituting (3.5) into (3.2), and using the following two observations:

max

{ √
2

α1(1)
,

√
2

α2(1)

}

=
3
√
2

7
≈ 0.606 < 1

and

max

{

15

8
√

α1(1)
,

15

8
√

α2(1)

}

=
15
√
21

56
,

we derive that for xk(n) ≥ 152,

Gk(n) ≤ 72 ·
√
2

αk(1)
·
exp

(

−1
2

√

αk(1)xk(n)
)

1− 15

8
√

αk(1)xk(n)

≤ 72 ·
exp

(

−
√
21
6
xk(n)

)

1− 15
√
21

56xk(n)

. (3.6)

Under the following observation that

(

1− 15
√
21

56xk(n)

)

(

1 +
3

xk(n)

)

= 1 +
3
(

56− 5
√
21
)

56x2
k(n)

(

xk(n)−
15
√
21

56− 5
√
21

)

≥ 1

for xk(n) ≥ 152, we find that (3.6) can be further bounded by:

Gk(n) ≤ 72

(

1 +
3

xk(n)

)

exp

(

−
√
21

6
xk(n)

)

. (3.7)

We claim that for xk(n) ≥ 152,

72 exp

(

−
√
21

6
xk(n)

)

≤ 1

2x6
k(n)

. (3.8)

Define

L(s) := 144s6 exp

(

−
√
21

6
s

)

.

12



It is evident that

L′(s) = 24 exp

(

−
√
21

6
s

)

s5
(

−
√
21s+ 36

)

.

Since L′(s) ≤ 0 for s ≥ 36√
21
, it follows that L(s) is decreasing when s ≥ 36√

21
. This

implies that

L(xk(n)) = 144x6
k(n) exp

(

−
√
21

6
xk(n)

)

≤ L(152) < 1

for xk(n) ≥ 152. So the claim is proved.

Applying (3.8) to (3.7), we are led to

Gk(n) ≤
(

1 +
3

xk(n)

)

· 1

2x6
k(n)

<
1

x6
k(n)

for xk(n) ≥ 152. This completes the proof.

The following inequality on I2(s) is also required in the proof of Theorem 1.4.

Theorem 3.2. For k = 1 or 2 and xk(n) ≥ 152,

I22

(

√

αk(1)xk(n)
)

I2

(

√

αk(1)xk(n− 1)
)

I2

(

√

αk(1)xk(n+ 1)
) > 1 +

π4
√

αk(1)

9x3
k(n)

− 1100

x4
k(n)

. (3.9)

Proof. From (3.4), we see that for s ≥ 231,

I2(s) ≥
es√
2πs

(

1− 15

8s
+

105

128s2
+

315

1024s3
− 3968

3s4

)

(3.10)

and

I2(s) ≤
es√
2πs

(

1− 15

8s
+

105

128s2
+

315

1024s3
+

3968

3s4

)

. (3.11)

For convenience, let

γ1(k) =
15

8
√

αk(1)
, γ2(k) =

105

128αk(1)
,

γ3(k) =
315

1024α
3/2
k (1)

, γ4(k) =
3968

3α2
k(1)

,

and

hk(n) =

(

1− γ1(k)
xk(n)

+ γ2(k)
x2
k
(n)

+ γ3(k)
x3
k
(n)

− γ4(k)
x4
k
(n)

)2

(

1− γ1(k)
xk(n−1)

+ γ2(k)
x2
k
(n−1)

+ γ3(k)
x3
k
(n−1)

+ γ4(k)
x4
k
(n−1)

)

× 1
(

1− γ1(k)
xk(n+1)

+ γ2(k)
x2
k
(n+1)

+ γ3(k)
x3
k
(n+1)

+ γ4(k)
x4
k
(n+1)

) . (3.12)
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Combining (3.10) and (3.11), we derive that for xk(n) ≥ 152,

I22

(

√

αk(1)xk(n)
)

I2

(

√

αk(1)xk(n− 1)
)

I2

(

√

αk(1)xk(n+ 1)
)

≥
√

xk(n− 1)xk(n + 1)

xk(n)
exp

(

√

αk(1)(2xk(n)− xk(n− 1)− xk(n + 1))
)

hk(n).

(3.13)

From the definition (1.3) of xk(n), we see that for n ≥ 2,

xk(n− 1) =

√

x2
k(n)−

2π2

3
, xk(n+ 1) =

√

x2
k(n) +

2π2

3
. (3.14)

This implies that

0 <

√

xk(n− 1)xk(n+ 1)

xk(n)
< 1,

so
√

xk(n− 1)xk(n+ 1)

xk(n)
>

x2
k(n− 1)x2

k(n+ 1)

x4
k(n)

= 1− 4π4

9x4
k(n)

. (3.15)

To estimate the remaining parts on the right-hand side of (3.13), we plan to
establish an upper bound and a lower bound for xk(n − 1) and xk(n + 1) in terms
of xk(n). Observe that for n ≥ 2,

xk(n− 1) = xk(n)−
π2

3xk(n)
− π4

18x3
k(n)

− π6

54x5
k(n)

− 5π8

648x7
k(n)

+ o

(

1

x7
k(n)

)

and

xk(n + 1) = xk(n) +
π2

3xk(n)
− π4

18x3
k(n)

+
π6

54x5
k(n)

− 5π8

648x7
k(n)

+ o

(

1

x7
k(n)

)

,

so it is readily checked that for xk(n) ≥ 23,

w̃k(n) < xk(n− 1) < ŵk(n) (3.16)

and
ỹk(n) < xk(n+ 1) < ŷk(n), (3.17)

where






















































w̃k(n) = xk(n)−
π2

3xk(n)
− π4

18x3
k(n)

− π6

x5
k(n)

,

ŵk(n) = xk(n)−
π2

3xk(n)
− π4

18x3
k(n)

− π6

54x5
k(n)

,

ỹk(n) = xk(n) +
π2

3xk(n)
− π4

18x3
k(n)

,

ŷk(n) = xk(n) +
π2

3xk(n)
− π4

18x3
k(n)

+
π6

54x5
k(n)

.

(3.18)
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Combining (3.16) and (3.17), we deduce that for xk(n) ≥ 23,

2xk(n)− xk(n− 1)− xk(n+ 1) > 2xk(n)− ŵk(n)− ŷk(n) =
π4

9x3
k(n)

> 0.

Hence

exp
(

√

αk(1)
(

2xk(n)− xk(n− 1)− xk(n + 1)
)

)

> 1 +
√

αk(1)(2xk(n)− xk(n− 1)− xk(n+ 1))

> 1 +
π4
√

αk(1)

9x3
k(n)

. (3.19)

We proceed to show that for xk(n) ≥ 62,

hk(n) ≥ 1− 1000

x4
k(n)

. (3.20)

Define

Pk(n) := x2
k(n)x

4
k(n−1)x4

k(n+1)
(

x4
k(n)− γ1(k)x

3
k(n) + γ2(k)x

2
k(n) + γ3(k)xk(n)− γ4(k)

)2
,

Q̃k(n) :=x10
k (n)

(

x4
k(n− 1)− γ1(k)x

3
k(n− 1) + γ2(k)x

2
k(n− 1) + γ3(k)xk(n− 1) + γ4(k)

)

×
(

x4
k(n + 1)− γ1(k)x

3
k(n+ 1) + γ2(k)x

2
k(n + 1) + γ3(k)xk(n+ 1) + γ4(k)

)

and

Qk(n) :=x10
k (n)

(

x4
k(n− 1)− γ1(k)x

2
k(n− 1)w̃k(n) + γ2(k)x

2
k(n− 1) + γ3(k)ŵk(n) + γ4(k)

)

×
(

x4
k(n + 1)− γ1(k)x

2
k(n+ 1)ỹk(n) + γ2(k)x

2
k(n+ 1) + γ3(k)ŷk(n) + γ4(k)

)

.

Form (3.12) we have

hk(n) =
Pk(n)

Q̃k(n)
.

Applying (3.16) and (3.17), we find that for xk(n) ≥ 23,

Q̃k(n) ≤ Qk(n).

Moreover, it can be checked that for xk(n) ≥ 3,

Q̃k(n) > 0.

Hence for xk(n) ≥ 23,

hk(n) =
Pk(n)

Q̃k(n)
≥ Pk(n)

Qk(n)
.
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To prove (3.20), it suffices to show that for xk(n) ≥ 62,

Pk(n)

Qk(n)
≥ 1− 1000

x4
k(n)

, (3.21)

which is equivalent to

x4
k(n)(Pk(n)−Qk(n)) + 1000Qk(n) ≥ 0 (3.22)

for xk(n) ≥ 62.

From the definitions of Pk(n) and Qk(n), together with (3.14) and (3.18), we
infer that the left-hand side of (3.22) is a polynomial in xk(n) with degree 18. So
we could write

x4
k(n)(Pk(n)−Qk(n)) + 1000Qk(n) =

18
∑

j=0

fj(k)x
j
k(n).

Clearly,

x4
k(n)(Pk(n)−Qk(n))+1000Qk(n) ≥ −

16
∑

j=0

|fj(k)|xj
k(n)+f17(k)x

17
k (n)+f18(k)x

18
k (n).

Moreover, numerical evidence indicates that for 0 ≤ j ≤ 15 and xk(n) ≥ 20,

−|fj(k)|xj
k(n) ≥ −|f16(k)|x16

k (n)

and

f16(k) = − 4340

α3
k(1)

+
20625

4αk(1)
− 145π4

96αk(1)
,

f17(k) =
9920
√

α5
k(1)

− 3750
√

αk(1)
+

5π4

8
√

αk(1)
,

f18(k) = 1000− 15872

3α2
k(1)

.

It is readily checked that for xk(n) ≥ 62,

f18(k)x
2
k(n) + f17(k)xk(n)− 17|f16(k)| ≥ 0.

Assembling all these results above, we conclude that for xk(n) ≥ 62,

x4
k(n)(Pk(n)−Qk(n)) + 1000Qk(n)

≥ (f18(k)x
2
k(n) + f17(k)xk(n)− 17|f16(k)|)x16

k (n) ≥ 0,

and so (3.20) is valid.
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Applying (3.15), (3.19) and (3.20) to (3.13), we obtain that for xk(n) ≥ 152,

I22

(

√

αk(1)xk(n)
)

I2

(

√

αk(1)xk(n− 1)
)

I2

(

√

αk(1)xk(n + 1)
)

≥
(

1− 4π4

9x4
k(n)

)

(

1 +
π4
√

αk(1)

9x3
k(n)

)

(

1− 1000

x4
k(n)

)

= 1 +
π4
√

αk(1)

9x3
k(n)

− 1000 + 4π4

9

x4
k(n)

−
4
81
π8
√

αk(1) +
1000
9
π4
√

αk(1)

x7
k(n)

+
4000π4

9x8
k(n)

+
4000π8

√

αk(1)

81x11
k (n)

.

It’s easy to check that for xk(n) ≥ 7,

100− 4π4

9

x4
k(n)

−
4
81
π8
√

αk(1) +
1000
9
π4
√

αk(1)

x7
k(n)

≥ 0.

Therefore, we arrive at

I22

(

√

αk(1)xk

)

I2

(

√

αk(1)xk(n− 1)
)

I2

(

√

αk(1)xk(n + 1)
) ≥ 1 +

π4
√

αk(1)

9x3
k(n)

− 1100

x4
k(n)

(3.23)

for xk(n) ≥ 152. This completes the proof.

With Theorem 3.1 and Theorem 3.2 in hand, we are now in a position to give a
proof of Theorem 1.4.

Proof of Theorem 1.4. To prove (1.4), it is enough to show that

∆2
k(n)

∆k(n− 1)∆k(n+ 1)
≥ 1. (3.24)

Utilizing Theorem 3.1, we find that for xk(n) ≥ 152,

∆2
k(n)

∆k(n− 1)∆k(n+ 1)

≥
M2

k (n)
(

1− 1
x6
k
(n)

)2

Mk(n− 1)Mk(n + 1)
(

1 + 1
x6
k
(n−1)

)(

1 + 1
x6
k
(n+1)

)

≥ x2
k(n− 1)x2

k(n + 1)

x4
k(n)

·
I22

(

√

αk(1)xk(n)
)

I2

(

√

αk(1)xk(n− 1)
)

I2

(

√

αk(1)xk(n + 1)
) · gk(n),

(3.25)
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where

gk(n) :=

(

1− 1
x6
k
(n)

)2

(

1 + 1
x6
k
(n−1)

)(

1 + 1
x6
k
(n+1)

) .

We claim that for xk(n) ≥ 75,

gk(n) ≥ 1− 10

x6
k(n)

. (3.26)

From (3.14), we see that

x2
k(n− 1)x2

k(n+ 1)

x4
k(n)

=
(x2

k(n)− 2π2

3
)(x2

k(n) +
2π2

3
)

x4
k(n)

= 1− 4π4

9x4
k(n)

. (3.27)

Hence gk(n) can be simplified as:

gk(n) =
(x6

k(n)− 1)
2
(

x4
k(n)− 4π4

9

)3

x12
k (n)

(

(

x2
k(n)− 2π2

3

)3
+ 1
)(

(

x2
k(n) +

2π2

3

)3
+ 1
) . (3.28)

It is easy to show that for xk(n) ≥ 75,

(

x6
k(n)− 1

)2
(

x4
k(n)−

4π4

9

)3

≥
(

x12
k (n)− 2x6

k(n)
)

(

x8
k(n)−

8π4

9
x4
k(n)

)(

x4
k(n)−

4π4

9

)

= x24
k (n)− 4π4

3
x20
k (n)− 2x18

k (n) +
32π8

81
x16
k (n) +

8π4

3
x14
k (n)− 64π8

81
x10
k (n)

≥ x24
k (n)− 4π4

3
x20
k (n)− 2x18

k (n) (3.29)

and

x12
k (n)

(

(

x2
k(n)−

2π2

3

)3

+ 1

)(

(

x2
k(n) +

2π2

3

)3

+ 1

)

= x24
k (n)− 4π4

3
x20
k (n) + 2x18

k (n) +
16π8

27
x16
k (n) +

8π4

3
x14
k (n)−

(

64π12

729
− 1

)

x12
k (n)

≤ x24
k (n)− 4π4

3
x20
k (n) + 3x18

k (n). (3.30)
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Applying (3.29) and (3.30) to (3.28), we see that for xk(n) ≥ 75,

gk(n) ≥
x24
k (n)− 4π4

3
x20
k (n)− 2x18

k (n)

x24
k (n)− 4π4

3
x20
k (n) + 3x18

k (n)

= 1− 5

x6
k(n)− 4π4

3
x2
k(n) + 3

≥ 1− 10

x6
k(n)

,

so the claim is proved.

Substituting (3.9), (3.26) and (3.27) to (3.25), we see that for xk(n) ≥ 152,

∆k(n)
2

∆k(n− 1)∆k(n+ 1)
≥
(

1− 4π4

9x4
k(n)

)

(

1 +
π4
√

αk(1)

9x3
k(n)

− 1100

x4
k(n)

)

(

1− 10

x6
k(n)

)

= 1 +
π4
√

αk(1)

9x3
k(n)

− 1100 + 4π4

9

x4
k(n)

− 10

x6
k(n)

− 4π8
√

αk(1)

81x7
k(n)

+
4400π4

9x8
k(n)

− 10π4
√

αk(1)

9x9
k(n)

+
11000 + 40π4

9

x10
k (n)

+
40π8

√

αk(1)

81x13
k (n)

− 44000π4

9x14
k (n)

.

It is readily checked that for xk(n) ≥ 73,

π4
√

αk(1)

9x3
k(n)

− 1200

x4
k(n)

≥ 0,

100− 4π4

9

x4
k(n)

− 10

x6
k(n)

− 4π8
√

αk(1)

81x7
k(n)

≥ 0,

4400π4

9x8
k(n)

− 10π4
√

αk(1)

9x9
k(n)

≥ 0

and
40π8

√

αk(1)

81x13
k (n)

− 44000π4

9x14
k (n)

≥ 0.

Assembling all these results, we conclude that for xk(n) ≥ 152 (that is, n ≥ 3512),

∆2
k(n)

∆k(n− 1)∆k(n+ 1)
≥ 1. (3.31)

It is routine to check that (3.31) is true for 1 ≤ n ≤ 3512, and hence the proof is
complete.
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4 Concluding remarks

To conclude, we mention some questions and remarks for further investigation.
The main objection of this paper is to dig into the Turán inequalities for the broken
k-diamond partition function where k = 1 or 2. But the numerical evidence suggests
that the main results in this paper are also valid for all k ≥ 1. To wit,

Conjecture 4.1. For k ≥ 3, ∆k(n) is log-concave for n ≥ 1, that is,

∆2
k(n) ≥ ∆k(n− 1)∆k(n + 1). (4.1)

More generally, we conjectured that for k ≥ 3 and d ≥ 1, the Jensen polynomial
J
d,n
∆k

(X) associated to ∆k(n) is hyperbolic for sufficiently large n.

As alluded to after the proof of Theorem 2.2 in Section 2, Sussman’s formula
could not be applied to derive the explicit formula for ∆k(n) when k ≥ 3. Therefore,
the crucial point to solve these two conjectures is to establish explicit formulas of
∆k(n) for k ≥ 3.
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