A Cyclic Analogue of Stanley’s Shuffling Theorem
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Abstract. We introduce the cyclic major index of a cyclic permutation and give a bivariate analogue of the
enumerative formula for the cyclic shuffles with a given cyclic descent number due to Adin, Gessel, Reiner
and Roichman, which can be viewed as a cyclic analogue of Stanley’s shuffling theorem. This gives an
answer to a question of Adin, Gessel, Reiner and Roichman, which has been posed by Domagalski, Liang,
Minnich, Sagan, Schmidt and Sietsema again.
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1 Introduction

The main theme of this note is to establish a cyclic analogue of Stanley’s shuffling theorem. Recall that
Stanley’s shuffling theorem establishes an explicit expression for the generating function of the number of
shuffles of two disjoint permutations ¢ and 7 with a given cyclic descent number and a given major index.
Here we adopt some common notation and terminology on permutations as used in [13, Chapter 1]. We say
that m = w7y - - - T, is a permutation of length n if it is a sequence of n distinct letters (not necessarily
from 1 to n). For example, 7 = 928101237 is a permutation of length 7. Let G,, denote the set of all

permutations of length n.

Letm € G,,. Wesay that 1 <7 < n—1isadescentof 7if m; > m;4 1. The set of descents of 7 is called

the descent set of 7, denoted Des(r), viz.,
Des(m):={1<i<n—1:m >m_1}.
The number of its descents is called the descent number, denoted des(7), namely,
des(m) := #Des(n),

where the hash symbol #7 stands for the cardinality of a set 7. The major index of 7, denoted maj(r), is
defined to be the sum of its descents. To wit,

maj(m) := Z k.

keDes(m)

Leto € G,, and ™ € &, be disjoint permutations, that is, permutations with no letters in common. We
say that o« € &,,4,, is a shuffle of ¢ and 7 if both o and 7 are subsequences of . The set of shuffles of o



and 7 is denoted S(o, 7). For example,

S(63,14) ={6314,6134,6143,1463,1634,1643}.

m—+n

" ) for two disjoint permutations ¢ € G,, and 7™ €

Clearly, the number of permutations in S(o, ) is (
G

Stanley’s shuffling theorem states that

Theorem 1.1. Let o € &, and 7 € &,, be disjoint permutations, where des(c) = r and des(n) = s. Then

Z qmaj(a) _ |:mk— T+ S:| |:’I7, ; S+ 7":| qmaj(U)eraj(7r)+(krfs)(k:7’r)' (1.1
- -5

aeS(o,m)
des(a)=k

Here

{n} _ (1—g)(1 =g 1) (1 — g1
m (1—q¢™)(1—qgm 1) (1—q)

is the Gaussian polynomial (also called the g-binomial coefficient), see Andrews [2, Chapter 1].

Stanley [12] obtained the above expression in light of the g-Pfaff-Saalschiitz identity in his setting of
P-partitions. Bijective proofs of Stanley’s shuffling theorem have been given by Goulden [6], Stadler [11],
Ji and Zhang [10].

Recently, Adin, Gessel, Reiner and Roichman [1] introduced a cyclic version of quasisymmetric func-
tions with a corresponding cyclic shuffle operation. A cyclic permutation [r] of length n is the set of all

rotations of a permutation m = my g - - - Ty, 1.€,
[7] = {mima«  Mp, MaTg WL,y ooy M1+ W1 }e

For example,
[4231]={4231,2314,3142,1423} (1.2)

is a cyclic permutation of length 4, where
[4231] =[2314]=1[3142]=[1423].

Let 7; be the largest element in [7]. The linear permutation & = 7741 - - - T 7y - - - T —1 corresponding
to the cyclic permutation [r] is called the representative of the cyclic permutation [r]. For the example
above, 4231 is the representative of the cyclic permutation [4 23 1]. Here and in the sequel, we use the
representative to represent each cyclic permutation [7]. For example, we use [4 2 3 1] to represent the cyclic
permutation in (1.2). In this way, all cyclic permutations of {1, 2, 3,4} are listed as follows:

[4123],[4312],[4132],[4213],[4231],[4321].

Let &¢ denote the set of all cyclic permutations of length n and let [o] € & and [7] € G, be disjoint

cyclic permutations, that is, cyclic permutations with no letters in common. We say that [o] € &, isa
cyclic shuffle of two cyclic permutations [o] and [r] if both [o] and [r] are circular subsequences of [«].
Recall that a cyclic permutation [r] is called a circular subsequence of [«] if there exists a rotation of [«],

which contains 7 linearly. The set of cyclic shuffles of [o] and [r] is denoted S¢([o], [x]). For example,

S([63),[41]) = {[6314],[6341],(6143],[6413],[6134],[6431]}. (1.3)



[6314] [6341] [6143]
[6413] [6134] [6431]

Figure 1: The circular representations of cyclic shuffles of [6 3] and [4 1].

The elements of [7] in [«] are in boldface to distinguish them from the elements of [o]. Figure 1 lays out the

circular representations of cyclic shuffles of [6 3] and [4 1].

Evidently,

#5°(o],x]) = (m+n 1)( (1.4)

for two disjoint cyclic permutations [o] € &¢ and [71] € &, see [5, Eq. (7)].

m+n—2
m—-—1 )’

In order to study Solomon’s descent algebra, Cellini [3, 4] introduced the cyclic descent set. Let m =

mime ... T, be alinear permutation. The cyclic descent set of 7 is defined to be
cDes(m) ={1<i<n:m>my1}

with the convention 7,41 = m1. The number of its cyclic descents is called the cyclic descent number,
denoted cdes(), viz.,

cdes(m) := #cDes(m).
Let [7] be a cyclic permutation of length n. Note that all linear permutations corresponding to [7] have the
same number of cyclic descents, so we may define the cyclic descent number of [r] as

cdes ([71]) = cdes (7), (1.5)

where 7 is any linear permutation corresponding to [7].

Based on their setting of cyclic quasi-symmetric functions, Adin, Gessel, Reiner and Roichman [1]
established the following enumerative formula for the cyclic shuffles with a given cyclic descent number.

Theorem 1.2 (Adin-Gessel-Reiner-Roichman). Let [0] € &%, and [7] € & be disjoint cyclic permuta-
tions, where cdes([o]) = r and cdes([r]) = s. Let S¢([o], [7], k) denote the set of cyclic shuffles of (o] and
[7r] with cyclic descent number k. Then

SRR

#5([o], [7], k) = (1.6)



Summing (1.6) over all k£ gives (1.4) upon using the Chu-Vandermonde identity [13, p. 135, Ex. 100].
At the end of their paper, Adin, Gessel, Reiner and Roichman [1] asked a question about looking for a
notion of cyclic major index, which provides a bivariate analogue of Theorem 1.2. This question has been

posed by Domagalski, Liang, Minnich, Sagan, Schmidt and Sietsema in [5, Question 4.1] again.

In this paper, we introduce the cyclic major index of a cyclic permutation [r]. Let [7] be a cyclic
permutation of length n. Suppose that the representative of [r] is # = @17g - - - 7, Where 7 is the largest
element in [7]. The cyclic major index of the cyclic permutation [r] is defined to be

maj([7]) = maj(7). (1.7)

For example, the representative of the cyclic permutation [4132] is # = 4132, and so its cyclic major
index is defined to be the major index of & = 4 132. It gives that maj([4132]) =1+ 3 = 4.

In order to state the cyclic analogue of Stanley’s shuffling theorem, we will need to introduce the cyclic
descent-bottom set of a cyclic permutation and recall the splitting map .S; defined by Domagalski, Liang,
Minnich, Sagan, Schmidt and Sietsema in [5], which maps a cyclic permutation to a linear permutation. Let
[7] be a cyclic permutation of length n. The cyclic descent-bottom set of [r] is defined as:

CBd([’lT]) = {7Ti+12 T > Tit1, forl <i< n} (1.8)

with the convention 7,41 = 7. It should be mentioned that the descent-bottom set of a linear permutation
has been studied by Haglund and Visontai [7] and Hall and Remmel [8, 9].

It is manifest from (1.5) and (1.8) that

#cBy([nr]) = cdes([n]).

For example,
cBq([6413]) ={1,4}.

Let [7r] be a cyclic permutation of length n. For ¢ € [r], Domagalski, Liang, Minnich, Sagan, Schmidt
and Sietsema [5] defined the map S;([7]) to be the unique permutation corresponding to [7] which starts
with 7. For example,

S5([5134]) =5134, S1([5134]) = 1345, S3([5134]) =3451,

and
S,([5134]) =4513.

We obtain the following generating function of the number of cyclic shuffles of two disjoint cyclic

permutations with a given cyclic descent number and a given cyclic major index.

Theorem 1.3 (Cyclic Stanley’s shuffling theorem). Let [0] € &F, and let [1] € & be disjoint cyclic
permutations, where cdes([o]) = r and cdes([rr]) = s. Suppose that the largest element of [o] and [r] is in
[0]. Then

S gt

[e]esc(lal,[n])
cdes([a])=k



m—r+s|[n—s+r—1] oo _ ) (k—r maj(S; ([
:[ H ]q o tson 5 gmai(sie))

k—r k—s—1 ,
iZcBa([])
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" ’ iccBq([r])

Setting ¢ — 1 in Theorem 1.3, we obtain (1.6), that is,

#8¢([o], 7], k)
<m—r+s>(n—s+r—1) (m—r+s—1><n—s+r)
> py
igeBaln] k—r n—k+r ieaBalx] k—r n—k+r

—(n—s) m—-r—+s\/n—s+r—1 n m-—r—+s—1 n—s—+r
s k—r n—k+r y k—r n—k+r

SR ) ()

2 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 with the aid of Stanley’s shuffling theorem.

Proof of Theorem 1.3. Let [o] € &%, and let [1] € &¢ be two disjoint cyclic permutations, where
cdes([o]) = r and cdes([rr]) = s. Suppose that the largest element of [o] and [7] is in [¢]. Let 6 =
G162 - - - Oy be the representative of the cyclic permutation [o], that is, 4 is the largest element of [o].
Under the hypothesis of this theorem, we see that 6 is greater than all elements in [r]. Define

5 =Gy By @2.1)
Obviously,
cdes([o]) = des(6”) + 1 (2.2)
and
maj([o]) = maj(6’) + des(6") + 1. (2.3)

Let §¢([o], [r]) denote the set of cyclic shuffles of [o] and [7], and let S(&7, S;([7])) denote the set of linear
shuffles of 6’ and S;([n]), where ¢’ is defined in (2.1) and S;([]) is the unique permutation corresponding
to [] which starts with ¢ € [r]. We claim that there is a bijection v between the set S¢([o], []) and the set
Uiepn) S(6”, Si([w])). Moreover, for [o] € 8¢([o], [7]), we have ¢(a) = & such that

cdes([a]) = des(&') + 1 2.4)
and
maj([a]) = maj(&’) + des(a’) + 1. (2.5)

Let [] € S¢([o], [7]) and let & = @14 - - + Gy, be the representative of [«], which is a linear permutation
corresponding to [«] such that & is the largest element in [«]. Since & is the largest element in [o] and [r],
we deduce that &; = 61 and cdes([a]) = des(&). Define

~/ PPN ~
Q@ = Qo3 - Oty



From the construction of &/, it is evident that &' € (J;¢ [, S(6”, 5i([7])) and [a] and & satisfy (2.4) and
(2.5). Moreover, this process is clearly reversible. This proved the claim. We therefore obtain

Z gD

[e]esc(la],[n])
cdes([a])=k

_ Z Z qmaj(d/)+k:

€[rn] a’es(s’,5;([n])
des(a’)= k 1

> Yoo g Y DR (2.6)

ig€cBa([n]) & ES(U’ 5 ([ﬂ] i€cBq([n]) &’€s(s’,58;(I7])
es(a’)= des(a’)=k—1

By (2.2) and (2.3), we see that
des(6’) = cdes([o]) —1=r—1 and maj(6’) = maj([o]) — . 2.7

Observe that des(S;([7])) = cdes([n]) = sif i & cBq([7]). Hence, by Theorem 1.1, we obtain

Z Z qmaj(d’)-&-k

igcBqy([n]) & es<a/' Si(lx))
)=

-y " TSP S T a6+ mai(Si (r)+ (k—s—1) (k=r)+
) k—r k—s—1
igcBa([r))

en |m—r+s n—s+r—1 k—s)(k—r)4+maj([c maj(S;([r
27 [ o H o ]q< ey emailel) ™ mai(Sidinh), 28)
igZcBq([n])

Since des(S;([7])) = cdes([n]) — 1 = s — 1 when i € cBq([n]), it follows from Theorem 1.1 that

Z Z qmaj((}’)+k

i€cBq([n]) &'€s(s’.5; ([7(])
dos(&/)—F—

= Z {m—T—FS— 1] [n—s—l—r} qmaJ( "Ymaj(S; ([7]))+(k—s) (k—r)+k
[7])

) k—r k—s
1€cBq(
2.7 m—-r+s—1{|n—s+r —s —r)+maj([o maj(S;([7
et q(k +1)(k—r)+maj([o]) Z q iSi([=)) 2.9)
k—r k—s ,
i€cBq([n])
Substituting (2.8) and (2.9) into (2.6), we obtain (1.9). This completes the proof. |
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