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Abstract. We introduce the cyclic major index of a cyclic permutation and give a bivariate analogue of the
enumerative formula for the cyclic shuffles with a given cyclic descent number due to Adin, Gessel, Reiner
and Roichman, which can be viewed as a cyclic analogue of Stanley’s shuffling theorem. This gives an
answer to a question of Adin, Gessel, Reiner and Roichman, which has been posed by Domagalski, Liang,
Minnich, Sagan, Schmidt and Sietsema again.
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1 Introduction

The main theme of this note is to establish a cyclic analogue of Stanley’s shuffling theorem. Recall that
Stanley’s shuffling theorem establishes an explicit expression for the generating function of the number of
shuffles of two disjoint permutations σ and π with a given cyclic descent number and a given major index.
Here we adopt some common notation and terminology on permutations as used in [13, Chapter 1]. We say
that π = π1π2 · · ·πn is a permutation of length n if it is a sequence of n distinct letters (not necessarily
from 1 to n). For example, π = 92 8 10 12 3 7 is a permutation of length 7. Let Sn denote the set of all
permutations of length n.

Let π ∈ Sn. We say that 1 ≤ i ≤ n−1 is a descent of π if πi > πi+1. The set of descents of π is called
the descent set of π, denoted Des(π), viz.,

Des(π) := {1 ≤ i ≤ n− 1 : πi > πi−1}.

The number of its descents is called the descent number, denoted des(π), namely,

des(π) := #Des(π),

where the hash symbol #T stands for the cardinality of a set T . The major index of π, denoted maj(π), is
defined to be the sum of its descents. To wit,

maj(π) :=
∑

k∈Des(π)

k.

Let σ ∈ Sn and π ∈ Sm be disjoint permutations, that is, permutations with no letters in common. We
say that α ∈ Sn+m is a shuffle of σ and π if both σ and π are subsequences of α. The set of shuffles of σ
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and π is denoted S(σ, π). For example,

S(6 3, 1 4) = {6 3 1 4, 6 1 3 4, 6 1 4 3, 1 4 6 3, 1 6 3 4, 1 6 4 3}.

Clearly, the number of permutations in S(σ, π) is
(
m+n
n

)
for two disjoint permutations σ ∈ Sn and π ∈

Sm.

Stanley’s shuffling theorem states that

Theorem 1.1. Let σ ∈ Sm and π ∈ Sn be disjoint permutations, where des(σ) = r and des(π) = s. Then∑
α∈S(σ,π)
des(α)=k

qmaj(α) =

[
m− r + s

k − r

][
n− s+ r

k − s

]
qmaj(σ)+maj(π)+(k−s)(k−r). (1.1)

Here [
n

m

]
=

(1− qn)(1− qn−1) · · · (1− qn−m+1)

(1− qm)(1− qm−1) · · · (1− q)
is the Gaussian polynomial (also called the q-binomial coefficient), see Andrews [2, Chapter 1].

Stanley [12] obtained the above expression in light of the q-Pfaff-Saalschütz identity in his setting of
P -partitions. Bijective proofs of Stanley’s shuffling theorem have been given by Goulden [6], Stadler [11],
Ji and Zhang [10].

Recently, Adin, Gessel, Reiner and Roichman [1] introduced a cyclic version of quasisymmetric func-
tions with a corresponding cyclic shuffle operation. A cyclic permutation [π] of length n is the set of all
rotations of a permutation π = π1π2 · · ·πn, i.e,

[π] = {π1π2 · · ·πn, π2π3 · · ·πnπ1, . . . , πnπ1 · · ·πn−1}.

For example,
[4 2 3 1] = {4 2 3 1, 2 3 1 4, 3 1 4 2, 1 4 2 3} (1.2)

is a cyclic permutation of length 4, where

[4 2 3 1] = [2 3 1 4] = [3 1 4 2] = [1 4 2 3].

Let πl be the largest element in [π]. The linear permutation π̂ = πlπl+1 · · ·πnπ1 · · ·πl−1 corresponding
to the cyclic permutation [π] is called the representative of the cyclic permutation [π]. For the example
above, 4 2 3 1 is the representative of the cyclic permutation [4 2 3 1]. Here and in the sequel, we use the
representative to represent each cyclic permutation [π]. For example, we use [4 2 3 1] to represent the cyclic
permutation in (1.2). In this way, all cyclic permutations of {1, 2, 3, 4} are listed as follows:

[4 1 2 3], [4 3 1 2], [4 1 3 2], [4 2 1 3], [4 2 3 1], [4 3 2 1].

Let Sc
n denote the set of all cyclic permutations of length n and let [σ] ∈ Sc

n and [π] ∈ Sc
m be disjoint

cyclic permutations, that is, cyclic permutations with no letters in common. We say that [α] ∈ Sc
n+m is a

cyclic shuffle of two cyclic permutations [σ] and [π] if both [σ] and [π] are circular subsequences of [α].
Recall that a cyclic permutation [π] is called a circular subsequence of [α] if there exists a rotation of [α],
which contains π linearly. The set of cyclic shuffles of [σ] and [π] is denoted Sc([σ], [π]). For example,

Sc([6 3], [4 1]) = {[6 314], [6 341], [614 3], [641 3], [61 34], [64 31]}. (1.3)
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Figure 1: The circular representations of cyclic shuffles of [6 3] and [4 1].

The elements of [π] in [α] are in boldface to distinguish them from the elements of [σ]. Figure 1 lays out the
circular representations of cyclic shuffles of [6 3] and [4 1].

Evidently,

#Sc([σ], [π]) = (m+ n− 1)

(
m+ n− 2

m− 1

)
, (1.4)

for two disjoint cyclic permutations [σ] ∈ Sc
n and [π] ∈ Sc

m, see [5, Eq. (7)].

In order to study Solomon’s descent algebra, Cellini [3, 4] introduced the cyclic descent set. Let π =

π1π2 . . . πn be a linear permutation. The cyclic descent set of π is defined to be

cDes(π) = {1 ≤ i ≤ n : πi > πi+1}

with the convention πn+1 = π1. The number of its cyclic descents is called the cyclic descent number,
denoted cdes(π), viz.,

cdes(π) := #cDes(π).

Let [π] be a cyclic permutation of length n. Note that all linear permutations corresponding to [π] have the
same number of cyclic descents, so we may define the cyclic descent number of [π] as

cdes ([π]) = cdes (π) , (1.5)

where π is any linear permutation corresponding to [π].

Based on their setting of cyclic quasi-symmetric functions, Adin, Gessel, Reiner and Roichman [1]
established the following enumerative formula for the cyclic shuffles with a given cyclic descent number.

Theorem 1.2 (Adin-Gessel-Reiner-Roichman). Let [σ] ∈ Sc
m and [π] ∈ Sc

n be disjoint cyclic permuta-
tions, where cdes([σ]) = r and cdes([π]) = s. Let Sc([σ], [π], k) denote the set of cyclic shuffles of [σ] and
[π] with cyclic descent number k. Then

#Sc([σ], [π], k) = k(m− r)(n− s) + (m+ n− k)rs
(m− r + s)(n− s+ r)

(
m− r + s

k − r

)(
n− s+ r

k − s

)
. (1.6)
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Summing (1.6) over all k gives (1.4) upon using the Chu-Vandermonde identity [13, p. 135, Ex. 100].
At the end of their paper, Adin, Gessel, Reiner and Roichman [1] asked a question about looking for a
notion of cyclic major index, which provides a bivariate analogue of Theorem 1.2. This question has been
posed by Domagalski, Liang, Minnich, Sagan, Schmidt and Sietsema in [5, Question 4.1] again.

In this paper, we introduce the cyclic major index of a cyclic permutation [π]. Let [π] be a cyclic
permutation of length n. Suppose that the representative of [π] is π̂ = π̂1π̂2 · · · π̂n, where π̂1 is the largest
element in [π]. The cyclic major index of the cyclic permutation [π] is defined to be

maj([π]) = maj(π̂). (1.7)

For example, the representative of the cyclic permutation [4 1 3 2] is π̂ = 41 3 2, and so its cyclic major
index is defined to be the major index of π̂ = 41 3 2. It gives that maj([4 1 3 2]) = 1 + 3 = 4.

In order to state the cyclic analogue of Stanley’s shuffling theorem, we will need to introduce the cyclic
descent-bottom set of a cyclic permutation and recall the splitting map Si defined by Domagalski, Liang,
Minnich, Sagan, Schmidt and Sietsema in [5], which maps a cyclic permutation to a linear permutation. Let
[π] be a cyclic permutation of length n. The cyclic descent-bottom set of [π] is defined as:

cBd([π]) = {πi+1 : πi > πi+1, for 1 ≤ i ≤ n} (1.8)

with the convention πn+1 = π1. It should be mentioned that the descent-bottom set of a linear permutation
has been studied by Haglund and Visontai [7] and Hall and Remmel [8, 9].

It is manifest from (1.5) and (1.8) that

#cBd([π]) = cdes([π]).

For example,
cBd([6 4 1 3]) = {1, 4}.

Let [π] be a cyclic permutation of length n. For i ∈ [π], Domagalski, Liang, Minnich, Sagan, Schmidt
and Sietsema [5] defined the map Si([π]) to be the unique permutation corresponding to [π] which starts
with i. For example,

S5([5 1 3 4]) = 5 1 3 4, S1([5 1 3 4]) = 1 3 4 5, S3([5 1 3 4]) = 3 4 5 1,

and
S4([5 1 3 4]) = 4 5 1 3.

We obtain the following generating function of the number of cyclic shuffles of two disjoint cyclic
permutations with a given cyclic descent number and a given cyclic major index.

Theorem 1.3 (Cyclic Stanley’s shuffling theorem). Let [σ] ∈ Sc
m and let [π] ∈ Sc

n be disjoint cyclic
permutations, where cdes([σ]) = r and cdes([π]) = s. Suppose that the largest element of [σ] and [π] is in
[σ]. Then ∑

[α]∈Sc([σ],[π])
cdes([α])=k

qmaj([α])
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=

[
m− r + s

k − r

][
n− s+ r − 1

k − s− 1

]
qmaj([σ])+(k−s)(k−r)

∑
i 6∈cBd([π])

qmaj(Si([π]))

+

[
m− r + s− 1

k − r

][
n− s+ r

k − s

]
qmaj([σ])+(k−s+1)(k−r)

∑
i∈cBd([π])

qmaj(Si([π])). (1.9)

Setting q → 1 in Theorem 1.3, we obtain (1.6), that is,

#Sc([σ], [π], k)

=
∑

i 6∈cBd[π]

(
m− r + s

k − r

)(
n− s+ r − 1

n− k + r

)
+

∑
i∈cBd[π]

(
m− r + s− 1

k − r

)(
n− s+ r

n− k + r

)

= (n− s)
(
m− r + s

k − r

)(
n− s+ r − 1

n− k + r

)
+ s

(
m− r + s− 1

k − r

)(
n− s+ r

n− k + r

)

=
k(m− r)(n− s) + (m+ n− k)rs

(m− r + s)(n− s+ r)

(
m− r + s

k − r

)(
n− s+ r

k − s

)
.

2 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 with the aid of Stanley’s shuffling theorem.

Proof of Theorem 1.3. Let [σ] ∈ Sc
m and let [π] ∈ Sc

n be two disjoint cyclic permutations, where
cdes([σ]) = r and cdes([π]) = s. Suppose that the largest element of [σ] and [π] is in [σ]. Let σ̂ =

σ̂1σ̂2 · · · σ̂m be the representative of the cyclic permutation [σ], that is, σ̂1 is the largest element of [σ].
Under the hypothesis of this theorem, we see that σ̂1 is greater than all elements in [π]. Define

σ̂′ = σ̂2 · · · σ̂m. (2.1)

Obviously,
cdes([σ]) = des(σ̂′) + 1 (2.2)

and
maj([σ]) = maj(σ̂′) + des(σ̂′) + 1. (2.3)

Let Sc([σ], [π]) denote the set of cyclic shuffles of [σ] and [π], and let S(σ̂′, Si([π])) denote the set of linear
shuffles of σ̂′ and Si([π]), where σ′ is defined in (2.1) and Si([π]) is the unique permutation corresponding
to [π] which starts with i ∈ [π]. We claim that there is a bijection ψ between the set Sc([σ], [π]) and the set⋃
i∈[π] S(σ̂′, Si([π])). Moreover, for [α] ∈ Sc([σ], [π]), we have ψ(α) = α̂′ such that

cdes([α]) = des(α̂′) + 1 (2.4)

and
maj([α]) = maj(α̂′) + des(α̂′) + 1. (2.5)

Let [α] ∈ Sc([σ], [π]) and let α̂ = α̂1α̂2 · · · α̂n+m be the representative of [α], which is a linear permutation
corresponding to [α] such that α̂1 is the largest element in [α]. Since σ̂1 is the largest element in [σ] and [π],
we deduce that α̂1 = σ̂1 and cdes([α]) = des(α̂). Define

α̂′ = α̂2α̂3 · · · α̂n+m.
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From the construction of α̂′, it is evident that α̂′ ∈
⋃
i∈[π] S(σ̂′, Si([π])) and [α] and α̂′ satisfy (2.4) and

(2.5). Moreover, this process is clearly reversible. This proved the claim. We therefore obtain∑
[α]∈Sc([σ],[π])

cdes([α])=k

qmaj([α])

=
∑
i∈[π]

∑
α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i 6∈cBd([π])

∑
α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k +
∑

i∈cBd([π])

∑
α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k. (2.6)

By (2.2) and (2.3), we see that

des(σ̂′) = cdes([σ])− 1 = r − 1 and maj(σ̂′) = maj([σ])− r. (2.7)

Observe that des(Si([π])) = cdes([π]) = s if i 6∈ cBd([π]). Hence, by Theorem 1.1, we obtain∑
i6∈cBd([π])

∑
α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i 6∈cBd([π])

[
m− r + s

k − r

][
n− s+ r − 1

k − s− 1

]
qmaj(σ̂′)+maj(Si([π]))+(k−s−1)(k−r)+k

(2.7)
=

[
m− r + s

k − r

][
n− s+ r − 1

k − s− 1

]
q(k−s)(k−r)+maj([σ])

∑
i 6∈cBd([π])

qmaj(Si([π])). (2.8)

Since des(Si([π])) = cdes([π])− 1 = s− 1 when i ∈ cBd([π]), it follows from Theorem 1.1 that∑
i∈cBd([π])

∑
α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i∈cBd([π])

[
m− r + s− 1

k − r

][
n− s+ r

k − s

]
qmaj(σ̂′)+maj(Si([π]))+(k−s)(k−r)+k

(2.7)
=

[
m− r + s− 1

k − r

][
n− s+ r

k − s

]
q(k−s+1)(k−r)+maj([σ])

∑
i∈cBd([π])

qmaj(Si([π])). (2.9)

Substituting (2.8) and (2.9) into (2.6), we obtain (1.9). This completes the proof.
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