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Abstract. The main objective of this paper is to present an answer to Bressoud’s
conjecture for the case j = 0, resulting in a complete solution to Bressoud’s conjecture.
The case for j = 1 has been recently resolved by Kim. Using the connection established
in our previous paper between the ordinary partition function B0 and the overpartition
function B1, we found that the proof of Bressoud’s conjecture for the case j = 0 is
equivalent to establishing an overpartition analogue of the conjecture for the case j = 1.
By generalizing Kim’s method, we obtain the desired overpartition analogue of Bressoud’s
conjecture for the case j = 1, which eventually enables us to confirm Bressoud’s conjecture
for the case j = 0.
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1 Introduction

This is the second in a series of papers addressing Bressoud’s conjecture. In 1980, Bres-
soud [8] put forward a conjecture for a general partition identity that implies many clas-
sical results in the theory of partitions, such as Euler’s partition theorem, the Rogers-
Ramanujan-Gordon identities, the Andrews-Göllnitz-Gordon identities and so on. To
state Bressoud’s conjecture, let us recall some common notation and terminology on par-
titions from [3, Chapter 1]. A partition π of a positive integer n is a finite non-increasing
sequence of positive integers π = (π1, π2, . . . , π`) such that

∑`
i=1 πi = n. The weight of π

is the sum of its parts, denoted |π|.

Throughout this paper, we assume that α1, α2, . . . , αλ and η are integers such that

0 < α1 < α2 < · · · < αλ < η, and αi = η − αλ+1−i for 1 ≤ i ≤ λ.

Bressoud [8] introduced the following two partition functions.
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Definition 1.1 (Bressoud). For j = 0 or 1 and (2k + j)/2 > r ≥ λ ≥ 0, define the
partition function Aj(α1, . . . , αλ; η, k, r;n) to be the number of partitions of n into parts
congruent to 0, α1, . . . , αλ (mod η) such that

(1) If λ is even, then only multiples of η may be repeated and no part is congruent to
0,±η(r − λ/2) (mod η(2k − λ+ j));

(2) If λ is odd and j = 1, then only multiples of η/2 may be repeated, no part is congruent
to η (mod 2η), and no part is congruent to 0,±η(2r − λ)/2 (mod η(2k − λ+ 1));

(3) If λ is odd and j = 0, then only multiples of η/2 which are not congruent to η(2k−
λ)/2 (mod η(2k − λ)) may be repeated, no part is congruent to η (mod 2η), no
part is congruent to 0 (mod 2η(2k− λ)), and no part is congruent to ±η(2r− λ)/2
(mod η(2k − λ)).

Definition 1.2 (Bressoud). For j = 0 or 1 and k ≥ r ≥ λ ≥ 0, define the partition
function Bj(α1, . . . , αλ; η, k, r;n) to be the number of partitions π = (π1, π2, . . . , π`) of n
satisfying the following conditions:

(1) For 1 ≤ i ≤ `, πi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be repeated;

(3) For 1 ≤ i ≤ `− k + 1, πi ≥ πi+k−1 + η with strict inequality if η | πi;

(4) At most r − 1 of the πi are less than or equal to η;

(5) For 1 ≤ i ≤ `− k + 2, if πi ≤ πi+k−2 + η with strict inequality if η - πi, then

[πi/η] + · · ·+ [πi+k−2/η] ≡ r − 1 + Vπ(πi) (mod 2− j),

where Vπ(N) denotes the number of parts not exceeding N which are not divisible
by η in π and [ ] denotes the greatest integer function.

Bressoud’s conjecture can be stated as follows.

Conjecture 1.3 (Bressoud). For j = 0 or 1, (2k + j)/2 > r ≥ λ ≥ 0 and n ≥ 0,

Aj(α1, . . . , αλ; η, k, r;n) = Bj(α1, . . . , αλ; η, k, r;n).

Bressoud’s conjecture was known in some special cases, see, Andrews [2], Bressoud [8]
and Kim and Yee [20]. The general case for j = 1 was recently resolved by Kim [19]. The
main objective of this paper is to present an answer to Bressoud’s conjecture for the case
j = 0, resulting in a complete solution to the conjecture. It turns out that the overpartition
analogues of the partition functions A1(α1, . . . , αλ; η, k, r;n) and B1(α1, . . . , αλ; η, k, r;n)
introduced in our previous paper [17] play an important role in the proof of Conjecture
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1.3 for the case j = 0. An overpartition, introduced by Corteel and Lovejoy [12], is a
partition such that the first occurrence of a part can be overlined. In fact, they arise in the
contexts of combinatorics [6, 22], q-series [11], the theory of symmetric functions [7, 13],
representation theory [18] and mathematical physics [14, 15]. They are also known by
different names such as standard MacMahon diagrams, joint partitions, jagged partitions
and dotted partitions.

In [17], we introduced the following two functions A1(α1, . . . , αλ; η, k, r;n) and B1(α1,
. . . , αλ; η, k, r;n) defined on the set of overpartitions.

Definition 1.4. [17, Definition 1.15] For k > r ≥ λ ≥ 0, define the partition function
A1(α1, . . . , αλ; η, k, r;n) to be the number of overpartitions of n into parts congruent to
0, α1, . . . , αλ (mod η) such that

(1) If λ is even, then only multiples of η may be non-overlined and there is no non-
overlined part congruent to 0,±η(r − λ/2) (mod η(2k − λ));

(2) If λ is odd, then only multiples of η/2 may be non-overlined, no non-overlined part
is congruent to η(2k − λ)/2 (mod η(2k − λ)), no non-overlined part is congruent
to η (mod 2η), no non-overlined part is congruent to 0 (mod 2η(2k − λ)), no non-
overlined part is congruent to ±η(2r−λ)/2 (mod η(2k−λ)), and no overlined part
is congruent to η/2 (mod η) and not congruent to η(2k − λ)/2 (mod η(2k − λ)).

Definition 1.5. [17, Definition 1.14] For k ≥ r ≥ λ ≥ 0, define the partition function
B1(α1, . . . , αλ; η, k, r;n) to be the number of overpartitions π = (π1, π2, . . . , π`) of n subject
to the following conditions:

(1) For 1 ≤ i ≤ `, πi ≡ 0, α1, . . . , αλ (mod η);

(2) Only multiples of η may be non-overlined;

(3) For 1 ≤ i ≤ `− k + 1, πi ≥ πi+k−1 + η with strict inequality if πi is non-overlined;

(4) At most r − 1 of the πi are less than or equal to η.

Here and in the sequel, we adopt the following convention: For a positive integer t,
we define t± η (resp. t± η) as a non-overlined part of size t± η (resp. an overlined part
of size t± η). We impose the following order on the parts of an overpartition:

1 < 1̄ < 2 < 2̄ < · · · .

As mentioned in [17], we say that B1(α1, . . . , αλ; η, k, r;n) (resp. A1(α1, . . . , αλ; η, k, r;n))
can be considered as an overpartition analogue ofB1(α1, . . . , αλ; η, k, r;n) (resp. A0(α1, . . . ,
αλ; η, k, r;n)) because for an overpartition π counted by B1(α1, . . . , αλ; η, k, r;n) (resp.
A1(α1, . . . , αλ; η, k, r;n)) without overlined parts divisible by η, if we change the over-
lined parts in π to non-overlined parts, then we get an ordinary partition counted by
B1(α1, . . . , αλ; η, k, r;n) (resp. A0(α1, . . . , αλ; η, k, r;n)).
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One of the main results in our previous paper [17] is the following connection be-
tween B1(α1, . . . , αλ; η, k, r;n) and B0(α1, . . . , αλ; η, k, r;n), which is useful in the proof
of Conjecture 1.3 for the case j = 0.

Theorem 1.6. [17, Theorem 1.16] For k ≥ r ≥ λ ≥ 0 and k > λ,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn = (−qη; qη)∞
∑
n≥0

B0(α1, . . . , αλ; η, k, r;n)qn.

The generating function of A1(α1, . . . , αλ; η, k, r;n) is also established in our previous
paper [17].

Theorem 1.7. [17, Theorem 1.18] For k > r ≥ λ ≥ 0,∑
n≥0

A1(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
), qη(2k−λ); qη(2k−λ))∞

(qη; qη)∞
.

Throughout this paper, we assume that |q| < 1 and employ the standard notation:

(a; q)∞ =
∞∏
i=0

(1− aqi), (a; q)n =
(a; q)∞

(aqn; q)∞
,

and
(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

It should be noted that Bressoud [8] obtained the following generating function of
A0(α1, . . . , αλ; η, k, r;n).

Theorem 1.8 (Bressoud). For k > r ≥ λ ≥ 0,∑
n≥0

A0(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
), qη(2k−λ); qη(2k−λ))∞

(qη; qη)∞
.

In this paper, we establish the following generating function of B1(α1, . . . , αλ; η, k, r;n)
by generalizing Kim’s method in [19].

Theorem 1.9. For k > r ≥ λ ≥ 0,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
), qη(2k−λ); qη(2k−λ))∞

(qη; qη)∞
.

(1.1)
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Applying Theorem 1.9 to Theorem 1.6, and according to Theorem 1.8, we conclude
that Conjecture 1.3 holds for the case j = 0.

Combining Theorem 1.7 and Theorem 1.9, we also get the following partition identity,
which can be viewed as an overpartition analogue of Bressoud’s conjecture for j = 1.

Theorem 1.10. For k > r ≥ λ ≥ 0 and n ≥ 0,

A1(α1, . . . , αλ; η, k, r;n) = B1(α1, . . . , αλ; η, k, r;n).

Through the utilization of Theorem 1.9 and the application of Bailey pairs, we can for-
mulate the generating function ofB1(α1, . . . , αλ; η, k, r;n) as the following multi-summation
identity.

Theorem 1.11. For k > r > λ ≥ 0,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn

=
∑

N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1(−qη+ηNλ ; qη)∞

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(qη; qη)Nk−1

×
λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞.

It would be interesting to give a combinatorial proof of Theorem 1.11.

This article is organized as follows. In Section 2, we aim to prove Theorem 2.1 with
the aid of Bailey pairs. As a result, Theorem 1.11 follows directly from the conjunction of
Theorem 1.9 and Theorem 2.1. Section 3 is dedicated to proving Theorem 1.9. Initially, we
establish that proving Theorem 1.9 is sufficient to show the validity of Theorem 3.1. Fol-
lowing this, we present an outline proof of Theorem 3.1, which equivalently demonstrates
the combinatorial statement in Theorem 3.2. In order to establish the desired bijection as
stated in Theorem 3.2, we begin by revisiting the definitions of the Gordon marking and
the reverse Gordon marking of an overpartition counted by B1(α1, . . . , αλ; η, k, r;n), as
previously established in our prior work [17]. Subsequently, we review the (k−1)-addition
and its inverse map (i.e., the (k−1)-subtraction) introduced by Kim [19] in the context of
overpartitions. Additionally, we recall the (k − 1)-insertion and its inverse map (i.e., the
(k − 1)-separation) defined in our prior work [17]. These operations allow us to provide
the desired bijection presented in Theorem 3.2. In Section 4, we provide an example for
the illustration of the bijection in the proof of Theorem 3.2.

2 Proof of Theorem 1.11

The main objective of this section is to give a proof of Theorem 2.1 by using Bailey pairs.
Consequently, Theorem 1.11 is immediately derived from the combination of Theorem 1.9

5



and Theorem 2.1.

Theorem 2.1. For k ≥ r > λ ≥ 0, we have∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1(−qη+ηNλ ; qη)∞

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(qη; qη)Nk−1

×
λ∏
s=1

(−qη−αs−ηNs ; qη)Ns
λ∏
s=2

(−qη−αs+ηNs−1 ; qη)∞

=
(−qα1 , . . . ,−qαλ ,−qη; qη)∞(q(r−

λ
2
)η, q(2k−r−

λ
2
)η, q(2k−λ)η; q(2k−λ)η)∞

(qη; qη)∞
,

where we assume that Nk = 0.

It should be noted that the proof of Theorem 2.1 is much similar to the proof of
Theorem 1.8 in [16]. For more information on Bailey pairs, see, for example, [1,4,5,9,21,
23, 25]. Recall that a pair of sequences (αn(a, q), βn(a, q)) is called a Bailey pair relative
to (a, q) (or a Bailey pair for short) if for n ≥ 0,

βn(a, q) =
n∑
r=0

αr(a, q)

(q; q)n−r(aq; q)n+r
.

When k > r + 1 ≥ 2, it turns out that the proof of Theorem 2.1 reduces to applying the
Bailey pairs stated in Lemma 2.2 to the relation stated in Proposition 2.3.

Lemma 2.2. [16, (2.9)] For k > r + 1 ≥ 2,

αn(1, q) =

{
1, if n = 0,

(−1)nq
2k−2r+1

2
n2

(q
2k−2r−1

2
n + q−

2k−2r+1
2

n)(1 + qn)/2, if n ≥ 1,

βn(1, q) =
∑

n≥Nr+1≥···≥Nk−1≥0

(1 + qn)qN
2
r+1+···+N2

k−1+Nr+1+···+Nk−1

2(q; q)n−Nr+1(q; q)Nr+1−Nr+2 · · · (q; q)Nk−1

(2.1)

is a Bailey pair relative to (1, q).

Proposition 2.3. [17, Proposition 6.6] If (αn(1, qη), βn(1, qη)) is a Bailey pair relative
to (1, qη), then for r > λ ≥ 0,

∞∑
n=0

2q(r−
λ+1
2

)ηn2+λ+1
2
ηn−(α1+···+αλ)n(−qα1 ; qη)n · · · (−qαλ ; qη)n

(1 + qηn)(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n
αn(1, qη)

=
(qη; qη)∞

(−qη−α1 ; qη)∞

∑
N1≥N2≥···≥Nr≥0

qη(N
2
λ+2+···+N

2
r )+η((N1+1

2 )+···+(Nλ+1+1

2 ))−(α1N1+···+αλNλ)

(qη; qη)N1−N2 · · · (qη; qη)Nr−1−Nr

×
(−1; qη)Nλ+1

(−qα1 ; qη)N1 · · · (−qαλ ; qη)Nλ
(−qη; qη)Nλ(−qη−α2 ; qη)N1 · · · (−qη−αλ ; qη)Nλ−1

βNr(1, q
η), (2.2)

where we assume that Nr+1 = 0.
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To prove that Theorem 2.1 is valid when k = r ≥ 1 and k = r + 1 ≥ 2, we also need
to apply the following proposition to generate the desired Bailey pairs.

Proposition 2.4. [16, Corollary 2.4] If A is any real number and (αn(1, q), βn(1, q)) is
a Bailey pair, where

αn(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(q(A−1)n + q−(A−1)n), if n ≥ 1,

then (α′n(1, q), β′n(1, q)) is also a Bailey pair, where

α′n(1, q) =

{
1, if n = 0,

(−1)nqAn
2
(q(A−1)n + q−An)(1 + qn)/2, if n ≥ 1,

β′n(1, q) = βn(1, q)(1 + qn)/2.

With these consequences in hand, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: We consider the following two cases:

Case 1. When k > r > λ ≥ 0. We first show that the pair of sequences (αn(1, q), βn(1, q))
stated in (2.1) is also a Bailey pair when k = r + 1 ≥ 2. In this case, we assume that
Nk = 0. We start with the following Bailey pair appearing in [24, B(1)],

α(0)
n (1, q) =

{
1, if n = 0,

(−1)nq3n
2/2
(
q−n/2 + qn/2

)
, if n ≥ 1,

β(0)
n (1, q) =

1

(q; q)n
.

Applying Proposition 2.4 with A = 3/2 to (α
(0)
n (1, q), β

(0)
n (1, q)) yields

αn(1, q) =

{
1, if n = 0,

(−1)nq3n
2/2
(
qn/2 + q−3n/2

)
(1 + qn)/2, if n ≥ 1,

βn(1, q) =
1 + qn

2(q; q)n
.

It follows that Lemma 2.2 also holds when k = r + 1 ≥ 2.

Substitute the Bailey pair (2.1) from Lemma 2.2, including the case k = r + 1 ≥ 2
with q replaced by qη, into (2.2). Given the assumption αi + αλ+1−i = η for 1 ≤ i ≤ λ,
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the simplification of the left-hand side of (2.2) yields

1 +
∞∑
n=1

(−qα1 ; qη)n · · · (−qαλ ; qη)n
(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n

× (−1)nq(k−
λ
2
)ηn2+λ+1

2
ηn−(α1+···+αλ)n(q

2k−2r−1
2

ηn + q−
2k−2r+1

2
ηn)

= 1 +
∞∑
n=1

(−1)nq(k−
λ
2
)ηn2

(q(k−r)ηn + q−(k−r)ηn)

= (q(r−
λ
2
)η, q(2k−r−

λ
2
)η, q(2k−λ)η; q(2k−λ)η)∞, (2.3)

where the last equality follows from Jacobi’s triple product identity [3, Theorem 2.8].

In this case, the right-hand side of (2.2) becomes

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

qη(N
2
λ+2+···+N

2
k−1+Nr+···+Nk−1)(1 + q−ηNr)

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(qη; qη)Nk−1

×
qη((

N1+1
2 )+···+(Nλ+1+1

2 ))−(α1N1+···+αλNλ)(−qη; qη)Nλ+1−1(−qα1 ; qη)N1 · · · (−qαλ ; qη)Nλ
(−qη; qη)Nλ(−qη−α2 ; qη)N1 · · · (−qη−αλ ; qη)Nλ−1

,

(2.4)

where for Nλ+1 ≥ 0,
(−1; qη)Nλ+1

2
= (−qη; qη)Nλ+1−1. (2.5)

By utilizing the following two relations

(−qr; qη)n = qrn+η(
n
2)(−qη−r−nη; qη)n (2.6)

and
1

(−qη−r; qη)n
=

(−qη−r+nη; qη)∞
(−qη−r; qη)∞

, (2.7)

we derive that (2.4) can be transformed into

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(qη; qη)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞
. (2.8)
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Combining (2.3) and (2.8), we have

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

qη(N
2
1+···+N2

k−1+Nr+···+Nk−1)(1 + q−ηNr)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−2−Nk−1
(qη; qη)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞
= (q(r−

λ
2
)η, q(2k−r−

λ
2
)η, q(2k−λ)η; q(2k−λ)η)∞.

Multiplying both sides of the above identity by

(−qη−α1 , . . . ,−qη−αλ ,−qη; qη)∞
(qη; qη)∞

, (2.9)

and noting that for 1 ≤ i ≤ λ, αi + αλ+1−i = η, we show that Theorem 2.1 holds when
k > r > λ ≥ 0.

Case 2. When k = r > λ ≥ 0. We first determine the desired Bailey pair. To this
end, we begin with the unit Bailey pair [24, H(17)],

α(0)
n (1, q) =

{
1, if n = 0,

(−1)nqn
2/2
(
q−n/2 + qn/2

)
, if n ≥ 1,

β(0)
n (1, q) = δn,0 =

{
1, if n = 0,

0, if n ≥ 1.

Applying Proposition 2.4 with A = 1/2 to (α
(0)
n (1, q), β

(0)
n (1, q)), we get the following

Bailey pair,

αn(1, q) =

{
1, if n = 0,

(−1)nqn
2/2
(
q−n/2 + q−n/2

)
(1 + qn)/2, if n ≥ 1,

βn(1, q) =
1 + qn

2
δn,0. (2.10)

Substitute this Bailey pair with q replaced by qη into Proposition 2.3 with r = k.
Under the assumption that αi + αλ+1−i = η for 1 ≤ i ≤ λ, and applying Jacobi’s triple
product identity, we derive that the left-hand side of (2.2) can be simplified as follows.

1 +
∞∑
n=1

(−qα1 ; qη)n · · · (−qαλ ; qη)n
(−qη−α1 ; qη)n · · · (−qη−αλ ; qη)n

× (−1)nq(k−
λ
2
)ηn2+λ+1

2
ηn−(α1+···+αλ)n(q−

1
2
ηn + q−

1
2
ηn)

= 1 + 2
∞∑
n=1

(−1)nq(k−
λ
2
)ηn2

= (q(k−
λ
2
)η, q(k−

λ
2
)η, q(2k−λ)η; q(2k−λ)η)∞. (2.11)
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When applying βn(1, qη) from (2.10) to (2.2) with r = k, we discover that the terms
with Nk > 0 in the summation of the right-hand side of (2.2) equals zero. Therefore, the
right-hand side of (2.2) should be

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥N2≥···≥Nk−1≥0

qη(N
2
λ+2+···+N

2
k−1)+η((

N1+1
2 )+···+(Nλ+1+1

2 ))−(α1N1+···+αλNλ)

(qη; qη)N1−N2 · · · (qη; qη)Nk−1

×
(−1; qη)Nλ+1

(−qα1 ; qη)N1 · · · (−qαλ ; qη)Nλ
(−qη; qη)Nλ(−qη−α2 ; qη)N1 · · · (−qη−αλ ; qη)Nλ−1

=
(qη; qη)∞

(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

2qη(N
2
1+···+N2

k−1)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞
, (2.12)

where the last equality follows from (2.5), (2.6) and (2.7).

Combining (2.11) and (2.12), we have

(qη; qη)∞
(−qη−α1 ; qη)∞

∑
N1≥···≥Nk−1≥0

2qη(N
2
1+···+N2

k−1)(−qη−ηNλ+1 ; qη)Nλ+1−1

(qη; qη)N1−N2 · · · (qη; qη)Nk−1

× (−qη+ηNλ ; qη)∞
∏λ

s=1(−qη−αs−ηNs ; qη)Ns
∏λ

s=2(−qη−αs+ηNs−1 ; qη)∞

(−qη; qη)∞
∏λ

s=2(−qη−αs ; qη)∞
= (q(k−

λ
2
)η, q(k−

λ
2
)η, q(2k−λ)η; q(2k−λ)η)∞.

By multiplying both sides of the above identity by (2.9), and using the assumption that
αi+αλ+1−i = η for 1 ≤ i ≤ λ, we deduce that Theorem 2.1 also holds when k = r > λ ≥ 0.
This completes the proof.

3 Proof of Theorem 1.9

In this section, we first assert that it suffices to show the following result in order to prove
Theorem 1.9.

Theorem 3.1. For k > r ≥ λ ≥ 2,∑
n≥0

B1(α1, . . . , αλ; η, k, r;n)qn

= (−qα1 ,−qαλ ; qη)∞
∑
n≥0

B1(α2, . . . , αλ−1; η, k − 1, r − 1;n)qn.
(3.1)

Before proceeding to the proof of Theorem 3.1, we first demonstrate the derivation of
Theorem 1.9 from Theorem 3.1.
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3.1 Proof of Theorem 1.9 with the aid of Theorem 3.1

Proof of Theorem 1.9. By induction on λ. When λ = 0, setting q → qη in the following
generating function due to Chen, Sang and Shi [10, (1.1)]:∑

n≥0

B1(−; 1, k, r;n)qn =
(−q; q)∞(qr, q2k−r, q2k; q2k)∞

(q; q)∞
,

where k > r ≥ 1, we find that Theorem 1.9 holds when λ = 0.

When λ = 1, observing that η = 2α1, we see that η must be even and α1 = η/2. It
follows from [17, Theorem 1.19] that for k > r ≥ 1,∑

n≥0

B1(1; 2, k, r;n)qn =
(−q; q2)∞(−q2; q2)∞(q2r−1, q4k−2r−1, q4k−2; q4k−2)∞

(q2; q2)∞
. (3.2)

Letting q → qη/2 in (3.2), we deduce that Theorem 1.9 holds when λ = 1.

When λ ≥ 2, assume that Theorem 1.9 holds for λ − 2. Then, for k − 1 > r − 1 >
λ− 2 ≥ 0, we have∑

n≥0

B1(α2, . . . , αλ−1; η, k − 1, r − 1;n)qn

=
(−qα2 , . . . ,−qαλ−1 ,−qη; qη)∞(qη(r−

λ
2
), qη(2k−r−

λ
2
), qη(2k−λ); qη(2k−λ))∞

(qη; qη)∞
.

(3.3)

By substituting (3.3) into (3.1), we obtain (1.1). This implies that Theorem 1.9 holds for
λ. Thus, we have proven Theorem 1.9 with the aid of Theorem 3.1.

3.2 The outline of the proof of Theorem 3.1

Let Dα1 and Dαλ denote the sets of distinct partitions whose parts are congruent to α1

and αλ modulo η, respectively. Clearly, we have∑
δ∈Dα1

q|δ| = (−qα1 ; qη)∞ and
∑
δ∈Dαλ

q|δ| = (−qαλ ; qη)∞.

For k > r ≥ λ ≥ 0, let B1(α1, . . . , αλ; η, k, r) denote the set of partitions counted by
B1(α1, . . . , αλ; η, k, r;n) for n ≥ 0. It is easy to see that Theorem 3.1 is equivalent to the
following combinatorial statement.

Theorem 3.2. For k > r ≥ λ ≥ 2, there is a bijection Θ between Dα1 × Dαλ ×
B1(α2, . . . , αλ−1; η, k−1, r−1) and B1(α1, . . . , αλ; η, k, r). Moreover, for a triple (δ(1), δ(λ), π)
∈ Dα1×Dαλ×B1(α2, . . . , αλ−1; η, k−1, r−1), we have τ = Θ(δ(1), δ(λ), π) ∈ B1(α1, . . . , αλ; η,
k, r) such that |τ | = |δ(1)|+ |δ(λ)|+ |π|.
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To prove this theorem, we adopt the analogous strategy used for Conjecture 1.3 for
j = 1 given by Kim [19]. Let C1(α2, . . . , αλ; η, k, r) denote the set of overpartitions in
B1(α1, . . . , αλ; η, k, r) without parts ≡ α1 (mod η). Bear in mind that α2, . . . , αλ and η
are integers such that

0 < α2 < · · · < αλ < η, and αi = η − αλ+1−i for 2 ≤ i ≤ λ− 1.

To build the bijection Θ in Theorem 3.2, we will first unite π and δ(λ), and denote the
resulting overpartition by π(0). Evidently, π(0) ∈ C1(α2, . . . , αλ; η, k, r). We next aim to
merge the parts of δ(1) into π(0) from smallest to largest to generate an overpartition in
B1(α1, . . . , αλ; η, k, r). There are two steps. We first merge some parts ≡ α1 (mod η) in
δ(1) and some parts ≡ αλ (mod η) in π(0) to generate some non-overlined parts divisible
by η (due to the fact that α1 + αλ = η). It turns out the (k − 1)-addition introduced by
Kim [19] can fulfill this task directly (see Section 3.4). In the second step, we are meant
to merge the remaining parts of δ(1) (which are ≡ α1 (mod η)) and the overpartition
in C1(α2, . . . , αλ; η, k, r) to generate certain overlined parts ≡ α1 (mod η). As a result,
we get an overpartition in B1(α1, . . . , αλ; η, k, r). We can accomplish our objective by
utilizing the (k − 1)-insertion outlined in [17] with a = α1 (see Section 3.5).

In the next subsection, we will first recall the definitions of the Gordon marking and
the reverse Gordon marking of an overpartition in B1(α1, . . . , αλ; η, k, r) established in our
previous paper [17]. The (k−1)-addition operation and the (k−1)-insertion operation are
defined based on the reverse Gordon marking, while their inverse operations are defined
based on the Gordon marking. We also review the forward move and the backward move,
which are the main ingredients in the constructions of the (k − 1)-addition, the (k − 1)-
insertion and their inverse operations. In Section 3.4, we recall the (k − 1)-addition
and its inverse map (i.e., the (k − 1)-subtraction) given by Kim [19] in the context of
overpartitions. Section 3.5 is devoted to revisiting the (k−1)-insertion and its inverse map
(i.e., the (k−1)-separation) defined in [17]. In Section 3.6, we give a proof of Theorem 3.2
by successively applying the (k−1)-addition operation and the (k−1)-insertion operation.

3.3 The (reverse) Gordon marking and the forward (backward)
move

This subsection revisits the definitions of the Gordon marking and the reverse Gordon
marking of an overpartition in B1(α1, . . . , αλ; η, k, r), originally established in our earlier
paper [17]. We follow the terminology, notation and examples in [17].

In the rest of this paper, we assume that k, r and λ are integers such that k > r ≥
λ ≥ 2. The Gordon marking of an overpartition in B1(α1, . . . , αλ; η, k, r) was defined as
follows.

Definition 3.3. [17, Definition 3.1] Let π = (π1, π2, . . . , π`) be an overpartition satisfying
(1) and (2) in Definition 1.5. Assign a positive integer to each part of π as follows: First,
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assign 1 to π`. Then, for each πi, assign s to πi, where s is the smallest positive integer
that is not used to mark the parts πm such that m > i and πm ≥ πi−η with strict inequality
if πi is overlined. Denote the Gordon marking of π by G(π).

For example, let π be an overpartition in B1(1, 5, 9; 10, 5, 4) given by

π = (80, 80, 80, 70, 70, 69, 60, 60, 55, 51, 50, 49, 45, 41, 39, 35,

29, 20, 20, 20, 11, 10, 9, 5, 1).
(3.4)

The Gordon marking of π is given by

G(π) = (801, 804, 802, 701, 703, 692, 604, 601, 552, 513, 504, 491, 452, 413, 391, 352,

291, 204, 203, 202, 111, 104, 93, 52, 11),

where the subscript of each part represents the mark in the Gordon marking.

Letting π be an overpartition satisfying (1) and (2) in Definition 1.5, by definition, we
see that π is an overpartition in B1(α1, . . . , αλ; η, k, r) if and only if the marks in G(π) do
not exceed k − 1 and the marks of parts less than or equal to η in G(π) do not exceed
r − 1.

The reverse Gordon marking of an overpartition in B1(α1, . . . , αλ; η, k, r) is defined by
assigning a mark to each part starting with the largest part instead.

Definition 3.4. [17, Definition 3.2] Let π = (π1, π2, . . . , π`) be an overpartition satisfying
(1) and (2) in Definition 1.5. Assign a positive integer to each part of π as follows: First
assign 1 to π1. Then, for each πi, assign s to πi, where s is the smallest positive integer
that is not used to mark the parts πm such that m < i and πm ≤ πi+η with strict inequality
if πi is overlined. Denote the reverse Gordon marking of π by RG(π).

For the overpartition π in B1(1, 5, 9; 10, 5, 4) defined in (3.4), the reverse Gordon mark-
ing of π reads

RG(π) = (801, 802, 803, 701, 704, 692, 601, 603, 552, 514, 501, 493, 452, 414, 391, 352,

291, 202, 203, 204, 111, 102, 93, 54, 11).
(3.5)

Analogously, an overpartition π satisfying (1) and (2) in Definition 1.5 is an overpar-
tition in B1(α1, . . . , αλ; η, k, r) if and only if the marks in RG(π) do not exceed k− 1 and
there are at most r − 1 parts less than or equal to η in π.

We proceed to recall the definition of (k − 1)-bands. Let π = (π1, π2, . . . , π`) be an
overpartition in B1(α1, . . . , αλ; η, k, r). If there are k − 1 consecutive parts πi ≥ πi+1 ≥
· · · ≥ πi+k−2 satisfying the following relation:

πi ≤ πi+k−2 + η with strict inequality if πi is overlined,

13



then such k − 1 parts will be called a (k − 1)-band of π. Observe that for a (k − 1)-band
{πi+l}0≤l≤k−2 of π without overlined parts divisible by η, if we change the overlined parts
of π to non-overlined parts, then this (k−1)-band reduces to a (k−1)-sequence introduced
by Kim [19].

For example, let π be the overpartition in B1(1, 5, 9; 10, 5, 4) defined in (3.4), where
k = 5. There are twelve 4-bands in π.

{80, 80, 70, 70}, {70, 69, 60, 60}, {60, 60, 55, 51}, {60, 55, 51, 50},

{55, 51, 50, 49}, {51, 50, 49, 45}, {50, 49, 45, 41}, {29, 20, 20, 20},

{20, 20, 20, 11}, {20, 20, 11, 10}, {11, 10, 9, 5}, {10, 9, 5, 1}.

For each (k − 1)-band {πi+l}0≤l≤k−2 of π, it is easy to see that the marks of πi+l
are distinct in the Gordon marking and the reverse Gordon marking of π. Hence there
exists one part in {πi+l}0≤l≤k−2 marked with k−1 in the Gordon marking and the reverse
Gordon marking of π. We now restrict our attention to two kinds of special (k−1)-bands.

The (k − 1)-bands of the first kind refer to those bands in which the (k − 1)-marked
part in the Gordon marking is the largest element. Assume that there are N parts marked
with k−1 in G(π), and denote these (k−1)-marked parts by g̃1(π) > g̃2(π) > · · · > g̃N(π).
For each (k − 1)-marked part g̃p(π) in G(π), there is a (k − 1)-band of π such that g̃p(π)
is the largest element of this (k− 1)-band. Such a (k− 1)-band is called the (k− 1)-band
induced by g̃p(π), denoted {g̃p(π)}k−1.

For example, for the overpartition π given in (3.4), there are five 4-marked parts in
G(π), namely, g̃1(π) = 80, g̃2(π) = 60, g̃3(π) = 50, g̃4(π) = 20 and g̃5(π) = 10. The
4-bands induced by g̃1(π), g̃2(π), g̃3(π), g̃4(π) and g̃5(π) are illustrated in G(π) below:

G(π) = (801,

{80}4︷ ︸︸ ︷
804, 802, 701, 703, 692,

{60}4︷ ︸︸ ︷
604, 601, 552, 513,

{50}4︷ ︸︸ ︷
504, 491, 452, 413, 391, 352,

291, 204, 203, 202, 111︸ ︷︷ ︸
{20}4

, 104, 93, 52, 11︸ ︷︷ ︸
{10}4

).

The (k − 1)-bands of the second kind are a specific category of bands that are charac-
terized by the (k−1)-marked part in the reverse Gordon marking being the smallest part.
Assume that there are M parts marked with k − 1 in RG(π), namely, r̃1(π) > r̃2(π) >
· · · > r̃M(π). By the same reasoning, we see that there is a (k − 1)-band of π in which
r̃p(π) is the smallest element. Such a (k − 1)-band is called the (k − 1)-band induced by
r̃p(π), denoted {r̃p(π)}k−1.

For example, for the overpartition π given in (3.4), there are five 4-marked parts in
RG(π), which are r̃1(π) = 70, r̃2(π) = 51, r̃3(π) = 41, r̃4(π) = 20 and r̃5(π) = 5. The
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4-bands induced by r̃1(π), r̃2(π), r̃3(π), r̃4(π) and r̃5(π) are displayed below:

RG(π) = (801,

{70}4︷ ︸︸ ︷
802, 803, 701, 704, 692,

{51}4︷ ︸︸ ︷
601, 603, 552, 514,

{41}4︷ ︸︸ ︷
501, 493, 452, 414, 391, 352,

291, 202,203, 204︸ ︷︷ ︸
{20}4

, 111, 102, 93, 54︸ ︷︷ ︸
{5}4

, 11).

The following proposition indicates that the number of (k − 1)-marked parts in G(π)
equals the number of (k − 1)-marked parts in RG(π).

Proposition 3.5. [17, Proposition 3.3] Let π be an overpartition in B1(α1, . . . , αλ; η, k, r).
Assume that there are N parts marked with k − 1 in G(π), say, g̃1(π) > g̃2(π) > · · · >
g̃N(π), and there are M parts marked with k − 1 in RG(π), say, r̃1(π) > r̃2(π) > · · · >
r̃M(π). Then N = M . Moveover, for each 1 ≤ i ≤ N , we have g̃i(π) ∈ {r̃i(π)}k−1 and
r̃i(π) ∈ {g̃i(π)}k−1, where {g̃i(π)}k−1 (resp. {r̃i(π)}k−1) is the (k − 1)-band of π induced
by g̃i(π) (resp. r̃i(π)).

We conclude this subsection by stating the forward move and the backward move
based on the Gordon marking and the reverse Gordon marking of an overpartition in
B1(α1, . . . , αλ; η, k, r), respectively. For more details about them, please refer to Section
4.1 in [17].

Definition 3.6. [17, Definition 4.2] For N ≥ 1, let π be an overpartition satisfying (1),
(2) and (3) in Definition 1.5. Assume that there are N parts marked with k−1 in RG(π),
say r̃1(π) > r̃2(π) > · · · > r̃N(π). For 1 ≤ p ≤ N , the forward move φp is defined as
follows: add η to each of r̃1(π), r̃2(π), . . . , r̃p(π) and rearrange the parts in non-increasing
order to obtain a new overpartition, denoted φp(π).

When p = 0, the forward move φp is defined to be the identity map, that is, φp(π) = π.

For example, let π be the overpartition defined in (3.4), whose reverse Gordon marking
is given in (3.5). Apply the forward move φ3 to π, namely, add η = 10 to each of
r̃1(π) = 70, r̃2(π) = 51 and r̃3(π) = 41, and so we get

φ3(π) = (80, 80, 80, 80, 70, 69, 61, 60, 60, 55, 51, 50, 49, 45, 39, 35,

29, 20, 20, 20, 11, 10, 9, 5, 1).

Definition 3.7. [17, Definition 4.4] For N ≥ p ≥ 1, let ω be an overpartition satisfying
(1), (2) and (3) in Definition 1.5. Assume that there are N parts marked with k −
1 in G(ω), denoted g̃1(ω) > g̃2(ω) > · · · > g̃N(ω), for which g̃p(ω) ≥ η + α1. The
backward move ψp is defined as follows: subtract η from each of g̃1(ω), g̃2(ω), . . . , g̃p(ω)
and rearrange the parts in non-increasing order to obtain a new overpartition, denoted
ψp(ω).
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For example, let π be the overpartition in B1(1, 5, 9; 10, 5, 4) given in (3.4), and let
ω = φ3(π). Then the Gordon marking of ω is given by

G(ω) = (801,

{80}4︷ ︸︸ ︷
804, 803, 802, 701, 692,

{61}4︷ ︸︸ ︷
614, 603, 601, 552,

{51}4︷ ︸︸ ︷
514, 503, 491, 452, 391, 352,

291, 204, 203, 202, 111︸ ︷︷ ︸
{20}4

, 104, 93, 52, 11︸ ︷︷ ︸
{10}4

).

There are five 4-marked parts in G(ω), which are g̃1(ω) = 80, g̃2(ω) = 61, g̃3(ω) = 51,
g̃4(ω) = 20 and g̃5(ω) = 10. The backward move ψ3 transforms ω back to π. That is, the
overpartition π can be obtained from ω by subtracting η = 10 from each of g̃1(ω) = 80,
g̃2(ω) = 61 and g̃3(ω) = 51.

3.4 The (k − 1)-addition and the (k − 1)-subtraction

Just as mentioned before, to build the bijection Θ in Theorem 3.2, we first aim to merge
some parts ≡ α1 (mod η) in δ(1) and some parts ≡ αλ (mod η) in π(0) to generate some
non-overlined parts divisible by η (due to the fact that α1 + αλ = η). We find that the
(k − 1)-addition operation and the (k − 1)-subtraction operation introduced by Kim [19]
are capable of achieving this objective. Here we will adapt the (k− 1)-addition operation
and the (k − 1)-subtraction operation introduced by Kim [19] for ordinary partitions to
the setting of overpartitions in C1(α2, . . . , αλ; η, k, r).

To present the definitions of the (k − 1)-addition and the (k − 1)-subtraction, we will
define the non-degenerate (k−1)-bands of an overpartition π ∈ C1(α2, . . . , αλ; η, k, r) and
the non-degenerate parts of an overpartition π ∈ C1(α2, . . . , αλ; η, k, r).

A (k− 1)-band of π is called a non-degenerate (k− 1)-band if there are no parts ≡ αλ
(mod η) in this (k − 1)-band.

To define the non-degenerate parts of an overpartition π ∈ C1(α2, . . . , αλ; η, k, r), we
first need to define the non-degenerate (k− 1)-parts and the non-degenerate (r− 1)-part.
For an overpartition π, we use fπ(0, η] to denote the number of parts of π less than or
equal to η.

Let {πm+l}0≤l≤k−2 be a non-degenerate (k − 1)-band of π, namely,

πm ≥ πm+1 ≥ · · · ≥ πm+k−2,

where πm ≤ πm+k−2 +η with strict inequality if πm is overlined. Note that k > λ, so there
is at least one non-overlined part in {πm+l}0≤l≤k−2. Let πm+t be the largest non-overlined
part in {πm+l}0≤l≤k−2. If πm+t > πm+t+1, then we call πm+t a non-degenerate (k− 1)-part
of π.

If fπ(0, η] = r− 1 and αλ does not occur in π, then there is at least one non-overlined
part η of π since r − 1 > λ − 2. Assume that πt = η, if πt > πt+1 and there are no
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(k − 1)-bands of π in (0, η + αλ), then πt is called the non-degenerate (r − 1)-part of π.
A part of π is called a non-degenerate part if it is either a non-degenerate (r − 1)-part of
π or a non-degenerate (k − 1)-part of π.

For example, let

π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
π = (50, 47, 40, 40, 30, 25, 20, 20, 15, 10, 5)

(3.6)

be the overpartition in C1(5, 7; 10, 4, 3), where η = 10, k = 4, r = 3, λ = 3, α1 = 3, α2 = 5
and α3 = 7. Note that fπ(0, 10] = 2, there are no 3-bands of π in (0, 17), and 7 does not
occur in π. We see that π10 = 10 is the non-degenerate 2-part of π.

For another example, we consider the following overpartition π in C1(5, 7; 10, 4, 3),
where η = 10, k = 4, r = 3, λ = 3, α1 = 3, α2 = 5 and α3 = 7.

π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
π = (50, 47, 40, 40, 30, 25, 20, 20, 10, 10, 7).

(3.7)

It is easy to check that there are three non-degenerate 3-bands of π, which are {40, 40, 30},
{25, 20, 20} and {20, 10, 10}. Clearly, π4 = 40 and π8 = 20 are two non-degenerate 3-parts
of π.

Here and in the sequel, we make the following assumption. Let πi be the i-th part of
the overpartition π = (π1, π2, . . . , π`). If πi is an overlined part ≡ αλ (mod η), then we
define a new part πi +α1 as a non-overlined part of size |πi|+α1. If πi is a non-overlined
part divisible by η, then we define a new part πi−α1 as an overlined part of size |πi|−α1.

We will be concerned with the following two subsets of C1(α2, . . . , αλ; η, k, r).

• For 0 ≤ p ≤ N , let Cλ(α2, . . . , αλ; η, k, r|N, p) denote the set of overpartitions π
in C1(α2, . . . , αλ; η, k, r) such that there are N parts marked with k − 1 in RG(π),
denoted r̃1(π) > · · · > r̃N(π), satisfying one of the following conditions:

(1) If 0 ≤ p < N , then there exists a part ≡ αλ (mod η) in the (k − 1)-band
{r̃p+1(π)}k−1, denoted ˜̃rp+1(π), and there is no non-degenerate part of π less
than ˜̃rp+1(π);

(2) If p = N , then fπ(0, η] = r − 1, αλ is a part of π, and r̃N(π) > η when N ≥ 1.

• For 0 ≤ p ≤ N , let Cη(α2, . . . , αλ; η, k, r|N, p) denote the set of overpartitions π in
C1(α2, . . . , αλ; η, k, r) subject to the following conditions:

(1) There exists a non-degenerate part of π;
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(2) Let π be the overpartition obtained from π by subtracting α1 from the smallest
non-degenerate part of π. Then there are N parts marked with k − 1 in the
Gordon marking of π, denoted g̃1(π) > · · · > g̃N(π);

(3) If 0 ≤ p < N , then there is no non-degenerate (r − 1)-part of π and p is the
largest integer such that g̃p(π) > πm + η, where m is the largest integer such
that {πm+l}0≤l≤k−2 is a non-degenerate (k − 1)-band of π;

(4) If p = N , then there is a non-degenerate (r − 1)-part of π.

For example, let π be an overpartition in C1(5, 7; 10, 4, 3), where η = 10, k = 4, r =
3, λ = 3, α1 = 3, α2 = 5 and α3 = 7. The reverse Gordon marking of π is given below.

RG(π) = (501, 472,

{30}3︷ ︸︸ ︷
401, 302, 303,

{17}3︷ ︸︸ ︷
251, 202, 173,

{7}3︷ ︸︸ ︷
101, 102, 73). (3.8)

There are three parts marked with 3 in RG(π), which are r̃1(π) = 30, r̃2(π) = 17 and
r̃3(π) = 7. For p = 1, we see that there is a part 17, which is congruent to 7 modulo 10,
in the 3-band {r̃p+1(π)}3 = {251, 202, 173}, and so ˜̃rp+1(π) = 17. Furthermore, there is no
non-degenerate part of π less than 17. Hence, π ∈ C3(5, 7; 10, 4, 3|3, 1).

We consider the overpartition π defined in (3.6). Let π be the overpartition obtained
from π by subtracting 3 from the non-degenerate 2-part π10 = 10. The Gordon marking
of π is given as follows.

G(π) = (501, 472, 403, 401, 302, 251, 203, 202, 151, 72, 51).

There are two parts marked with 3 in G(π), which are g̃1(π) = 40 and g̃2(π) = 20. So,
π ∈ C10(5, 7; 10, 4, 3|2, 2).

For the overpartition π defined in (3.7), we know that π8 = 20 is the smallest non-
degenerate part of π, and so πm = π8 = 20. Let π be the overpartition obtained from π
by subtracting 3 from the smallest non-degenerate part π8 = 20. The Gordon marking of
π is illustrated below.

G(π) = (502, 471, 403, 402, 301, 253, 202, 171, 103, 102, 71). (3.9)

There are three parts marked with 3 in G(π), which are g̃1(π) = 40, g̃2(π) = 25 and
g̃3(π) = 10. It is easy to check that g̃1(π) = 40 > πm + η = 30 > g̃2(π) = 25. Hence,
π ∈ C10(5, 7; 10, 4, 3|3, 1).

We can express the (k− 1)-addition introduced by Kim [19] in the context of overpar-
titions as follows.

Definition 3.8 (The (k − 1)-addition). For 0 ≤ p ≤ N, let π be an overpartition in
Cλ(α2, . . . , αλ; η, k, r|N, p) and let r̃1(π) > · · · > r̃N(π) be the (k − 1)-marked parts in
RG(π). The (k−1)-addition Apη+α1 : π → τ is defined as follows: First apply the forward
move φp to π, and then add α1 to ˜̃rp+1(π) to generate a non-overlined part divisible by
η. Here, we assume that ˜̃rN+1(π) = αλ. Rearrange the parts in non-increasing order to
obtain the overpartition τ .
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For example, take the overpartition π in C3(5, 7; 10, 4, 3|3, 1), whose reverse Gordon
marking is given in (3.8). Note that p = 1, we first change the part r̃1(π) = 30 to
r̃1(π) + η = 40 and then add α1 = 3 to the part ˜̃r2(π) = 17 to get 20. So we obtain

τ = A1·10+3(π) = (50, 47, 40, 40, 30, 25, 20, 20, 10, 10, 7),

which is the overpartition defined in (3.7). Clearly, fτ (0, 10] = fπ(0, 10] = 2, |τ | =
|π|+ pη + α1 = |π|+ 13 and τ ∈ C10(5, 7; 10, 4, 3|3, 1).

In light of Proposition 5.1 and Proposition 5.3 in [19], we deduce that the (k − 1)-
addition is a map from Cλ(α2, . . . , αλ; η, k, r|N, p) to Cη(α2, . . . , αλ; η, k, r|N, p).

Lemma 3.9. For 0 ≤ p ≤ N, let π be an overpartition in Cλ(α2, . . . , αλ; η, k, r|N, p) and
let τ = Apη+α1(π). Then τ is an overpartition in Cη(α2, . . . , αλ; η, k, r|N, p) such that
|τ | = |π|+ pη + α1.

In the context of overpartitions, the inverse map of the (k − 1)-addition (i.e., the
(k − 1)-subtraction) can be stated as follows.

Definition 3.10 (The (k − 1)-subtraction). For 0 ≤ p ≤ N , let τ be an overpartition in
Cη(α2, . . . , αλ; η, k, r|N, p). The (k − 1)-subtraction Spη+α1 : τ → π is defined as follows:
First subtract α1 from the smallest non-degenerate part of τ to get τ , and then apply the
backward move ψp to τ to obtain π.

For example, let τ be the overpartition which agrees with the one in (3.7). We know
that τ ∈ C10(5, 7; 10, 4, 3|3, 1). We first subtract 3 from the smallest non-degenerate part
τ8 = 20 to obtain τ , whose Gordon marking is given in (3.9). Then we apply the backward
move ψ1 to τ to obtain π, namely, replace g̃1(τ) = 40 in τ by 30 in π. So we get

π = (50, 47, 40, 30, 30, 25, 20, 17, 10, 10, 7),

whose revere Gordon marking is given in (3.8). From the proceeding example (3.8), we
see that π ∈ C3(5, 7; 10, 4, 3|3, 1).

By virtue of Proposition 5.2 and Proposition 5.3 in [19], we derive that the (k − 1)-
subtraction is a map from Cη(α2, . . . , αλ; η, k, r|N, p) to Cλ(α2, . . . , αλ; η, k, r|N, p).

Lemma 3.11. For 0 ≤ p ≤ N, let τ be an overpartition in Cη(α2, . . . , αλ; η, k, r|N, p)
and let π = Spη+α1(π). Then π is an overpartition in Cλ(α2, . . . , αλ; η, k, r|N, p) such that
|π| = |τ | − pη − α1.

Combining Lemma 3.9 and Lemma 3.11, we derive the following result.

Theorem 3.12. For 0 ≤ p ≤ N , the (k − 1)-addition Apη+α1 is a bijection between
Cλ(α2, . . . , αλ; η, k, r|N, p) and Cη(α2, . . . , αλ; η, k, r|N, p). Moreover, assume that π is an
overpartition in Cλ(α2, . . . , αλ; η, k, r|N, p), let τ = Apη+α1(π). Then, we have fτ (0, η] =
fπ(0, η] and |τ | = |π|+ pη + α1.
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We conclude this subsection with the following theorem, which shows that the (k −
1)-addition operation can be applied to an overpartition in Cλ(α2, . . . , αλ; η, k, r|N, p)
successively. It is worth mentioning that the following theorem can be obtained from
Proposition 5.6 in [19]. Here, we provide a detailed proof for completeness.

Theorem 3.13. For 0 ≤ p < N , let π be an overpartition in Cλ(α2, . . . , αλ; η, k, r|N, p)
and let τ = Apη+α1(π). Assume that there are N ′ parts marked with k−1 in RG(τ). Then
for p′ < N ′, τ is also an overpartition in Cλ(α2, . . . , αλ; η, k, r|N ′, p′) if and only if p′ > p.

Proof. Since π ∈ Cλ(α2, . . . , αλ; η, k, r|N, p), there areN parts marked with k−1 in RG(π),
denoted r̃1(π) > · · · > r̃N(π). Furthermore, there exists a part ≡ αλ (mod η) in the
(k− 1)-band {r̃p+1(π)}k−1, denoted ˜̃rp+1(π), and there is no non-degenerate part of π less
than ˜̃rp+1(π). Appealing to Theorem 3.12, we know that τ ∈ Cη(α2, . . . , αλ; η, k, r|N, p)
and ˜̃rp+1(π) + α1 is the smallest non-degenerate part of τ .

We first show that if N ′ > p′ > p, then τ is in Cλ(α2, . . . , αλ; η, k, r|N ′, p′). Let
r̃1(τ) > · · · > r̃N ′(τ) be the (k−1)-marked parts in RG(τ). We are required to prove that
there exists a part ≡ αλ (mod η) in the (k−1)-band {r̃p′+1(τ)}k−1 of τ , denoted ˜̃rp′+1(τ),
and there is no non-degenerate part of τ less than ˜̃rp′+1(τ). Note that ˜̃rp+1(π) + α1 is the
smallest non-degenerate part of τ , it suffices to prove that the parts in the (k − 1)-band
{r̃p′+1(τ)}k−1 are less than ˜̃rp+1(π) + α1. To do this, under the assumption that p′ > p, it
is enough to verify that

r̃p+1(τ) ≤ ˜̃rp+1(π) + α1. (3.10)

Suppose to the contrary that r̃p+1(τ) > ˜̃rp+1(π) +α1. By the definition of reverse Gordon
marking, we see that there is a (k − 1)-band of τ in (˜̃rp+1(π) + α1, r̃p(τ)).

Assume that π(1) = φp(π). By virtue of (3) and (4) in Proposition 4.3 in [17], we know
that there are N parts marked with k−1 in G(π(1)), denoted g̃1(π

(1)) > · · · > g̃N(π(1)), and
g̃p(π

(1)) = r̃p(π) + η. By Proposition 3.5, we find that there are also N parts marked with
k−1 in RG(π(1)), denoted r̃1(π

(1)) > · · · > r̃N(π(1)), and g̃p(π
(1))−η ≤ r̃p(π

(1)) ≤ g̃p(π
(1)).

So, we get r̃p(π) ≤ r̃p(π
(1)) ≤ r̃p(π) + η. Recall that τ is obtained by replacing ˜̃rp+1(π) in

π(1) by ˜̃rp+1(π) + α1, so r̃p(τ) = r̃p(π
(1)). It yields

r̃p(π) ≤ r̃p(τ) ≤ r̃p(π) + η. (3.11)

Under the condition that there is a (k − 1)-band of τ in (˜̃rp+1(π) + α1, r̃p(τ)), we deduce
that there is a (k − 1)-band of τ in (˜̃rp+1(π) + α1, r̃p(π) + η).

Let {τi+l}0≤l≤k−2 be a (k− 1)-band of τ in (˜̃rp+1(π) +α1, r̃p(π) + η). Recall that r̃p(π)
in π is changed to r̃p(π) + η in τ , so τi < r̃p(π). This implies that {τi+l}0≤l≤k−2 is a
(k − 1)-band of τ in (˜̃rp+1(π) + α1, r̃p(π)). From the construction of τ , we find that the
parts in the (k−1)-band {τi+l}0≤l≤k−2 of τ are also parts of π. It yields that {τi+l}0≤l≤k−2
is also a (k− 1)-band of π in (˜̃rp+1(π) +α1, r̃p(π)), which leads to a contradiction. Hence,
we arrive at (3.10). This completes the proof of the sufficiency.

Conversely, assume that τ is also an overpartition in Cλ(α2, . . . , αλ; η, k, r|N ′, p′), and
for p′ < N ′, we intend to show that p′ > p. Suppose to the contrary that p′ ≤ p.
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Given that τ ∈ Cλ(α2, . . . , αλ; η, k, r|N ′, p′), then there exists a part ≡ αλ (mod η) in
the (k−1)-band {r̃p′+1(τ)}k−1 of τ , denoted ˜̃rp′+1(τ), and there is no non-degenerate part
of τ less than ˜̃rp′+1(τ). Recall that ˜̃rp+1(π) + α1 is a non-degenerate part of τ , we have
˜̃rp′+1(τ) ≤ ˜̃rp+1(π)+α1. Under the condition that ˜̃rp′+1(τ) and ˜̃rp+1(π) are both congruent
to αλ modulo η, we deduce that ˜̃rp′+1(τ) ≤ ˜̃rp+1(π). Furthermore, from the construction
of τ , we see that ˜̃rp+1(π) does not occur in τ . It yields ˜̃rp′+1(τ) ≤ ˜̃rp+1(π) − η. Since
˜̃rp+1(π)− η < r̃p+1(π), we get

˜̃rp′+1(τ) < r̃p+1(π). (3.12)

On the other hand, appealing to (3.11), we get r̃p(τ) ≥ r̃p(π). Assume that r̃p+1(π)
is the m-th part of π, that is, πm = r̃p+1(π). Since {πm−l}0≤l≤k−2 is the (k − 1)-band of
π induced by r̃p+1(π), we could assume that πm−t = ˜̃rp+1(π), where 0 ≤ t ≤ k − 2. It
is easy to check that {πm−k+2, . . . , πm−t + α1, . . . , πm} is a (k − 1)-band of τ . It follows
that r̃p+1(τ) ≥ r̃p+1(π). Under the assumption that p′ ≤ p, we get ˜̃rp′+1(τ) ≥ r̃p′+1(τ) ≥
r̃p+1(τ) ≥ r̃p+1(π), which is in contradiction to (3.12). Thus, we have shown p′ > p. This
completes the proof.

3.5 The (k − 1)-insertion and the (k − 1)-separation

The main objective of this subsection is to recall the (k−1)-insertion with a = α1 defined
in [17], which can be viewed as an overpartition generalization of the (k− 1)-insertion in-
troduced by Kim [19]. It is worth mentioning that we could not apply the (k−1)-insertion
introduced by Kim [19] directly in the second step owing to the presence of certain parts,
such as tη < tη < tη + α1 in the overpartition belonging to B1(α1, . . . , αλ; η, k, r).

The (k − 1)-insertion with a = α1 can be used to merge the remaining parts of δ(1)

(which are ≡ α1 (mod η)) and the overpartition in C1(α2, . . . , αλ; η, k, r) to generate cer-
tain overlined parts≡ α1 (mod η), which results in an overpartition in B1(α1, . . . , αλ; η, k, r).
We first recall two subsets of B1(α1, . . . , αλ; η, k, r) introduced in [17].

• For s ≥ N ≥ 0, let B α1

< (α1, . . . , αλ; η, k, r|N, s) denote the set of overpartitions τ in
B1(α1, . . . , αλ; η, k, r) satisfying

(1) There are N parts marked with k − 1 in RG(τ), denoted r̃1(τ) > · · · > r̃N(τ);

(2) Assume that p is the smallest integer satisfying r̃p+1(τ) + η ≤ (s− p)η + α1

with the convention that r̃N+1(τ) = −∞. Then the largest overlined part ≡ α1

(mod η) in τ is less than (s− p)η + α1;

(3) If fτ (0, η] = r − 1 and s = N ≥ 1, then r̃N(τ) ≤ η;

(4) If s = N = 0, then fτ (0, η] < r − 1.

• For s ≥ N ≥ 0, let B α1

= (α1, . . . , αλ; η, k, r|N, s) denote the set of overpartitions σ in
B1(α1, . . . , αλ; η, k, r) subject to the following conditions:
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(1) There exists an overlined part ≡ α1 (mod η) in σ, and assume that the largest
overlined part ≡ α1 (mod η) in σ is tη + α1;

(2) Let σ̂ be the overpartition obtained by removing tη + α1 from σ. Then there
are N parts marked with k − 1 in G(σ̂), denoted g̃1(σ̂) > · · · > g̃N(σ̂);

(3) Assume that p is the smallest integer such that g̃p+1(σ̂) < tη + α1 with the
convention that g̃N+1(σ̂) = −∞. Then s = p+ t.

For example, let s = 6 and α1 = 1 and let τ be the overpartition in B1(1, 5, 9; 10, 5, 4)
with the reverse Gordon marking

RG(τ) = (851, 802, 803, 751, 704, 692, 601, 603, 592, 554, 501, 492, 453, 401, 404,

392, 353, 301, 292, 253,214, 191, 152, 113, 104, 91, 52).
(3.13)

There are five 4-marked parts r̃1(τ) = 70, r̃2(τ) = 55, r̃3(τ) = 40, r̃4(τ) = 21 and
r̃5(τ) = 10 in RG(τ). Then p = 3 is the smallest integer such that 31 = r̃p+1(τ) + η ≤
(s− p)η + α1 = 31. Meanwhile, the largest overlined part ≡ 1 (mod 10) in τ is 21, which

is less than (s− p)η + α1 = 31. So τ is an overpartition in B 1

<(1, 5, 9; 10, 5, 4|5, 6).

For another example, let s = 6 and α1 = 1 and let

σ = (85, 80, 80, 80, 75, 69, 65, 60, 60, 59, 50, 50, 49, 45, 40,

39, 35, 31, 30, 29, 25, 21,19, 15, 11, 10, 9, 5)
(3.14)

be an overpartition in B1(1, 5, 9; 10, 5, 4). The largest overlined part ≡ 1 (mod 10) in σ is
31, and so t = 3. Removing 31 from σ, we get σ̂ with the Gordon marking

G(σ̂) = (852, 804, 803, 801, 752, 691, 654, 603, 602, 591, 503, 504, 492, 451, 403,

392, 351, 304, 292, 251,213, 192, 151, 114, 103, 92, 51).
(3.15)

There are five 4-marked parts g̃1(σ̂) = 80, g̃2(σ̂) = 65, g̃3(σ̂) = 50, g̃4(σ̂) = 30 and
g̃5(σ̂) = 11 in G(σ̂) and p = 3 is the smallest integer such that 30 = g̃p+1(σ̂) < 31. Indeed,

p+ t = s holds. Thus, we conclude that σ is an overpartition in B 1

=(1, 5, 9; 10, 5, 4|5, 6).

The following is the definition of the (k − 1)-insertion.

Definition 3.14. [17, Definition 4.9] For s ≥ N ≥ 0, assume that τ is an overpartition
in B α1

< (α1, . . . , αλ; η, k, r|N, s) with N parts marked with k− 1 in RG(τ), denoted r̃1(τ) >

· · · > r̃N(τ). Let p be the smallest integer such that 0 ≤ p ≤ N and (s− p)η + α1 ≥
r̃p+1(τ)+η. The (k−1)-insertion Iα1

s : τ → σ is defined as follows: first apply the forward

move φp to τ to get τ ′, then insert (s− p)η + α1 into τ ′ as an overlined part of σ.

For example, let τ be the overpartition in B 1

<(1, 5, 9; 10, 5, 4|5, 6) whose reverse Gor-
don marking is given in (3.13). In this case, p = 3 is the smallest integer such that
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(s− p)η + α1 = 31 ≥ r̃p+1(τ) + η = 31. Applying the forward move φ3 to τ , we get

τ ′ = (85, 80, 80, 80, 75, 69, 65, 60, 60, 59, 50, 50, 49, 45, 40,

39, 35, 30, 29, 25,21, 19, 15, 11, 10, 9, 5),

whose Gordon marking agrees with the one in (3.15). Inserting (s− p)η + α1 = 31 into
τ ′, we obtain σ = Iα1

s (τ) as in (3.14). Clearly, |σ| = |τ |+ 61.

We find that the (k − 1)-insertion Iα1
s is a map from B α1

< (α1, . . . , αλ; η, k, r|N, s) to
B α1

= (α1, . . . , αλ; η, k, r|N, s).

Lemma 3.15. [17, Lemma 4.11] For s ≥ N ≥ 0, assume that τ is an overparti-
tion in B α1

< (α1, . . . , αλ; η, k, r|N, s) and let σ = Iα1
s (τ). Then σ is an overpartition in

B α1

= (α1, . . . , αλ; η, k, r|N, s). Moreover, |σ| = |τ |+ sη + α1.

We now define the (k−1)-separation, which is the inverse map of the (k−1)-insertion.

Definition 3.16. [17, Definition 4.12] For s ≥ N ≥ 0, let σ be an overpartition in
B α1

= (α1, . . . , αλ; η, k, r|N, s) with the largest overlined part ≡ α1 (mod η) being tη + α1.
The (k − 1)-separation map Jα1

s : σ → τ is defined as follows: First remove tη + α1 from
σ to produce σ̂, and then apply the backward move ψs−t to σ̂ to obtain τ .

The following lemma states that the (k−1)-separation is a map from B α1

= (α1, . . . , αλ; η,
k, r|N, s) to B α1

< (α1, . . . , αλ; η, k, r|N, s).

Lemma 3.17. [17, Lemma 4.13] For s ≥ N ≥ 0, assume that σ is an overparti-
tion in B α1

= (α1, . . . , αλ; η, k, r|N, s) and let τ = Jα1
s (σ). Then τ is an overpartition in

B α1

< (α1, . . . , αλ; η, k, r|N, s). Moreover, |τ | = |σ| − sη − α1.

Based on Lemma 3.15 and Lemma 3.17, we reach the following consequence.

Theorem 3.18. [17, Theorem 4.10] For s ≥ N ≥ 0, the (k − 1)-insertion Iα1
s is a

bijection between B α1

< (α1, . . . , αλ; η, k, r|N, s) and B α1

= (α1, . . . , αλ; η, k, r|N, s). Moreover,
for τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N, s), let σ = Iα1
s (τ), then we have |σ| = |τ |+ sη + α1.

The following theorem gives a criterion to determine whether an overpartition in
B α1

= (α1, . . . , αλ; η, k, r|N, s) is also an overpartition in B α1

< (α1, . . . , αλ; η, k, r|N ′, s′), which
involves the successive application of the (k − 1)-insertion operation.

Theorem 3.19. [17, Theorem 4.14] For s ≥ N ≥ 0, let σ be an overpartition in
B α1

= (α1, . . . , αλ; η, k, r|N, s). Assume that there are N ′ parts marked with k−1 in RG(σ).
Then, σ is also an overpartition in B α1

< (α1, . . . , αλ; η, k, r|N ′, s′) if and only if s′ > s.
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3.6 Proof of Theorem 3.2

In this subsection, we will give a proof of Theorem 3.2 by successively applying the (k−1)-
addition and the (k− 1)-insertion. Before approaching the proof of Theorem 3.2, we first
prove the following theorem, which tells us that the (k − 1)-insertion can be applied to
the resulting overpartition obtained by applying the (k − 1)-addition.

Theorem 3.20. Let τ be an overpartition in Cη(α2, . . . , αλ; η, k, r|N,N). Assume that
there are N ′ parts marked with k − 1 in RG(τ). Then τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N ′, s) if
and only if s > N .

Proof. Let r̃1(τ) > · · · > r̃N ′(τ) be the (k − 1)-marked parts in RG(τ). By definition, we
see that N ′ = N or N + 1. Let τ be the overpartition obtained from τ by subtracting
α1 from the non-degenerate (r − 1)-part η of τ and let r̃1(τ) > · · · > r̃N(τ) be the
(k − 1)-marked parts in RG(τ).

We proceed to show that if s > N , then τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N ′, s). Recall
that N ′ = N or N + 1, then we have s ≥ N + 1 ≥ N ′. Assume that p is the smallest
integer such that 0 ≤ p ≤ N ′ and r̃p+1(τ) + η ≤ (N ′ − p)η + α1. Note that there are no
overlined parts ≡ α1 (mod η) in τ , so the overlined parts ≡ α1 (mod η) in τ are less than
(N ′ − p)η + α1.

Since τ ∈ Cη(α2, . . . , αλ; η, k, r|N,N), we have fτ (0, η] = r − 1. If s = N ′, then we
have N ′ = N + 1 ≥ 1. Note that there are N parts marked with k − 1 in RG(τ), we see
that r̃N ′(τ) = r̃N+1(τ) ≤ η. Hence we arrive at τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N ′, s). This
completes the proof of the sufficiency.

Conversely, assume that τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N ′, s), where s ≥ N ′. We in-
tend to prove that s > N . Suppose to the contrary that s = N ′ = N . In this case,
τ ∈ B α1

< (α1, . . . , αλ; η, k, r|N,N). It follows from τ ∈ Cη(α2, . . . , αλ; η, k, r|N,N) that
fτ (0, η] = r − 1. By the definition of B α1

< (α1, . . . , αλ; η, k, r|N,N), we get s = N ≥ 1
and r̃N(τ) ≤ η. But, again by τ ∈ Cη(α2, . . . , αλ; η, k, r|N,N), we see that there are
no (k − 1)-bands of τ in (0, η + αλ), which implies that r̃N ′(τ) ≥ η. Moreover, we have
r̃N(τ) = r̃N(τ) > η, which leads to a contradiction. Thus, we have shown s > N . This
completes the proof.

We are now in a position to prove the main result of this paper.

Proof of Theorem 3.2: Let π be an overpartition in B1(α2, . . . , αλ−1; η, k−1, r−1) and
let δ(1) be a partition with distinct parts ≡ α1 (mod η) and let δ(λ) be a partition with
distinct parts ≡ αλ (mod η). We wish to construct an overpartition τ = Θ(δ(1), δ(λ), π)
in B1(α1, . . . , αλ; η, k, r) such that |τ | = |π|+ |δ(1)|+ |δ(λ)|.

We first insert the parts of δ(λ) as overlined parts into π, and denote the resulting
overpartition by π(0). Evidently, π(0) is an overpartition in C1(α2, . . . , αλ; η, k, r) such
that

|π(0)| = |π|+ |δ(λ)|. (3.16)
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Moreover, there is a part ≡ αλ (mod η) in each (k − 1)-band of π(0), and αλ is a part of
π(0) when fπ(0)(0, η] = r− 1. This implies that there is no non-degenerate part of π(0). To
construct τ = Θ(δ(1), δ(λ), π), we consider the following two cases.

Case 1: δ(1) = ∅. Set τ = π(0). Obviously, τ ∈ B1(α1, . . . , αλ; η, k, r) and |τ | = |π| +
|δ(1)|+ |δ(λ)|.

Case 2: δ(1) 6= ∅. Set δ(1) = (q1η + α1, . . . , qmη + α1), where q1 > · · · > qm ≥ 0. We plan
to merge qmη + α1, . . . , q1η + α1 into π(0) by performing the (k − 1)-addition operation
and the (k − 1)-insertion operation successively. The method consists of three steps, and
we will indicate the resulting pairs as (Stepi(δ

(1)), Stepi(π
(0))) after the i-th step, where

i = 1, 2, 3.

Step 1: We first merge some parts of δ(1) from smallest to largest into π(0) by succes-
sively applying the (k−1)-addition operation. We denote the intermediate overpartitions
by π(0), π(1), and so on. Assume that there are N(π(i)) parts marked with k−1 in RG(π(i))
for i ≥ 0. If qm < N(π(0)), note that there is no non-degenerate part of π(0), then we have

π(0) ∈ Cλ(α2, . . . , αλ; η, k, r|N(π(0)), qm).

Set b = 0 and repeat the following procedure until qm−b ≥ N(π(b)).

(A) Apply the (k − 1)-addition Aqm−bη+α1 to π(b) to get π(b+1), that is,

π(b+1) = Aqm−bη+α1(π
(b)).

Since
π(b) ∈ Cλ(α2, . . . , αλ; η, k, r|N(π(b)), qm−b),

by Lemma 3.9, we see that

π(b+1) ∈ Cη(α2, . . . , αλ; η, k, r|N(π(b)), qm−b) (3.17)

and
|π(b+1)| = |π(b)|+ qm−bη + α1. (3.18)

(B) Replace b by b + 1. If qm−b ≥ N(π(b)), then we are done. If qm−b < N(π(b)), then
by qm−b > qm−b+1, we deduce from Theorem 3.13 that

π(b) ∈ Cλ(α2, . . . , αλ; η, k, r|N(π(b)), qm−b).

Go back to (A).

It is clear that the above procedure terminates after at most m iterations. Assume
that the above process terminates with b = m− j, that is, qj ≥ N(π(m−j)). Set

Step1(π
(0)) = π(m−j) and Step1(δ

(1)) = (q1η + α1, . . . , qjη + α1).

By (3.17) and (3.18), we deduce that

Step1(π
(0)) ∈ Cη(α2, . . . , αλ; η, k, r|N(π(m−j−1)), qj+1)
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and
|Step1(π

(0))| = |π(0)|+ (qmη + α1) + · · ·+ (qj+1η + α1). (3.19)

Step 2: Set σ = Step1(π
(0)) = π(m−j), and assume that there are N(σ) parts marked

with k − 1 in RG(σ). Recall that qj ≥ N(π(m−j)), that is qj ≥ N(σ). We consider the
following two cases:

Case 1: qj = N(σ) and σ ∈ Cλ(α2, . . . , αλ; η, k, r|qj, qj). Then apply the (k−1)-addition
Aqjη+α1 to merge qjη + α1 into σ. In this case, set

Step2(π
(0)) = Aqjη+α1(σ) and Step2(δ

(1)) = (q1η + α1, . . . , qj−1η + α1). (3.20)

By Lemma 3.9, we see that

Step2(π
(0)) ∈ Cη(α2, . . . , αλ; η, k, r|qj, qj) (3.21)

and
|Step2(π

(0))| = |σ|+ qjη + α1 = |Step1(π
(0))|+ qjη + α1. (3.22)

Case 2: Otherwise, set

Step2(π
(0)) = σ and Step2(δ

(1)) = (q1η + α1, . . . , qjη + α1). (3.23)

Go to Step 3 directly.

Step 3: Set ς = Step2(π
(0)), and assume that there are N(ς) parts marked with k− 1

in RG(ς). From (3.20) and (3.23), we see that

Step2(δ
(1)) = (q1η + α1, . . . , qcη + α1),

where c = j if ς = σ, or c = j − 1 if ς 6= σ. We next intend to merge qcη +
α1, . . . , q1η + α1 into ς by successively applying the (k − 1)-insertion operation. To ap-
ply the (k − 1)-insertion Iα1

qc to ς, we are required to show that ς is an overpartition in

B α1

< (α1, . . . , αλ; η, k, r|N(ς), qc). There are two cases.

Case 1: c = j − 1. By (3.21), we see that ς ∈ Cη(α2, . . . , αλ; η, k, r|qj, qj). Since
qj−1 > qj, then by Theorem 3.20, we deduce that ς ∈ B α1

< (α1, . . . , αλ; η, k, r|N(ς), qj−1).

Case 2: c = j. In this case, we have ς = σ = π(m−j) and qj ≥ N(π(m−j)) = N(ς).
Let r̃1(ς) > · · · > r̃N(ς)(ς) be the (k − 1)-marked parts in RG(ς). Assume that p is the

smallest integer such that 0 ≤ p ≤ N(ς) and r̃p+1(ς) + η ≤ (qj − p)η + α1. It is easy to

see that such p exists since (qj −N(ς))η + α1 > 0 ≥ r̃N(ς)+1(ς) + η with the convention
that r̃N(ς)+1(ς) = −∞. Note that there are no overlined parts ≡ α1 (mod η) in ς, so the

largest overlined part ≡ α1 (mod η) in ς is less than (qj − p)η + α1.

To show that ς ∈ B α1

< (α1, . . . , αλ; η, k, r|N(ς), qj), it remains to show that if qj = N(ς)
and fς(0, η] = r − 1, then qj ≥ 1 and r̃N(ς)(ς) ≤ η. Assume that qj = N(ς) and fς(0, η] =
r − 1. We consider the following two subcases.
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Subcase 2.1: αλ is a part of ς. Since qj = N(ς) and ς 6∈ Cλ(α2, . . . , αλ; η, k, r|N(ς), N(ς)),
by the definition of Cλ(α2, . . . , αλ; η, k, r|N, p), we deduce that N(ς) ≥ 1. Moreover, under
the condition that fς(0, η] = r − 1, we derive that r̃N(ς)(ς) ≤ η.

Subcase 2.2: αλ is not a part of ς. In this case, we have j < m. By Theorem 3.12,
we see that fπ(0)(0, η] = fπ(1)(0, η] = · · · = fπ(m−j)(0, η] = fς(0, η] = r − 1. It yields that
αλ is a part of π(0). Under the assumption that αλ is not a part of ς, we find that η is a
non-degenerate (k − 1)-part of ς, and so N(ς) ≥ 1. Appealing to (3.10) in the proof of
Theorem 3.13, we obtain that r̃N(ς)(ς) ≤ η.

Overall, we arrive at

ς ∈ B α1

< (α1, . . . , αλ; η, k, r|N(ς), qc).

We proceed to merge qcη + α1, . . . , q1η + α1 into ς by successively applying the (k − 1)-
insertion. Denote the intermediate overpartitions by ς(0), . . . , ς(c) with ς(0) = ς and ς(c) =
Step3(π

(0)). Assume that there are N(ς(i)) parts marked with k − 1 in RG(ς(i)), where
0 ≤ i ≤ c.

Set b = 0 and repeat the following procedure until b = c.

(A) Merge qc−bη + α1 into ς(b) to generate an overlined part ≡ α1 (mod η). More
precisely, applying the (k − 1)-insertion Iα1

qc−b
to ς(b), we get

ς(b+1) = Iα1
qc−b

(ς(b)).

By Lemma 3.15, we see that

ς(b+1) ∈ B α1

= (α1, . . . , αλ; η, k, r|N(ς(b)), qc−b)

and
|ς(b+1)| = |ς(b)|+ qc−bη + α1.

(B) Replace b by b+ 1. If b = c, then we are done. If b < c, then by qc−b > qc−b+1, we
conclude from Theorem 3.19 that

ς(b) ∈ B α1

< (α1, . . . , αλ; η, k, r|N(ς(b)), qc−b).

Go back to (A).

The above procedure generates an overpartition Step3(π
(0)) = ς(c) such that

Step3(π
(0)) ∈ B α1

= (α1, . . . , αλ; η, k, r|N(ς(c−1)), q1)

and
|Step3(π

(0))| = |Step2(π
(0))|+ (qcη + α1) + · · ·+ (q1η + α1). (3.24)

Set τ = Step3(π
(0)). From the construction of the (k−1)-insertion, it can be seen that τ is

an overpartition in B1(α1, . . . , αλ; η, k, r) with c overlined parts≡ α1 (mod η). Taking into

27



account (3.16), (3.19), (3.22), along with (3.24), we can deduce that |τ | = |δ(1)|+|δ(λ)|+|π|.
Therefore, Θ is the desired map from Dα1 × Dαλ × B1(α2, . . . , αλ−1; η, k − 1, r − 1) to
B1(α1, . . . , αλ; η, k, r).

To prove that Θ is a bijection, we shall give the description of the inverse map Υ of
Θ. Let τ be an overpartition in B1(α1, . . . , αλ; η, k, r). We shall construct a triple Υ(τ) =
(δ(1), δ(λ), π) ∈ Dα1×Dαλ×B1(α2, . . . , αλ−1; η, k−1, r−1) such that |τ | = |π|+|δ(1)|+|δ(λ)|.
There are two cases.

Case 1: If there are no overlined parts ≡ α1 (mod η) in τ and there are no non-
degenerate parts of τ , then set δ(1) = ∅, set δ(λ) to be the ordinary partition consisting of
all the parts≡ αλ (mod η) in τ , and set π to be the overpartition consisting of all the parts
6≡ αλ (mod η) in τ . Clearly, π ∈ B1(α2, . . . , αλ−1; η, k−1, r−1) and |τ | = |π|+|δ(1)|+|δ(λ)|.

Case 2: If there are overlined parts ≡ α1 (mod η) in τ or there are non-degenerate
parts of τ , then we iteratively apply the (k − 1)-separation and the (k − 1)-subtraction
to τ . There are three steps. We denote the resulting pairs by (Stepi(δ

(1)), Stepi(τ)) after
the Step i, where i = 1, 2, 3.

Step 1: Assume that there are c ≥ 0 overlined parts ≡ α1 (mod η) in τ . We eliminate
the c overlined parts ≡ α1 (mod η) from τ by successively applying the (k−1)-separation
operation. Denote the intermediate pairs by (γ(0), τ (0)), . . . , (γ(c), τ (c)) with (γ(0), τ (0)) =
(∅, τ). There are two cases.

Case 1: c = 0. Set γ(c) = ∅ and τ (c) = τ .

Case 2: c ≥ 1. Assume that ηt0 + α1 > · · · > ηtc−1 + α1 are the overlined parts ≡ α1

(mod η) in τ .

Set b = 0 and execute the following procedure. Assume that there are N(τ (i)) parts
marked with k − 1 in RG(τ (i)), where 0 ≤ i ≤ c.

(A) Let τ̂ (b) be the overpartition obtained from τ (b) by removing ηtb + α1. Assume that
there are N(τ̂ (b)) parts marked with k−1 in G(τ̂ (b)), denoted g̃1(τ̂

(b)) > · · · > g̃N(τ̂ (b))(τ̂
(b)),

and pb is the smallest integer such that g̃pb+1(τ̂
(b)) < ηtb + α1. Let s(b) = pb + tb. By

definition,
τ (b) ∈ B α1

= (α1, . . . , αλ; η, k, r|N(τ̂ (b)), s(b)).

Apply the (k − 1)-separation Jα1

s(b)
to τ (b) to get τ (b+1), that is,

τ (b+1) = Jα1

s(b)
(τ (b)).

By means of Lemma 3.17, we find that N(τ̂ (b)) = N(τ (b+1)),

τ (b+1) ∈ B α1

< (α1, . . . , αλ; η, k, r|N(τ (b+1)), s(b)),

and ∣∣τ (b+1)
∣∣ = |τ (b)| − (s(b)η + α1).

Then insert s(b)η + α1 into γ(b) to obtain γ(b+1).
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(B) Replace b by b+ 1. If b = c, then we are done. Otherwise, go back to (A).

Set

Step1(τ) = τ (c) and Step1(δ
(1)) = γ(c) = (s(0)η + α1, . . . , s

(c−1)η + α1).

From the above construction, we see that

Step1(τ) ∈ B α1

< (α1, . . . , αλ; η, k, r|N(τ (c)), s(c−1)) (3.25)

and
|τ | = |Step1(τ)|+ |Step1(δ

(1))|. (3.26)

Observe that for 0 ≤ b ≤ c, there are c−b overlined parts ≡ α1 (mod η) in τ (b). Moreover,
there are no overlined parts ≡ α1 (mod η) in Step1(τ) = τ (c), so we deduce that

Step1(τ) ∈ C1(α2, . . . , αλ; η, k, r).

Theorem 3.19 reveals that for 0 ≤ b < c− 1,

s(b) > s(b+1) ≥ N(τ̂ (b+1)) = N(τ (b+2)),

that is,
s(0) > s(1) > · · · > s(c−1) ≥ N(τ (c)). (3.27)

Step 2: Set ς = Step1(τ). We consider the following two cases.

Case 1: There is no non-degenerate (r − 1)-part of ς. Then set Step2(τ) = Step1(τ)
and Step2(δ

(1)) = Step1(δ
(1)).

Case 2: There is a non-degenerate (r−1)-part of ς. Let ς be the overpartition obtained
by subtracting α1 from the non-degenerate (r− 1)-part of ς. Assume that there are N(ς)
parts marked with k − 1 in G(ς). Using the definition of Cη(α2, . . . , αλ; η, k, r|N, p), we
find that

ς ∈ Cη(α2, . . . , αλ; η, k, r|N(ς), N(ς)). (3.28)

Apply the (k − 1)-subtraction SN(ς)η+α1 to ς to obtain Step2(τ). More precisely,

Step2(τ) = SN(ς)η+α1(ς).

Set
Step2(δ

(1)) = (s(0)η + α1, . . . , s
(c−1)η + α1, N(ς)η + α1).

It follows from Lemma 3.11 that

Step2(τ) ∈ Cλ(α2, . . . , αλ; η, k, r|N(ς), N(ς))

and
|Step2(τ)| = |ς| − (N(ς)η + α1) = |Step1(τ)| − (N(ς)η + α1). (3.29)
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Moreover, there is no non-degenerate (r − 1)-part of Step2(τ).

Combining (3.25) and (3.28), and by Theorem 3.20, we derive that if c ≥ 1, then

s(c−1) > N(ς). (3.30)

Step 3: We proceed to eliminate the non-degenerate (k− 1)-parts of Step2(τ). There
are two cases.

Case 1: There are no non-degenerate (k−1)-parts of Step2(τ). Then set Step3(δ
(1)) =

Step2(δ
(1)) and Step3(τ) = Step2(τ).

Case 2: There are certain non-degenerate (k−1)-parts of Step2(τ). Denote the interme-
diate pairs by (ζ(0), σ(0)), (ζ(1), σ(1)), and so on, with (ζ(0), σ(0)) = (Step2(δ

(1)), Step2(τ)).

Set b = 0 and carry out the following procedure.

(A) Let σ(b) be the overpartition obtained by subtracting α1 from the smallest non-
degenerate (k − 1)-part of σ(b). Assume that there are N(σ(b)) parts marked with k − 1
in G(σ(b)), denoted g̃1(σ

(b)) > · · · > g̃N(σ(b))(σ
(b)). Let mb be the largest integer such that

{σ(b)
mb+l
}0≤l≤k−2 is a non-degenerate (k−1)-band of σ(b). Set p(b) to be the smallest integer

such that g̃p(b)+1(σ
(b)) < σ

(b)
mb + η. By definition, we see that

σ(b) ∈ Cη(α2, . . . , αλ; η, k, r|N(σ(b)), p(b)).

Applying the (k − 1)-subtraction Sp(b)η+α1
to σ(b), we get

σ(b+1) = Sp(b)η+α1
(σ(b)).

It follows from Lemma 3.11 that

σ(b+1) ∈ Cλ(α2, . . . , αλ; η, k, r|N(σ(b)), p(b))

and
|σ(b+1)| = |σ(b)| − (p(b)η + α1).

Then insert p(b)η + α1 into ζ(b) to generate a new partition ζ(b+1).

(B) Replace b by b + 1. If there are no non-degenerate (k − 1)-parts of ζ(b), then we
are done. Otherwise, go back to (A).

Assume that the above procedure terminates with b = j, set Step3(τ) = σ(j) and
Step3(δ

(1)) = ζ(j). More precisely, if Step1(δ
(1)) = Step2(δ

(1)), then

Step3(δ
(1)) = (s(0)η + α1, . . . , s

(c−1)η + α1, p
(0)η + α1, . . . , p

(j−1)η + α1).

If Step1(δ
(1)) 6= Step2(δ

(1)), then

Step3(δ
(1)) = (s(0)η + α1, . . . , s

(c−1)η + α1, N(ς)η + α1, p
(0)η + α1, . . . , p

(j−1)η + α1).
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By Theorem 3.13, we see that for 0 ≤ b < j − 1,

p(b+1) < p(b) < N(σ(b)).

It implies that
N(ς) ≥ N(σ(0)) > p(0) > p(1) > · · · > p(j−1). (3.31)

Set δ(1) = Step3(δ
(1)). Combining (3.27), (3.30) and (3.31), we conclude that δ(1) is a

partition with distinct parts ≡ α1 (mod η).

From the above construction, it is easy to see that

|Step3(τ)| = |Step2(τ)| − (p(0)η + α1)− · · · − (p(j−1)η + α1). (3.32)

Moreover, there are no non-degenerate parts of Step3(τ). It means that there is a part
≡ αλ (mod η) in each (k− 1)-band of Step3(τ). If fStep3(τ)(0, η] = r− 1, then αλ is a part
of Step3(τ).

Let δ(λ) be the ordinary partition consisting of all the parts ≡ αλ (mod η) in Step3(τ)
and let π be the overpartition obtained by removing all the parts ≡ αλ (mod η) in
Step3(τ). It is easy to see that δ(λ) ∈ Dαλ . Since there are no non-degenerate part-
s of Step3(τ) and there are no parts ≡ αλ (mod η) in π, we could deduce that π ∈
B1(α2, . . . , αλ−1; η, k − 1, r − 1). Combining (3.26), (3.29) and (3.32), it is easy to check
that |τ | = |π|+ |δ(1)|+ |δ(λ)|. Thus, we complete the proof.

4 Example

We provide an example for the illustration of the bijection Θ in Theorem 3.2.

An example for the map Θ and its inverse map Υ: Assume that k = 6, r = 4,
λ = 4, η = 10, α1 = 1, α2 = 4, α3 = 6 and α4 = 9. Let δ(1) = (61, 51, 31, 21, 1)
and δ(4) = (49, 39, 29, 19, 9) and let π = (50, 50, 50, 36, 34, 30, 30, 26, 24, 20, 10, 10, 6) be an
overpartition in B1(4, 6; 10, 5, 3).

We unite π and δ(4) to obtain π(0), whose reverse Gordon marking is given below.

RG(π(0)) =(501, 502, 503, 494,

{30}5︷ ︸︸ ︷
391, 362, 343, 304, 305, 291, 262, 243, 204,

191, 102, 103, 91, 64).

We see that π(0) is an overpartition in C1(4, 6, 9; 10, 6, 4) and there are no non-degenerate
parts of π(0). We wish to merge the parts of δ(1) into π(0).

Step 1: Note that N(π(0)) = 1, so we could apply the 5-addition to merge 1 into π(0).
It is easy to check that π(0) ∈ C4(4, 6, 9; 10, 6, 4|1, 0).
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Apply the 5-addition A1 to π(0) to get π(1), namely, change 39 to 40.

RG(π(1)) =(

{40}5︷ ︸︸ ︷
501, 502, 503, 494, 405,

{29}5︷ ︸︸ ︷
361, 342, 303, 304, 295, 261, 242, 203,

194, 101, 102, 93, 64).

By Lemma 3.9, we see that π(1) ∈ C10(4, 6, 9; 10, 6, 4|1, 0).

Note that N(π(1)) = 2, so the first step terminates and set Step1(π
(0)) = π(1) and

Step1(δ
(1)) = (61, 51, 31, 21).

Step 2: Denote Step1(π
(0)) by σ. There are two parts marked with 5 in RG(σ), which

are r̃1(σ) = 40 and r̃2(σ) = 29. Moreover, fσ(0, 10] = 3, r̃2(σ) = 29 > 10 and 9 is a part
of σ. So σ ∈ C4(4, 6, 9; 10, 6, 4|2, 2).

Apply the 5-addition A21 to σ to get Step2(π
(0)), namely, first change 29 and 40 in σ

to 39 and 50 respectively and then change 9 in σ to 10. We get

RG(Step2(π
(0))) =(501, 502, 503, 504, 495, 391, 362, 343, 304, 305, 261, 242,

203, 194, 101, 102, 105, 63).

Set Step2(δ
(1)) = (61, 51, 31).

Step 3: Denote Step2(π
(0)) by ς, we will apply the 5-insertion to merge 61, 51 and 31

of δ(1) into ς successively to generate some overlined parts ≡ 1 (mod 10). Let ς(0) = ς.

• Merge 31 into ς(0) and set s = 3. There are three parts marked with 5 in RG(ς(0)),
which are r̃1(ς

(0)) = 49, r̃2(ς
(0)) = 30 and r̃3(ς

(0)) = 10. In this occasion, p = 3 is
the smallest integer such that (3− p) · 10 + 1 = 1 ≥ r̃p+1(ς

(0))+10 = −∞ and there

are no overlined parts ≡ 1 (mod 10) in ς(0). Hence ς(0) ∈ B 1

<(1, 4, 6, 9; 10, 6, 4|3, 3).

Apply the 5-insertion I13 to ς(0) to get ς(1). More precisely, note that p = 3, so we
first change 49, 30 and 10 to 59, 40 and 20 respectively and then insert 1 into the
resulting overpartition.

RG(ς(1)) =(591, 502, 503, 504, 505, 401, 392, 363, 344, 305, 261, 242,

203, 204, 195, 101, 102, 63, 14).

As asserted by Lemma 3.15, we have ς(1) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 3).

• Merge 51 into ς(1) and set s = 5. There are three parts marked with 5 in RG(ς(1)),
which are r̃1(ς

(1)) = 50, r̃2(ς
(1)) = 30 and r̃3(ς

(1)) = 19. Moreover, p = 1 is the small-
est integer such that (5− p) · 10 + 1 = 41 ≥ r̃p+1(ς

(1)) + 10 = 40. Given that ς(1) ∈
B1

=(1, 4, 6, 9; 10, 6, 4|3, 3). Theorem 3.19 indicates that ς(1) ∈ B 1

<(1, 4, 6, 9; 10, 6, 4|3, 5).

Apply the 5-insertion I15 to ς(1) to get ς(2). More precisely, note that p = 1, so we
first change 50 to 60 and then insert 41 into the resulting overpartition.

RG(ς(2)) =(601, 592, 503, 504, 505, 411, 402, 393, 364, 345, 301, 262, 243,

201, 204, 195, 102, 103, 61, 14).
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Again, by Lemma 3.15, we have ς(2) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 5).

• Merge 61 into ς(2) and set s = 6. There are three parts marked with 5 in RG(ς(2)),
which are r̃1(ς

(2)) = 50, r̃2(ς
(2)) = 34 and r̃3(ς

(2)) = 19. It is easy to check that
p = 0 is the smallest integer such that (6− p) · 10 + 1 = 61 ≥ r̃p+1(ς

(2)) + 10 = 60.

Knowing that ς(2) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 5), Theorem 3.19 indicates that ς(2) ∈
B 1

<(1, 4, 6, 9; 10, 6, 4|3, 6).

Apply the 5-insertion I16 to ς(2) to get ς(3), namely, insert 61 as a part into ς(2).

RG(ς(3)) =(611, 602, 593, 501, 504, 505, 412, 403, 391, 364, 345, 302, 261, 243,

202, 204, 195, 101, 103, 62, 14).
(4.1)

Moreover, set Step3(π
(0)) = ς(3) and Step3(δ

(1)) = ∅.

Set τ = Step3(π
(0)). Clearly, τ is an overpartition in B1(1, 4, 6, 9; 10, 6, 4) such that

|τ | = |π|+ |δ(1)|+ |δ(4)|.

The inverse map Υ: Conversely, let τ be an overpartition in B1(1, 4, 6, 9; 10, 6, 4) whose
reverse Gordon marking given by (4.1). The triple (δ(1), δ(4), π) can be obtained by itera-
tively using the 5-separation and the 5-subtraction.

Step 1: Note that there are three overlined parts ≡ 1 (mod 10) in τ . Let γ(0) = ∅
and τ (0) = τ . We will iteratively use the 5-separation to eliminate 61, 41 and 1 from τ .

• Eliminate 61 from τ (0) and set t0 = 6.

Let τ̂ (0) be the overpartition obtained from τ (0) by removing 61, which has the
Gordon marking

G(τ̂ (0)) =(605, 591, 504, 503, 502, 411, 405, 394, 363, 342, 301, 264, 243,

205, 202, 191, 104, 103, 62, 11).

There are three parts marked with 5 in G(τ̂ (0)), which are g̃1(τ̂
(0)) = 60, g̃2(τ̂

(0)) = 40
and g̃3(τ̂

(0)) = 20. Moreover, p0 = 0 is the smallest integer such that t0 · 10 + 1 =

61 > g̃p0+1(τ̂
(0)) = 60. Set s(0) = p0 + t0 = 6. Then τ (0) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 6).

We then apply the 5-separation J1
6 to τ (0). In other words, γ(1) is obtained from τ (0)

by removing 61, which means that τ (1) = τ̂ (0) and γ(1) = (61). Appealing to Lemma

3.17, we deduce that τ (1) ∈ B 1

<(1, 4, 6, 9; 10, 6, 4|3, 6).

• Eliminate 41 from τ (1) and set t1 = 4.

Let τ̂ (1) be the overpartition obtained from τ (1) by removing 41. We have

G(τ̂ (1)) =(605, 594, 503, 502, 501, 405, 394, 363, 342, 301, 264, 243,

205, 202, 191, 104, 103, 62, 11).
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There are three parts marked with 5 in G(τ̂ (1)), which are g̃1(τ̂
(1)) = 60, g̃2(τ̂

(1)) = 40
and g̃3(τ̂

(1)) = 20. Now, p1 = 1 is the smallest integer such that t1 · 10 + 1 = 41 >

g̃p1+1(τ̂
(1)) = 40. Set s(1) = p1 + t1 = 5 and we get τ (1) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 5).
Clearly, s(0) > s(1), in agreement with Theorem 3.19.

Apply the 5-separation J1
5 to τ (1) to get τ (2). We first remove 41 from τ (1) to get

τ̂ (1), and then change 60 in τ̂ (1) to 50 to obtain τ (2). Finally, we insert 51 into γ(1)

to obtain γ(2). Hence γ(2) = (61, 51), and

G(τ (2)) =(595, 504, 503, 502, 501, 405, 394, 363, 342, 301, 264, 243,

205, 202, 191, 104, 103, 62, 11).

We now have τ (2) ∈ B 1

<(1, 4, 6, 9; 10, 6, 4|3, 5), as expected by Lemma 3.17.

• Finally, eliminate 1 from τ (2) and set t2 = 0.

Let τ̂ (2) be the overpartition obtained from τ (2) by removing 1, so that

G(τ̂ (2)) =(595, 504, 503, 502, 501, 405, 394, 363, 342, 301, 263, 242,

205, 204, 191, 103, 102, 61).

There are three parts marked with 5 in G(τ̂ (2)), which are g̃1(τ̂
(2)) = 59, g̃2(τ̂

(2)) = 40
and g̃3(τ̂

(2)) = 20. Meanwhile, p2 = 3 is the smallest integer such that t2 · 10 + 1 =

1 > g̃p2+1(τ̂
(2)) = −∞. Set s(2) = p2 + t2 = 3. Then τ (2) ∈ B 1

=(1, 4, 6, 9; 10, 6, 4|3, 3).
In accordance with Theorem 3.19, we have s(1) > s(2).

Apply the 5-separation J1
3 to τ (2). We first remove 1 from τ (2) to get τ̂ (2). Next, we

change 59, 40 and 20 in τ̂ (2) to 49, 30 and 10 respectively to obtain τ (3). Finally, we
insert 31 into γ(2) to obtain γ(3). Hence γ(3) = (61, 51, 31), and

G(τ (3)) =(505, 504, 503, 502, 491, 395, 363, 342, 304, 301, 263, 242,

205, 191, 104, 103, 102, 61).

Using Lemma 3.17, we have τ (3) ∈ B 1

<(1, 4, 6, 9; 10, 6, 4|3, 3).

Set Step1(τ) = τ (3) and Step1(δ
(1)) = γ(3) = (61, 51, 31). There are no overlined parts

≡ 1 (mod 10) in τ (3). The fact that Step1(δ
(1)) is a partition with distinct parts reflects

the claim of Theorem 3.19.

Step 2: Denote Step1(τ) by ς. Since fς(0, 10] = 3, there are no 5-bands of ς in (0, 19)
and 9 is not a part of ς, we see that there is a non-degenerate 3-part of ς. We will apply
the 5-subtraction to ς to obtain an overpartition in C1(4, 6, 9; 10, 6, 4) so that there is no
non-degenerate 3-part.

To this end, we first subtract 1 from a 10 in ς to obtain ς. We get

G(ς) =(505, 504, 503, 502, 491, 395, 364, 343, 302, 301, 264, 243,

202, 191, 104, 103, 92, 61).
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There are two 5-marked parts in G(ς), which are g̃1(ς) = 50 and g̃2(ς) = 39. Hence
ς ∈ C10(4, 6, 9; 10, 6, 4|2, 2). Next, we change 50 and 39 in ς to 40 and 29 respectively to
obtain Step2(τ).

G(Step2(τ)) =(505, 504, 503, 492, 401, 364, 343, 302, 305, 291, 264, 243,

202, 191, 104, 103, 92, 61).

Set Step2(δ
(1)) = (61, 51, 31, 21).

Step 3: Denote Step2(τ) by σ. We will iteratively apply the 5-subtraction to σ to
obtain an overpartition in C1(4, 6, 9; 10, 6, 4) so that there is no non-degenerate 5-part.

The smallest non-degenerate part of σ is 40 in the 5-band {40, 36, 34, 30, 30}. We first
subtract 1 from 40 in σ to get σ. We get

G(σ) =(504, 503, 502, 491, 391, 364, 343, 302, 305, 291, 264, 243, 202,

191, 104, 103, 92, 61).
(4.2)

There is one part marked with 5 in G(σ), which is g̃1(σ) = 30. Moreover p = 0 is the
smallest integer such that g̃p+1(σ) = 30 < 50 = 40+10. Hence σ ∈ C10(4, 6, 9; 10, 6, 4|1, 0).

We then apply the 5-subtraction S1 to σ to get σ(1). Then σ(1) is obtain from σ by
subtracting 1 from 40 in σ. Set ζ(1) = (61, 51, 31, 21, 1). Note that there is no non-
degenerate 5-part of σ(1), so we set Step3(δ

(1)) = ζ(1) and Step3(τ) = σ(1), where the
Gordon marking of Step3(τ) is given in (4.2).

Set
δ(1) = Step3(δ

(1)) = (61, 51, 31, 21, 1),

and set

δ(4) = (49, 39, 29, 19, 9) and π = (50, 50, 50, 36, 34, 30, 30, 26, 24, 20, 10, 10, 6),

where δ(4) consists of all the parts ≡ 9 (mod 10) in Step3(τ).

Obviously, δ(1) = (61, 51, 31, 21, 1) ∈ D1, δ
(4) = (49, 39, 29, 19, 9) ∈ D9 and π is an

overpartition in B1(4, 6; 10, 5, 3) such that |τ | = |δ(1)|+ |δ(4)|+ |π|.
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