
Nearly Equal Distributions of the
Rank
and the Crank of Partitions

William Y.C. Chen, Kathy Q. Ji and Wenston J.T. Zang

Dedicated to Professor Krishna Alladi on the occasion of

his sixtieth birthday

Abstract Let N(≤ m,n) denote the number of partitions of n with rank
not greater than m, and let M(≤ m,n) denote the number of partitions of
n with crank not greater than m. Bringmann and Mahlburg observed that
N(≤ m,n) ≤ M(≤ m,n) ≤ N(≤ m + 1, n) for m < 0 and 1 ≤ n ≤ 100.
They also pointed out that these inequalities can be restated as the existence
of a reordering τn on the set of partitions of n such that | crank(λ) | − |
rank(τn(λ)) |= 0 or 1 for all partitions λ of n, that is, the rank and the
crank are nearly equal distributions over partitions of n. In the study of
the spt-function, Andrews, Dyson, and Rhoades proposed a conjecture on
the unimodality of the spt-crank, and they showed that it is equivalent to
the inequality N(≤ m,n) ≤ M(≤ m,n) for m < 0 and n ≥ 1. We proved
this conjecture by combinatorial arguments. In this paper, we show that the
inequality M(≤ m,n) ≤ N(≤ m + 1, n) is true for m < 0 and n ≥ 1.
Furthermore, we provide a description of such a reordering τn and show
that it leads to nearly equal distributions of the rank and the crank. Using
this reordering, we give an interpretation of the function ospt(n) defined by
Andrews, Chan, and Kim, which yields an upper bound for ospt(n) due to
Chan and Mao.
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1 Introduction

The objective of this paper is to confirm an observation of Bringmann and
Mahlburg [9] on the nearly equal distributions of the rank and the crank of
partitions. Recall that the rank of a partition was introduced by Dyson [12]
as the largest part minus the number of parts. The crank of a partition was
defined by Andrews and Garvan [5] as the largest part if the partition contains
no ones, and otherwise as the number of parts larger than the number of ones
minus the number of ones.

Letm be an integer. For n ≥ 1, letN(m,n) denote the number of partitions
of n with rank m, and for n > 1, let M(m,n) denote the number of partitions
of n with crank m. For n = 1, set

M(0, 1) = −1, M(1, 1) = M(−1, 1) = 1,

and for n = 1 and m 6= −1, 0, 1, set

M(m, 1) = 0.

Define the rank and the crank cumulation functions by

N(≤ m,n) =
∑
r≤m

N(r, n), (1.1)

and
M(≤ m,n) =

∑
r≤m

M(r, n). (1.2)

Bringmann and Mahlburg [9] observed that for m < 0 and 1 ≤ n ≤ 100,

N(≤ m,n) ≤M(≤ m,n) ≤ N(≤ m+ 1, n). (1.3)

For m = −1, an equivalent form of the inequality N(≤ −1, n) ≤M(≤ −1, n)
for n ≥ 1 was conjectured by Kaavya [17]. Bringmann and Mahlburg [9]
pointed out that this observation may also be stated as follows. For 1 ≤ n ≤
100, there must be some reordering τn of partitions λ of n such that

| crank(λ) | − | rank(τn(λ)) |= 0 or 1. (1.4)

Moreover, they noticed that using (1.4), one can deduce the following in-
equality on the spt-function spt(n):
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spt(n) ≤
√

2np(n), (1.5)

where spt(n) is the spt-function defined by Andrews [2] as the total number
of smallest parts in all partitions of n and p(n) is the number of partitions of
n.

In the study of the spt-crank, Andrews, Dyson, and Rhoades [4] conjec-
tured that the sequence {NS(m,n)}m is unimodal for n ≥ 1, where NS(m,n)
is the number of S-partitions of size n with spt-crank m, see Andrews, Gar-
van, and Liang [6]. They showed that this conjecture is equivalent to the
inequality N(≤ m,n) ≤ M(≤ m,n) for m < 0 and n ≥ 1. They obtained
the following asymptotic formula for M(≤ m,n)−N(≤ m,n), which implies
that the inequality holds for fixed m < 0 and sufficiently large n.

Theorem 1.1 (Andrews, Dyson, and Rhoades). For any given m < 0,

M(≤ m,n)−N(≤ m,n) ∼ − (1 + 2m)π2

96n
p(n) as n→∞. (1.6)

By constructing a series of injections [11], we proved the conjecture of
Andrews, Dyson, and Rhoades.

Theorem 1.2. For m < 0 and n ≥ 1,

N(≤ m,n) ≤M(≤ m,n). (1.7)

Mao [18] obtained an asymptotic formula for N(≤ m+ 1, n)−M(≤ m,n),
which implies that the inequality M(≤ m,n) ≤ N(≤ m+ 1, n) holds for any
fixed m < 0 and sufficiently large n.

Theorem 1.3 (Mao). For any given m < 0,

N(≤ m+ 1, n)−M(≤ m,n) ∼ π

4
√

6n
p(n) as n→∞. (1.8)

It turns out that our constructive approach in [11] can also be used to
deduce the following assertion.

Theorem 1.4. For m < 0 and n ≥ 1,

M(≤ m,n) ≤ N(≤ m+ 1, n). (1.9)

If we list the set of partitions of n in two ways, one by the ranks, and the
other by the cranks, then we are led to a reordering τn of the partitions of n.
Using the inequalities (1.3) for m < 0 and n ≥ 1, we show that the rank and
the crank are nearly equidistributed over partitions of n. Since there may be
more than one partition with the same rank or crank, the aforementioned
listings may not be unique. Nevertheless, this does not affect the required
property of the reordering τn. It should be noted that the above description
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of τn relies on the two orderings of partitions of n, it would be interesting to
find a definition of τn explicitly on a partition λ of n.

Theorem 1.5. For n ≥ 1, let τn be a reordering on the set of partitions of n
as defined above. Then for any partition λ of n,

crank(λ)− rank(τn(λ)) =


0, if crank(λ) = 0,

0 or 1, if crank(λ) > 0,

0 or − 1, if crank(λ) < 0.

(1.10)

Clearly, the above theorem implies relation (1.4). For example, for n = 4,
the reordering τ4 is illustrated in Table 1.

λ crank(λ) τ4(λ) rank(τ4(λ)) crank(λ) −
rank(τ4(λ))

(1, 1, 1, 1) −4 (1,1,1,1) −3 −1

(2,1,1) −2 (2,1,1) −1 −1

(3,1) 0 (2,2) 0 0

(2,2) 2 (3,1) 1 1

(4) 4 (4) 3 1

Table 1: The reordering τ4

We find that the map τn is related to the function ospt(n) defined by
Andrews, Chan, and Kim [3] as the difference between the first positive crank
moment and the first positive rank moment, namely,

ospt(n) =
∑
m≥0

mM(m,n)−
∑
m≥0

mN(m,n). (1.11)

Andrews, Chan, and Kim [3] derived the following generating function of
ospt(n).

Theorem 1.6 (Andrews, Chan, and Kim). We have∑
n≥0

ospt(n)qn

=
1

(q; q)∞

∞∑
i=0

 ∞∑
j=0

q6i
2+8ij+2j2+7i+5j+2(1− q4i+2)(1− q4i+2j+3)
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+

∞∑
j=0

q6i
2+8ij+2j2+5i+3j+1(1− q2i+1)(1− q4i+2j+2)

 .

Based on the above generating function, Andrews, Chan, and Kim [3]
proved the positivity of ospt(n).

Theorem 1.7 (Andrews, Chan, and Kim). For n ≥ 1, ospt(n) > 0.

They also found a combinatorial interpretation of ospt(n) in terms of even
strings and odd strings of a partition. The following theorem shows that the
function ospt(n) is related to the reordering τn.

Theorem 1.8. For n > 1, ospt(n) equals the number of partitions λ of n
such that crank(λ)− rank(τn(λ)) = 1.

It can be seen that τn((n)) = (n) for n > 1, since the partition (n) has the
largest rank and the largest crank among all partitions of n. It follows that
crank((n))− rank(τn((n))) = 1 when n > 1. Thus Theorem 1.8 implies that
ospt(n) > 0 for n > 1.

The following upper bound for ospt(n) can be derived from Theorem 1.5
and Theorem 1.8.

Theorem 1.9. For n > 1,

ospt(n) ≤ p(n)

2
− M(0, n)

2
. (1.12)

It is easily seen that M(0, n) ≥ 1 for n ≥ 3 since crank((n − 1, 1)) = 0
when n ≥ 3. Hence Theorem 1.9 implies the following inequality due to Chan
and Mao [10]: For n ≥ 3,

ospt(n) <
p(n)

2
. (1.13)

This paper is organized as follows. In Section 2, we give a combinatorial
proof of Theorem 1.4 with the aid of m-Durfee rectangle symbols as intro-
duced in [11]. In Section 3, we demonstrate that Theorem 1.5 follows from
Theorem 1.4. Proofs of Theorem 1.8 and Theorem 1.9 are given in Section 4.
For completeness, we include a derivation of inequality (1.5).

2 Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. To this end, we first refor-
mulate the inequality M(≤ m,n) ≤ N(≤ m + 1, n) for m < 0 and n ≥ 1 in
terms of the rank-set. Let λ = (λ1, λ2, . . . , λ`) be a partition. Recall that the
rank-set of λ introduced by Dyson [14] is the infinite sequence
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[−λ1, 1− λ2, . . . , j − λj+1, . . . , `− 1− λ`, `, `+ 1, . . .].

Let q(m,n) denote the number of partitions λ of n such that m appears
in the rank-set of λ. Dyson [14] established the following relation: For n ≥ 1,

M(≤ m,n) = q(m,n), (2.1)

see also Berkovich and Garvan [8, (3.5)].
Let p(m,n) denote the number of partitions of n with rank at least m,

namely,

p(m,n) =

∞∑
r=m

N(r, n).

By establishing the relation

M(≤ m,n)−N(≤ m,n) = q(m,n)− p(−m,n), (2.2)

for m < 0 and n ≥ 1, we see that M(≤ m,n) ≥ N(≤ m,n) is equivalent
to the inequality q(m,n) ≥ p(−m,n). This was justified by a number of
injections in [11].

Similarly, to prove N(≤ m+ 1, n) ≥M(≤ m,n) for m < 0 and n ≥ 1, we
need the following relation.

Theorem 2.1. For m < 0 and n ≥ 1,

N(≤ m+ 1, n)−M(≤ m,n) = q(−m− 1, n)− p(m+ 2, n). (2.3)

Proof. Since

N(≤ m+ 1, n) =

m+1∑
r=−∞

N(r, n)

and

p(m+ 2, n) =

∞∑
r=m+2

N(r, n),

we get

N(≤ m+ 1, n) =

∞∑
r=−∞

N(r, n)− p(m+ 2, n). (2.4)

In fact,
∞∑

r=−∞
N(r, n) = p(n),

so that (2.4) takes the form

N(≤ m+ 1, n) = p(n)− p(m+ 2, n). (2.5)

On the other hand, owing to the symmetry
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M(m,n) = M(−m,n),

due to Dyson [14], (2.1) becomes

q(−m− 1, n) =

∞∑
r=m+1

M(r, n).

Hence

M(≤ m,n) =

m∑
r=−∞

M(r, n) =

∞∑
r=−∞

M(r, n)− q(−m− 1, n). (2.6)

But
∞∑

r=−∞
M(r, n) = p(n),

so we arrive at
M(≤ m,n) = p(n)− q(−m− 1, n). (2.7)

Subtracting (2.7) from (2.5) gives (2.3). This completes the proof. ut

In view of Theorem 2.1, we see that Theorem 1.4 is equivalent to the
following assertion.

Theorem 2.2. For m ≥ 0 and n ≥ 1,

q(m,n) ≥ p(−m+ 1, n). (2.8)

Let P (−m + 1, n) denote the set of partitions counted by p(−m + 1, n),
that is, the set of partitions of n with rank at least −m+ 1, and let Q(m,n)
denote the set of partitions counted by q(m,n), that is, the set of partitions
λ of n such that m appears in the rank-set of λ. Then Theorem 2.2 can be
interpreted as the existence of an injection Θ from the set P (−m + 1, n) to
the set Q(m,n) for m ≥ 0 and n ≥ 1.

In [11], we have constructed an injection Φ from the set Q(m,n) to
P (−m,n) for m ≥ 0 and n ≥ 1. It turns out that the injection Θ in this
paper is less involved than the injection Φ in [11]. More specifically, to con-
struct the injection Φ, the set Q(m,n) is divided into six disjoint subsets
Qi(m,n) (1 ≤ i ≤ 6) and the set P (−m,n) is divided into eight disjoint
subsets Pi(−m,n) (1 ≤ i ≤ 8). For m ≥ 1, the injection Φ consists of six
injections φi from the set Qi(m,n) to the set Pi(−m,n), where 1 ≤ i ≤ 6.
When m = 0, the injection Φ requires considerations of more cases. For the
purpose of this paper, the set P (−m + 1, n) will be divided into three dis-
joint subsets Pi(−m + 1, n) (1 ≤ i ≤ 3) and the set Q(m,n) will be divided
into three disjoint subsets Qi(m,n) (1 ≤ i ≤ 3). For m ≥ 0, the injection Θ
consists of three injections θ1, θ2 and θ3, where θ1 is the identity map, and
for i = 2, 3, θi is an injection from Pi(−m+ 1, n) to Qi(m,n).
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To describe the injection Θ, we shall represent the partitions in Q(m,n)
and P (−m+1, n) in terms of m-Durfee rectangle symbols. As a generalization
of a Durfee symbol defined by Andrews [1], an m-Durfee rectangle symbol of
a partition is defined in [11]. Let λ be a partition of n and let `(λ) denote
the number of parts of λ. The m-Durfee rectangle symbol of λ is defined as
follows:

(α, β)(m+j)×j =

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

, (2.9)

where (m + j) × j is the m-Durfee rectangle of the Ferrers diagram of λ
and α consists of columns to the right of the m-Durfee rectangle and β
consists of rows below the m-Durfee rectangle, see Fig. 1. For the partition
λ = (7, 7, 6, 4, 3, 3, 2, 2, 2), the 2-Durfee rectangle symbol of λ is(

4, 3, 3, 2

3, 2, 2, 2

)
5×3

.

α1 α2 α3 α4

β1

β2

β3

β4

Fig. 1: The 2-Durfee rectangle representation of (7, 7, 6, 4, 3, 3, 2, 2, 2).

Clearly, we have

m+ j ≥ α1 ≥ α2 ≥ · · · ≥ αs, j ≥ β1 ≥ β2 ≥ · · · ≥ βt,

and

n = j(m+ j) +

s∑
i=1

αi +

t∑
i=1

βi.

When m = 0, an m-Durfee rectangle symbol reduces to a Durfee symbol.
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Notice that for a partition λ with `(λ) ≤ m, it has no m-Durfee rectangle.
In this case, we adopt the convention that the m-Durfee rectangle has no
columns, that is, j = 0, and so the m-Durfee rectangle symbol of λ is defined
to be (λ′, ∅)m×0, where λ′ is the conjugate of λ. For example, the 3-Durfee
rectangle symbol of λ = (5, 5, 1) is(

3, 2, 2, 2, 2
)

3×0

.

The partitions in P (−m+ 1, n) can be characterized in terms of m-Durfee
rectangle symbols.

Proposition 2.3. Assume that m ≥ 0 and n ≥ 1. Let λ be a partition of n
and let (α, β)(m+j)×j be the m-Durfee rectangle symbol of λ. Then the rank of
λ is at least −m+ 1 if and only if either j = 0 or j ≥ 1 and `(β) + 1 ≤ `(α).

Proof. The proof is substantially the same as that of [11, Proposition 3.2].
Assume that the rank of λ is at least −m + 1. We are going to show that
either j = 0 or j ≥ 1 and `(β) + 1 ≤ `(α). There are two cases:
Case 1: `(λ) ≤ m. We have j = 0.
Case 2: `(λ) ≥ m+ 1. We have j ≥ 1, λ1 = j+ `(α) and `(λ) = m+ j+ `(β).
It follows that

λ1 − `(λ) = (j + `(α))− (j +m+ `(β)) = `(α)− `(β)−m.

Under the assumption that λ1− `(λ) ≥ −m+ 1, we see that `(α)− `(β) ≥ 1,
that is, `(β) + 1 ≤ `(α).

Conversely, we assume that j = 0 or j ≥ 1 and `(β)+1 ≤ `(α). We proceed
to show that the rank of λ is at least −m+ 1. There are two cases:
Case 1: j = 0. Clearly, `(λ) ≤ m, which implies that the rank of λ is at least
−m+ 1.
Case 2: j ≥ 1 and `(β) + 1 ≤ `(α). Note that λ1 = j + `(α) and `(λ) =
j +m+ `(β). It follows that

λ1 − `(λ) = (j + `(α))− (j +m+ `(β)) = −m+ `(α)− `(β). (2.10)

Under the assumption that `(α)− `(β) ≥ 1, (2.10) implies that λ1 − `(λ) ≥
−m+ 1. This completes the proof. ut

The following proposition will be used to describe the partitions in Q(m,n)
in terms of m-Durfee rectangle symbols.

Proposition 2.4. [11, Proposition 3.1] Assume that m ≥ 0 and n ≥ 1. Let
λ be a partition of n and let (α, β)(m+j)×j be the m-Durfee rectangle symbol
of λ. Then m appears in the rank-set of λ if and only if either j = 0 or j ≥ 1
and β1 = j.
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If no confusion arises, we do not distinguish a partition λ and its m-Durfee
rectangle symbol representation. We shall divide the set of the m-Durfee
rectangle symbols (α, β)(m+j)×j in P (−m + 1, n) into three disjoint subsets
P1(−m+ 1, n), P2(−m+ 1, n) and P3(−m+ 1, n). More precisely,

(1) P1(−m+ 1, n) is the set of m-Durfee rectangle symbols (α, β)(m+j)×j in
P (−m+ 1, n) for which either of the following conditions holds:
(i) j = 0;
(ii) j ≥ 1 and β1 = j;

(2) P2(−m+ 1, n) is the set of m-Durfee rectangle symbols (α, β)(m+j)×j in
P (−m+ 1, n) such that j ≥ 1 and β1 = j − 1;

(3) P3(−m+ 1, n) is the set of m-Durfee rectangle symbols (α, β)(m+j)×j in
P (−m+ 1, n) such that j ≥ 2 and β1 ≤ j − 2.

The set Q(m,n) will be divided into the following three subsets Q1(m,n),
Q2(m,n) and Q3(m,n):

(1) Q1(m,n) is the set of m-Durfee rectangle symbols (γ, δ)(m+j′)×j′ in
Q(m,n) such that either of the following conditions holds:
(i) j′ = 0;
(ii) j′ ≥ 1 and `(δ)− `(γ) ≤ −1;

(2) Q2(m,n) is the set of m-Durfee rectangle symbols (γ, δ)(m+j′)×j′ in
Q(m,n) such that j′ ≥ 1, `(δ)− `(γ) ≥ 0 and γ1 < m+ j′;

(3) Q3(m,n) is the set of m-Durfee rectangle symbols (γ, δ)(m+j′)×j′ in
Q(m,n) such that j′ ≥ 1, `(δ)− `(γ) ≥ 0 and γ1 = m+ j′.

We are now ready to define the injections θi from the set Pi(−m + 1, n)
to the set Qi(m,n), where 1 ≤ i ≤ 3. Since P1(−m + 1, n) coincides with
Q1(m,n), we set θ1 to be the identity map. The following lemma gives an
injection θ2 from P2(−m+ 1, n) to Q2(m,n).

Lemma 2.5. For m ≥ 0 and n > 1, there is an injection θ2 from P2(−m +
1, n) to Q2(m,n).

Proof. To define the map θ2, let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in P2(−m + 1, n). From the definition of
P2(−m+ 1, n), we see that s− t ≥ 1, j ≥ 1, α1 ≤ m+ j and β1 = j − 1.

Set

θ2(λ) =

(
γ

δ

)
(m+j′)×j′

=

(
α1 − 1, α2 − 1, . . . , αs − 1

β1 + 1, β2 + 1, . . . , βt + 1, 1s−t

)
(m+j)×j

.

Clearly, θ2(λ) is an m-Durfee rectangle symbol of n. Furthermore, j′ = j,
`(δ)−`(γ) ≥ 0. Since α1 ≤ m+j, we see that γ1 = α1−1 ≤ m+j−1 < m+j′.
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Noting that β1 = j − 1, we get δ1 = β1 + 1 = j = j′. Moreover, δs = 1 since
s− t ≥ 1. This proves that θ2(λ) is in Q2(m,n).

To prove that θ2 is an injection, define

H(m,n) = {θ2(λ) : λ ∈ P2(−m+ 1, n)}.

Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γs′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

be an m-Durfee rectangle symbol in H(m,n). Since µ ∈ Q2(m,n), we have
t′ ≥ s′, γ1 < m+ j′ and δ1 = j′. According to the construction of θ2, δt′ = 1.
Define

σ(µ) =

(
α

β

)
(m+j)×j

=

(
γ1 + 1, γ2 + 1, . . . , γs′ + 1, 1t

′−s′

δ1 − 1, δ2 − 1, . . . , δt′ − 1

)
(m+j′)×j′

.

Clearly, `(β) < t′ since δt′ = 1, so that `(α) − `(β) ≥ 1. Moreover, since
δ1 = j′ and j′ = j, we see that β1 = δ1 − 1 = j′ − 1 = j − 1. It is easily
checked that σ(θ2(λ)) = λ for any λ in P2(−m + 1, n). Hence the map θ2 is
an injection from P2(−m+ 1, n) to Q2(m,n). This completes the proof. ut

For example, for m = 2 and n = 35, consider the following 2-Durfee
rectangle symbol in P2(−1, 35):

λ =

(
5, 5, 3, 1, 1

2, 2, 1

)
5×3

.

Applying the injection θ2 to λ, we obtain

µ = θ2(λ) =

(
4, 4, 2

3, 3, 2, 1, 1

)
5×3

,

which is in Q2(2, 35). Applying σ to µ, we recover λ.
The following lemma gives an injection θ3 from P3(−m+1, n) to Q3(m,n).

Lemma 2.6. For m ≥ 0 and n > 1, there is an injection θ3 from P3(−m +
1, n) to Q3(m,n).

Proof. Let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in P3(−m+ 1, n). By definition, s− t ≥ 1,
j ≥ 2 and β1 ≤ j − 2.
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Define

θ3(λ) =

(
γ

δ

)
(m+j′)×j′

=

(
m+ j − 1, α1 − 1, α2 − 1, . . . , αs − 1

j − 1, β1 + 1, β2 + 1, . . . , βt + 1 , 1s−t+1

)
(m+j−1)×(j−1)

.

Evidently, `(δ) = s + 2 and `(γ) ≤ s + 1, and so `(δ) − `(γ) ≥ 1. Moreover,
we have γ1 = m+ j − 1 = m+ j′, δ1 = j − 1 = j′ and

j′(m+ j′) +

s+1∑
i=1

γi +

s+2∑
i=1

δi

= (m+ j − 1)(j − 1) +

(
m+ j − 1 +

s∑
i=1

(αi − 1)

)

+

(
j − 1 + s− t+ 1 +

t∑
i=1

(βi + 1)

)

= j(m+ j) +

s∑
i=1

αi +

t∑
i=1

βi = n.

This yields that θ3(λ) is in Q3(m,n). In particular, since s − t ≥ 1, we see
that

δs+2 = δs+1 = 1. (2.11)

To prove that the map θ3 is an injection, define

I(m,n) = {θ3(λ) : λ ∈ P3(−m+ 1, n)}.

Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γs′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

be an m-Durfee rectangle symbol in I(m,n). Since µ ∈ Q3(m,n), we have
t′ ≥ s′, γ1 = m+ j′ and δ1 = j′. By the construction of θ3, t′− s′ ≥ 1. Define

π(µ) =

(
α

β

)
(m+j)×j

=

(
γ2 + 1, . . . , γs′ + 1, 1t

′−s′−1

δ2 − 1, . . . , δt′ − 1

)
(m+j′+1)×(j′+1)

.

It follows from (2.11) that `(β) ≤ t′ − 3 and `(α) = t′ − 2. Therefore, `(α) ≥
`(β) + 1 and β1 = δ2 − 1 ≤ j′ − 1 = j − 2, so that π(µ) is in P3(−m+ 1, n).
Moreover, it can be checked that π(θ3(λ)) = λ for any λ in P3(−m + 1, n).
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This proves that the map θ3 is an injection from P3(−m+ 1, n) to Q3(m,n).
ut

For example, for m = 3 and n = 63, consider the following 3-Durfee
rectangle symbol in P3(−2, 63):

λ =

(
7, 7, 4, 3, 3, 2, 1

2, 2, 2, 1, 1

)
7×4

.

Applying the injection θ3 to λ, we obtain

µ = θ3(λ) =

(
6, 6, 6, 3, 2, 2, 1

3, 3, 3, 3, 2, 2, 1, 1, 1

)
6×3

,

which is in Q3(3, 63). Applying π to µ, we recover λ.
Combining the bijection θ1 and the injections θ2 and θ3, we are led to an

injection Θ from P (−m+ 1, n) to Q(m,n), and hence the proof of Theorem
2.2 is complete. More precisely, for a partition λ,

Θ(λ) =


θ1(λ), if λ ∈ P1(−m+ 1, n),

θ2(λ), if λ ∈ P2(−m+ 1, n),

θ3(λ), if λ ∈ P3(−m+ 1, n).

3 Proof of Theorem 1.5

In this section, we show that it is indeed the case that the reordering τn leads
to the nearly equal distributions of the rank and the crank, with the aid of the
inequalities in Theorem 1.2 and Theorem 1.4. For the sake of presentation,
the inequalities in Theorem 1.2 and Theorem 1.4 for m < 0 can be recast for
m ≥ 0.

Theorem 3.1. For m ≥ 0 and n ≥ 1,

N(≤ m,n) ≥M(≤ m,n) ≥ N(≤ m− 1, n). (3.1)

To see that the inequalities (3.1) for m ≥ 0 can be derived from (1.7) in
Theorem 1.2 and (1.9) in Theorem 1.4 for m < 0, we assume that m ≥ 0, so
that (1.7) and (1.9) can be stated as follows:

N(≤ −m− 1, n) ≤M(≤ −m− 1, n) ≤ N(≤ −m,n), (3.2)

and hence
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p(n)−N(≤ −m−1, n) ≥ p(n)−M(≤ −m−1, n) ≥ p(n)−N(≤ −m,n). (3.3)

It follows that

∞∑
r=−m

N(r, n) ≥
∞∑

r=−m
M(r, n) ≥

∞∑
r=−m+1

N(r, n). (3.4)

Now, by the symmetry N(m,n) = N(−m,n), see [13], we have

∞∑
r=−m

N(r, n) = N(≤ m,n) and

∞∑
r=−m+1

N(r, n) = N(≤ m− 1, n). (3.5)

Similarly, the symmetry M(m,n) = M(−m,n), see [14], leads to

∞∑
r=−m

M(r, n) = M(≤ m,n). (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain (3.1). Conversely, one can
reverse the above steps to derive (1.7) and (1.9) for m < 0 from (3.1) for
m ≥ 0. This means that the inequalities (3.1) for m ≥ 0 are equivalent to the
inequalities (1.7) and (1.9) for m < 0.

We can now prove Theorem 1.5.
Proof of Theorem 1.5. Let λ be a partition of n, and let τn(λ) = µ. Suppose
that λ is the i-th partition of n when the partitions of n are listed in the
increasing order of cranks used in the definition of τn. Meanwhile, µ is also
the i-th partition in the list of partitions of n in the increasing order of ranks
used in the definition of τn. Let crank(λ) = a and rank(µ) = b, so that

M(≤ a, n) ≥ i > M(≤ a− 1, n), (3.7)

and
N(≤ b, n) ≥ i > N(≤ b− 1, n). (3.8)

We now consider three cases:
Case 1: a = 0. We aim to show that b = 0. Assume to the contrary that
b 6= 0. There are two subcases:

Subcase 1.1: b < 0. From (3.7) and (3.8), we have

N(≤ −1, n) ≥ N(≤ b, n) ≥ i > M(≤ −1, n),

which contradicts the inequality N(≤ m,n) ≤ M(≤ m,n) in Theorem 1.2
with m = −1.

Subcase 1.2: b > 0. From (3.7) and (3.8), we see that

M(≤ 0, n) ≥ i > N(≤ b− 1, n) ≥ N(≤ 0, n),
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which contradicts the inequality M(≤ m,n) ≤ N(≤ m,n) in (3.1) with
m = 0. This completes the proof of Case 1.
Case 2: a < 0. We proceed to show that b = a or a + 1. By (3.7) and the
inequality M(≤ m,n) ≤ N(≤ m + 1, n) in Theorem 1.4 with m = a, we see
that

N(≤ a+ 1, n) ≥ i. (3.9)

Combining (3.8) and (3.9), we deduce that

N(≤ a+ 1, n) > N(≤ b− 1, n),

and thus
a+ 1 ≥ b. (3.10)

On the other hand, by (3.7) and the inequality N(≤ m,n) ≤ M(≤ m,n) in
Theorem 1.2 with m = a− 1, we find that

N(≤ a− 1, n) < i.

Together with (3.8), this gives

N(≤ a− 1, n) < N(≤ b, n),

so that a ≤ b. In view of (3.10), we obtain that b = a or a+1. This completes
the proof of Case 2.
Case 3: a > 0. We claim that b = a or a − 1. Combining the inequality
M(≤ m,n) ≥ N(≤ m − 1, n) in (3.1) with m = a − 1 and the inequality
M(≤ a− 1, n) < i in (3.7), we get

N(≤ a− 2, n) < i. (3.11)

By means of (3.8) and (3.11), we find that

N(≤ b, n) > N(≤ a− 2, n),

whence
a− 1 ≤ b. (3.12)

On the other hand, combining the inequality N(≤ m,n) ≥ M(≤ m,n) in
(3.1) with m = a and the inequality M(≤ a, n) ≥ i in (3.7), we are led to

N(≤ a, n) ≥ i, (3.13)

which together with (3.8) yields that

N(≤ a, n) > N(≤ b− 1, n),

and hence a ≥ b. But it has been shown that b ≥ a− 1, whence b = a− 1 or
a. This completes the proof of Case 3. ut
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4 Proofs of Theorem 1.8 and Theorem 1.9

In this section, we give a proof of Theorem 1.8 concerning an interpretation
of the ospt-function in terms of the reordering of τn. Then we use Theorem
1.8 to deduce Theorem 1.9, which gives an upper bound for the ospt-function.
Finally, for completeness, we include a derivation of (1.5) from (1.4).
Proof of Theorem 1.8. Let P(n) denote the set of partitions of n. By the
definition (1.11) of ospt(n), we see that

ospt(n) =
∑

λ∈P(n)
crank(λ)>0

crank(λ)−
∑

λ∈P(n)
rank(λ)>0

rank(λ). (4.1)

We claim that ∑
λ∈P(n)

rank(λ)>0

rank(λ) =
∑

λ∈P(n)
crank(λ)>0

rank(τn(λ)). (4.2)

From Theorem 1.5, we see that if crank(λ) > 0, then rank(τn(λ)) ≥ 0. This
implies that

{λ ∈ P(n) : crank(λ) > 0} ⊆ {λ ∈ P(n) : rank(τn(λ)) ≥ 0}. (4.3)

Therefore, ∑
λ∈P(n)

crank(λ)>0

rank(τn(λ)) ≤
∑

λ∈P(n)
rank(τn(λ))≥0

rank(τn(λ)). (4.4)

From Theorem 1.5, we also see that if crank(λ) = 0, then rank(τn(λ)) = 0,
and if crank(λ) < 0, then rank(τn(λ)) ≤ 0. Now,

{λ ∈ P(n) : rank(τn(λ)) > 0} ⊆ {λ ∈ P(n) : crank(λ) > 0}. (4.5)

Hence by (4.3), ∑
λ∈P(n)

rank(τn(λ))>0

rank(τn(λ)) ≤
∑

λ∈P(n)
crank(λ)>0

rank(τn(λ)). (4.6)

Since ∑
λ∈P(n)

rank(τn(λ))≥0

rank(τn(λ)) =
∑

λ∈P(n)
rank(τn(λ))>0

rank(τn(λ)),

from (4.4) and (4.6), we infer that∑
λ∈P(n)

rank(τn(λ))>0

rank(τn(λ)) =
∑

λ∈P(n)
crank(λ)>0

rank(τn(λ)). (4.7)
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But ∑
λ∈P(n)

rank(τn(λ))>0

rank(τn(λ)) =
∑

λ∈P(n)
rank(λ)>0

rank(λ), (4.8)

thus we arrive at (4.2), and so the claim is justified.
Substituting (4.2) into (4.1), we get

ospt(n) =
∑

λ∈P(n)
crank(λ)>0

crank(λ)−
∑

λ∈P(n)
crank(λ)>0

rank(τn(λ))

=
∑

λ∈P(n)
crank(λ)>0

(crank(λ)− rank(τn(λ))). (4.9)

Appealing to Theorem 1.5, we see that if crank(λ) > 0, then

crank(λ)− rank(τn(λ)) = 0 or 1.

By (4.9),

ospt(n) = #{λ ∈ P(n) : crank(λ) > 0 and crank(λ)− rank(τn(λ)) = 1}.
(4.10)

Also, by Theorem 1.5, we see that if crank(λ) − rank(τn(λ)) = 1, then
crank(λ) > 0. Consequently,

ospt(n) = #{λ ∈ P(n) : crank(λ)− rank(τn(λ)) = 1}, (4.11)

as required. ut
Theorem 1.9 can be easily deduced from Theorem 1.5 and Theorem 1.8.

Proof of Theorem 1.9. From the symmetry M(m,n) = M(−m,n), we see
that

p(n) =

∞∑
m=−∞

M(m,n) = M(0, n) + 2
∑
m≥1

M(m,n). (4.12)

Hence ∑
m≥1

M(m,n) =
p(n)

2
− M(0, n)

2
. (4.13)

In virtue of Theorem 1.5, if crank(λ)− rank(τn(λ)) = 1, then crank(λ) > 0,
and hence

#{λ ∈ P(n) : crank(λ)− rank(τn(λ)) = 1} ≤ #{λ ∈ P(n) : crank(λ) > 0}.
(4.14)

This, combined with Theorem 1.8, leads to

ospt(n) ≤ #{λ ∈ P(n) : crank(λ) > 0} =
∑
m≥1

M(m,n). (4.15)
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Substituting (4.13) into (4.15), we obtain that

ospt(n) ≤ p(n)

2
− M(0, n)

2
,

as required. ut
We conclude this paper with a derivation of inequality (1.5), that is,

spt(n) ≤
√

2np(n). Recall that the k-th moment Nk(n) of ranks and the k-th
moment Mk(n) of cranks were defined by Atkin and Garvan [7] as follows:

Nk(n) =

∞∑
m=−∞

mkN(m,n), (4.16)

Mk(n) =

∞∑
m=−∞

mkM(m,n). (4.17)

Andrews [2] showed that the spt-function can be expressed in terms of the
second moment N2(n) of ranks,

spt(n) = np(n)− 1

2
N2(n). (4.18)

Employing the following relation due to Dyson [14],

M2(n) = 2np(n), (4.19)

Garvan [15] observed that the following expression

spt(n) =
1

2
M2(n)− 1

2
N2(n), (4.20)

implies that M2(n) > N2(n) for n ≥ 1. In general, he conjectured and later
proved that M2k(n) > N2k(n) for k ≥ 1 and n ≥ 1, see [16].

Bringmann and Mahlburg [9] pointed out that inequality (1.5) can be
derived by combining the reordering τn and the Cauchy-Schwarz inequality.
By (4.20), we see that

2 spt(n) =

∞∑
m=−∞

m2M(m,n)−
∞∑

m=−∞
m2N(m,n)

=
∑

λ∈P(n)

crank2(λ)−
∑

λ∈P(n)

rank2(λ). (4.21)

Since ∑
λ∈P(n)

rank2(λ) =
∑

λ∈P(n)

rank2(τn(λ)),

(4.21) can be rewritten as
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2 spt(n) =
∑

λ∈P(n)

(
crank2(λ)− rank2(τn(λ))

)
=

∑
λ∈P(n)

(| crank(λ) | − | rank(τn(λ)) |) · (| crank(λ) | + | rank(τn(λ)) |).

(4.22)

By (1.4), we find that

| crank(λ) | + | rank(τn(λ)) |≤ 2 | crank(λ) |

and
0 ≤| crank(λ) | − | rank(τn(λ)) |≤ 1.

Thus (4.22) gives

spt(n) ≤
∑

λ∈P(n)

| crank(λ) | . (4.23)

Applying the inequality on the arithmetic and quadratic means

x1 + x2 + · · ·+ xn
n

≤
√
x21 + x22 + · · ·+ x2n

n
(4.24)

for nonnegative real numbers to the numbers | crank(λ) |, where λ ranges
over partitions of n, we are led to∑

λ∈P(n) | crank(λ) |
p(n)

≤

√∑
λ∈P(n) | crank(λ) |2

p(n)
.

=

√
M2(n)

p(n)
. (4.25)

In light of Dyson’s identity (4.19), this becomes∑
λ∈P(n)

| crank(λ) | ≤
√

2np(n). (4.26)

Combining (4.23) and (4.26) completes the proof. ut

Acknowledgments. This work was supported by the National Science Foun-
dation of China. We wish to thank Kathrin Bringmann, Karl Mahlburg and
the referee for their valuable comments and suggestions.



20 William Y.C. Chen et al.

References

1. G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks.

Invent. Math. 169, 37–73 (2007)
2. G.E. Andrews, The number of smallest parts in the partitions of n. J. Reine Angew.

Math. 624, 133–142 (2008)
3. G.E. Andrews, S.H. Chan, B. Kim, The odd moments of ranks and cranks. J. Comb.

Theory Ser. A 120, 77–91 (2013)

4. G.E. Andrews, F.J. Dyson, R.C. Rhoades, On the distribution of the spt-crank. Math-
ematics 1, 76–88 (2013)

5. G.E. Andrews, F.G. Garvan, Dyson’s crank of a partition. Bull. Am. Math. Soc. 18,

167–171 (1988)
6. G.E. Andrews, F.G. Garvan, J.L. Liang, Combatorial interpretations of congruences

for the spt-function. Ramanujan J. 29, 321–338 (2012)

7. A.O.L. Atkin, F.G. Garvan, Relations between the ranks and cranks of partitions.
Ramanujan J. 7, 343–366 (2003)

8. A. Berkovich, F.G. Garvan, Some observations on Dyson’s new symmetries of parti-

tions. J. Comb. Theory Ser. A 100, 61–93 (2002)
9. K. Bringmann, K. Mahlburg, Inequalities between ranks and cranks. Proc. Am. Math.

Soc. 137, 2567–2574 (2009)
10. S.H. Chan, R. Mao, Inequalities for ranks of partitions and the first moment of ranks

and cranks of partitions. Adv. Math. 258, 414–437 (2014)

11. W.Y.C. Chen, K.Q. Ji, W.J.T. Zang, Proof of the Andrews-Dyson-Rhoades conjecture
on the spt-crank. Adv. Math. 270, 60–96 (2015)

12. F.J. Dyson, Some guesses in the theory of partitions. Eureka (Cambridge) 8, 10–15

(1944)
13. F.J. Dyson, A new symmetry of partitions. J. Comb. Theory Ser. A 7, 56–61 (1969)

14. F.J. Dyson, Mappings and symmetries of partitions. J. Comb. Theory Ser. A 51,

169–180 (1989)
15. F.G. Garvan, Congruences for Andrews’ smallest parts partition function and new

congruences for Dyson’s rank. Int. J. Number Theory 6, 281–309 (2010)

16. F.G. Garvan, Higher order spt-functions. Adv. Math. 228, 241–265 (2011)
17. S.J. Kaavya, Crank 0 partitions and the parity of the partition function. Int. J. Number

Theory 7, 793–801 (2011)
18. R. Mao, Asymptotic inequalities for k-ranks and their cumulation functions. J. Math.

Anal. Appl. 409, 729–741 (2014)


