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1 Introduction

The rank of a partition introduced by Dyson [11] as the largest part of the partition
minus the number of parts. Dyson [11] conjectured that this partition statistic provided
combinatorial interpretations of Ramanujan’s congruences p(5n + 4) ≡ 0 (mod 5) and
p(7n + 5) ≡ 0 (mod 7), where p(n) is the number of partitions of n. More precisely, let
N(m,n) denote the number of partitions of n with rank m and let N(s, `, n) denote the
number of partitions of n with rank congruent to s modulo `. Dyson conjectured

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
, 0 ≤ k ≤ 4, (1.1)

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
, 0 ≤ k ≤ 6. (1.2)

These two assertions were confirmed by Atkin and Swinnerton-Dyer [5]. In fact, they
established generating functions for every rank difference N(s, `, `n+ d)−N(t, `, `n+ d)
with ` = 5 or 7 and for 0 ≤ d, s, t < `, many of which are in terms of infinite products
and generalized Lambert series. Although Dyson’s rank fails to explain Ramanujan’s
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congruence p(11n + 6) ≡ 0 (mod 11) combinatorially, the generating functions for the
rank differences N(s, `, `n + d) − N(t, `, `n + d) with ` = 11 have also been determined
by Atkin and Hussain [4]. Since then, the rank differences of partitions modulo other
numbers have been extensively studied, see, for example, Lewis established the rank
differences of partitions modulo 2 in [20] and the rank differences of partitions modulo 9
in [19]. Santa-Gadea [29] obtained other rank differences of partitions modulo 9 and some
rank differences of partitions modulo 12. Recently, Mao [25] established the generating
functions for the rank differences of partitions modulo 10.

Dyson’s rank can be extended to overpartitions in the obvious way. Recall that an
overpartition [10] is a partition in which the first occurrence of a part may be overlined.
The rank of an overpartition is defined to be the largest part of an overpartition minus
its number of parts. Similarly, let N(m,n) denote the number of overpartitions of n with
rank m, and let N(s, `, n) denote the number of overpartitions of n with rank congruent
to s modulo `. Lovejoy [21] obtained the following generating function for N(m,n),

R(z; q) :=
∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)
. (1.3)

Analogous to the rank of a partition, Lovejoy and Osburn [22] studied the rank dif-
ferences N(s, `, `n + d) − N(t, `, `n + d) with ` = 3 or 5 for 0 ≤ d, s, t < `. The rank
differences with ` = 7 have been recently determined by Jennings-Shaffer [18]. It has
been shown in [9] that there are no congruences of the form p(`n + d) ≡ 0 (mod `) for
primes ` ≥ 3. The generating functions for these rank differences provide a measure of
the extent to which the rank fails to produce a congruence p(`n+d) ≡ 0 (mod `). On the
other hand, as remarked by Jennings-Shaffer in [18], determining these three difference
formulas is equivalent to determining the 3-dissection of R(exp(2iπ/3); q), the 5-dissection
of R(exp(2iπ/5); q) and the 7-dissection of R(exp(2iπ/7); q).

In this paper, we will establish the generating functions for the rank differences of over-
partitions modulo 6 and 10. To do so, we will consider the 3-dissection of R(exp(iπ/3); q)
and the 5-dissection of R(exp(iπ/5); q). The main results are summarized in Theorems
1.1, 1.2 and 1.3 below, which are stated in terms of the rank differences of overpartitions.
Here and in the sequel, we use the notation

(x1, x2, . . . , xk; q)∞ :=
∞∏
n=0

(1− x1qn)(1− x2qn) · · · (1− xkqn),

j(z; q) := (z, q/z, q; q)∞, Ja,m := j(qa; qm),

Jm := (qm; qm)∞, Ja,m := j(−qa; qm).

Theorem 1.1. We have

∞∑
n=0

(N(0, 6, n) +N(1, 6, n)−N(2, 6, n)−N(3, 6, n))qn

2



=
J3
18J9,18
J6J2

3,18

+ q
2J3

18

J6J3,18
+ q2

{
4J3

18

J6J9,18
− 2

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

1 + q9n+3

}
. (1.4)

Theorem 1.2. We have

∞∑
n=0

(N(0, 10, n) +N(1, 10, n)−N(4, 10, n)−N(5, 10, n))qn

=2A0 + 2q

(
A1 +

q5

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10

)
+ 2q2A2 + 2q3A3 + 2q4A4, (1.5)

where

A0 :=
J2
10,50J

2
15,50J

4
25,50

2J3
5,10J20,50J

3
50

+ 4q10
J5,50J

3
50

J2
5,10J20,50

,

A1 :=
J20,50J

4
25,50J

3
50

J4
5,10J

2
10,50J15,50

− 4q5
J4
5,50J

3
20,50J

4
25,50

J5
5,10J

2
10,50J

3
50

− 8q15
J4
10,50J

2
15,50J25,50J

3
50

J4
5,10J

5
20,50

,

A2 :=
J3
5,50J

3
20,50J

5
25,50

J5
5,10J

2
10,50J

3
50

+ 4q10
J5
10,50J25,50J

7
50

J4
5J5,10J

3
5,50J

4
20,50

− 16q10
J5,50J

2
15,50J

3
50

J4
5,10J20,50

,

A3 :=
2J4

10,50J
5
15,50J

4
25,50

J5
5,10J5,50J

3
20,50J

3
50

+ 2q5
J10,50J

3
25,50J

3
50

J4
5,10J

2
20,50

− 16q5
J2
15,50J25,50J

3
50

J4
5,10J20,50

+ 8q10
J3
5,50J20,50J25,50J

3
50

J4
5,10J

2
10,50J15,50

,

A4 :=
4J4

10,50J
6
15,50J

3
25,50

J5
5,10J5,50J

3
20,50J

3
50

−
J10,50J

4
25,50J

3
50

J4
5,10J5,50J

2
20,50

− 16q5
J3
15,50J

3
50

J4
5,10J20,50

− 8q5
J25J

5
50

J5J3
5,10J10,50

.

Theorem 1.3. We have

∞∑
n=0

(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn

= 2B0 + 2q

(
B1 −

q5

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10

)
+ 2q2B2

+ 2q3B3 + 2q4

(
B4 −

1

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+20

)
, (1.6)

3



where

B0 :=
4q5J5

5J
5
25J

4
5,50J

2
15,50

J6
5,10J

6
50J

3
10,50

−
q5J3

50J
2
25,50

J2
5,10J15,50J20,50

,

B1 :=
4q5J8

5J
7
50J25,50

J6
5,10J

4
10,50J

5
20,50

−
4q10J3

50J
2
5,50J

2
25,50

J4
5,10J10,50J15,50

+
8q15J6

50J
6
10,50

J6
5J

2
5,50J

3
20,50

,

B2 := −
J7
5,50J

7
20,50J

6
25,50

J6
5,10J

4
10,50J

9
50

+
2J50J

3
20,50J25,50

J4
5

−
4q10J6

50J
6
10,50J25,50

J6
5J

3
5,50J

3
20,50

+
16q10J8

50

J2
5J

2
5,10J10,50J

2
15,50

,

B3 := −
J3
50J

4
25,50

J4
5,10J10,50J15,50

+
2J3

50J15,50J25,50
J2
5,10J5,50J20,50

+
4q5J6

50J
3
20,50J

2
25,50

J6
5J

4
15,50

+
16q15J3

50J
3
5,50

J4
5,10J20,50

,

B4 :=
4J3

50J
2
15,50

J2
5,10J5,50J20,50

−
2J3

5,50J
3
20,50J

5
25,50

J2
5J

4
5,10J

4
50

+
8q10J8

50

J2
5J

2
5,10J

2
15,50J20,50

+
16q10J6

50J
3
10,50

J6
5J5,50J25,50

−
16q15J3

50J
4
5,50

J4
5,10J10,50J15,50

.

Besides the equalities on ranks of partitions, like (1.1) and (1.2), some inequalities
have also been obtained by Andrews [2], Garvan [12], Mao [25], and so on. In particular,
Bringmann and Kane [6] characterized the sign of the rank differences of partitions for all
odd moduli. In this paper, we obtain the following equalities and inequalities between the
ranks of overpartitions modulo 6 and 10. The proofs of these identities and inequalities
are based on the generating functions in Theorems 1.1, 1.2 and 1.3, as well as identities
(1.2), (1.3) and (1.4) of [22].

Theorem 1.4. We have

N(1, 6, 3n) = N(3, 6, 3n) for n ≥ 1, (1.7)

N(0, 6, 3n) > N(2, 6, 3n) for n ≥ 1, (1.8)

N(1, 6, 3n+ 1) = N(3, 6, 3n+ 1) for n ≥ 0, (1.9)

N(0, 6, 3n+ 1) > N(2, 6, 3n+ 1) for n ≥ 0, (1.10)

N(0, 6, 3n+ 2) < N(2, 6, 3n+ 2) for n ≥ 1, (1.11)

N(1, 6, 3n+ 2) > N(3, 6, 3n+ 2) for n ≥ 0. (1.12)
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Theorem 1.5. For n ≥ 0,

N(0, 10, 5n) +N(1, 10, 5n) > N(4, 10, 5n) +N(5, 10, 5n). (1.13)

Computer evidence suggests that the following inequalities hold, but we fail to prove
them and so we leave them in the following two conjectures.

Conjecture 1.6. For n ≥ 0 and 1 ≤ i ≤ 4,

N(0, 10, 5n+ i) +N(1, 10, 5n+ i) ≥ N(4, 10, 5n+ i) +N(5, 10, 5n+ i). (1.14)

Conjecture 1.7. For n ≥ 0,

N(1, 10, n) +N(2, 10, n) ≥ N(3, 10, n) +N(4, 10, n). (1.15)

The rank differences of partitions and overpartitions are also related to mock theta
functions. Many of the classical mock theta functions can be written in terms of the rank
differences of partitions. For example, Andrews and Garvan [3] found that the fifth order
mock theta functions χ0(q) and χ1(q) can be expressed in terms of the rank differences of
partitions modulo 5, which were later proved by Hickerson [15]. Subsequently, Hickerson
[16] showed that the seventh order mock theta functions F0(q), F1(q) and F2(q) are
related to the rank differences of partitions modulo 7. Recently, Lovejoy and Osburn [23]
has proved that the tenth order mock theta functions φ(q) and ψ(q) can be expressed
in terms of the rank differences of overpartitions modulo 5. In this paper, we establish
a relation between the third order mock theta functions ω(q) and ρ(q) and the rank
differences of overpartitions modulo 6, where ω(q) and ρ(q) are defined by [30]:

ω(q) =
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

and ρ(q) =
∞∑
n=0

q2n(n+1)(q; q2)n+1

(q3; q6)n+1

.

Theorem 1.8. We have

∞∑
n=0

(N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2)−N(2, 6, 3n+ 2)−N(3, 6, 3n+ 2))qn

=
4

3
ω(q) +

2

3
ρ(q). (1.16)

In light of Theorem 1.2 and Theorem 1.3, we obtain the following relations between the
tenth order mock theta functions φ(q) and ψ(q) and the ranks of overpartitions modulo
10. The tenth order mock theta functions φ(q) and ψ(q) are defined as [8]:

φ(q) =
∞∑
n=0

q(
n+1
2 )

(q; q2)n+1

and ψ(q) =
∞∑
n=0

q(
n+2
2 )

(q; q2)n+1

. (1.17)
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Theorem 1.9. We have

∞∑
n=0

(N(0, 10, 5n+ 1) +N(1, 10, 5n+ 1)−N(4, 10, 5n+ 1)−N(5, 10, 5n+ 1))qn

= −φ(q) +M1(q), (1.18)

∞∑
n=0

(N(1, 10, 5n+ 1) +N(2, 10, 5n+ 1)−N(3, 10, 5n+ 1)−N(4, 10, 5n+ 1))qn

= φ(q) +M2(q), (1.19)

∞∑
n=0

(N(1, 10, 5n+ 4) +N(2, 10, 5n+ 4)−N(3, 10, 5n+ 4)−N(4, 10, 5n+ 4))qn

= q−1ψ(q) +M3(q), (1.20)

where M1(q), M2(q) and M3(q) are (explicit) weakly holomorphic modular forms given
by:

M1(q) =
J5J10J4,10
J2,5J2,10

+ 2q
J3
10J0,10J5,10

J2,10J2,10J3,10J3,10

+
2J4,10J

4
5,10J

3
10

J4
1,2J

2
2,10J3,10

− 8q
J4
1,10J

3
4,10J

4
5,10

J5
1,2J

2
2,10J

3
10

− 16q3
J4
2,10J

2
3,10J5,10J

3
10

J4
1,2J

5
4,10

,

M2(q) = −J5J10J4,10
J2,5J2,10

− 2q
J3
10J0,10J5,10

J2,10J2,10J3,10J3,10

+
8qJ8

1J
7
10J5,10

J6
1,2J

4
2,10J

5
4,10

−
8q2J3

10J
2
1,10J

2
5,10

J4
1,2J2,10J3,10

+
16q3J6

10J
6
2,10

J6
1J

2
1,10J

3
4,10

,

M3(q) =
J5J10J2,10
J1,5J4,10

− 2J3
10J0,10J5,10

J1,10J1,10J4,10J4,10

+
8J3

10J
2
3,10

J2
1,2J1,10J4,10

−
4J3

1,10J
3
4,10J

5
5,10

J2
1J

4
1,2J

4
10

+
16q2J8

10

J2
1J

2
1,2J

2
3,10J4,10

+
32q2J6

10J
3
2,10

J6
1J1,10J5,10

−
32q3J3

10J
4
1,10

J4
1,2J2,10J3,10

.

This paper is organized as follows. In Section 2, we prove Theorem 1.1 by establishing
the 3-dissection of R(exp(iπ/3); q). In Section 3, we give the proofs of Theorem 1.2 and
Theorem 1.3 by investigating the 5-dissection of R(exp(iπ/5); q). Section 4 is devoted to
establishing some equalities and inequalities on ranks of overpartitions modulo 6 and 10
with the aid of Theorems 1.1, 1.2 and 1.3. In Section 5, we prove the relations between
the rank differences of overpartitions and mock theta functions as stated in Theorem 1.8
and Theorem 1.9.
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2 Proof of Theorem 1.1

To prove Theorem 1.1, we need to determine the 3-dissection of R(exp(iπ/3); q). First,
we simplify the generating function R(z; q) defined in (1.3) when z = exp(iπ/3).

Lemma 2.1. We have

R(exp(iπ/3); q) =
∞∑
n=0

(N(0, 6, n) +N(1, 6, n)−N(2, 6, n)−N(3, 6, n))qn

=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
. (2.1)

Proof. Setting z = ξ6 = exp
(
πi
3

)
in (1.3), we have

R(exp(iπ/3); q) =
∞∑
n=0

∞∑
m=−∞

N(m,n)ξm6 q
n

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(1− ξ6)(1− ξ−16 )(−1)nqn
2+n

(1− ξ6qn)(1− ξ−16 qn)
. (2.2)

Using N(s, `, n) = N(`− s, `, n) in [21], and noting that 1− ξ6 + ξ26 = 0 and ξ36 = −1, we
find that the left-hand side of (2.2) can be simplified as:

R(exp(iπ/3); q) =
∞∑
n=0

5∑
s=0

N(s, 6, n)ξs6q
n

=
∞∑
n=0

{
N(0, 6, n) + (ξ6 + ξ56)N(1, 6, n) +(ξ26 + ξ46)N(2, 6, n) + ξ36N(3, 6, n)

}
qn

=
∞∑
n=0

(N(0, 6, n) +N(1, 6, n)−N(2, 6, n)−N(3, 6, n))qn.

We proceed to simplify the right-hand side of (2.2). In light of the fact that 1−ξ−16 −ξ6 = 0,
we deduce that

R(exp(iπ/3); q) =
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(2− ξ−16 − ξ6)(−1)nqn
2+n

(1− ξ−16 qn − ξ6qn + q2n)

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1− qn + q2n

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n(1 + qn)

1 + q3n
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=
(−q; q)∞
(q; q)∞

{
∞∑

n=−∞

(−1)nqn
2+n

1 + q3n
+

∞∑
n=−∞

(−1)nqn
2−2n

1 + q−3n

}

=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
,

as desired. Thus, we complete the proof of Lemma 2.1.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, it suffices to show that

(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n

=
J3
18J9,18

2J6J2
3,18

+ q
J3
18

J6J3,18
+ q2

{
2J3

18

J6J9,18
− 1

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

1 + q9n+3

}
. (2.3)

First, we split the sum on the left-hand side of (2.3) into three sums according to the
summation index n modulo 3,

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
=

∞∑
n=−∞

(−1)nq9n
2+3n

1 + q9n
−

∞∑
n=−∞

(−1)nq9n
2+9n+2

1 + q9n+3
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

1 + q9n+6

:= S0 − S1 + S2. (2.4)

We claim that

S0 + S2 =
2qJ3,18
J9,18

S1 +
J3
6J

6
3,18J

2
9,18

2J9
18

. (2.5)

The identity (2.5) can be justified by using the following identity in [22, Lemma 4.1].

∞∑
n=−∞

(−1)nqn
2+n

(
ζ−2n

1− zζ−1qn
+

ζ2n+2

1− zζqn

)

=
ζ(ζ2, qζ−2,−1,−q; q)∞

(ζ, qζ−1,−ζ,−qζ−1; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1− zqn

+
(ζ, qζ−1, ζ2, qζ−2,−z,−qz−1; q)∞(q; q)2∞

(z, qz−1, zζ, qz−1ζ−1, zζ−1, qζz−1,−ζ,−qζ−1; q)∞
. (2.6)

Replacing q, z and ζ in (2.6) by q9, −q3 and q3, we find that

∞∑
n=−∞

(−1)nq9n
2+9n

(
q−6n

1 + q9n
+

q6n+6

1 + q9n+6

)

=
q3(−1,−q9; q9)∞
(−q3,−q6; q9)∞

∞∑
n=−∞

(−1)nq9n
2+9n

1 + q9n+3
+

(q3, q6; q9)3∞(q9; q9)2∞
(−q3,−q6; q9)3∞(−1,−q9; q9)∞
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=
2qJ3,18
J9,18

∞∑
n=−∞

(−1)nq9n
2+9n+2

1 + q9n+3
+
J3
6J

6
3,18J

2
9,18

2J9
18

,

which gives (2.5), and hence the claim is verified.
Substituting (2.5) into (2.4), we have

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
= −

(
1− 2qJ3,18

J9,18

)
S1 +

J3
6J

6
3,18J

2
9,18

2J9
18

.

Using the identity in [22, Lemma 3.1]

(q; q)∞
(−q; q)∞

=
(q9; q9)∞

(−q9; q9)∞
− 2q(q3, q15, q18; q18)∞ = J9,18 − 2qJ3,18, (2.7)

it follows that

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
= − (q; q)∞

(−q; q)∞
· S1

J9,18
+
J3
6J

6
3,18J

2
9,18

2J9
18

.

Hence the proof of (2.3) amounts to show the following identity:

J3
6J

6
3,18J

2
9,18

J9
18

=
(q; q)∞

(−q; q)∞

{
J3
18J9,18
J6J2

3,18

+ q
2J3

18

J6J3,18
+ q2

4J3
18

J6J9,18

}
. (2.8)

Substituting (2.7) into (2.8), we find that the right-hand side of (2.8) can be simplified as

(J9,18 − 2qJ3,18)

{
J3
18J9,18
J6J2

3,18

+ q
2J3

18

J6J3,18
+ q2

4J3
18

J6J9,18

}

=

(
J3
18J

2
9,18

J2
3,18J6

− 8q3
J3
18J3,18
J6J9,18

)
+ q

(
2J3

18J9,18
J3,18J6

− 2J3
18J9,18
J3,18J6

)
+ q2

(
4J3

18

J6
− 4J3

18

J6

)

=
J3
18J

2
9,18

J2
3,18J6

− 8q3
J3
18J3,18
J6J9,18

.

Thus (2.8) becomes

J3
18J

2
9,18

J2
3,18J6

− 8q3
J3
18J3,18
J6J9,18

=
J3
6J

6
3,18J

2
9,18

J9
18

. (2.9)

The derivation of (2.9) relies on the following identity in [5].

j(x; q)2j(yz; q)j(yz−1; q) = j(y; q)2j(xz; q)j(xz−1; q)− yz−1j(z; q)2j(xy; q)j(xy−1; q).
(2.10)

In (2.10), replacing q by q9 and setting x = −q3, y = q3 and z = −1, we have

j(−q3; q9)3 − q3j(−1; q9)3 =
j(q3; q9)4

j(−q3; q9)
,
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which is equivalent to
J3
18

J3
3,18

− 8q3
J3
18

J3
9,18

=
J5
3,18J

4
6

J9
18

. (2.11)

Then (2.9) is obtained by multiplying both sides of (2.11) by J3,18J
2
9,18/J6, and hence (2.8)

is verified. Thus, we complete the proof of Theorem 1.1.

3 Proofs of Theorem 1.2 and Theorem 1.3

To prove Theorem 1.2 and Theorem 1.3, we are required to consider the 5-dissection of
R(exp(iπ/5); q).

Lemma 3.1. We have

R(exp(iπ/5); q) =
∞∑
n=0

(N(0, 10, n) +N(1, 10, n)−N(4, 10, n)−N(5, 10, n))qn

+ (ξ210 − ξ310)
∞∑
n=0

(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn

= F1(q) + (ξ210 − ξ310)F2(q), (3.1)

where

F1(q) :=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
,

F2(q) :=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n(qn − 1)

1 + q5n
.

Proof. Plugging z = ξ10 = exp
(
πi
5

)
into (1.3), we have

R(exp(iπ/5); q) =
∞∑
n=0

∞∑
m=−∞

N(m,n)ξm10q
n

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(1− ξ10)(1− ξ−110 )(−1)nqn
2+n

(1− ξ10qn)(1− ξ−110 q
n)

. (3.2)

Using N(s, `, n) = N(`− s, `, n) and noting that ξ510 = −1, 1− ξ10 + ξ210 − ξ310 + ξ410 = 0,
we find that the left-hand side of (3.2) can be simplified as

R(exp(iπ/5); q) =
∞∑
n=0

9∑
t=0

N(t, 10, n)ξt10q
n

=
∞∑
n=0

{
N(0, 10, n) + (ξ10 − ξ410)N(1, 10, n) + (ξ210 − ξ310)N(2, 10, n)
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+(ξ310 − ξ210)N(3, 10, n) + (ξ410 − ξ10)N(4, 10, n)−N(5, 10, n)
}
qn

=
∞∑
n=0

{
N(0, 10, n) + (1 + ξ210 − ξ310)N(1, 10, n) + (ξ210 − ξ310)N(2, 10, n)

+(ξ310 − ξ210)N(3, 10, n)− (1 + ξ210 − ξ310)N(4, 10, n)−N(5, 10, n)
}
qn

=
∞∑
n=0

(N(0, 10, n) +N(1, 10, n)−N(4, 10, n)−N(5, 10, n))qn

+ (ξ210 − ξ310)
∞∑
n=0

(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn.

We now turn to simplify the right-hand side of (3.2). Using the fact that 1− ξ10 − ξ−110 −
ξ−310 − ξ310 = 0, we deduce that

(1− ξ10qn)(1− ξ−110 q
n)(1− ξ310qn)(1− ξ−310 q

n)(1 + qn) = 1 + q5n

and

(1− ξ10)(1− ξ−110 )(1− ξ310qn)(1− ξ−310 q
n)(1 + qn)

= (1− ξ210 + ξ310) + (−1 + ξ−110 + ξ10)q
n + (ξ−110 − 1 + ξ10)q

2n + (1− ξ210 + ξ310)q
3n

= (1− ξ210 + ξ310) + (ξ210 − ξ310)qn + (ξ210 − ξ310)q2n + (1− ξ210 + ξ310)q
3n.

Hence the right-hand side of (3.2) can be simplified as

R(exp(iπ/5); q)

=
(−q; q)∞
(q; q)∞

∞∑
n=−∞

(1− ξ10)(1− ξ−110 )(1− ξ310qn)(1− ξ−310 q
n)(1 + qn)(−1)nqn

2+n

(1− ξ10qn)(1− ξ−110 q
n)(1− ξ310qn)(1− ξ−310 q

n)(1 + qn)

=
(−q; q)∞
(q; q)∞

{
∞∑

n=−∞

(−1)nqn
2+n(1 + q3n)

1 + q5n
+ (ξ210 − ξ310)

∞∑
n=−∞

(−1)nqn
2+n(qn + q2n − 1− q3n)

1 + q5n

}

=
(−q; q)∞
(q; q)∞

{
∞∑

n=−∞

(−1)nqn
2+n

1 + q5n
+

∞∑
n=−∞

(−1)nqn
2−4n

1 + q−5n

}
+ (ξ210 − ξ310)

(−q; q)∞
(q; q)∞

×

{
∞∑

n=−∞

(−1)nqn
2+2n

1 + q5n
+

∞∑
n=−∞

(−1)nqn
2−3n

1 + q−5n
−

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
−

∞∑
n=−∞

(−1)nqn
2−4n

1 + q−5n

}

=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
− (ξ210 − ξ310)

2(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n(1− qn)

1 + q5n
,

as desired. Thus, we complete the proof of Lemma 3.1.
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Since the coefficients of F1(q) and F2(q) are all integers and [Q(ξ10) : Q] = 4, we equate
the coefficients of ξk10 on both sides of (3.1) to obtain the following two corollaries.

Corollary 3.2. We have

∞∑
n=0

(N(0, 10, n) +N(1, 10, n)−N(4, 10, n)−N(5, 10, n))qn

=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
. (3.3)

Corollary 3.3. We have

∞∑
n=0

(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn

=
2(−q; q)∞

(q; q)∞

∞∑
n=−∞

(−1)nqn
2+n(qn − 1)

1 + q5n
. (3.4)

By Corollary 3.2 and Corollary 3.3, we see that the proofs of Theorem 1.2 and Theorem
1.3 amount to the 5-dissections of right-hand sides of (3.3) and (3.4) respectively.

Lemma 3.4. Let

U1 :=
J2
5,50J

3
10,50J

4
15,50J

2
25,50

J9
50

,

U2 :=
J3
5,50J

2
10,50J

4
15,50J20,50J25,50

J9
50

.

We have

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
=

1

2
U1 − q2U2 +

(q; q)∞
(−q; q)∞

· q6

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10
. (3.5)

Proof. First, we split the sum on the left-hand side of (3.5) into five sums according to
the summation index n modulo 5,

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
=

∞∑
n=−∞

(−1)nq25n
2+5n

1 + q25n
−

∞∑
n=−∞

(−1)nq25n
2+15n+2

1 + q25n+5
+

∞∑
n=−∞

(−1)nq25n
2+25n+6

1 + q25n+10

−
∞∑

n=−∞

(−1)nq25n
2+35n+12

1 + q25n+15
+

∞∑
n=−∞

(−1)nq25n
2+45n+20

1 + q25n+20

:= P0 − P1 + P2 − P3 + P4. (3.6)
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We next aim to establish the following two relations,

P0 + P4 =
2q4J5,50
J25,50

P2 +
1

2
U1, (3.7)

P1 + P3 =
2qJ15,50
J25,50

P2 + q2U2. (3.8)

Replacing q, z and ζ in (2.6) by q25, −q10 and q10 respectively, we find that

∞∑
n=−∞

(−1)nq25n
2+25n

(
q−20n

1 + q25n
+

q20n+20

1 + q25n+20

)

=
(−1, q5, q20,−q25; q25)∞

(q10,−q10, q15,−q15; q25)∞

∞∑
n=−∞

(−1)nq25n
2+25n+10

1 + q25n+10

+
(q5, q20; q25)∞(q10, q15, q25; q25)2∞

(−1,−q5,−q20,−q25; q25)∞(−q10,−q15; q25)2∞

=
2q4J5,50
J25,50

∞∑
n=−∞

(−1)nq25n
2+25n+6

1 + q25n+10
+
J2
5,50J

3
10,50J

4
15,50J

2
25,50

2J9
50

,

which gives (3.7).
Replacing q, z and ζ in (2.6) by q25, −q10 and q5 respectively, we have

∞∑
n=−∞

(−1)nq25n
2+25n

(
q−10n

1 + q25n+5
+

q10n+10

1 + q25n+15

)

=
(−1, q10, q15,−q25; q25)∞
(q5,−q5, q20,−q20; q25)∞

∞∑
n=−∞

(−1)nq25n
2+25n+5

1 + q25n+10

+
(q5, q20; q25)∞(q10, q15, q25; q25)2∞

(−q5,−q10,−q15,−q20; q25)2∞

=
2J15,50
qJ25,50

∞∑
n=−∞

(−1)nq25n
2+25n+6

1 + q25n+10
+
J3
5,50J

2
10,50J

4
15,50J20,50J25,50

J9
50

.

This yields (3.8). Substituting (3.7) and (3.8) into (3.6), we have

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
=

(
1− 2qJ15,50

J25,50
+

2q4J5,50
J25,50

)
P2 +

1

2
U1 − q2U2. (3.9)

By [22, Lemma 3.1]

(q; q)∞
(−q; q)∞

= J25,50 − 2qJ15,50 + 2q4J5,50,
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we find that

1− 2qJ15,50
J25,50

+
2q4J5,50
J25,50

=
(q; q)∞

(−q; q)∞
1

J25,50
. (3.10)

Hence (3.9) becomes

∞∑
n=−∞

(−1)nqn
2+n

1 + q5n
=

(q; q)∞
(−q; q)∞

· P2

J25,50
+

1

2
U1 − q2U2,

which is (3.5). This completes the proof of Lemma 3.4.

Lemma 3.5. Let

V1 :=
J4
5,50J

2
15,50J

3
20,50J

2
25,50

J9
50

,

V2 :=
J4
5,50J10,50J

3
15,50J

2
20,50J25,50

J9
50

.

We have

∞∑
n=−∞

(−1)nqn
2+2n

1 + q5n
=

1

2
V1 − q3V2 −

(q; q)∞
(−q; q)∞

· q4

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+20
. (3.11)

Proof. First, split the sum on the left-hand side of (3.11) into five sums according to the
summation index n modulo 5,

∞∑
n=−∞

(−1)nqn
2+2n

1 + q5n
=

∞∑
n=−∞

(−1)nq25n
2+10n

1 + q25n
−

∞∑
n=−∞

(−1)nq25n
2+20n+3

1 + q25n+5
+

∞∑
n=−∞

(−1)nq25n
2+30n+8

1 + q25n+10

−
∞∑

n=−∞

(−1)nq25n
2+40n+15

1 + q25n+15
+

∞∑
n=−∞

(−1)nq25n
2+50n+24

1 + q25n+20

:= T0 − T1 + T2 − T3 + T4. (3.12)

Now, we proceed to derive the following two identities,

T0 − T3 = −2qJ15,50
J25,50

T4 +
1

2
V1, (3.13)

−T1 + T2 =
2q4J5,50
J25,50

T4 − q3V2. (3.14)

The proofs of the above two identities rely on an identity in [7, Theorem 2.1]

(a1, q/a1, . . . , ar, q/ar; q)∞(q; q)2∞
(b1, q/b1, . . . , bs, q/bs; q)∞
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=
(a1/b1, qb1/a1, . . . , ar/b1, qb1/ar; q)∞
(b2/b1, qb1/b2, . . . , bs/b1, qb1/bs; q)∞

∞∑
n=−∞

(−1)(s−r)nq(s−r)n(n+1)/2

1− b1qn

(
a1 · · · arbs−r−11

b2 · · · bs

)n
+ idem(b1; b2, . . . , bs). (3.15)

Here we use the notation

F (b1, b2, · · · , bm) + idem(b1; b2, · · · , bm)

:= F (b1, b2, · · · , bm) + F (b2, b1, b3, · · · , bm) + · · ·+ F (bm, b2, · · · , bm−1, b1).

In (3.15), setting r = 1, s = 3, a1 = −b3 = z, b1 = −zζ−1, and b2 = −zζq−1, we obtain
the following identity, of which (3.13) and (3.14) are special cases.

∞∑
n=−∞

(−1)nqn
2

(
ζ−2nq2n

1 + zζ−1qn
− q−1ζ2n+2

1 + zζqn−1

)

= −(−1,−q, ζ2q−1, q2ζ−2; q)∞
(−ζ,−qζ−1, ζ, qζ−1; q)∞

∞∑
n=−∞

(−1)nqn
2+2n+1

1 + zqn

+
(ζ, qζ−1, z, qz−1, ζ2q−1, q2ζ−2; q)∞(q; q)2∞

(−z,−qz−1,−ζ,−qζ−1,−zζ−1,−qζz−1,−zζq−1,−q2ζ−1z−1; q)∞
. (3.16)

Replacing q, z and ζ in (3.16) by q25, q20 and q20 respectively, we find that

∞∑
n=−∞

(−1)nq25n
2

(
q10n

1 + q25n
− q40n+15

1 + q25n+15

)

= −(−1, q10, q15,−q25; q25)∞
(q5,−q5, q20,−q20; q25)∞

∞∑
n=−∞

(−1)nq25n
2+50n+25

1 + q25n+20

+
(q10, q15; q25)∞(q5, q20, q25; q25)2∞

(−1,−q10,−q15,−q25; q25)∞(−q5,−q20; q25)2∞

= −2qJ15,50
J25,50

∞∑
n=−∞

(−1)nq25n
2+50n+24

1 + q25n+20
+
J4
5,50J

2
15,50J

3
20,50J

2
25,50

2J9
50

,

which gives (3.13).
Replacing q, z and ζ in (3.16) by q25, q20 and q15 respectively, we have

∞∑
n=−∞

(−1)nq25n
2

(
q20n

1 + q25n+5
− q30n+5

1 + q25n+10

)

= − (−1, q5, q20,−q25; q25)∞
(q10,−q10, q15,−q15; q25)∞

∞∑
n=−∞

(−1)nq25n
2+50n+25

1 + q25n+20

+
(q10, q15; q25)∞(q5, q20, q25; q25)2∞

(−q5,−q10,−q15,−q20; q25)2∞
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= −2qJ5,50
J25,50

∞∑
n=−∞

(−1)nq25n
2+50n+24

1 + q25n+20
+
J4
5,50J10,50J

3
15,50J

2
20,50J25,50

J9
50

.

This yields (3.14). Substituting (3.13) and (3.14) into (3.12), we obtain

∞∑
n=−∞

(−1)nqn
2+2n

1 + q5n
=

(
1− 2qJ15,50

J25,50
+

2q4J5,50
J25,50

)
T4 +

1

2
V1 − q3V2. (3.17)

Substituting (3.10) into (3.17), and noting that

T4 :=
∞∑

n=−∞

(−1)nq25n
2+50n+24

1 + q25n+20

=
∞∑

n=−∞

(−1)nq25n
2+25n+4(1 + q25n+20 − 1)

1 + q25n+20

= −
∞∑

n=−∞

(−1)nq25n
2+25n+4

1 + q25n+20
,

we arrive at (3.11). Thus, we complete the proof of Lemma 3.5.

To prove Theorem 1.2 and Theorem 1.3, we also need the following two lemmas.

Lemma 3.6. Recall that U1 and U2 are defined in Lemma 3.4. The following identity
holds.

1

2
U1 − q2U2 =

(q; q)∞
(−q; q)∞

{
A0 + A1q + A2q

2 + A3q
3 + A4q

4
}
, (3.18)

where A0, A1, A2, A3, A4 are defined in Theorem 1.2.

Lemma 3.7. Recall that U1 and U2 are defined in Lemma 3.4 and V1 and V2 are defined
in Lemma 3.5. The following identity holds.

1

2
V1 −

1

2
U1 + q2U2 − q3V2 =

(q; q)∞
(−q; q)∞

{
B0 +B1q +B2q

2 +B3q
3 +B4q

4
}
, (3.19)

where B0, B1, B2, B3, B4 are defined in Theorem 1.3.

Before verifying Lemma 3.6 and Lemma 3.7, we will give proofs of Theorem 1.2 and
Theorem 1.3 based on Lemmas 3.4–3.7. We begin with Theorem 1.2.

Proof of Theorem 1.2. Substituting (3.5) in Lemma 3.4 into Corollary 3.2, we find that

∞∑
n=0

(N(0, 10, n) +N(1, 10, n)−N(4, 10, n)−N(5, 10, n))qn

=
2(−q; q)∞

(q; q)∞

(
1

2
U1 − q2U2

)
+

2q6

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10
. (3.20)

Substituting (3.18) in Lemma 3.6 into (3.20), we obtain (1.5), and so Theorem 1.2 is
verified.
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We now turn to prove Theorem 1.3 by using Lemmas 3.4, 3.5 and 3.7.

Proof of Theorem 1.3. Substituting (3.5) in Lemma 3.4 and (3.11) in Lemma 3.5 into
Corollary 3.3, we have

∞∑
n=0

(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn

=
2(−q; q)∞

(q; q)∞

(
1

2
V1 − q3V2

)
− 2q4

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+20

−

{
2(−q; q)∞

(q; q)∞

(
1

2
U1 − q2U2

)
+

2q6

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10

}

=
2(−q; q)∞

(q; q)∞

(
1

2
V1 −

1

2
U1 + q2U2 − q3V2

)

− 2q4

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+20
− 2q6

J25,50

∞∑
n=−∞

(−1)nq25n
2+25n

1 + q25n+10
. (3.21)

Then we obtain (1.6) after substituting (3.19) in Lemma 3.7 into (3.21). Thus, we com-
plete the proof of Theorem 1.3.

We conclude this section by giving proofs of Lemma 3.6 and Lemma 3.7. The proofs
require to use standard computational techniques from the theory of modular forms.
Recall that the Dedekind η-function is defined by

η(τ) = q
1
24 (q; q)∞,

where τ ∈ H := {τ ∈ C : Imτ > 0} and q = exp(2πiτ). The generalized Dedekind
η-function is defined by

ηδ,g(τ) = qP2(g/δ)δ/2
∏
n>0

n≡g (mod δ)

(1− qn)
∏
n>0

n≡−g (mod δ)

(1− qn), (3.22)

where P2(t) = {t}2 − {t} + 1
6

is the second Bernoulli function, and {t} := t − [t] is the
fractional part of t. Note that

ηδ,0(τ) = q
δ
12 (qδ; qδ)2∞

and
ηδ, δ

2
(τ) = q−

δ
24 (q

δ
2 ; qδ)2∞.

Let N be a fixed positive integer. A generalized Dedekind η-quotient of level N has
the form

f(τ) =
∏
δ|N

0≤g<δ

η
rδ,g
δ,g (τ), (3.23)
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where

rδ,g ∈

{
1
2
Z if g = 0 or g = δ/2,

Z otherwise.

Suppose f is a modular function with respect to the congruence subgroup Γ of Γ0(1).
For any cusp ζ ∈ Γ, there exists A ∈ Γ0(1) such that Aζ = ∞. Denote the width of the
cusp ζ with respect to Γ by M . If

f(A−1τ) =
∞∑

m=m0

bmq
m/M

and bm0 6= 0, then we say m0 is the order of f at ζ with respect to Γ and denote this value
by ORD(f, ζ,Γ).

Robins [28] gave the sufficient conditions under which a generalized η-quotient is a
modular function on Γ1(N).

Theorem 3.8 (Robins). Let f(τ) be a generalized η-quotient defined as (3.23). If

(1) ∑
δ|N

0≤g<δ

δP2

(g
δ

)
rδ,g ≡ 0 (mod 2),

(2) ∑
δ|N

0≤g<δ

N

δ
P2(0)rδ,g ≡ 0 (mod 2).

Then f(τ) is a modular function on Γ1(N).

The following theorem due to Garvan and Liang [13] can be used to prove generalized
η-quotient identities. This theorem is based on the valence formula for modular functions,
along with the fact that a generalized η-quotient has no zeros nor poles in the upper-half
plane H.

Theorem 3.9 (Garvan and Liang). Let f1(τ), f2(τ), . . . , fn(τ) be generalized η-quotients
that are modular functions on Γ1(N). Let SN be a set of inequivalent cusps for Γ1(N).
Define the constant

B =
∑
s∈SN
s 6=i∞

min({ORD(fj, s,Γ1(N)) : 1 ≤ j ≤ n} ∪ {0}), (3.24)

and consider

g(τ) := α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ) + 1, (3.25)

where each αj ∈ C. Then
g(τ) ≡ 0

if and only if

ORD(g(τ), i∞,Γ1(N)) > −B. (3.26)
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We are now in a position to prove Lemma 3.6 and Lemma 3.7. We begin with Lemma
3.6.

Proof of Lemma 3.6. It is equivalent to show that

1

2

J2
5,50J

3
10,50J

4
15,50J

2
25,50

J9
50

− q2
J3
5,50J

2
10,50J

4
15,50J20,50J25,50

J9
50

=
(q; q)∞

(−q; q)∞

{
J2
10,50J

2
15,50J

4
25,50

2J3
5,10J20,50J

3
50

+ 4q10
J5,50J

3
50

J2
5,10J20,50

+ q

(
J20,50J

4
25,50J

3
50

J4
5,10J

2
10,50J15,50

− 4q5
J4
5,50J

3
20,50J

4
25,50

J5
5,10J

2
10,50J

3
50

− 8q15
J4
10,50J

2
15,50J25,50J

3
50

J4
5,10J

5
20,50

)
+ q2

(
J3
5,50J

3
20,50J

5
25,50

J5
5,10J

2
10,50J

3
50

+ 4q10
J5
10,50J25,50J

7
50

J4
5J5,10J

3
5,50J

4
20,50

− 16q10
J5,50J

2
15,50J

3
50

J4
5,10J20,50

)
+ q3

(
2J4

10,50J
5
15,50J

4
25,50

J5
5,10J5,50J

3
20,50J

3
50

+ 2q5
J10,50J

3
25,50J

3
50

J4
5,10J

2
20,50

− 16q5
J2
15,50J25,50J

3
50

J4
5,10J20,50

+8q10
J3
5,50J20,50J25,50J

3
50

J4
5,10J

2
10,50J15,50

)
+ q4

(
4J4

10,50J
6
15,50J

3
25,50

J5
5,10J5,50J

3
20,50J

3
50

−
J10,50J

4
25,50J

3
50

J4
5,10J5,50J

2
20,50

− 16q5
J3
15,50J

3
50

J4
5,10J20,50

− 8q5
J25J

5
50

J5J3
5,10J10,50

)}
.

Multiplying both sides of the above identity by 2J9
50J
−2
5,50J

−3
10,50J

−4
15,50J

−2
25,50, we obtain

the following identity, which is expressed in terms of the generalized η-quotient.

1− 2η50,5(τ)η50,20(τ)

η50,10(τ)η50,25(τ)
=

η1,0(τ)η50,0(τ)
5
2

η2,0(τ)
1
2η5,0(τ)η10,0(τ)2

{
η10,0(τ)

1
2η50,10(τ)η50,20(τ)η50,25(τ)3

η50,0(τ)
1
2η10,5(τ)3

+
8η10,0(τ)η50,5(τ)η50,20(τ)

η50,0(τ)η10,5(τ)2η50,10(τ)η50,15(τ)2η50,25(τ)
+

2η50,20(τ)3η50,25(τ)3

η10,5(τ)4η50,10(τ)3η50,15(τ)3

− 8η50,0(τ)
1
2η50,5(τ)4η50,20(τ)5η50,25(τ)3

η10,0(τ)
1
2η10,5(τ)5η50,10(τ)3η50,15(τ)2

− 16η50,10(τ)3

η10,5(τ)4η50,20(τ)3

+
2η50,0(τ)

1
2η50,5(τ)3η50,20(τ)5η50,25(τ)4

η10,0(τ)
1
2η10,5(τ)5η50,10(τ)3η50,15(τ)2

+
8η10,0(τ)

3
2η50,0(τ)

1
2η50,10(τ)4

η5,0(τ)2η10,5(τ)η50,5(τ)3η50,15(τ)2η50,20(τ)2

− 32η50,5(τ)η50,20(τ)

η10,5(τ)4η50,10(τ)η50,25(τ)
+

4η50,0(τ)
1
2η50,10(τ)3η50,15(τ)3η50,25(τ)3

η10,0(τ)
1
2η10,5(τ)5η50,5(τ)η50,20(τ)

+
4η50,25(τ)2

η10,5(τ)4η50,15(τ)2
− 32η50,20(τ)

η10,5(τ)4η50,10(τ)
+

16η50,5(τ)3η50,20(τ)3

η10,5(τ)4η50,10(τ)3η50,15(τ)3
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+
8η50,0(τ)

1
2η50,10(τ)3η50,15(τ)4η50,25(τ)2

η10,0(τ)
1
2η10,5(τ)5η50,5(τ)η50,20(τ)

− 2η50,25(τ)3

η10,5(τ)4η50,5(τ)η50,15(τ)2

− 32η50,15(τ)η50,20(τ)

η10,5(τ)4η50,10(τ)η50,25(τ)
− 16η10,0(τ)

1
2η25,0(τ)

1
2η50,20(τ)2

η5,0(τ)
1
2η50,0(τ)

1
2η10,5(τ)3η50,10(τ)2η50,15(τ)2η50,25(τ)

}
.

In light of Theorem 3.8, it can be shown that each term of the above identity is a modular
function with respect to Γ1(50). Using the algorithm in [13], we could calculate the
constant B in (3.24), which is equal to −145. Thus, by Theorem 3.9, it amounts to verify
the identity in the q-expansion past q145, as desired. Hence Lemma 3.6 is verified.

Finally, we give a proof of Lemma 3.7.

Proof of Lemma 3.7. It is equivalent to show that

1

2

J4
5,50J

2
15,50J

3
20,50J

2
25,50

J9
50

− 1

2

J2
5,50J

3
10,50J

4
15,50J

2
25,50

J9
50

+ q2
J3
5,50J

2
10,50J

4
15,50J20,50J25,50

J9
50

− q3
J4
5,50J10,50J

3
15,50J

2
20,50J25,50

J9
50

=
(q; q)∞

(−q; q)∞

{
4q5J5

5J
5
25J

4
5,50J

2
15,50

J6
5,10J

6
50J

3
10,50

−
q5J3

50J
2
25,50

J2
5,10J15,50J20,50

+ q

(
4q5J8

5J
7
50J25,50

J6
5,10J

4
10,50J

5
20,50

−
4q10J3

50J
2
5,50J

2
25,50

J4
5,10J10,50J15,50

+
8q15J6

50J
6
10,50

J6
5J

2
5,50J

3
20,50

)
+ q2

(
−
J7
5,50J

7
20,50J

6
25,50

J6
5,10J

4
10,50J

9
50

+
2J50J

3
20,50J25,50

J4
5

−
4q10J6

50J
6
10,50J25,50

J6
5J

3
5,50J

3
20,50

+
16q10J8

50

J2
5J

2
5,10J10,50J

2
15,50

)
+ q3

(
−

J3
50J

4
25,50

J4
5,10J10,50J15,50

+
2J3

50J15,50J25,50
J2
5,10J5,50J20,50

+
4q5J6

50J
3
20,50J

2
25,50

J6
5J

4
15,50

+
16q15J3

50J
3
5,50

J4
5,10J20,50

)
+ q4

(
4J3

50J
2
15,50

J2
5,10J5,50J20,50

−
2J3

5,50J
3
20,50J

5
25,50

J2
5J

4
5,10J

4
50

+
8q10J8

50

J2
5J

2
5,10J

2
15,50J20,50

+
16q10J6

50J
3
10,50

J6
5J5,50J25,50

−
16q15J3

50J
4
5,50

J4
5,10J10,50J15,50

)}
.

Multiplying both sides of the above identity by 2J9
50J
−2
5,50J

−3
10,50J

−4
15,50J

−2
25,50 gives the

following identity, which is expressed in terms of the generalized η-quotient.

− 1 +
η50,5(τ)2η50,20(τ)3

η50,10(τ)3η50,15(τ)2
+

2η50,5(τ)η50,20(τ)

η50,10(τ)η50,25(τ)
− 2η50,5(τ)2η50,20(τ)2

η50,10(τ)2η50,15(τ)η50,25(τ)

=
η1,0(τ)η50,0(τ)

5
2

η2,0(τ)
1
2η5,0(τ)2η10,0(τ)2

{
8η5,0(τ)

7
2η25,0(τ)

5
2η50,5(τ)4η50,20(τ)2

η10,0(τ)η50,0(τ)4η10,5(τ)6η50,10(τ)4η50,25(τ)

− 2η5,0(τ)η10,0(τ)η50,20(τ)η50,25(τ)

η50,0(τ)η10,5(τ)2η50,10(τ)η50,15(τ)3
+

8η5,0(τ)4η50,5(τ)2η50,25(τ)

η10,0(τ)η10,5(τ)6η50,0(τ)2η50,10(τ)3η50,20(τ)
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− 8η5,0(τ)η50,5(τ)2η50,20(τ)2η50,25(τ)

η10,5(τ)4η50,10(τ)2η50,15(τ)3
+

16η10,0(τ)2η50,0(τ)η50,10(τ)5

η5,0(τ)2η50,5(τ)2η50,15(τ)2η50,20(τ)η50,25(τ)

− 2η5,0(τ)η50,0(τ)η50,5(τ)7η50,20(τ)9η50,25(τ)5

η10,0(τ)η10,5(τ)6η50,10(τ)5η50,15(τ)2
+

4η10,0(τ)2η50,20(τ)5

η5,0(τ)η50,10(τ)η50,15(τ)2

− 8η10,0(τ)2η50,0(τ)η50,10(τ)5

η5,0(τ)2η50,5(τ)3η50,15(τ)2η50,20(τ)
+

32η10,0(τ)η50,20(τ)2

η10,5(τ)2η50,10(τ)2η50,15(τ)4η50,25(τ)

− 2η5,0(τ)η50,20(τ)2η50,25(τ)3

η10,5(τ)4η50,10(τ)2η50,15(τ)3
+

4η5,0(τ)η10,0(τ)η50,20(τ)

η50,0(τ)η10,5(τ)2η50,5(τ)η50,10(τ)η50,15(τ)

+
8η10,0(τ)2η50,0(τ)η50,20(τ)5η50,25(τ)

η5,0(τ)2η50,10(τ)η50,15(τ)6
+

32η5,0(τ)η50,5(τ)3η50,20(τ)

η10,5(τ)4η50,10(τ)η50,15(τ)2η50,25(τ)

+
8η5,0(τ)η10,0(τ)η50,20(τ)

η50,0(τ)η10,5(τ)2η50,5(τ)η50,10(τ)η50,25(τ)
− 4η50,0(τ)η50,5(τ)3η50,20(τ)5η50,25(τ)4

η10,5(τ)4η50,10(τ)η50,15(τ)2

+
16η10,0(τ)η50,20(τ)

η10,5(τ)2η50,10(τ)η50,15(τ)4η50,25(τ)
+

32η10,0(τ)2η50,0(τ)η50,10(τ)2η50,20(τ)2

η5,0(τ)2η50,5(τ)η50,15(τ)2η50,25(τ)2

− 32η5,0(τ)η50,5(τ)4η50,20(τ)2

η10,5(τ)4η50,10(τ)2η50,15(τ)3η50,25(τ)

}
.

We then use Theorem 3.8 to show that each term of the above identity is a modular
function with respect to Γ1(50). Employing the algorithm in [13], we find that the constant
B in (3.24) is equal to −155. By Theorem 3.9, it suffices to verify the identity in the
q-expansion past q155, as desired. Thus, we complete the proof of Lemma 3.7.

4 Proofs of Theorem 1.4 and Theorem 1.5

To prove Theorem 1.4 and Theorem 1.5, we are required to recall the following result due
to Liaw [24].

Theorem 4.1 (Liaw). If p and r are positive integers with p ≥ 2 and r < p, define

∞∑
n=0

bp,r(n)qn :=
(qp; qp)∞

(qr; qp)∞(qp−r; qp)∞
,

then bp,r(n) ≥ 0 for all n.

We now give a proof of Theorem 1.4.

Proof of Theorem 1.4. (1) We first show (1.7) and (1.8). Comparing the coefficients of
q3n of (1.4) in Theorem 1.1, we find that

∞∑
n=0

(N(0, 6, 3n) +N(1, 6, 3n)−N(2, 6, 3n)−N(3, 6, 3n))qn =
J3
6J3,6
J2
1,6J2

. (4.1)
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Together with the identity (1.2) in [22, Theorem 1.1],

∞∑
n=0

(N(0, 3, 3n)−N(1, 3, 3n))qn = −1 +
(q3; q3)2∞(−q; q)∞
(q; q)∞(−q3; q3)2∞

= −1 +
J3
6J3,6
J2
1,6J2

,

we deduce that for n ≥ 1,

N(0, 6, 3n) +N(1, 6, 3n)−N(2, 6, 3n)−N(3, 6, 3n)

= N(0, 3, 3n)−N(1, 3, 3n). (4.2)

Observe that

N(s, `, n) = N(s, 2`, n) +N(`+ s, 2`, n) = N(s, 2`, n) +N(`− s, 2`, n), (4.3)

so (4.2) is equivalent to

N(0, 6, 3n) +N(1, 6, 3n)−N(2, 6, 3n)−N(3, 6, 3n)

= N(0, 6, 3n) +N(3, 6, 3n)−N(1, 6, 3n)−N(2, 6, 3n).

This implies that for n ≥ 1
N(1, 6, 3n) = N(3, 6, 3n),

which is (1.7).
We turn to show (1.8). By (1.7), it suffices to show that the coefficients of qn on the

right-hand side of (4.1) are positive. First, observe that

J3
6J3,6
J2
1,6J2

=
(q3; q6)2∞(q6; q6)∞

(q, q5; q6)2∞(q2, q4; q6)∞
=

(q3; q3)∞
(q, q2; q3)∞

(q3; q6)∞
(q, q5; q6)∞

=
(q3; q3)∞

(q, q2; q3)∞

(q3; q6)2∞
(q; q2)∞

,

and

(q3; q6)2∞
(q; q2)∞

=
(−q; q)∞

(−q3; q3)2∞
=

(−q; q3)∞(−q2; q3)∞
(−q3; q3)∞

=
(−q; q3)∞(−q2; q3)∞(q3; q3)∞

(q6; q6)∞
.

By Jacobi’s triple product identity [1, p. 18, Theorem 2.8], we see that

(−q; q3)∞(−q2; q3)∞(q3; q3)∞ =
∞∑

n=−∞

q(3n
2−n)/2,

and using Cauchy’s q-binomial theorem [1, p. 17, Theorem 2.1], we derive that

(q3; q3)∞
(q, q2; q3)∞

=
∞∑
m=0

q2m

(q3m+1; q3)∞(q3; q3)m
.

Hence (4.1) can be written as:

∞∑
n=0

(N(0, 6, 3n) +N(1, 6, 3n)−N(2, 6, 3n)−N(3, 6, 3n))qn
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=
1

(q6; q6)∞

∞∑
m=0

∞∑
n=−∞

q2m+(3n2−n)/2

(q3m+1; q3)∞(q3; q3)m
. (4.4)

It is easy to see that the coefficients of qn in each term of (4.4) are nonnegative for n ≥ 0.
In particular, the term corresponding to m = n = 0 of (4.4)

1

(q; q3)∞(q6; q6)∞

has positive coefficients. Hence we conclude that the coefficients of qn in (4.4) are positive
for n ≥ 0, and so, for n ≥ 0

N(0, 6, 3n) +N(1, 6, 3n)−N(2, 6, 3n)−N(3, 6, 3n) > 0.

Together with (1.7), we obtain (1.8).
(2) We next show (1.9) and (1.10). Comparing the coefficients of q3n+1 of (1.4) in

Theorem 1.1, we find that

∞∑
n=0

(N(0, 6, 3n+ 1) +N(1, 6, 3n+ 1)−N(2, 6, 3n+ 1)−N(3, 6, 3n+ 1))qn

=
2J3

6

J1,6J2
. (4.5)

Combining the identity (1.3) in [22, Theorem 1.1],

∞∑
n=0

(N(0, 3, 3n+ 1)−N(1, 3, 3n+ 1))qn =
2(q3; q3)∞(q6; q6)∞

(q; q)∞
=

2J3
6

J1,6J2
,

we derive that for n ≥ 0,

N(0, 6, 3n+ 1) +N(1, 6, 3n+ 1)−N(2, 6, 3n+ 1)−N(3, 6, 3n+ 1)

= N(0, 3, 3n+ 1)−N(1, 3, 3n+ 1). (4.6)

Using (4.3), we see that (4.6) can be written as

N(0, 6, 3n+ 1) +N(1, 6, 3n+ 1)−N(2, 6, 3n+ 1)−N(3, 6, 3n+ 1)

= N(0, 6, 3n+ 1) +N(3, 6, 3n+ 1)−N(1, 6, 3n+ 1)−N(2, 6, 3n+ 1),

which implies that for n ≥ 0

N(1, 6, 3n+ 1) = N(3, 6, 3n+ 1),

so (1.9) is verified.
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To show (1.10), by (1.9), we find that (4.5) can be written as

∞∑
n=0

(N(0, 6, 3n+ 1)−N(2, 6, 3n+ 1))qn =
2J3

6

J1,6J2
=

(q6; q6)∞
(q2, q4; q6)∞

2

(q, q5; q6)∞
. (4.7)

It is easy to see that the coefficients of qn in

2

(q, q5; q6)∞

are positive for n ≥ 0. From Theorem 4.1, we see that the coefficients of qn in

(q6; q6)∞
(q2, q4; q6)∞

are nonnegative for n ≥ 0. Hence, from (4.7), we deduce that N(0, 6, 3n+1) > N(2, 6, 3n+
1) for n ≥ 0, and so (1.10) is verified.

(3) To show (1.11), we first establish the generating function of N(0, 6, 3n + 2) −
N(2, 6, 3n+ 2). We aim to show that

∞∑
n=0

(N(0, 6, 3n+ 2)−N(2, 6, 3n+ 2))qn

= −2(−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+6n+1

1− q6n+2
. (4.8)

By Theorem 1.1, we derive

∞∑
n=0

(N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2)−N(2, 6, 3n+ 2)−N(3, 6, 3n+ 2))qn

=
4J3

6

J2J3,6
− 2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
. (4.9)

Together with the identity (1.4) in [22]

∞∑
n=0

(N(0, 3, 3n+ 2)−N(1, 3, 3n+ 2))qn

=
4(−q3; q3)2∞(q6; q6)2∞

(q2; q2)∞
− 6(−q3; q3)∞

(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1

=
4J3

6

J2J3,6
− 6

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1
, (4.10)
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and by (4.3), we obtain

∞∑
n=0

(N(0, 6, 3n+ 2)−N(2, 6, 3n+ 2))qn

=
4J3

6

J2J3,6
− 3

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1
− 1

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
. (4.11)

Then the identity (4.8) can be derived from (4.11) by using the following identity in [27,
p.1],

J3
1

j(z; q)
=

∞∑
n=−∞

(−1)nq(
n+1
2 )

1− zqn
. (4.12)

Replacing q → q6 and setting z = q2 in (4.12), we have

J3
6

J2
=

∞∑
n=−∞

(−1)nq3n
2+3n

1− q6n+2

=
1

2

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
+

1

2

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1
. (4.13)

Plug (4.13) into (4.11) to get

∞∑
n=0

(N(0, 6, 3n+ 2)−N(2, 6, 3n+ 2))qn

=
1

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
− 1

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1

= −2(−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+6n+1

1− q6n+2
,

which is the desired generating function (4.8).
We now consider the negativity of (4.8). Note that

(−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+6n+1

1− q6n+2

=
(−q3; q3)∞
(q3; q3)∞

(
∞∑
n=0

(−1)nq3n
2+6n+1

1− q6n+2
+
∞∑
n=0

(−1)nq3n
2+6n+2

1− q6n+4

)

=
(−q3; q3)∞
(q3; q3)∞

(
∞∑
n=0

q12n
2+12n+1

1− q12n+2
−
∞∑
n=0

q12n
2+24n+10

1− q12n+8
+
∞∑
n=0

q12n
2+12n+2

1− q12n+4
−
∞∑
n=0

q12n
2+24n+11

1− q12n+10

)

=
(−q3; q3)∞
(q3; q3)∞

∞∑
n=0

q12n
2+12n+1

(1− q12n+2)(1− q12n+8)

(
(1− q12n+8)(1− q12n+9) + q24n+11(1− q6)

)
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+
(−q3; q3)∞
(q3; q3)∞

∞∑
n=0

q12n
2+12n+2

(1− q12n+4)(1− q12n+10)

(
(1− q12n+9)(1− q12n+10) + q24n+13(1− q6)

)
=

(−q3; q3)∞
(q6; q3)∞

(
∞∑
n=0

q12n
2+12n+1

1− q12n+2

1− q12n+9

1− q3
+
∞∑
n=0

q12n
2+36n+12(1 + q3)

(1− q12n+2)(1− q12n+8)

+
∞∑
n=0

q12n
2+12n+2

1− q12n+4

1− q12n+9

1− q3
+
∞∑
n=0

q12n
2+36n+15(1 + q3)

(1− q12n+4)(1− q12n+10)

)

=
(−q3; q3)∞
(q6; q3)∞

(
∞∑
n=0

q12n
2+12n+1

1− q12n+2

4n+2∑
m=0

q3m +
∞∑
n=0

q12n
2+36n+12(1 + q3)

(1− q12n+2)(1− q12n+8)

+
∞∑
n=0

q12n
2+12n+2

1− q12n+4

4n+2∑
m=0

q3m +
∞∑
n=0

q12n
2+36n+15(1 + q3)

(1− q12n+4)(1− q12n+10)

)
.

It is easy to check that each term in the above identity has nonnegative coefficients. In
particular, the terms corresponding to n = 0 and m = 0, 1 in the first series of the above
identity

q

1− q2
+

q4

1− q2

have positive coefficients. Hence the coefficients of qn in (4.8) are negative for n ≥ 1, and
hence N(0, 6, 3n+ 2) < N(2, 6, 3n+ 2) for n ≥ 1. This completes the proof of (1.11).

(4) We finish the proof of Theorem 1.4 by showing (1.12). Instead, we aim to show
that for n ≥ 0

N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2) > N(2, 6, 3n+ 2) +N(3, 6, 3n+ 2). (4.14)

Inequality (1.12) can be derived by subtracting (1.11) from (4.14).
Combining (4.9) and (4.13), we find that

∞∑
n=0

(N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2)−N(2, 6, 3n+ 2)−N(3, 6, 3n+ 2))qn

=
2(−q3; q3)∞

(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1
. (4.15)

We now investigate the positivity of (4.15). Observe that

(−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−1)nq3n
2+3n

1− q3n+1

=
(−q3; q3)∞
(q3; q3)∞

(
∞∑

n=−∞

q12n
2+6n

1− q6n+1
−

∞∑
n=−∞

q12n
2+18n+6

1− q6n+4

)
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=
(−q3; q3)∞
(q3; q3)∞

(
∞∑
n=0

q12n
2+6n

1− q6n+1
−
∞∑
n=0

q12n
2+24n+11

1− q6n+5
−
∞∑
n=0

q12n
2+18n+6

1− q6n+4
+
∞∑
n=0

q12n
2+12n+2

1− q6n+2

)

=
(−q3; q3)∞
(q3; q3)∞

(
∞∑
n=0

q12n
2+6n

(1− q6n+1)(1− q6n+4)
((1− q6n+4)(1− q12n+6) + q18n+7(1− q3))

+
∞∑
n=0

q12n
2+12n+2

(1− q6n+2)(1− q6n+5)
((1− q6n+5)(1− q12n+9) + q18n+11(1− q3))

)

=
(−q3; q3)∞
(q6; q3)∞

(
∞∑
n=0

q12n
2+6n

1− q6n+1

4n+1∑
m=0

q3m +
∞∑
n=0

q12n
2+24n+7

(1− q6n+1)(1− q6n+4)

)

+
(−q3; q3)∞
(q6; q3)∞

(
∞∑
n=0

q12n
2+12n+2

1− q6n+2

4n+2∑
m=0

q3m +
∞∑
n=0

q12n
2+30n+13

(1− q6n+2)(1− q6n+5)

)
.

It is easy to see that each term of the above identity has nonnegative coefficients. Espe-
cially, from n = 0 and m = 0 in the first series of the above identity, we get the term
1/(1− q) which gives strictly positive coefficients of qn for n ≥ 1. Hence (4.14) holds and
(1.12) is proved. Thus we complete the proof of Theorem 1.4.

We conclude this section by showing Theorem 1.5.

Proof of Theorem 1.5. From Theorem 1.2, we derive that

∞∑
n=0

(N(0, 10, 5n) +N(1, 10, 5n)−N(4, 10, 5n)−N(5, 10, 5n))qn

=
J2
2,10J

2
3,10J

4
5,10

J3
1,2J4,10J

3
10

+
8q2J1,10J

3
10

J2
1,2J4,10

=
(q5; q5)2∞

(q, q4; q5)2∞

1

(q10; q10)∞(q, q9; q10)2∞(q, q4; q5)2∞(q2, q3; q5)∞(q3, q7; q10)3∞

+
(q10; q10)∞

(q3, q7; q10)∞

8q2

(q, q9; q10)3∞(q2, q8; q10)2∞(q3, q7; q10)3∞(q4, q6; q10)3∞(q5; q10)4∞
.

By Theorem 4.1, we see that the coefficients of qn in

(q5; q5)2∞
(q, q4; q5)2∞

and
(q10; q10)∞

(q3, q7; q10)∞

are nonnegative for n ≥ 0 respectively. The series 1/(q; q)∞ gives strictly positive coeffi-
cients of qn for n ≥ 0. This leads to the inequality (1.13). Thus, we completes the proof
of Theorem 1.5.
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5 Proofs of Theorem 1.8 and Theorem 1.9

This section is devoted to showing the relations between the rank differences of overpar-
titions and mock theta functions stated in Theorem 1.8 and Theorem 1.9. It is known
that mock theta functions can be expressed in terms of the Appell-Lerch sum m(x, q, z).
Recall that the Appell-Lerch sum is defined as

m(x, q, z) :=
1

j(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
, (5.1)

where x, z ∈ C∗ such that neither z nor xz is an integral power of q.
The third order mock theta functions ω(q) and ρ(q) and the tenth order mock theta

functions φ(q) and ψ(q) can be expressed in term of m(x, q, z) as follows, see [17]

ω(q) = −2q−1m(q, q6, q2) +
J3
6

J2J3,6
, (5.2)

ρ(q) = q−1m(q, q6,−q), (5.3)

φ(q) = −2q−1m(q, q10, q2) +
J5J10J4,10
J2,5J2,10

, (5.4)

ψ(q) = −2m(q3, q10, q)− qJ5J10J2,10
J1,5J4,10

. (5.5)

In order to prove Theorem 1.8 and Theorem 1.9, we also need to recall the universal
mock theta function g2(x, q) defined by Gordon and McIntosh [14]

g2(x, q) :=
1

J1,2

∞∑
n=−∞

(−1)nqn(n+1)

1− xqn
.

Hickerson and Mortenson [17, Proposition 4.4] showed that g2(x, q) and m(x, q, z) have
the following relation,

g2(x, q) = −x−1m(x−2q, q2, x). (5.6)

It should be noted that Hickerson and Mortenson use the notation h(x, q) instead of
g2(x, q) in [17]. It also should be noted that g2(x, q) has the following relation with the
generating function R(z; q) for N(m,n), see [26, (3.2)].

(1 + z)R(z; q) = (1− z) + 2z(1− z)g2(z, q). (5.7)

In [26], the author use the notation K2(x, q) to express R(x; q) and H(x, q) to express
g2(x, q).

The following two identities on m(x, q, z) are also required in the proof of Theorem
1.9.

m(x, q, z) = x−1m(x−1, q, z−1), (5.8)
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m(x, q, z1)−m(x, q, z0) =
z0J

3
1 j(z1/z0; q)j(xz0z1; q)

j(z0; q)j(z1; q)j(xz0; q)j(xz1; q)
. (5.9)

see [17, Proposition 3.1, Theorem 3.3].
We are now in a position to give a proof of Theorem 1.8.

Proof of Theorem 1.8. From Theorem 1.1, we have

∞∑
n=0

(N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2)−N(2, 6, 3n+ 2)−N(3, 6, 3n+ 2))qn

=
4J3

6

J2J3,6
− 2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
=

4J3
6

J2J3,6
− 2g2(−q, q3). (5.10)

Replacing q by q3 in (5.6) and setting x = −q, we have

g2(−q, q3) = q−1m(q, q6,−q), (5.11)

and by (5.3), we deduce that
ρ(q) = g2(−q, q3). (5.12)

Together with the following identity in [30, p. 63]

ω(q) + 2ρ(q) =
3J3

6

J2J3,6
, (5.13)

we find that (5.10) can be transformed as follows:

∞∑
n=0

(N(0, 6, 3n+ 2) +N(1, 6, 3n+ 2)−N(2, 6, 3n+ 2)−N(3, 6, 3n+ 2))qn

=
4

3
(ω(q) + 2ρ(q))− 2ρ(q)

=
4

3
ω(q) +

2

3
ρ(q),

which is (1.16). Thus we complete the proof of Theorem 1.8.

We finish this paper with the proof of Theorem 1.9.

Proof of Theorem 1.9. (1) We first show (1.18). By Theorem 1.2, we see that

∞∑
n=0

(N(0, 10, 5n+ 1) +N(1, 10, 5n+ 1)−N(4, 10, 5n+ 1)−N(5, 10, 5n+ 1))qn

=
2J4,10J

4
5,10J

3
10

J4
1,2J

2
2,10J3,10

− 8q
J4
1,10J

3
4,10J

4
5,10

J5
1,2J

2
2,10J

3
10

− 16q3
J4
2,10J

2
3,10J5,10J

3
10

J4
1,2J

5
4,10
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+
2q

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+2
. (5.14)

We claim that the following identity holds.

1

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+2
= −1

2
q−1φ(q) +

J5J10J4,10
2qJ2,5J2,10

+
J3
10J0,10J5,10

J2,10J2,10J3,10J3,10

. (5.15)

Identity (1.18) can be derived by plugging (5.15) into (5.14).
From the definition of g2(x, q), we find that

1

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+2
= g2(−q2, q5). (5.16)

Letting q → q5 and setting x = −q2 in (5.6) yields

g2(−q2, q5) = q−2m(q, q10,−q2). (5.17)

Replacing q by q10, putting z1 = −q2, z0 = q2 and x = q in (5.9), it follows that

m(q, q10,−q2)−m(q, q10, q2) =
q2J3

10J0,10J5,10

J2,10J2,10J3,10J3,10

. (5.18)

Substituting (5.18) into (5.17) and by (5.4), we derive that

g2(−q2, q5) = −1

2
q−1φ(q) +

J5J10J4,10
2qJ2,5J2,10

+
J3
10J0,10J5,10

J2,10J2,10J3,10J3,10

. (5.19)

Hence, combining (5.19) and (5.16), we obtain (5.15). This completes the proof of (1.18).
(2) Analogue to the above process, we proceed to show (1.19). By Theorem 1.3, we

see that

∞∑
n=0

(N(1, 10, 5n+ 1) +N(2, 10, 5n+ 1)−N(3, 10, 5n+ 1)−N(4, 10, 5n+ 1))qn

=
8qJ8

1J
7
10J5,10

J6
1,2J

4
2,10J

5
4,10

−
8q2J3

10J
2
1,10J

2
5,10

J4
1,2J2,10J3,10

+
16q3J6

10J
6
2,10

J6
1J

2
1,10J

3
4,10

− 2q

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+2
.

(5.20)

Then the desired identity (1.19) can be immediately obtained when substituting (5.15)
into (5.20).

(3) Finally, we show (1.20). Similarly, using Theorem 1.3, we derive that

∞∑
n=0

(N(1, 10, 5n+ 4) +N(2, 10, 5n+ 4)−N(3, 10, 5n+ 4)−N(4, 10, 5n+ 4))qn
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=
8J3

10J
2
3,10

J2
1,2J1,10J4,10

−
4J3

1,10J
3
4,10J

5
5,10

J2
1J

4
1,2J

4
10

+
16q2J8

10

J2
1J

2
1,2J

2
3,10J4,10

+
32q2J6

10J
3
2,10

J6
1J1,10J5,10

−
32q3J3

10J
4
1,10

J4
1,2J2,10J3,10

− 2

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+4
. (5.21)

To prove (1.20), it is necessary to show that

1

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+4
= −1

2
q−1ψ(q)− J5J10J2,10

2J1,5J4,10
+

J3
10J0,10J5,10

J1,10J1,10J4,10J4,10

. (5.22)

We then obtain (1.20) upon substituting (5.22) into (5.21).
From the definition of g2(x, q), we note that

1

J5,10

∞∑
n=−∞

(−1)nq5n
2+5n

1 + q5n+4
= g2(−q4, q5). (5.23)

Letting q → q5 and setting x = −q4 in (5.6) yields

g2(−q4, q5) = q−4m(q−3, q10,−q4). (5.24)

On the other hand, by letting q → q10, x = q3 and z = −q−4 in (5.8), we obtain

m(q3, q10,−q−4) = q−3m(q−3, q10,−q4). (5.25)

Combining (5.24) and (5.25) yields

g2(−q4, q5) = q−1m(q3, q10,−q−4). (5.26)

Replacing q by q10, putting z1 = −q−4, z0 = q and x = q3 in (5.9), it follows that

m(q3, q10,−q−4)−m(q3, q10, q) =
qJ3

10J0,10J5,10

J1,10J1,10J4,10J4,10

. (5.27)

Substituting (5.27) into (5.26) and by (5.5), we derive that

g2(−q4, q5) = −1

2
q−1ψ(q)− J5J10J2,10

2J1,5J4,10
+

J3
10J0,10J5,10

J1,10J1,10J4,10J4,10

. (5.28)

Thus (5.22) follows from (5.23) and (5.28). This completes the proof of Theorem 1.9.
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