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1 Introduction

This paper is concerned with the combinatorial treatments of the following two identities
from Ramanujan’s “lost” notebook:

∞∑
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where the q-shifted factorial is defined by (x; q)0 = 1 and for n ≥ 1,

(x; q)n = (1− x)(1− qx) · · · (1− qn−1x).

Andrews [4] has obtained algebraic proofs of the above identities. Furthermore he
asked “Can a ‘near bijection’ be provided between the weighted counts of partitions given
by the left sides of (1.1) and (1.2) and the convolution of partition functions generated
by the first summation of the right sides of (1.1) and (1.2)?” Andrews also gave an
insightful remark that these two identities may be seen as closely related to Euler’s result
although not strictly generalizations of it, and pointed out the combinatorial possibilities
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of studying weighted counts of partitions related to these two identities. Our work is
indeed inspired by the ideas of Andrews.

Recently, Andrews, Jiménez-Urroz and Ono proved several identities related to the
Dedekind eta-function in [5], including the above two identities. Chapman [10] found a
combinatorial formulation of (1.1). But he did not give a combinatorial correspondence
and remarked that it would be interesting to find one. In fact, the left hand sides and
the second sums on the right sides of (1.1) and (1.2) are easily seen to be weighted sums
over partitions into distinct parts or odd parts. The difficult parts are the first sums on
the right hand sides of (1.1) and (1.2). In order to give combinatorial interpretations of
the these two terms, we introduce the notion of rooted partitions and obtain generating
functions for rooted partitions as well as identities on rooted partitions. Thus these
two terms can be expressed as a weighted sum over partitions into odd parts minus a
weighted sum over partitions into distinct parts.

Let us recall some common notation and terminology on partitions as used in [1,
Chapter 1]. A partition λ of a positive integer n is a finite nonincreasing sequence of
positive integers (λ1, λ2, . . . , λr) such that

∑r
i=1 λi = n, where the λi are called the parts

of λ. The number of parts of λ is called the length of λ, denoted by l(λ). The weight of
λ is the sum of parts, denoted |λ|. The rank of a partition λ introduced by Dyson [12] is
defined as the largest part minus the number of parts, which is usually denoted by r(λ).
As a convention, we shall assume that the empty partition has rank zero. Let D denote
the set of all partitions into distinct parts and O denote the set of all partitions into odd
parts.

We are now ready to present the combinatorial interpretations of the two terms
occurring in (1.1) and (1.2).

Lemma 1.1 The following relation holds

(−q; q)∞
∞∑
d=1

qd

1− qd
=
∑
λ∈O

2l(λ)q|λ| −
∑
µ∈D

l(µ)q|µ|. (1.3)

Lemma 1.2 The following relation holds

(−q; q)∞
∞∑
d=1

q2d

1− q2d
=
∑
λ∈O

l(λ)q|λ| −
∑
µ∈D

l(µ)q|µ|. (1.4)

Based on the above two lemmas, we may reformulate Ramanujan’s identities (1.1)
and (1.2) by the following two weighted forms of Euler’s theorem, just as anticipated by
Andrews [4].

Theorem 1.3 We have∑
µ∈D

(
l(µ) + µ1 +

1− (−1)r(µ)

2

)
q|µ| =

∑
λ∈O

2l(λ)q|λ|. (1.5)

2



Theorem 1.4 We have∑
µ∈D

(
l(µ) +

1− (−1)r(µ)

2

)
q|µ| =

∑
λ∈O

(
l(λ)− λ1 − 1

2

)
q|λ|, (1.6)

It appears that none of the existing bijective proofs of Euler’s theorem can establish
the above two weighted forms. Luckily, they can be deduced from weighted forms (2.7),
(2.8) and (2.9) of Euler’s theorem coming from Sylvester’s fish-hook bijection and Pak’s
iterated Dyson’s map respectively. To be specific, Theorem 1.3 follows from Lemma
2.1 and Lemma 2.3, and Theorem 1.4 follows from Lemmas 2.2 2.3 and Euler’s theorem.
Therefore, we have reached our goal to give the combinatorial treatments of Ramanujan’s
identities (1.1) and (1.2).

This paper is organized as follows. We give a brief review of Sylvester’s fish-hook
bijection and Pak’s iterated Dyson’s map in Section 2, and give the proofs of the weight-
ed forms (1.5) and (1.6) of Euler’s theorem. In Section 3, we introduce the notion of
rooted partitions and obtain generating functions for rooted partitions as well as iden-
tities on rooted partitions. In Section 4, we establish the connections between weighted
forms (1.5) and (1.6) of Euler’s theorem and Ramanujan’s identities (1.1) and (1.2) via
identities on rooted partitions.

2 Weighted Forms of Euler’s Theorem

In this section, we give the proofs of weighted forms (1.5) and (1.6) of Euler’s theorem
from Sylvester’s fish-hook bijection and Pak’s iterated Dyson’s map. Euler’s theorem
states that the number of partitions of n into distinct parts equals to the number of
partitions of n into odd parts for n ≥ 1 which follows from the following generating
function identity: ∑

µ∈D

q|µ| = (−q; q)∞ =
1

(q; q2)∞
=
∑
λ∈O

q|λ|.

Sylvester’s fish-hook bijection [20], also referred to as Sylvester’s bijection, and Pak’s
iterated Dyson’s map [19] are two correspondences between D and O. As we will see,
they are the basic ingredients in the proofs of the weighted forms of Euler’s theorem.

There are several ways to describe Sylvester’s bijection [17, p. 13, 249] [9, p. 44–
45] [3, 8, 16, 18]. Here we give a description by using 2-modular diagrams as given by
Bessenrodt [8].

Sylvester’s bijection ϕ: Given a partition λ of n with odd parts, represent each
part 2m + 1 by a row of m 2’s and a 1 at the end. This diagram is called the 2-
modular diagram of λ. Decompose the 2-modular diagram into hooks H1, H2, . . . with
the diagonal boxes as corners. Let µ1 be the number of squares in H1, let µ2 be the
number of 2’s in H1, let µ3 be the number of squares in H2, let µ4 be the number of 2’s
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in H2, and so on. Set ϕ(λ) = µ = (µ1, µ2, µ3, . . .). Then ϕ(λ) is clearly a partition with
distinct parts, see Figure 1.

The inverse map ϕ−1: Let µ = (µ1, µ2, . . . , µ2k−1, µ2k) be a partition of n into
distinct parts, where µi > 0 for 1 ≤ i ≤ 2k − 1 and µ2k ≥ 0. First we consider the part
µ2k, and write down µ2k 2’s in a row and add a 1 to the end, then add (µ2k−1− µ2k − 1)
1’s to the first column. Let us denote this hook by Hk. Note that the 2’s can only appear
in the first row in this hook. Let us continue to consider the parts µ2k−3, µ2k−2. The
hook Hk−1 is constructed as follows. There will be µ2k−2 2’s and µ2k−3 − µ2k−2 1’s in
Hk−1. If there is a 1 in the i-th row of Hk, then there must be a 2 on the left of the 1
in Hk. The rest of the 2’s will have to be put in the first row of Hk−1. Then the 1’s are
easily dispatched in the first row and the first column. Now we may repeat the above
procedure to construct a partition with odd parts.

2-Modular Diagram

2 2 2 1
2 2 2 1
2 2 1
2 2 1
2 1
1

7

7

5

5

3

1 9

7 6

4 2

-�

9

7

6

4

2

µλ

Figure 1: Sylvester’s bijection ϕ : (7, 7, 5, 5, 3, 1) 7→ (9, 7, 6, 4, 2).

We now give a brief description of the bijection due to Pak [19], which we call Pak’s
iterated Dyson’s map. This correspondence leads to a combinatorial proof of a partition
theorem of Fine in [14] (see also [15, p. 47, (24.6)]). Andrews gives an inductive proof
in [2].

We review Dyson’s map [13], sometimes called Dyson’s adjoint [7]. Denote by Hn, r

and Gn, r the sets of partitions of n with rank at most r and at least r, respectively.
Dyson’s map ψr is a bijection between Hn, r+1 and Gn+r, r−1.

Dyson’s map ψr: Start with a Young diagram corresponding to a partition λ ∈
Hn, r+1. Note that λ has l = l(λ) parts, where l(λ) is the length. Remove the first
column, add l+ r squares to the top row to obtain a Young diagram, it follows that the
resulting Young diagram is a partition µ ∈ Gn+r, r−1. It is easy to see that the above
procedure is reversible. Hence, Dyson’s map ψr is a bijection. An example is illustrated
in Figure 2.

We are ready to describe Pak’s iterated Dyson’s map φ: O 7→ D.

Pak’s iterated Dyson’s map φ: Let λ = (λ1, λ2, . . . , λl) be a partition of n into odd
parts. We construct a partition µ of n from λ by the following process. Let ν l = (λl)
and let ν i denote the partition obtained by applying Dyson’s map ψλi to ν i+1 , i.e.
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-
ψ2

µλ

Figure 2: λ = (5, 4, 3, 3, 2, 1) and µ = (8, 4, 3, 2, 2, 1).

ν i = ψλi(ν
i+1). Finally, set µ = ν 1. Since ν i = λi + λi+1 + · · · + λl, one sees that

|µ| = |λ|. Furthermore µ is a partition into distinct parts and Pak’s iterated Dyson’s
map φ is a bijection [19].

The inverse of Pak’s map is described as a recursive procedure. Let µ = (µ1, µ2, . . . , µl)
be a partition of n into distinct parts. Set λ1 = r(µ) = µ1− l(µ) if r(µ) is odd; otherwise
set λ1 = r(µ) + 1 = µ1 − l(µ) + 1. Applying the inverse of Dyson’s map ψ−1λ1 to µ, we

get a partition ν 2 = ψ−1λ1 (µ). Iterating the above procedure to ν j (j = 2, 3, 4, . . .), we
obtain a partition λ = (λ1, λ2, . . .) with odd parts. Figure 3 is an illustration of Pak’s
iterated Dyson’s map.

- ��1 - -

Figure 3: λ = (5, 5, 3, 3, 1) and µ = (8, 6, 2, 1).

When applying Sylvester’s bijection, we see that each partition µ of n into distinct
parts with maximal part µ1 corresponds to a partition λ of n into odd parts with the
maximal part λ1 and the length l(λ) such that 2µ1 + 1 = λ1 + 2l(λ) or equivalently,
µ1 = λ1−1

2
+ l(λ). Thus we obtain the following weighted forms of Euler’s theorem:

Lemma 2.1 The sum of 2µ1 + 1 over all the partitions µ of n into distinct parts equals
to the sum of λ1 + 2l(λ) over all the partitions λ of n into odd parts, namely,∑

µ∈D

(2µ1 + 1)q|µ| =
∑
λ∈O

(λ1 + 2l(λ))q|λ|. (2.7)

Lemma 2.2 The sum of µ1 over all the partitions µ of n into distinct parts equals to
the sum of λ1−1

2
+ l(λ) over all the partitions λ of n into odd parts, namely,∑

µ∈D

µ1q
|µ| =

∑
λ∈O

(
λ1 − 1

2
+ l(λ)

)
q|λ|, (2.8)
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We remark that these two weighted forms (2.7) and (2.8) of Euler’s theorem can be
deduced from a refinement of Euler’s theorem due to Fine [15, p. 46, (23.91)].

From Pak’s iterated Dyson’s map, we see that a partition λ of n into odd parts with
maximal part λ1 corresponds to a partition µ of n into distinct parts with rank r(µ) such
that

r(µ) +
1 + (−1)r(µ)

2
= λ1.

Thus we obtain the following weighted form of Euler’s theorem:

Lemma 2.3 The sum of µ1 − l(µ) + 1+(−1)r(µ)
2

over all partitions µ of n into distinct
parts equals the sum of λ1 over all partitions λ of n into odd parts, namely,∑

µ∈D

(
µ1 − l(µ) +

1 + (−1)r(µ)

2

)
q|µ| =

∑
λ∈O

λ1q
|λ|. (2.9)

It should be noted that this weighted form (2.9) of Euler’s theorem can be deduced from
Fine’s another refinement of Euler’s theorem in [14].

Now we consider the set of partitions µ of n into distinct parts with multiplicities

l(µ) + µ1 + 1−(−1)r(µ)
2

. The number of such partitions of n with the multiplicities taken
into account equals the number of elements in the set of partitions of n into distinct
parts with multiplicities 2µ1 + 1 minus the number of elements in the set of partitions

of n into distinct parts with multiplicities µ1 − l(µ) + 1+(−1)r(µ)
2

. In view of Lemmas 2.1
and 2.3, we are led to the weighted form (1.5) of Euler’s theorem.

Next we consider the set of partitions µ of n into distinct parts with multiplicities

l(µ) + 1−(−1)r(µ)
2

. The number of such partitions with multiplicities equals the number of
elements in the set of partitions of n into distinct parts with multiplicities µ1 + 1 minus
the number of elements in the set of partitions of n into distinct parts with multiplicities

µ1 − l(µ) + 1+(−1)r(µ)
2

, according to Lemmas 2.2, 2.3 and Euler’s theorem, we obtain the
weighted form (1.6) of Euler’s theorem.

3 Rooted Partitions

Inspired by the suggestion of Andrews [4], we are guided to consider weighted counting
of partitions in order to give combinatorial interpretations of the first sums on the right
had sides of Ramanujan’s identities (1.1) and (1.2). To this end, we introduce the notion
of rooted partitions which can be regarded as a weighted version of ordinary partitions.
In some sense, rooted partitions are related to “overpartitions” (see Corteel and Lovejoy
[11]) and “partitions with designated summand” of Andrews-Lewis-Lovejoy [6].

A rooted partition of n can be formally defined as a pair of partitions (λ, µ), where
|λ|+ |µ| = n and µ is a nonempty partition with equal parts. The union of the parts of
λ and µ are regarded as the parts of the rooted partition (λ, µ).
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For example, there are twelve rooted partitions of 4:

(∅, (4)) ((1), (3)) ((3), (1)) ((2), (2)) (∅, (2, 2)) ((1, 1), (2)) ((2, 1), (1)) ((2), (1, 1))

((1, 1, 1), (1)) ((1, 1), (1, 1)) ((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).

There are three rooted partitions of 4 with distinct parts: (∅, (4)) ((1), (3)) ((3), (1)).

There are six rooted partitions of 4 with odd parts:

((1), (3)) ((3), (1)) ((1, 1, 1), (1)) ((1, 1), (1, 1)) ((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).

A rooted partition (λ, µ) is said to be a rooted partition with almost distinct parts if
λ has distinct parts. As a convention, we shall assume that (λ, µ) is a rooted partition
with almost distinct parts if λ = ∅. There are nine rooted partitions of 4 with almost
distinct parts:

(∅, (4)) ((1), (3)) ((3), (1)) ((2), (2)) (∅, (2, 2)) ((2, 1), (1)) ((2), (1, 1))

((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).

It is easy to see that the generating function for rooted partitions with distinct parts
equals

∞∑
d=1

qd
∞∏
n 6=d

(1 + qn). (3.10)

On the other hand, the generating function for rooted partitions with odd parts equals

1

(q; q2)∞

∞∑
d=0

q2d+1

1− q2d+1
. (3.11)

The generating function for rooted partitions with almost distinct parts equals

(−q; q)∞
∞∑
d=1

qd

1− qd
. (3.12)

We now define the root size of a rooted partition (λ, µ) as the number of parts of µ.
Then the generating function for rooted partitions into almost distinct parts with even
root size equals

(−q; q)∞
∞∑
d=1

q2d

1− q2d
. (3.13)

We have the following theorem on rooted partitions:

Theorem 3.1 The number of rooted partitions of n into almost distinct parts with even
root size plus the number of rooted partitions of n with distinct parts equals the number
of rooted partitions of n with odd parts.
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We first give a generating function proof of the above theorem.

Proof. The sum of the two numbers have the following generating function

(−q; q)∞
∞∑
d=1

q2d

1− q2d
+
∞∑
d=1

qd
∞∏
n6=d

(1 + qn)

= (−q; q)∞

(
∞∑
d=1

q2d

1− q2d
+
∞∑
d=1

qd − q2d

(1− qd)(1 + qd)

)

= (−q; q)∞
∞∑
d=1

qd + q2d − q2d

1− q2d

= (−q; q)∞

(
∞∑
d=1

qd

1− qd
−
∞∑
d=1

q2d

1− q2d

)

=
1

(q; q2)∞

∞∑
d=0

q2d+1

1− q2d+1
.

This implies the desired statement for rooted partitions.

We now present a combinatorial proof of the above theorem in terms of an involution
and a bijection. We need the following fact:

Lemma 3.2 The number of rooted partitions of n into almost distinct parts with odd
root size equals the number of rooted partitions of n into almost distinct parts with even
root size plus the number of rooted partitions of n with distinct parts.

Proof. We construct an involution τ on the set of rooted partitions of n with almost
distinct parts except those strictly with distinct parts. More precisely, the involution
τ is on the set of rooted partitions (λ, µ) of n such that λ has distinct parts and the
number of occurrences of the part of µ in both λ and µ is at least two.

Case 1: For a rooted partition (λ, µ) with almost distinct parts but not with distinct
parts, if λ contains the part of µ, then move this part from λ to µ.

Case 2: For a rooted partition (λ, µ) with almost distinct parts but not with distinct
parts, if λ does not contain the part of µ, then move this part from µ to λ.

It is easy to check that the above mapping is an involution. Moreover, τ changes the
parity of the root size.

For example, there are nine rooted partitions of 4 with almost distinct parts:

(∅, (4)) ((1), (3)) ((3), (1)) ((2), (2)) (∅, (2, 2)) ((2, 1), (1)) ((2), (1, 1))

((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).
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Applying the above involution, we get the following correspondence:

((2), (2)) � (∅, (2, 2)) ((2, 1), (1)) � ((2), (1, 1)) ((1), (1, 1, 1)) � (∅, (1, 1, 1, 1)).

The above involution does not apply to rooted partitions with distinct parts:

(∅, (4)) ((1), (3)) ((3), (1))

.

The following correspondence can be regarded as a rooted partition analogue of Eu-
ler’s theorem. Here we need to define the conjugate of the partition. For a partition
λ = (λ1, . . . , λr), the conjugate partition λ′ = (λ′1, λ

′
2, . . . , λ

′
t) of λ by setting λ′i to be

the number of parts of λ that are greater than or equal to i. Clearly, we have l(λ) = λ′1
and λ1 = l(λ′). We have the following lemma:

Lemma 3.3 The number of rooted partitions of n into almost distinct parts with odd
root size equals to the number of rooted partitions of n with odd parts.

Proof. We employ Sylvester’s bijection to construct a map from the set of rooted parti-
tions of n into almost distinct parts with odd root size to the set of rooted partitions of
n with odd parts.

The map σ: For a rooted partition (λ, µ) into almost distinct parts with odd root
size, we apply the inverse map of Sylvester’s bijection ϕ−1 to λ to generate a partition α
with odd parts. Let β be the conjugate of µ which is a partition with equal odd parts.
Therefore (α, β) is a rooted partition with odd parts.

The inverse map σ−1: For a rooted partition (α, β) with odd parts, we apply
Sylvester’s bijection ϕ to α to generate a partition λ with distinct parts. Let µ be
conjugate of β, which is a partition into equal parts with odd length. Thus (λ, µ) is a
rooted partition into almost distinct parts with odd root size.

From Sylvester’s bijection, one sees that σ is also a bijection.

For example, there are six rooted partitions of 4 into almost distinct parts with odd
root size:

(∅, (4)) ((1), (3)) ((3), (1)) ((2), (2)) ((2, 1), (1)) ((1), (1, 1, 1)),

and there are six rooted partitions of 4 with odd parts:

((1), (3)) ((3), (1)) ((1, 1, 1), (1)) ((1, 1), (1, 1)) ((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).

Using the above bijection, we have the following correspondence:

(∅, (4)) � (∅, (1, 1, 1, 1)) ((1), (3)) � ((1), (1, 1, 1)) ((3), (1)) � ((1, 1, 1), (1))

((2), (2)) � ((1, 1), (1, 1)) ((2, 1), (1)) � ((3), (1)) ((1), (1, 1, 1)) � ((1), (3)).
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From the above Lemmas 3.2 and 3.3, we obtain Theorem 3.1 which serves as a
combinatorial setting for Ramanujan’s identity (1.2). For Ramanujan’s identity (1.1),
we need the following partition identity which also follows from the above two lemmas:

Theorem 3.4 The number of rooted partitions of n with almost distinct parts plus the
number of rooted partitions of n with distinct parts is twice the number of rooted partitions
of n with odd parts.

We now make a connection between rooted partitions with distinct parts and odd
parts and ordinary partitions with distinct parts and odd parts. Chapman [10] has shown
that the series (3.10)

∞∑
d=1

qd
∏
n6=d

(1 + qn)

is the generating function for ordinary partitions with distinct parts with multiplicities
being their lengths. Note that the above series is also the generating function for rooted
partitions with distinct parts. This generating function identity implies that there should
be a combinatorial correspondence between rooted partitions and ordinary partitions
with distinct parts.

In fact, a simple correspondence goes as follows: From a partition α with distinct
parts, we can get l(α) distinct rooted partitions (λ, µ) with distinct parts by designating
any part of α as the part of µ and keeping the remaining parts of α as parts of λ. This
map is clearly reversible.

For instance, there are two partitions of 4 with distinct parts: (4) (3, 1). The sum of
their lengths is three, whereas there are three rooted partitions of 4 with distinct parts:
(∅, (4)) ((1), (3)) ((3), (1)).

Thus we have the following theorem on the relationship between rooted partitions
with distinct parts and partitions with distinct parts.

Theorem 3.5 The number of rooted partitions of n with distinct parts equals the sum
of lengths over partitions of n with distinct parts.

Chapman [10] has shown that (3.11) is also the generating function for the sum of
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the lengths of partitions with odd parts:

1

(q; q2)∞

∞∑
d=0

q2d+1

1− q2d+1
=
∞∑
d=0

1

(q; q2)d(q2d+3; q2)∞
· q2d+1

(1− q2d+1)2

=
∞∑
d=0

∞∑
m=1

mq(2d+1)m

(q; q2)d(q2d+3; q2)∞

=
∞∑
d=0

∑
λ∈O

nλ(2d+ 1)q|λ|

=
∑
λ∈O

l(λ)q|λ|.

where nλ(d) is the number of parts equal to d in λ. Using the formulation of rooted
partitions with odd parts and the above generating function, we establish the following
relation between rooted partitions and ordinary partitions, and we give a combinatorial
proof of this fact. Theorem 3.5 and the following Theorem 3.6 will be necessary to trans-
form the formulations of Ramanujan’s identities with rooted partitions to combinatorial
settings with ordinary partitions.

Theorem 3.6 The number of rooted partitions of n with odd parts equals the sum of
lengths over partitions of n with odd parts.

Proof. In fact, for a partition β of n with odd parts, we may get l(β) distinct rooted
partitions (λ, µ) of n with odd parts by designating any part of β as the part of µ and
keep the remaining parts of β as parts of λ. Assume that d is a part that appears m
times (m ≥ 2) in β. Then we may choose µ as the partition with d repeated i times,
where i = 1, 2, . . . ,m.

For example, there are two partitions of 4 with odd parts namely (3, 1) (1, 1, 1, 1),
the sum of lengths is six. For rooted partitions of 4, we see that there are also six rooted
partitions with odd parts:

((1), (3)) ((3), (1)) ((1, 1, 1), (1)) ((1, 1), (1, 1)) ((1), (1, 1, 1)) (∅, (1, 1, 1, 1)).

4 Ramanujan’s Identities

In this section, we will reformulate Ramanujan’s identities (1.1) and (1.2) as the two
weighted forms (1.5) and (1.6) of Euler’s theorem. The left hand sides of (1.1) and
(1.2) have partition interpretations as given by Andrews [4] and Chapman [10]. The
first summations on the right hand sides of (1.1) and (1.2) can be interpreted combina-
torially in term of ordinary partitions with multiplicities as given by Theorem 3.1 and
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3.4. The second summations on the right hand sides of (1.1) and (1.2) have partition
interpretations in terms of the rank.

Combining Theorems 3.5 and 3.6 on the relations between rooted partitions and
ordinary partitions, we may transform Theorem 3.4 on rooted partitions to a statement
on ordinary partitions in Lemma 1.1.

We proceed to demonstrate that with the aid of the above theorem, Ramanujan’s
identity (1.1) can be restated as the weighted form (1.5) of Euler’s theorem. At first, one
can check that the left side of Ramanujan’s identity (1.1) equals the generating function
for the sum of the largest parts over partitions with distinct parts according to Lemma
1 of [10]:

∞∑
n=0

[(−q; q)∞ − (−q; q)n] =
∑
µ∈D

µ1 q
|µ|. (4.14)

It is easy to see that the second summation on the right hand of (1.1), that is,

1 +
∞∑
n=1

q(
n+1
2 )

(−q; q)n
,

equals the generating function for partitions into distinct parts with even rank minus
the generating function for partitions into distinct parts with odd rank. Therefore, we
have

−1

2
(−q; q)∞ +

1

2

[
1 +

∞∑
n=1

q(
n+1
2 )

(−q; q)n

]
= −

∑
µ∈D

r(µ) odd

q|µ|. (4.15)

From the above interpretations and Lemma 1.1, one sees the right side of Ramanu-
jan’s identity (1.1) equals the generating function for the sum of twice the lengths over
partitions with odd parts and minus the generating function for the sum of lengths over
partitions with distinct parts minus the generating function for partitions into distinct
parts with odd rank:

(−q; q)∞

[
−1

2
+
∞∑
d=1

qd

1− qd

]
+

1

2

[
1 +

∞∑
n=1

q(
n+1
2 )

(−q; q)n

]

=
∑
λ∈O

2l(λ)q|λ| −
∑
µ∈D

l(µ)q|µ| −
∑
µ∈D

r(µ) odd

q|µ|. (4.16)

We now reach the conclusion that Ramanujan’s identity (1.1) can be restated as the
weighted form (1.5) of Euler’s theorem:

∑
µ∈D

(
µ1 + l(µ) +

1− (−1)r(µ)

2

)
q|µ| =

∑
λ∈O

2l(λ)q|λ|.
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Thus, we have obtained a combinatorial proof of (1.1) based on a weighted form of
Euler’s theorem.

Similarly, combining Theorems 3.5 and 3.6 on the relations between rooted partitions
and ordinary partitions, we may transform Theorem 3.1 on rooted partitions to the
assertion for ordinary partitions in Lemma 1.2.

As pointed out by Andrews [4], it is not difficult to see that the left hand side
of Ramanujan’s identity (1.2) equals the generating function of the sum of half of its
largest part and minus one over partitions into odd parts:

∞∑
n=0

[
1

(q; q2)∞
− 1

(q; q2)n

]
=
∑
λ∈O

λ1 − 1

2
q|λ|. (4.17)

By using the above relation (4.15) and Lemma 1.2, one sees that the right hand
side of Ramanujan’s identity (1.2) equals the generating function for the sum of lengths
over partitions into odd parts minus the generating function for the sum of lengths over
partitions into distinct parts minus the generating function for partitions into distinct
parts with odd rank:

(−q; q)∞

[
−1

2
+
∞∑
d=1

q2d

1− q2d

]
+

1

2

[
1 +

∞∑
n=1

q(
n+1
2 )

(−q; q)n

]

=
∑
λ∈O

l(λ)q|λ| −
∑
µ∈D

l(µ)q|µ| −
∑
µ∈D

r(µ) odd

q|µ|. (4.18)

So we conclude that Ramanujan’s identity (1.2) can be recast as the weighted form
(1.6) of Euler’s theorem:

∑
µ∈D

(
l(µ) +

1− (−1)r(µ)

2

)
q|µ| =

∑
λ∈O

(
l(λ)− λ1 − 1

2

)
q|λ|.
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