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Abstract. In this note, we introduce the 2k-th crank moment µ2k(−1, n) weighted by
the parity of cranks and show that (−1)nµ2k(−1, n) > 0 for n ≥ k ≥ 0. When k = 0, the
inequality (−1)nµ2k(−1, n) > 0 reduces to Andrews and Lewis’s inequality (−1)n(Me(n)−
Mo(n)) > 0 for n ≥ 0, where Me(n) (resp. Mo(n)) denotes the number of partitions of n
with even (resp. odd) crank. Several generating functions of µ2k(−1, n) are also studied
in order to show the positivity of (−1)nµ2k(−1, n).
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1 Introduction

Dyson’s rank [8] and the Andrews-Garvan-Dyson crank [4] are two fundamental statistic-
s in the theory of partitions. They provide combinatorial explanations for Ramanujan’s
famous congruences of the partition function p(n), where p(n) counts the number of parti-
tions of n. A partition of a positive integer n is a finite nonincreasing sequence of positive
integers (λ1, λ2, . . . , λr) such that

∑r
i=1 λi = n. For a partition λ = (λ1, λ2, . . . , λ`), the

rank of λ, denoted by r(λ), is the largest part of λ minus the number of parts. The
crank [4] is defined by

c(λ) =

{
λ1, if n1(λ) = 0,

µ(λ)− n1(λ), if n1(λ) > 0,

where n1(λ) is the number of ones in λ and µ(λ) is the number of parts larger than n1(λ).
For n > 1, let M(m,n) denote the number of partitions of n with crank m, while for
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n ≤ 1, we set M(0, 1) = −1, M(0, 0) = M(−1, 1) = M(1, 1) = 1, M(m,n) = 0 otherwise.
The generating function for M(m,n) is given in [9, 10].

C(z, q) :=
∞∑

m=−∞

∞∑
n=0

M(m,n)zmqn

=
(q; q)∞

(zq; q)∞(z−1q; q)∞

=
1− z

(q; q)∞

∞∑
n=−∞

(−1)nq(
n+1
2 )

1− zqn
.

Here and throughout the paper, we adopt the standard notation on q-series [1].

(a; q)∞ =
∞∏
n=0

(1− aqn), (a; q)n =
(a; q)∞

(aqn; q)∞
.

We let Me(n) (resp. Mo(n)) denote the number of partitions of n with even (resp. odd)
crank. The first study of Me(n)−Mo(n) was done by Andrews and Lewis [5]. By setting
z = −1 in (1.1), we get

∞∑
n=0

(Me(n)−Mo(n))qn =
(q; q)∞

(−q; q)2∞
.

Andrews and Lewis proved that

Theorem 1.1 (Andrews-Lewis). For n ≥ 0, (−1)n(Me(n)−Mo(n)) > 0.

In [7], Choi, Kang and Lovejoy established congruences and asymptotic properties
satisfied by Me(n)−Mo(n).

Analogous to the symmetrized rank moments defined by Andrews [3], Garvan [11]
introduced the symmetrized crank moments in the study of the higher order spt-function.
To be more specific, the k-th symmetrized crank moment µk(n) is defined as follows.

µk(n) =
∞∑

m=−∞

(
m+ bk−1

2
c

k

)
M(m,n). (1.1)

From the symmetry M(m,n) = M(−m,n), it is clear that µ2k+1(n) = 0. As for an even
symmetrized moment µ2k(n), Chen, Ji and Shen [6] gave a combinatorial interpretation
of µ2k(n) by introducing k-marked Dyson symbols.

In this paper, we introduce the crank moments weighted by the parity of cranks.

µ2k(−1, n) =
∞∑

m=−∞

(
m+ k − 1

2k

)
(−1)mM(m,n). (1.2)
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When k = 0, it reduces to

µ0(−1, n) = Me(n)−Mo(n).

Furthermore, µ2k(−1, n) is a linear combination of the twisted crank momentsMk(−1, n)
introduced by Rhoades [12] as given by

Mk(−1, n) =
∞∑

m=−∞

(−1)mmkM(m,n). (1.3)

For example,

µ4(−1, n) =
1

24
M4(−1, n)− 1

24
M2(−1, n).

In [12], Rhoades established the congruences and asymptotic properties satisfied by
Mk(−1, n).

The main objective of this note is to show the following positivity property of
(−1)nµ2k(−1, n).

Theorem 1.2. For n ≥ k ≥ 0, (−1)nµ2k(−1, n) > 0.

It should be noted that Theorem 1.1 is the case k = 0 of Theorem 1.2. To prove
Theorem 1.2, we first establish the following explicit generating function for µ2k(−1, n)
with the aid of Andrews’s k-fold generalization of q-Whipple’s theorem [2, p.199, Theorem
4].

Theorem 1.3. For k ≥ 0, we have
∞∑
n=0

µ2k(−1, n)qn =
(q; q)∞

(−q; q)2∞

∑
nk≥nk−1≥···≥n1≥1

(−1)kqn1+n2+···+nk

(1 + qn1)2(1 + qn2)2 · · · (1 + qnk)2
. (1.4)

We next show that the above generating function (1.6) is equivalent to the following
form which plays crucial role in the proof of Theorem 1.2.

Theorem 1.4. For k ≥ 0, we have
∞∑
n=0

µ2k(−1, n)qn =
(q; q)∞

(−q; q)2∞

∑
mk>mk−1>···>m1≥1

(−1)mkm1(m2 −m1) · · · (mk −mk−1)q
mk

(1− qm1)(1− qm2) · · · (1− qmk)
.

(1.5)

The paper is organized as follows. In Section 2, we first introduce the generalized crank
moments µ2k(z, n). When z = 1, µ2k(z, n) corresponds to the crank moment µ2k(n) and
when z = −1, µ2k(z, n) is the crank moment µ2k(−1, n) weighted by the parity of cranks.
Then we establish the generating function of µ2k(z, n), and hence we derive a generating
function of µ2k(−1, n) stated in Corollary 2.2. In Section 3, we first derive the generating
function of µ2k(−1, n) in Theorem 1.3 by applying Andrews’s k-fold generalization of q-
Whipple’s theorem. Then we show the generating function in Theorem 1.4 is equivalent
to the generating function in Theorem 1.3. In Section 4, we show Theorem 1.2 follows
from Theorem 1.4 and Jacobi’s triple product identity.
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2 The generating function of µ2k(z, n)

We define µ2k(z, n) as

µ2k(z, n) =
∞∑

m=−∞

(
m+ k − 1

2k

)
zmM(m,n). (2.1)

When z = 1, µ2k(z, n) corresponds to µ2k(n). When z = −1, µ2k(z, n) coincides with
µ2k(−1, n). We have the following generating function for µ2k(z, n).

Theorem 2.1. We have

∞∑
n=0

µ2k(z, n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1q(
n
2)(1− qn)

( zk+1qn(k+1)

(1− zqn)2k+1
+

z−kqnk

(1− z−1qn)2k+1

)
.

(2.2)

Proof. As in the proof of [11, Theorem 2.2], we have

∞∑
n=0

µ2k(z, n)qn =
zk+1

(2k)!

(
∂

∂z

)2k

zk−1C(z, q)

=
zk+1

(2k)!

k−1∑
j=0

(
2k

j

)
(k − 1)(k − 2) · · · (k − j)zk−1−jC(2k−j)(z, q)

=
1

(q; q)∞

k−1∑
j=0

(
k − 1

j

)
z2k−j

∞∑
n=−∞
n6=0

(−1)n−1q(
n
2)+(2k−j)n(1− qn)

(1− zqn)2k−j+1

=
1

(q; q)∞

∞∑
n=−∞
n6=0

(−1)n−1q(
n
2)+2kn(1− qn)z2k

(1− zqn)2k+1

(
1 +

z−1q−n

(1− zqn)−1

)k−1

=
1

(q; q)∞

∞∑
n=1

(−1)n−1q(
n
2)(1− qn)

( zk+1qn(k+1)

(1− zqn)2k+1
+

z−kqnk

(1− z−1qn)2k+1

)
.

Thus we have completed the proof of Theorem 2.1.

Set z = −1 in (2.2), we get

Corollary 2.2. For k ≥ 0

∞∑
n=0

µ2k(−1, n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n+k−1q(
n
2)+nk (1− qn)2

(1 + qn)2k+1
. (2.3)

4



3 Proof of Theorems 1.3 and 1.4

In this section, we first prove that Theorem 1.3 follows from Corollary 2.2 and Andrews’s
k-fold generalization of q-Whipple’s theorem and then show that Theorem 1.3 is equivalent
to Theorem 1.4. Recall that Andrews’s k-fold generalization of q-Whipple’s theorem [2,
p.199, Theorem 4] is stated as follows. For k ≥ 1,

2k+4φ2k+3

(
a, qa

1
2 , −qa 1

2 , b1, c1, · · · , bk, ck, q−n

a
1
2 , −a 1

2 , aq/b1, aq/c1, · · · , aq/bk, aq/ck, aqn+1
; q,

akqn+k

b1 · · · bkc1 · · · ck

)

=
(aq; q)n(aq/bkck; q)n
(aq/bk; q)n(aq/ck; q)n

×
∑

m1,...,mk−1≥0

(aq/b1c1; q)m1

(q; q)m1

(aq/b2c2; q)m2

(q; q)m2

· · ·
(aq/bk−1ck−1; q)mk−1

(q; q)mk−1

× (b2; q)m1

(aq/b1; q)m1

(c2; q)m1

(aq/c1; q)m1

(b3; q)m1+m2

(aq/b2; q)m1+m2

(c3; q)m1+m2

(aq/c2; q)m1+m2

×
· · · (bk; q)m1+···+mk−1

· · · (aq/bk−1; q)m1+···+mk−1

(ck; q)m1+···+mk−1

(aq/ck−1; q)m1+···+mk−1

(q−n; q)m1+···+mk−1

(bkckq−n/a; q)m1+···+mk−1

× (aq)mk−2+2mk−3+···+(k−2)m1qm1+m2+···+mk−1

(b2c2)m1(b3c3)m1+m2 · · · (bk−1ck−1)m1+m2+···+mk−2
.

(3.1)

We are now in position to give a proof of Theorem 1.3.

Proof of Theorem 1.3: In (3.1), replacing k by k + 1, setting bi = ci = −1 for
1 ≤ i ≤ k + 1, a = 1 and putting n→∞, after simplification, we obtain

1 +
∞∑
n=1

22k+2(−1)nq(
n+1
2 )+kn

(1 + qn)2k+1

=
(q; q)2∞

(−q; q)2∞

∑
m1,...,mk≥0

(−1; q)2m1
(−1; q)2m1+m2

· · · (−1; q)2m1+m2+···+mk
qkm1+(k−1)m2+···+mk

(−q; q)2m1
(−q; q)2m1+m2

· · · (−q; q)2m1+m2+···+mk

.

(3.2)

If we make the substitution n1 = m1, n2 = m1 +m2, . . . , nk = m1 +m2 + · · ·+mk, then
the right hand side of (3.2) becomes

(q; q)2∞
(−q; q)2∞

∑
nk≥nk−1≥···≥n1≥0

(−1; q)2n1
(−1; q)2n2

· · · (−1; q)2nk
qn1+n2+···+nk

(−q; q)2n1
(−q; q)2n2

· · · (−q; q)2nk

.
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Thus (3.2) can be written as

1 +
∞∑
n=1

22k+2(−1)nq(
n+1
2 )+kn

(1 + qn)2k+1
(3.3)

=
(q; q)2∞

(−q; q)2∞

∑
nk≥nk−1≥···≥n1≥0

(−1; q)2n1
(−1; q)2n2

· · · (−1; q)2nk
qn1+n2+···+nk

(−q; q)2n1
(−q; q)2n2

· · · (−q; q)2nk

.

Now let us examine the term n1 = 0 on the right hand of (3.3), that is

(q; q)2∞
(−q; q)2∞

∑
nk≥nk−1≥···≥n2≥0

(−1; q)2n2
(−1; q)2n3

· · · (−1; q)2nk
qn2+n3+···+nk

(−q; q)2n2
(−q; q)2n3

· · · (−q; q)2nk

. (3.4)

Using (3.3) for k replaced by k − 1, we see that (3.4) is equal to

1 +
∞∑
n=1

22k(−1)nq(
n
2)+kn

(1 + qn)2k−1
.

Hence

(q; q)2∞
(−q; q)2∞

∑
nk≥nk−1≥···≥n1≥1

(−1; q)2n1
(−1; q)2n2

· · · (−1; q)2nk
qn1+n2+···+nk

(−q; q)2n1
(−q; q)2n2

· · · (−q; q)2nk

=
(

1 +
∞∑
n=1

22k+2(−1)nq(
n+1
2 )+kn

(1 + qn)2k+1

)
−
(

1 +
∞∑
n=1

22k(−1)nq(
n
2)+kn

(1 + qn)2k−1

)

=
∞∑
n=1

22k(−1)n−1q(
n
2)+kn(1− qn)2

(1 + qn)2k+1
.

(3.5)

Multiplying both sides of (3.5) by (−1)k/(q; q)∞, by Corollary 2.2 and the standard alge-
braic manipulation, we obtain (1.6). This is complete the proof of Theorem 1.3.

To estimate the sign of µ2k(−1, n), we need to reform (1.6) in Theorem 1.3 to (1.7) in
Theorem 1.4.

Proof of Theorem 1.4: By Theorem 1.3, it suffices to show that for k ≥ 0,∑
nk≥nk−1≥···≥n1≥1

(−1)kqn1+n2+···+nk

(1 + qn1)2(1 + qn2)2 · · · (1 + qnk)2

=
∑

mk>mk−1>···>m1≥1

(−1)mkm1(m2 −m1) · · · (mk −mk−1)q
mk

(1− qm1)(1− qm2) · · · (1− qmk)
. (3.6)
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In general, we wish to show that for m ≥ 0 and k ≥ 0,

∑
nk≥nk−1≥···≥n1≥1

(−1)kq(m+1)nk+nk−1+···+n1

(1 + qn1)2(1 + qn2)2 · · · (1 + qnk)2

=
∑

mk>mk−1>···>m1>m

(−1)mk−m(m1 −m)(m2 −m1) · · · (mk −mk−1)q
mk

(1− qm1)(1− qm2) · · · (1− qmk)
,

(3.7)

which turns to (3.6) when m = 0.

We proceed by induction on k. It is trivial for k = 0. For k = 1, it follows that

∑
n1≥1

−q(m+1)n1

(1 + qn1)2

=
∑
n1≥1

qmn1

∑
m1≥1

(−1)m1m1q
m1n1

=
∑
m1≥1

(−1)m1m1q
m+m1

1− qm+m1

=
∑

m1>m

(−1)m1−m(m1 −m)qm1

1− qm1
.

Thus (3.7) holds when k = 1.

Following the same argument as above, we could derive the following identity.

∑
n2≥n1

−q(m+1)n2

(1 + qn2)2
=
∑

m1>m

(−1)m1−m(m1 −m)qm1n1

1− qm1
. (3.8)

We assume that (3.7) holds for any positive integer k−1. It will be shown that it also
holds for k. Exchanging the order of summation, we get

∑
nk≥nk−1≥···≥n1≥1

(−1)kq(m+1)nk+nk−1+···+n1

(1 + qn1)2(1 + qn2)2 · · · (1 + qnk)2

=
∑

nk−1≥···≥n1≥1

(−1)k−1qn1+···+nk−1

(1 + qn1)2 · · · (1 + qnk−1)2

∑
nk≥nk−1

−q(m+1)nk

(1 + qnk)2

=
∑

nk−1≥···≥n1≥1

(−1)k−1qn1+···+nk−1

(1 + qn1)2 · · · (1 + qnk−1)2

∑
m1>m

(−1)m1−m(m1 −m)qm1nk−1

1− qm1
by (3.8)

=
∑

m1>m

(−1)m1−m(m1 −m)

1− qm1

∑
nk−1≥nk−2≥···≥n1≥1

(−1)k−1q(m1+1)nk−1+nk−2+···+n1

(1 + qn1)2 · · · (1 + qnk−1)2
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=
∑

m1>m

(−1)m1−m(m1 −m)

1− qm1

∑
mk>mk−1>···>m2>m1

(−1)mk−m1(m2 −m1) · · · (mk −mk−1)q
mk

(1− qm2) · · · (1− qmk)

=
∑

mk>mk−1>···>m1>m

(−1)mk−m(m1 −m)(m2 −m1) · · · (mk −mk−1)q
mk

(1− qm1)(1− qm2) · · · (1− qmk)
,

where the penultimate step follows by the induction hypothesis. Thus (3.7) holds for k,
which implies (3.6) holds for k. Therefore we have completed the proof of Theorem 1.4.

4 Proof of Theorem 1.2

In this section, we aim to prove Theorem 1.2 with the aid of Theorem 1.4.

Proof of Theorem 1.2. Replacing q by −q in (1.7), we find that

∞∑
n=0

(−1)nµ2k(−1, n)qn

=
(−q;−q)∞
(q;−q)2∞

∑
mk>mk−1>···>m1≥1

m1(m2 −m1) · · · (mk −mk−1)q
mk

(1− (−q)m1)(1− (−q)m2) · · · (1− (−q)mk)
. (4.1)

By the standard algebraic manipulations of the infinite products, we see that

(−q;−q)∞
(q;−q)2∞

= (−q; q2)∞(q2; q2)∞(−q; q2)2∞ (by Euler’s partition theorem)

= (−q; q2)∞
∞∑

n=−∞

qn
2

(by Jacobi’s triple product identity)

= (−q; q2)∞

(
1 + 2

∞∑
n=1

qn
2

)
.

Hence (4.1) becomes

∞∑
n=0

(−1)nµ2k(−1, n)qn

=

(
1 + 2

∞∑
n=1

qn
2

) ∑
mk>mk−1>···>m1≥1

m1(m2 −m1) · · · (mk −mk−1)q
mk(−q; q2)∞

(1− (−q)m1)(1− (−q)m2) · · · (1− (−q)mk)
.

Given mk > mk−1 > · · · > m1 ≥ 1, define∑
m≥0

fm1,m2,...,mk
(m)qm :=

(−q; q2)∞
(1− (−q)m1)(1− (−q)m2) · · · (1− (−q)mk)

.
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In the above sum, if mi is odd, then the term in the denominator can be canceled by
(−q; q2)∞, since the mi are all distinct. Thus, we deduce that fm1,m2,...,mk

(m) ≥ 0 and
fm1,m2,...,mk

(0) = 1, which impies (−1)nµ2k(−1, n) > 0 for any nonnegative integer n ≥ k.
Thus, we have completed the proof of Theorem 1.2.
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