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Abstract. By constructing a sign-reversing involution, we prove Warnaar’s identity
involving a partial theta function, which plays many important roles in the study of
asymptotic behaviors and quantum modularities in number theory. We also obtain a
Euler-like theorem for a certain kind of unimodal sequences from Warnaar’s identity.

1. Introduction

A partial theta function is a sum of the form
∞∑
n=0

qAn
2+Bnzn.

We can find many identities involving partial theta functions in Ramanujan’s lost
notebook [2]. Though recent studies on quantum modular forms [9, 13, 18, 20] and
asymptotics [8, 16, 17, 19] shed lights on the role of partial theta functions in number
theory and combinatorics, it is still far from the complete understanding of their roles.
In particular, in combinatorics, identities containing a partial theta function are very
interesting since they indicate what remains after numerous cancellations of certain
kinds of partitions. There have been extensive studies on finding combinatorial proofs
for these identities [1, 4, 5, 12]. However, as a slight change in an identity makes
dramatic changes in its combinatorial nature, finding a combinatorial proof of a new
partial theta function identity often gives new insights.

By employing Bailey’s Lemma, S.O. Warnaar [15] generalized partial theta function
identities of Ramanujan and obtained several new identities. In this paper, we will
discuss the following identity of Warnaar.

Theorem 1.1. [15, p. 380] We have
∞∑
n=0

(−1)nanqn
2+n =

∞∑
n=0

(q; q2)n(aq; q2)n(aq)n

(−aq; q)2n+1

, (1.1)

where

(a; q)n :=
n−1∏
j=0

(1− aqj).
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As mentioned in [15], when a = 1, Theorem 1.1 becomes an identity in Ramanujan’s
lost notebook [19, p. 13] proved by Andrews [2, Eq. (6.2)]. B.C. Berndt and the second
author [3] used (1.1) to show that the asymptotic expansion of a partial theta function
has integral coefficients. More precisely, via (1.1), one can show that(

1− t
1 + t

) 2b−1
4

∞∑
n=0

E2n

(2n)!22n
logn

(
1 + t

1− t

)
H2n

(
b− 1

2
log1/2

(
1 + t

1− t

))
has integral coefficients in t, for all positive integers b, where E2n denotes the 2n-th
Euler number, andHn(x) is the n-th Hermite polynomial. Moreover, at the same paper,
they proved that (1.1) can be used to obtain special values of L-series associated with
a polynomial. More recently, K. Brinmann, T. Creutzig, and L. Rolen [6] used (1.1) to
get the quantum modularity of the Fourier coefficients of a special kind of Jacobi form
of negative index.

The combinatorial nature of (1.1) is also very interesting. In the literature, most
partial theta function identities have been proved using a Franklin-type involution.
We use a successive chain of involutions to prove (1.1), which can be regarded as a
combinatorial telescoping method [10, 11]. In some sense, this is also a combinatorial
analogue of Bailey lemma or chains in q-series. We expect this new idea could be
applied to a wide variety of identities involving partial theta functions.

2. Combinatorial Proof for Theorem 1.1

By replacing a by b/q in (1.1), we obtain the following equivalent form with Theorem
1.1.

Theorem 2.1. We have∑
n≥0

bnqn
2

=
∑
n≥0

(−b)n(q; q2)n(−b; q2)n
(b; q)2n+1

.

In order to prove Theorem 2.1 we need several definitions.
For a sequence µ = (µ1, . . . , µn), not necessarily a partition, we define `(µ) = n and
|µ| = µ1 + µ2 + · · ·+ µn.

A good pair is a pair (λ, µ) of an overpartition λ and a sequence µ such that µi ∈
{0, 2i − 1} for i = 1, 2, . . . , `(µ), the largest part of λ is at most 2`(µ), and only
0, 2, 4, . . . , 2`(µ) − 2 can be overlined in λ. By overpartitions, we mean that we may
overline the first occurrence of each part. We denote by G the set of good pairs.

It is easy to see that

(−b)n(q; q2)n(−b; q2)n
(b; q)2n+1

=
∑

(λ,µ)∈G,`(µ)=n

b`(λ)+`(µ)q|λ|+|µ|(−1)zero(µ),

where zero(µ) is the number of 0’s in µ. Thus in order to prove Theorem 2.1 it suffices
to show the following identity:∑

(λ,µ)∈G

b`(λ)+`(µ)q|λ|+|µ|(−1)zero(µ) =
∑
n≥0

bnqn
2

. (2.1)
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Let Gk = {(λ, µ) ∈ G : `(λ) + `(µ) = k} and wt(λ, µ) = q|λ|+|µ|(−1)zero(µ). Then (2.1)
is equivalent to the following proposition.

Proposition 2.2. For a nonnegative integer k,∑
(λ,µ)∈Gk

wt(λ, µ) = qk
2

.

Let Gk,r be the set of (λ, µ) ∈ Gk such that the last r entries of µ are nonzero and λ
has no parts smaller than 2r. By definition we have Gk = Gk,0, and Gk,k has only one
element (∅, (1, 3, . . . , 2k − 1)). Thus∑

(λ,µ)∈Gk,0

wt(λ, µ) =
∑

(λ,µ)∈Gk

wt(λ, µ),
∑

(λ,µ)∈Gk,k

wt(λ, µ) = qk
2

.

Proposition 2.2 follows from the following lemma.

Lemma 2.3. Let 0 ≤ r < k. Then∑
(λ,µ)∈Gk,r

wt(λ, µ) =
∑

(λ,µ)∈Gk,r+1

wt(λ, µ).

Proof. Note that Gk,r+1 ⊆ Gk,r. We will find a sign-reversing involution φ on Gk,r with
fixed point set Gk,r+1. In other words, for (λ, µ) ∈ Gk,r, if φ(λ, µ) = (λ′, µ′) 6= (λ, µ),
then wt(λ′, µ′) = −wt(λ, µ), and φ(λ, µ) = (λ, µ) if and only if (λ, µ) ∈ Gk,r+1. The
existence of such an involution clearly implies the desired identity.

Let (λ, µ) ∈ Gk,r and n = `(µ). Then λ1 ≤ 2n and µn = 2n − 1, µn−1 = 2n −
3, . . . , µn−r+1 = 2n− 2r + 1.

We first divide the set Gk,r into following disjoint subsets according to whether 2r is
a part of λ and the size of µn−r. Here, for a partition ν and an integer i, i ∈ ν means
that ν has a part i, and i 6∈ ν means that ν does not have a part i.

A := {(λ, µ) ∈ Gk,r : 2r ∈ λ},
B := {(λ, µ) ∈ Gk,r : 2r 6∈ λ, r = n},
C := {(λ, µ) ∈ Gk,r : 2r 6∈ λ, r 6= n, µn−r = 0},
D := {(λ, µ) ∈ Gk,r : 2r 6∈ λ, r 6= n, µn−r = 2n− 2r − 1}.

We note that, for (λ, µ) ∈ A, it must be r 6= n since 2n 6∈ λ. Next we further divide
the set C into seven disjoint sets.

C1 := {(λ, µ) ∈ C : λ1 = 2n, 2r ∈ λ},
C2 := {(λ, µ) ∈ C : λ1 = 2n, 2r 6∈ λ},
C3 := {(λ, µ) ∈ C : λ1 = 2n− 1},
C4 := {(λ, µ) ∈ C : λ1 ≤ 2n− 2, 2n− 2 ∈ λ, µn−r−1 = 0},
C5 := {(λ, µ) ∈ C : λ1 ≤ 2n− 2, 2n− 2 ∈ λ, µn−r−1 6= 0},
C6 := {(λ, µ) ∈ C : λ1 ≤ 2n− 2, 2n− 2 6∈ λ, r = n− 1},
C7 := {(λ, µ) ∈ C : λ1 ≤ 2n− 2, 2n− 2 6∈ λ, r 6= n− 1}.
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We note that for the sets C4 and C5, we do not need to consider the case r = n − 1
because this gives a contradiction 2n− 2 = 2r 6∈ λ. Finally, we divide the set D into
four disjoint sets.

D1 := {(λ, µ) ∈ D : 2r ∈ λ, λ1 = 2n},
D2 := {(λ, µ) ∈ D : 2r ∈ λ, λ1 < 2n},
D3 := {(λ, µ) ∈ D : 2r 6∈ λ, 2r + 1 ∈ λ},
D4 := {(λ, µ) ∈ D : 2r 6∈ λ, 2r + 1 6∈ λ} = Gk,r+1.

We define φ(λ, µ) = (λ′, µ′) as follows. Here, for a partition ν and an integer i, we
denote by ν + (i) (respectively ν − (i)) the partition obtained from ν by adding a part
i (respectively removing a part i).

Now we begin to construct the map φ(λ, µ) = (λ′, µ′) on the thirteen disjoint subsets
of Gk,r.
The case (λ, µ) ∈ A. We define

λ′ = λ− (2r), µ′ = (µ1, . . . , µn−r, 0, µn−r+1 + 2, . . . , µn + 2).

Then we have (λ′, µ′) ∈ C7.
The case (λ, µ) ∈ C7. In this case we define

λ′ = λ+ (2r), µ′ = (µ1, . . . , µn−r−1, µn−r+1 − 2, . . . , µn − 2).

Then we have (λ′, µ′) ∈ A.
The case (λ, µ) ∈ B. In this case, µ = (1, 3, . . . , 2r − 1) and λ = (2r, . . . , 2r︸ ︷︷ ︸

k−r

). We

define

λ′ = λ− (2r), µ′ = (0, 3, 5, . . . , 2n+ 1).

Then we have (λ′, µ′) ∈ C6.

The case (λ, µ) ∈ C6. In this case we have λ = (

k−n︷ ︸︸ ︷
2r, . . . , 2r) and µ = (0, 3, 5, . . . , 2n−1).

We define

λ′ = λ+ (2r), µ′ = (1, 3, . . . , 2n− 3).

Then we have (λ′, µ′) ∈ B.
The case (λ, µ) ∈ C1. In this case we define

λ′ = λ− (2r)− (2n) + (2n),

µ′ = (µ1, . . . , µn−r−1, µn−r, 0, µn−r+1 + 2, . . . , µn + 2).

Then we have (λ′, µ′) ∈ C4.
The case (λ, µ) ∈ C4. In this case, we define

λ′ = λ+ (2r)− (2n− 2) + (2n− 2),

µ′ = (µ1, . . . , µn−r−1, µn−r+1 − 2, µn−r+2 − 2, . . . , µn − 2).

Then we have (λ′, µ′) ∈ C1.
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The case (λ, µ) ∈ C2. In this case we define

λ′ = λ− (2n) + (2r + 1),

µ′ = (µ1, . . . , µn−r−1, 2n− 2r − 1, µn−r+1, . . . , µn).

Then we have (λ′, µ′) ∈ D3.
The case (λ, µ) ∈ D3. In this case we define

λ′ = λ− (2r + 1) + (2n),

µ′ = (µ1, . . . , µn−r−1, 0, µn−r+1, . . . , µn).

Then we have (λ′, µ′) ∈ C2.
The case (λ, µ) ∈ C3. In this case we define

λ′ = λ− (2n− 1) + (2r),

µ′ = (µ1, . . . , µn−r−1, 2n− 2r − 1, µn−r+1, . . . , µn).

Then we have (λ′, µ′) ∈ D2.
The case (λ, µ) ∈ D2. In this case we define

λ′ = λ− (2r) + (2n− 1),

µ′ = (µ1, . . . , µn−r−1, 0, µn−r+1, . . . , µn).

Then we have (λ′, µ′) ∈ C3.
The case (λ, µ) ∈ C5. In this case we define

λ′ = λ+ (2r)− (2n− 2) + (2n− 2),

µ′ = (µ1, . . . , µn−r−1, µn−r+1 − 2, . . . , µn − 2).

Then we have (λ′, µ′) ∈ D1.
The case (λ, µ) ∈ D1. In this case we define

λ′ = λ− (2r)− (2n) + (2n),

µ′ = (µ1, . . . , µn−r, 0, µn−r+1 + 2, . . . , µn + 2).

Then we have (λ′, µ′) ∈ C5.
The case (λ, µ) ∈ D4. In this case we define (λ′, µ′) = (λ, µ).

It is straightforward to check that φ is a sign-reversing involution φ on Gk,r with fixed
point set Gk,r+1 = D4. More precisely, φ fixes only the set D4 and maps bijectively A
to C7, B to C6, C1 to C4, C2 to D3, C3 to D2, and C5 to D1. �

For example, for k = 4 and r = 1, there are eight elements (λ, µ) in the set G4,1 \
G4,2 such that |λ| + |µ| = 9. Applying the above involution φ, we get the following
correspondence.

A 3 ((4, 2), (0, 3)) 
 ((4), (0, 0, 5)) ∈ C7,
A 3 ((3, 2), (1, 3)) 
 ((3), (1, 0, 5)) ∈ C7,
C3 3 ((3, 3), (0, 3)) 
 ((3, 2), (1, 3)) ∈ D2,

C1 3 ((4, 2), (0, 3)) 
 ((4), (0, 0, 5)) ∈ C4.
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3. A connection with unimodal sequences

A unimodal sequence is a sequence w = (a1, a2, . . . , ar, c, b1, b2, . . . , bs) of nonnegative
integers with a marked integer c called the peak satisfying

a1 ≤ a2 ≤ · · · ≤ ar ≤ c ≥ b1 ≥ b2 ≥ · · · ≥ bs. (3.1)

In this case we say that the sequence has weight |w| = c+
∑r

i=1 ai +
∑s

i=1 bi and rank
rank(w) = r − s. Various unimodal sequences and their ranks have attracted many
researchers [7, 8, 9, 13]. By replacing a by q in Warnaar’s identity, we see that

∞∑
n=0

(q; q)2nq
2n+2

(−q2; q)2n+1

=
∞∑
n=0

(−1)nq(n+1)2+1. (3.2)

Let W (n) be the set of unimodal sequences (a1, a2, . . . , ar, c, b1, b2, . . . , bs) of weight
n such that the peak c is an even integer at least 2, 0 ≤ a1 < a2 < · · · < ar ≤ c − 2,
and c ≥ b1 ≥ b2 ≥ · · · ≥ bs ≥ 2. Then, it is easy to check that the left hand side of
(3.2) is equal to the generating function

∞∑
n=0

∑
w∈W (n)

(−1)rank(w)q|w|.

Therefore, we get the following analog of Euler’s pentagonal number theorem.

Theorem 3.1. Let We(n) (respectively Wo(n)) be the set of unimodal sequences in
W (n) with even rank (respectively odd rank). Then,

|We(n)| − |Wo(n)| =

{
(−1)k−1, if n− 1 = k2 for a positive integer k,

0, otherwise.

It is natural to consider the following generating function
∞∑
n=0

∑
w∈W (n)

arank(w)q|w| =
∞∑
n=0

(−aq; q)2nq2n+2

(q2/a; q)2n+1

.

However, since every term in the right hand side has a positive coefficient, there is no
cancelation. Hence the above generating function is not a partial theta function.

4. Concluding Remarks

In this paper we gave a combinatorial proof of Warnaar’s partial theta function
identity (1.1). It would be interesting to find a class of partial theta function identities,
which can be proven through the arguments given in this paper.
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