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Abstract. Recently, Garvan obtained two-variable Hecke-Rogers identities for three uni-
versal mock theta functions g2(z; q), g3(z; q), K(z; q) by using basic hypergeometric func-
tions, and he proposed a problem of finding direct proofs of these identities by using Bailey
pair technology. In this paper, we give proofs of Garvan’s identities by applying Bailey’s
transform with the conjugate Bailey pair of Warnaar and three Bailey pairs deduced from
two special cases of 6ψ6 given by Slater. In particular, we obtain a compact form of
two-variable Hecke-Rogers identity related to g3(z; q), which implies the corresponding
identity given by Garvan. We also extend these two-variable Hecke-Rogers identities into
infinite families.
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1 Introduction

This paper is concerned with two-variable Hecke-Rogers identities for the universal mock
theta functions due to Garvan [10]. Recall that universal mock theta functions are defined
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by Gordon and McIntosh [11] and Hickerson [13] as

g2(z; q) =
∞∑
n=0

(−q; q)nq
1
2
n(n+1)

(z; q)n+1(z−1q; q)n+1

,

g3(z; q) =
∞∑
n=0

qn(n+1)

(z; q)n+1(z−1q; q)n+1

,

K(z; q) =
∞∑
n=0

(−1)n(q; q2)nq
n2

(zq2; q2)n(z−1q2; q2)n
.

Here and throughout the paper, we adopt the standard notation on q-series [1, 9].

(a; q)∞ =
∞∏
n=0

(1− aqn),

(a; q)n =
(a; q)∞
(aqn; q)∞

,

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n,

and
(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

Gordon and McIntosh [11] and Hickerson [13] noticed that all of Ramanujan’s mock
theta functions can be written in terms of g2(z; q) and g3(z; q), that is why these two
functions are called universal mock theta functions. The function K(z; q) first appears in
Ramanujan’s lost notebook [2] and is related by modular transformation to the universal
mock theta function g2(z; q) in [16]. For a summary of mock theta functions, see Gordon
and McIntosh [11] or Hickerson and Mortenson [14].

In [10], Garvan first obtained four Hecke-Rogers identities for these three universal
mock theta functions, which can be viewed as two-variable generalizations of Hecke-Rogers
identities. These identities can also be used to establish Hecke-Rogers-type double sum
representation for each of Ramanujan’s mock theta functions.

More specifically, Garvan [10] considered the Dyson rank function R(z; q) defined by

R(z; q) =
∞∑
n=0

qn
2

(zq; q)n(z−1q; q)n
,

which has the following relation with g3(z; q).

g3(z; q) = −1

z
+

1

z(1− z)
R(z; q).
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He obtained the following Hecke-Rogers identity for R(z; q) [10, Eq. (1.15)].

(zq, z−1q, q; q)∞R(z; q)

= (zq, z−1q, q; q)∞

∞∑
n=0

qn
2

(zq; q)n(z−1q; q)n

=
1

2

∞∑
n=0

[n/2]∑
j=0

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j)

+

[n/2]∑
j=1

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j)

 . (1.1)

Putting z = 1 in (1.1) and noting that R(1; q) = 1/(q; q)∞, we can recover the following
celebrated Hecke-Rogers identity [12, Eq. (7); 18, p. 323]

(q; q)2∞ =
∞∑
n=0

[n/2]∑
j=−[n/2]

(−1)n+jq
1
2
(n2−3j2)+ 1

2
(n+j). (1.2)

Garvan [10] also considered the overpartition rank function H(z; q) defined by

H(z; q) =
∞∑
n=0

(−1; q)nq
1
2
n(n+1)

(zq; q)n(z−1q; q)n
, (1.3)

which has the following relation with g2(z; q) [16].

(1 + z)H(z; q) = (1− z) + 2z(1− z)g2(z; q). (1.4)

The following Hecke-Rogers identity for H(z; q) is given by Garvan [10, Eqs. (1.16)–
(1.17)].

(1 + z)(zq, z−1q, q; q)∞H(z; q)

= (1 + z)(zq, z−1q, q; q)∞

∞∑
n=0

(−1; q)nq
1
2
n(n+1)

(zq; q)n(z−1q; q)n

=
∞∑
n=0

∑
|m|6[n/2]

(−1)n+m(zn−2|m|+1 + z2|m|−n)q
1
2
(n2−2m2)+ 1

2
n (1.5)

=
∞∑
n=0

∑
|m|6[n/3]

(−1)n(zn−4|m|+1 + z4|m|−n)q
1
2
(n2−8m2)+ 1

2
n. (1.6)

Letting z = 1 in (1.5) and (1.6), and using the fact that H(1; q) = (q2; q2)∞/(q; q)
2
∞,

we get the following two Hecke-Rogers type identities given by Kac and Peterson [3, Eq.
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(3.16); 14, final equation].

(q; q)∞(q2; q2)∞ =
∞∑
n=0

∑
|m|6[n/2]

(−1)n+mq
1
2
(n2−2m2)+ 1

2
n, (1.7)

(q; q)∞(q2; q2)∞ =
∞∑
n=0

∑
|m|6[n/3]

(−1)nq
1
2
(n2−8m2)+ 1

2
n. (1.8)

For K(z; q), Garvan [10, Eq. (1.18)] established the following identity.

(zq2, z−1q2, q2; q2)∞K(z; q)

= (zq2, z−1q2, q2; q2)∞

∞∑
n=0

(−1)nqn
2
(q; q2)n

(zq2; q2)n(z−1q2; q2)n

=
∞∑
n=0

(
n∑

m=0

(−1)nzm−nq
1
2
(2n2−m2)+ 1

2
(2n−m) +

n∑
m=1

(−1)nzn−m+1q
1
2
(2n2−m2)+ 1

2
(2n+m)

)
.

(1.9)

Setting z = 1 in (1.9), and noting thatK(1; q) = (q; q)∞/(q
2; q2)2∞, we obtain the following

Hecke-Rogers type identity due to Bressoud [7, Eq. (3.8)].

(q; q)∞(q2; q2)∞ =
∞∑
n=0

n∑
m=−n

(−1)nq
1
2
(2n2−m2)+ 1

2
(2n+m). (1.10)

In [10], Garvan showed that (1.5) and (1.6) are equivalent with the aid of a transform
of Milne [17]. He then proved (1.1), (1.5) and (1.9) are valid by showing the coefficients of
zk on both sides of these identities are equal. At the end of his paper, Garvan proposed
a problem of finding direct proofs of these three identities by the method of Bailey pairs.
In this paper, we will show these identities hold by applying Bailey’s transform with a
conjugate Bailey pair of Warnaar [22] and three Bailey pairs derived from three identities
of Slater [20]. In particular, we obtain a more compact form of Hecke-Rogers identity for
R(z; q).
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Theorem 1.1. We have

(zq, z−1q, q; q)∞R(z; q)

=
∞∑
n=0

[n/2]∑
j=0

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j) +

[n/2]∑
j=1

(−1)n+jzn−3j+1q
1
2
(n2−3j2)+ 1

2
(n+j)


(1.11)

=
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j) +

∞∑
j=0

q3j
2+j

+
∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j) −

∞∑
j=1

q3j
2−j. (1.12)

Note that Garvan’s identity (1.1) can immediately follow from (1.11). To be specific,
if we replace z by z−1 in (1.11), we get

(zq, z−1q, q; q)∞R(z
−1; q) (1.13)

=
∞∑
n=0

[n/2]∑
j=0

(−1)n+jz−n+3jq
1
2
(n2−3j2)+ 1

2
(n−j) +

[n/2]∑
j=1

(−1)n+jz−n+3j−1q
1
2
(n2−3j2)+ 1

2
(n+j)

 .

Combining (1.11) and (1.13), and noting R(z; q) = R(z−1; q), we get Garvan’s identity
(1.1).

Using the Bailey machinery, we obtain the following Hecke-Rogers identity for g2(z; q).

Theorem 1.2. We have

(1− z)(zq, z−1q, q; q)∞g2(z; q)

=
∞∑
n=0

[n/2]∑
m=0

(−1)m+nzn−2mq
1
2
(n2−2m2)+ 1

2
n +

[n/2]∑
m=1

(−1)m+nz2m−n−1q
1
2
(n2−2m2)+ 1

2
n

 .
(1.14)

When substitute (1.14) into the relation (1.4), and employ Jacobi’s triple product
identity, we derive Garvan’s identity (1.5).

More generally, we generalized these two-variable Hecke-Rogers identities to infinite
families. The next theorem embeds (1.12) into an infinite family.
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Theorem 1.3. For k ≥ 2, we have

(zq, z−1q, q; q)∞

∞∑
n=0

(q; q)2nq
n

(zq; q)n(z−1q; q)n

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−2+2N2
k−1+N1+···+Nk−2

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

=
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j)+3(k−1)j(3j+1)

+
∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j)+3(k−1)j(3j−1)

+
∞∑
j=0

q(3k−2)j(3j+1) −
∞∑
j=1

q(3k−2)j(3j−1), (1.15)

where Nj = nj + nj+1 + · · ·+ nk−1.

We extends (1.14) into an infinite family.

Theorem 1.4. For k ≥ 2, we have

(zq, z−1q, q; q)∞

∞∑
n=0

(q2; q)2nq
n

(zq; q)n(z−1q; q)n+1

×
∞∑

n1,...,nk−1=0

qN
2
1+···+N2

k−2+
3
2
N2

k−1+2(N1+···+Nk−2)+
3
2
Nk−1(−q; q)nk−1

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q2; q)2nk−1

=
∞∑
n=0

[n/2]∑
m=0

(−1)m+nzn−2mq
1
2
(n2−2m2)+ 1

2
n+4(k−1)(m2+m)

+

[n/2]∑
m=1

(−1)m+nz2m−n−1q
1
2
(n2−2m2)+ 1

2
n+4(k−1)(m2−m)

 , (1.16)

where Nj = nj + nj+1 + · · ·+ nk−1.

Finally, we generalize (1.9) to an infinite family.
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Theorem 1.5. For k ≥ 2, we have

(zq2, z−1q2, q2; q2)∞

∞∑
n=0

(q2; q2)2nq
2n

(zq2; q2)n(z−1q2; q2)n

×
∞∑

n1,...,nk−1=0

(−1)nk−1q2N
2
1+···+2N2

k−2+3N2
k−1+2N1+···+2Nk−2(q; q2)nk−1

(q2; q2)n−N1(q
2; q2)n1 · · · (q2; q2)nk−2

(q2; q2)2nk−1

=
∞∑
n=0

(
n∑

m=0

(−1)nzm−nq
1
2
(2n2−m2)+ 1

2
(2n−m)+2(k−1)(m2+m)

+
n∑

m=1

(−1)nzn−m+1q
1
2
(2n2−m2)+ 1

2
(2n+m)+2(k−1)(m2−m)

)
, (1.17)

where Nj = nj + nj+1 + · · ·+ nk−1.

2 Conjugate Bailey pairs and Bailey pairs

In this section, we present a conjugate Bailey pair and three Bailey pairs which are needed
in the proof of Hecke-Rogers identities for the universal mock theta functions. Recall that
a pair of sequences (δn, γn) is called a conjugate Bailey pair relative to a if they satisfy

γn =
∞∑
r=n

δr
(q; q)r−n(aq; q)r+n

. (2.1)

A pair of sequences (αn, βn) is called a Bailey pair relative to a if they satisfy

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r

. (2.2)

From the definitions of Bailey pairs and conjugate Bailey pairs, one could easily ob-
tain the following transform first presented by Bailey in [6, p. 1] and known as Bailey’s
transform [21, Section 2.4, pp. 58–74].

Theorem 2.1 (The Bailey transform). If (αn, βn) is a Bailey pair relative to a and (γn, δn)
is a conjugate Bailey pair relative to a. Then we have

∞∑
n=0

αnγn =
∞∑
n=0

βnδn.

We first state a conjugate Bailey pair which is needed in the proof of Garvan’s three
identities. The proof of this conjugate Bailey pair is mainly based on the following gener-
alization of Jacobi’s triple product identity given by Warnaar [22, Theorem 1.5]. Andrews
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and Warnaar provided an alternative proof of this identity in [5].

1 +
∞∑
r=1

(−1)rq(
r
2)(ar + br) = (a, b, q; q)∞

∞∑
r=0

(ab/q; q)2rq
r

(q, a, b, ab; q)r
. (2.3)

Setting a = z and b = z−1q in (2.3), we obtain Jacobi’s triple product [9, p.15]

1 +
∞∑
r=1

(−1)rq(
r
2)(zr + z−rqr) = (z, z−1q, q; q)∞. (2.4)

Lemma 2.2. The following pair of sequences (δn, γn) forms a conjugate Bailey pair rel-
ative to ab, where

δn = (aq, b, q; q)∞
(ab; q)2nq

n

(aq; q)n(b; q)n
,

and

γn =
(1− ab)qn

1− abq2n

(
1 +

∞∑
r=1

(−1)rq(
r
2)((aqn+1)r + (bqn)r)

)
.

Proof. By the definition of conjugate Bailey pair, we see that

γn =
∞∑
r=n

δr
(q; q)r−n(abq; q)r+n

= (aq, b, q; q)∞

∞∑
r=n

(ab; q)2rq
r

(q; q)r−n(abq; q)r+n(aq; q)r(b; q)r

= (aq, b, q; q)∞

∞∑
r=0

(ab; q)2n+2rq
r+n

(q; q)r(abq; q)r+2n(aq; q)r+n(b; q)r+n

= (aq, b, q; q)∞
(ab; q)2nq

n

(abq; q)2n(aq; q)n(b; q)n

∞∑
r=0

(abq2n; q)2rq
r

(q, abq2n+1, aqn+1, bqn; q)r

=
(1− ab)qn

1− abq2n
(aqn+1, bqn, q; q)∞

∞∑
r=0

(abq2n; q)2rq
r

(q, abq2n+1, aqn+1, bqn; q)r
.

Using (2.3) with a replaced by aqn+1 and b by bqn in the summation of the above identity,
we derive that

γn =
(1− ab)qn

1− abq2n
(aqn+1, bqn, q; q)∞

1

(aqn+1, bqn, q; q)∞

×

(
1 +

∞∑
r=1

(−1)rq(
r
2)((aqn+1)r + (bqn)r)

)

=
(1− ab)qn

1− abq2n

(
1 +

∞∑
r=1

(−1)rq(
r
2)((aqn+1)r + (bqn)r)

)
,

as desired. This completes the proof.
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To derive (1.12), we also need the following Bailey pair given by Warnaar [22, p. 375],
which can be established by an identity of Slater [20, Eq. (3.4)].

Lemma 2.3. The following pair of sequences (αn, βn) forms a Bailey pair relative to q,
where

α3n = q(3n−2)n1− q6n+1

1− q
, α3n+1 = 0, α3n+2 = −q(3n+2)n1− q6n+5

1− q
,

βn =
qn(n−1)

(q; q)2n
.

The following Bailey pair is necessary in the proof of (1.14). The proof of this Bailey
pair is mainly based on a special case of 6ψ6 given by Slater [20, Eq. (4.2)]:

[n/2]∑
r=−[n/2]

(1− aq4r)(q−n; q)2r(d; q
2)r(e; q

2)r
(1− a)(aqn+1; q)2r(aq2/d; q2)r(aq2/e; q2)r

(
a2q2n+1

de

)r

(2.5)

=
(q2/a, aq/d, aq/e, aq2/de; q2)∞
(q, q2/d, q2/e, a2q/de; q2)∞

· (q; q)n(aq; q)n(a
2q/de; q2)n

(aq; q2)n(aq/d; q)n(aq/e; q)n
.

Lemma 2.4. The following pair of sequences (αn, βn) forms a Bailey pair relative to q2,
where

α2n = (−1)nqn
2−n1− q4n+2

1− q2
, α2n+1 = 0,

βn =
(−q; q)nq(

n
2)

(q2; q)2n
.

(2.6)

Proof. In (2.5), letting a = d = q2, e→ 0 and noting that 1/(q2; q2)n = 0 when n < 0, we
obtain

[n/2]∑
r=0

(1− q4r+2)(q−n; q)2r(−1)rq2nr−r2

(1− q2)(qn+3; q)2r
=

(q3; q)nq
(n2)

(q3; q2)n
.

Divide both sides of the above identity by (q; q)n(q
3; q)n to get

[n/2]∑
r=0

1

(q; q)n−2r(q3; q)n+2r

(1− q4r+2)(−1)rqr
2−r

1− q2
=

(−q; q)nq(
n
2)

(q2; q)2n
,

which yields the desired Bailey pair. This completes the proof.

To verify (1.9), we require the following Bailey pair.
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Lemma 2.5. The following pair of sequences (αn, βn) forms a Bailey pair relative to q ,
where

αn = (−1)nq
n2−3n

4
1− q2n+1

1− q
,

βn =
(−1)nq

n2

2
−n(q

1
2 ; q)n

(q; q)2n
.

(2.7)

Proof. In (2.5), set a = q, d = −q3/2 and e→ 0 to get

[n/2]∑
r=−[n/2]

(1− q4r+1)(q−n; q)2rq
2nr− 1

2
r−r2

(1− q)(qn+2; q)2r
=

(q; q)n(q
2; q)n(−1)nq

n2

2
−n

(q2; q2)n(−q
1
2 ; q)n

.

Dividing both sides of the above identity by (q; q)n(q
2; q)n, we obtain

[n/2]∑
r=−[n/2]

(1− q4r+1)qr
2− 3

2
r

(q; q)n+2r+1(q; q)n−2r

=
(−1)nq

n2

2
−n(q

1
2 ; q)n

(q; q)2n
.

Simplifying the left hand side of the above identity yields

[n/2]∑
r=−[n/2]

(1− q4r+1)qr
2− 3

2
r

(q; q)n+2r+1(q; q)n−2r

=
1

(q2; q)n(q; q)n
+

[n/2]∑
r=1

(1− q4r+1)qr
2− 3

2
r

(q; q)n+2r+1(q; q)n−2r

+
−1∑

r=−[n/2]

(1− q4r+1)qr
2− 3

2
r

(q; q)n+2r+1(q; q)n−2r

=
1

(q2; q)n(q; q)n
+

[n/2]∑
r=1

(1− q4r+1)qr
2− 3

2
r

(q; q)n+2r+1(q; q)n−2r

−
[n/2]∑
r=1

(1− q4r−1)qr
2− 5

2
r+1

(q; q)n−2r+1(q; q)n+2r

=
n∑

r=0

1

(q; q)n−r(q2; q)n+r

(1− q2r+1)(−1)rq
r2−3r

4

1− q
.

Hence, we have

n∑
r=0

1

(q; q)n−r(q2; q)n+r

(1− q2r+1)(−1)rq
r2−3r

4

1− q
=

(−1)nq
n2

2
−n(q

1
2 ; q)n

(q; q)2n
,

which yields the desired Bailey pair. This completes the proof.

To get an infinite family of Hecke-Rogers identities, we need the following limiting
form of Bailey’s lemma [4,18].
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Theorem 2.6. Supposed (αn, βn) is a Bailey pair relative to a. Then (α′
n, β

′
n) is a new

Bailey pair relative to a, where

α′
n = anqn

2

αn

and

β′
n =

∞∑
j=0

ajqj
2

(q; q)n−j

βj.

Iterating this lemma leads to the Bailey chain. We now produce the following infinite
sequence of Bailey pairs by iterating the Bailey pair in Lemma 2.3 along this Bailey chain.

Lemma 2.7. For k ≥ 2, (α
(k)
n , β

(k)
n ) form Bailey pairs relative to q, where

α
(k)
3n = q3(3k−2)n2+(3k−5)n1− q6n+1

1− q
, α

(k)
3n+1 = 0,

α
(k)
3n+2 = −q3(3k−2)n2+(15k−13)n+6(k−1)1− q6n+5

1− q
,

β(k)
n =

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−2+2N2
k−1+N1+···+Nk−2

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1.

Proof. We proceed by induction on k. When k = 2. Applying Theorem 2.6 to the Bailey
pair in Lemma 2.3, we obtain a new Bailey pair (α

(2)
n , β

(2)
n ) relative to q, where

α
(2)
3n = q9n

2+3n × q(3n−2)n1− q6n+1

1− q
= q12n

2+n1− q6n+1

1− q
, α

(2)
3n+1 = 0,

α
(2)
3n+2 = q(3n+2)(3n+3) ×

(
−q(3n+2)n1− q6n+5

1− q

)
= −q12n2+17n+61− q6n+5

1− q

and

β(2)
n =

n∑
j=0

q2j
2

(q; q)n−j(q; q)2j
=

∞∑
j=0

q2j
2

(q; q)n−j(q; q)2j
,

as desired.

Assume that we have a Bailey pair (α
(k−1)
n , β

(k−1)
n ) relative to q, where

α
(k−1)
3n = q3(3k−5)n2+(3k−8)n1− q6n+1

1− q
, α

(k−1)
3n+1 = 0,

α
(k−1)
3n+2 = −q3(3k−5)n2+(15k−28)n+6(k−2)1− q6n+5

1− q
,

β(k−1)
n =

∞∑
n′
1,...,n

′
k−2=0

qN
′2
1 +···+N ′2

k−3+2N ′2
k−2+N ′

1+···+N ′
k−3

(q; q)n−N ′
1
(q; q)n′

1
· · · (q; q)n′

k−3
(q; q)2n′

k−2

,

11



where N ′
j = n′

j + n′
j+1 + · · ·+ n′

k−2.

When we apply Theorem 2.6 to this Bailey pair, we arrive at a new Bailey pair
(α

(k)
n , β

(k)
n ) relative to q, where for α

(k)
n , we have

α
(k)
3n = q9n

2+3nα
(k−1)
3n

= q9n
2+3n+3(3k−5)n2+(3k−8)n1− q6n+1

1− q

= q3(3k−2)n2+(3k−5)n1− q6n+1

1− q
,

α
(k)
3n+1 = 0,

α
(k)
3n+2 = q3(n+1)(3n+2)α

(k−1)
3n+2

= −q3(n+1)(3n+2)+3(3k−5)n2+(15k−28)n+6(k−2)1− q6n+5

1− q

= −q3(3k−2)n2+(15k−13)n+6(k−1)1− q6n+5

1− q
.

For β
(k)
n , we have

β(k)
n =

∞∑
n′
k−1=0

qn
′2
k−1+n′

k−1

(q; q)n−n′
k−1

β
(k−1)

n′
k−1

=
∞∑

n′
k−1=0

qn
′2
k−1+n′

k−1

(q; q)n−n′
k−1

∞∑
n′
1,...,n

′
k−2=0

qN
′2
1 +···+N ′2

k−3+2N ′2
k−2+N ′

1+···+N ′
k−3

(q; q)n′
k−1−N ′

1
(q; q)n′

1
· · · (q; q)n′

k−3
(q; q)2n′

k−2

.

Recall that N ′
j = n′

j + n′
j+1 + · · ·+ n′

k−2 for 1 ≤ j ≤ k − 2. Let

n1 = n′
k−1 −N ′

1, n2 = n′
1, n3 = n′

2, . . . , nk−1 = n′
k−2,

and set Nj = nj + nj+1 + · · ·+ nk−1 for 1 ≤ j ≤ k − 1. Obviously, we have

N2 = N ′
1, N3 = N ′

2, . . . , Nk−1 = N ′
k−2, N1 = n′

k−1,

and so

β(k)
n =

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−2+2N2
k−1+N1+···+Nk−2

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

.

This completes the proof.

The following infinite sequence of Bailey pairs can be obtained from the Bailey pair
in Lemma 2.4 along the same line.

12



Lemma 2.8. For k ≥ 2, (α
(k)
n , β

(k)
n ) form Bailey pairs relative to q2, where

α
(k)
2n = (−1)nq(4k−3)n2+(4k−5)n1− q4n+2

1− q2
, α

(k)
2n+1 = 0,

β(k)
n =

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−2+
3
2
N2

k−1+2(N1+···+Nk−2)+
3
2
Nk−1(−q; q)nk−1

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q2; q)2nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1.

Similarly, we obtain the following infinite sequence of Bailey pairs from the Bailey pair
in Lemma 2.5 which are used to establish the infinite family in Theorem 1.5.

Lemma 2.9. For k ≥ 2, (α
(k)
n , β

(k)
n ) form Bailey pairs relative to q, where

α(k)
n = (−1)nq

4k−3
4

n2+ 4k−7
4

n1− q2n+1

1− q
,

β(k)
n =

∞∑
n1,...,nk−1=0

(−1)nk−1qN
2
1+···+N2

k−2+
3
2
N2

k−1+N1+···+Nk−2(q
1
2 ; q)nk−1

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1.

3 A two-variable Hecke-Rogers identity for R(z; q) and

generalization

In this section, we first give a proof of (1.12) in Theorem 1.1 by using the Bailey transform
with the conjugate Bailey pair in Lemma 2.2 and the Bailey pair in Lemma 2.3. We
then show that (1.11) can be derived from (1.12) with the aid of two identities given by
Garvan [10]. Finally, we give a proof of Theorem 1.3.

Proof of Theorem 1.1, Eq. (1.12). Combining the Bailey transform with the Bailey pairs
in Lemma 2.3 and the conjugate Bailey pair in Lemma 2.2 with a = z, and b = z−1q, we
obtain

∞∑
n=0

βnδn = (zq, z−1q, q; q)∞

∞∑
n=0

qn
2

(zq; q)n(z−1q; q)n

=
∞∑
j=0

α3jγ3j +
∞∑
j=1

α3j−1γ3j−1

=
∞∑
j=0

qj(3j−2)+3j

(
1 +

∞∑
n=1

(−1)nq(
n
2)((zq3j+1)n + (z−1q3j+1)n)

)

−
∞∑
j=1

q(j−1)(3j−1)+(3j−1)

(
1 +

∞∑
n=1

(−1)nq(
n
2)((zq3j)n + (z−1q3j)n)

)
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=
∞∑
j=0

∞∑
n=1

(−1)n(zn + z−n)q(
n+1
2 )+3j2+j+3nj +

∞∑
j=0

q3j
2+j

+
∞∑
j=1

∞∑
n=1

(−1)n−1(zn + z−n)q(
n
2)+3j2−j+3nj −

∞∑
j=1

q3j
2−j. (3.1)

Replace n by n− 3j in the first sum of (3.1) and interchange the order of summation to
get

∞∑
j=0

∞∑
n=1

(−1)n(zn + z−n)q(
n+1
2 )+3j2+j+3nj

=
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j). (3.2)

Replace n by n−3j+1 in the third sum of (3.1) and interchange the order of summation
to yield

∞∑
j=1

∞∑
n=1

(−1)n−1(zn + z−n)q(
n
2)+3j2−j+3nj

=
∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j). (3.3)

Plugging (3.2) and (3.3) into (3.1), we get the desired identity (1.12).

We are now in position to show (1.11) in Theorem 1.1 holds.

Proof of Theorem 1.1, Eq. (1.11). Obviously, it suffices to show that
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j) +

∞∑
j=0

q3j
2+j (3.4)

+
∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j) −

∞∑
j=1

q3j
2−j

=
∞∑
n=0

[n/2]∑
j=0

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j) +

[n/2]∑
j=1

(−1)n+jzn−3j+1q
1
2
(n2−3j2)+ 1

2
(n+j)

 .

To this end, we first show that
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j) +

∞∑
j=0

q3j
2+j

=
∞∑
n=0

[n/2]∑
j=0

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j). (3.5)
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Using the following identity given by Garvan [10, Eq. (2.14)],

∞∑
n=0

∑
0≤j<n/3

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j)

=
∞∑
n=0

∑
n/3<j≤n/2

(−1)n+jz−n+3jq
1
2
(n2−3j2)+ 1

2
(n−j), (3.6)

we get

∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j) +

∞∑
j=0

q3j
2+j

=
∞∑
n=0

∑
0≤j<n/3

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j)

+
∞∑
n=0

∑
n/3<j≤n/2

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j) +

∞∑
j=0

q3j
2+j

=
∞∑
n=0

[n/2]∑
j=0

(−1)n+jzn−3jq
1
2
(n2−3j2)+ 1

2
(n−j),

as desired.

Similarly, applying the following identity of Garvan [10, Eq. (2.15)]

∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+jzn−3j+1q
1
2
(n2−3j2)+ 1

2
(n+j)

=
∞∑
n=0

∑
(n+1)/3<j≤n/2

(−1)n+jz−n+3j−1q
1
2
(n2−3j2)+ 1

2
(n+j),

we can show that

∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j) −

∞∑
j=1

q3j
2−j

=
∞∑
n=0

[n/2]∑
j=1

(−1)n+jzn−3j+1q
1
2
(n2−3j2)+ 1

2
(n+j). (3.7)

Combining (3.5) and (3.7), we obtain (3.4). Thus we show (1.11) holds.

For the reminder of this section, we show (1.15) holds by using the Bailey pair tech-
nology.
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Proof of Theorem 1.3. Applying the Bailey transform with the conjugate Bailey pair in
Lemma 2.2 by setting a = z and b = z−1q and the Bailey pair in Lemma 2.7, we get

∞∑
n=0

β(k)
n δn = (zq, z−1q, q; q)∞

∞∑
n=0

(q; q)2nq
n

(zq; q)n(z−1q; q)n

×
∞∑

n1,...,nk−1=0

qN
2
1+···+N2

k−2+2N2
k−1+N1+···+Nk−2

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

=
∞∑
j=0

α
(k)
3j γ3j +

∞∑
j=1

α
(k)
3j−1γ3j−1

=
∞∑
j=0

q(3k−2)j(3j+1)

(
1 +

∞∑
n=1

(−1)nq(
n+1
2 )((zq3j)n + (z−1q3j)n)

)

−
∞∑
j=1

q(3k−2)j(3j−1)

(
1 +

∞∑
n=1

(−1)nq(
n
2)((zq3j)n + (z−1q3j)n)

)

=
∞∑
j=0

q(3k−2)j(3j+1) +
∞∑
j=0

∞∑
n=1

(−1)n(zn + z−n)q(
n+1
2 )+3jn+(3k−2)j(3j+1)

−
∞∑
j=1

q(3k−2)j(3j−1) +
∞∑
j=1

∞∑
n=1

(−1)n−1(zn + z−n)q(
n
2)+3jn+(3k−2)j(3j−1). (3.8)

Replace n by n− 3j in the second sum of (3.8) and reverse the order of summation to get

∞∑
j=0

∞∑
n=1

(−1)n(zn + z−n)q(
n+1
2 )+3nj+(3k−2)j(3j+1)

=
∞∑
n=0

∑
0≤j<n/3

(−1)n+j(zn−3j + z3j−n)q
1
2
(n2−3j2)+ 1

2
(n−j)+3(k−1)j(3j+1). (3.9)

Replace n by n−3j+1 in the fourth sum of (3.8) and interchange the order of summation.
This gives

∞∑
j=1

∞∑
n=1

(−1)n−1(zn + z−n)q(
n
2)+3nj+(3k−2)j(3j−1)

=
∞∑
n=0

∑
1≤j<(n+1)/3

(−1)n+j(zn−3j+1 + z3j−n−1)q
1
2
(n2−3j2)+ 1

2
(n+j)+3(k−1)j(3j−1). (3.10)

Substituting (3.9) and (3.10) in (3.8), we are led to the desired identity (1.15).
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4 A two-variable Hecke-Rogers identity for H(z; q)

and generalization

In this section, we first use the Bailey transform to show Theorem 1.2. We then derive
Garvan’s identity (1.5) from Theorem 1.2. Last, we give a proof of Theorem 1.4.

Proof of Theorem 1.2. Apply the Bailey transform with the conjugate Bailey pair in
Lemma 2.2 by setting a = z−1q and b = zq and the Bailey pair in Lemma 2.4 to yield

∞∑
n=0

βnδn = (zq, z−1q, q; q)∞

∞∑
n=0

(−q; q)nq(
n+1
2 )

(z−1q; q)n+1(zq; q)n

= (1− z)(zq, z−1q, q; q)∞g2(z; q)

=
∞∑

m=0

α2mγ2m

=
∞∑

m=0

(−1)mqm
2+m

(
1 +

∞∑
n=1

(−1)nq(
n+1
2 )((z−1q2m+1)n + (zq2m)n)

)

=
∞∑

m=0

∞∑
n=0

(−1)m+nznq(
n+1
2 )+2mn+m2+m

+
∞∑

m=0

∞∑
n=1

(−1)m+nz−nq(
n+1
2 )+(2m+1)n+m2+m. (4.1)

Shift n to n− 2m in the first sum of (4.1) and interchange the order of summation. This
gives

∞∑
m=0

∞∑
n=0

(−1)m+nznq(
n+1
2 )+2mn+m2+m =

∞∑
n=0

[n/2]∑
m=0

(−1)m+nzn−2mq
1
2
(n2−2m2)+ 1

2
n. (4.2)

Shift n to n− 2m− 1 in the second sum of (4.1), and then replace m by m− 1 , change
the order of summation. This summation becomes

∞∑
m=0

∞∑
n=1

(−1)m+nz−nq(
n+1
2 )+(2m+1)n+m2+m =

∞∑
n=0

[n/2]∑
m=1

(−1)m+nz2m−n−1q
1
2
(n2−2m2)+ 1

2
n. (4.3)

Plugging (4.2) and (4.3) into (4.1), we get the desired identity (1.14). Thus we complete
the proof of Theorem 1.2.

Now it’s an easy matter to prove (1.5).

Proof of Garvan’s identity (1.5). By the relation (1.4), we see that

(1 + z)(zq, z−1q, q; q)∞H(z; q)

= (1− z)(zq, z−1q, q; q)∞ + 2z(1− z)(zq, z−1q, q; q)∞g2(z; q). (4.4)
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Invoking Jacobi’s triple product identity (2.4) and Theorem 1.2 in (4.4), we find that

(1 + z)(zq, z−1q, q; q)∞H(z; q)

=
∞∑
n=0

(−1)nz−nq(
n+1
2 ) +

∞∑
n=1

(−1)nznq(
n
2) + 2

∞∑
n=0

[n/2]∑
m=0

(−1)m+nzn−2m+1q
1
2
(n2−2m2)+ 1

2
n

+ 2
∞∑
n=0

[n/2]∑
m=1

(−1)m+nz2m−nq
1
2
(n2−2m2)+ 1

2
n.

Replacing n by n + 1 in the second term, and subtracting the terms with m = 0 in the
third sum, we obtain

(1 + z)(zq, z−1q, q; q)∞H(z; q)

=
∞∑
n=0

(−1)nz−nq(
n+1
2 ) −

∞∑
n=0

(−1)nzn+1q(
n+1
2 ) + 2

∞∑
n=0

(−1)nzn+1q(
n+1
2 )

+ 2
∞∑
n=0

[n/2]∑
m=1

(−1)m+n(zn−2m+1 + z2m−n)q
1
2
(n2−2m2)+ 1

2
n

=
∞∑
n=0

(−1)n(zn+1 + z−n)q(
n+1
2 ) + 2

∞∑
n=0

[n/2]∑
m=1

(−1)m+n(zn−2m+1 + z2m−n)q
1
2
(n2−2m2)+ 1

2
n

=
∞∑
n=0

∑
|m|6[n/2]

(−1)n+m(zn−2|m|+1 + z2|m|−n)q
1
2
(n2−2m2)+ 1

2
n.

Thus we obtain Garvan’s identity (1.5).

We proceed to prove Theorem 1.4.

Proof of Theorem 1.4. Substituting the Bailey pair in Lemma 2.4 with the conjugate
Bailey pair in Lemma 2.2 with a = z−1q, and b = zq into the Bailey transform, we obtain

∞∑
n=0

β(k)
n δn = (zq, z−1q, q; q)∞

∞∑
n=0

(q2; q)2nq
n

(zq; q)n(z−1q; q)n+1

×
∞∑

n1,...,nk−1=0

qN
2
1+···+N2

k−2+
3
2
N2

k−1+2(N1+···+Nk−2)+
3
2
Nk−1(−q; q)nk−1

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q2; q)2nk−1

=
∞∑

m=0

α
(k)
2mγ2m

=
∞∑

m=0

(−1)mq(4k−3)(m2+m)

(
1 +

∞∑
n=1

(−1)nq(
n+1
2 ) ((z−1q2m+1)n + (zq2m)n

))
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=
∞∑

m=0

∞∑
n=0

(−1)m+nznq(
n+1
2 )+2mn+(4k−3)(m2+m)

+
∞∑

m=0

∞∑
n=1

(−1)m+nz−nq(
n+1
2 )+(2m+1)n+(4k−3)(m2+m). (4.5)

Replacing n by n−2m in the first term of (4.5) and interchanging the order of summation,
we find that

∞∑
m=0

∞∑
n=0

(−1)m+nznq(
n+1
2 )+2mn+(4k−3)(m2+m)

=
∞∑
n=0

[n/2]∑
m=0

(−1)m+nzn−2mq
1
2
(n2−2m2)+ 1

2
n+4(k−1)(m2+m). (4.6)

Replace n by n− 2m− 1 in the second sum of (4.5), and then shift m to m− 1, reverse
the order of summation to yield

∞∑
m=0

∞∑
n=1

(−1)m+nz−nq(
n+1
2 )+(2m+1)n+(4k−3)(m2+m)

=
∞∑
n=0

[n/2]∑
m=1

(−1)m+nz2m−n−1q
1
2
(n2−2m2)+ 1

2
n+4(k−1)(m2−m). (4.7)

Substituting (4.6) and (4.7) into (4.5), we get the desired identity (1.16). This completes
the proof.

5 A two-variable Hecke-Rogers identity for K(z; q)

and generalization

In this section, we give a proof of Garvan’s identity (1.9) by using Bailey pair technology.
We then give a proof of Theorem 1.5, which is a generalization of (1.9).

Proof of Garvan’s identity (1.9). Applying the Bailey transform with the conjugate Bailey
pair in Lemma 2.2 by setting a = z and b = z−1q and the Bailey pair in Lemma 2.5, we
find that

∞∑
n=0

βnδn = (zq, z−1q, q; q)∞

∞∑
n=0

(−1)nqn
2/2(q1/2; q)n

(zq; q)n(z−1q; q)n

=
∞∑
n=0

αnγn

=
∞∑

m=0

(−1)mq(m
2+m)/4

(
1 +

∞∑
n=1

(−1)nq(
n
2)((zqm+1)n + (z−1qm+1)n)

)
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=
∞∑

m=0

∞∑
n=0

(−1)m+nz−nq(
n+1
2 )+m2+m

4
+mn

+
∞∑

m=0

∞∑
n=1

(−1)m+nznq(
n+1
2 )+m2+m

4
+mn. (5.1)

Shifting n to n−m in the first sum of (5.1), and interchanging the order of summation,
we get

∞∑
m=0

∞∑
n=0

(−1)m+nz−nq(
n+1
2 )+m2+m

4
+mn =

∞∑
n=0

n∑
m=0

(−1)nzm−nq
1
4
(2n2−m2)+ 1

4
(2n−m). (5.2)

For the second sum of (5.1), we first shift n to n − m, then replace m by m − 1, and
reverse the order of summation, thus the second sum of (5.1) becomes

∞∑
m=0

∞∑
n=1

(−1)m+nznq(
n+1
2 )+m2+m

4
+mn =

∞∑
n=0

n∑
m=1

(−1)nzn−m+1q
1
4
(2n2−m2)+ 1

4
(2n+m). (5.3)

Substituting (5.2) and (5.3) into (5.1) and replacing q by q2, we recover (1.9). This
completes the proof.

Using the similar argument, we could show (1.17) is valid.

Proof of Theorem 1.5. Applying the Bailey transform with Bailey pair in Lemma 2.9 and
the conjugate Bailey pair in Lemma 2.2 with a = z and b = z−1q, we have

∞∑
n=0

β(k)
n δn = (zq, z−1q, q; q)∞

∞∑
n=0

(q; q)2nq
n

(zq; q)n(z−1q; q)n

×
∞∑

n1,...,nk−1=0

(−1)nk−1qN
2
1+···+N2

k−2+
3
2
N2

k−1+N1+···+Nk−2(q
1
2 ; q)nk−1

(q; q)n−N1(q; q)n1 · · · (q; q)nk−2
(q; q)2nk−1

=
∞∑
n=0

α(k)
n γn

=
∞∑

m=0

(−1)mq
4k−3

4
(m2+m)

(
1 +

∞∑
n=1

(−1)nq(
n+1
2 )((zqm)n + (z−1qm)n)

)

=
∞∑

m=0

∞∑
n=0

(−1)m+nz−nq(
n+1
2 )+mn+ 4k−3

4
(m2+m)

+
∞∑

m=0

∞∑
n=1

(−1)m+nznq(
n+1
2 )+mn+ 4k−3

4
(m2+m). (5.4)
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Replace n by n−m in the first sum of (5.4) and interchange the order of summation to
get

∞∑
m=0

∞∑
n=0

(−1)m+nz−nq(
n+1
2 )+mn+ 4k−3

4
(m2+m)

=
∞∑
n=0

n∑
m=0

(−1)nzm−nq
1
4
(2n2−m2)+ 1

4
(2n−m)+(k−1)(m2+m). (5.5)

Shift n to n −m in the second sum of (5.4), replace m by m − 1, and then reverse the
order of summation. This gives

∞∑
m=0

∞∑
n=1

(−1)m+nznq(
n+1
2 )+mn+ 4k−3

4
(m2+m)

=
∞∑
n=0

n∑
m=1

(−1)nzn−m+1q
1
4
(2n2−m2)+ 1

4
(2n+m)+(k−1)(m2−m). (5.6)

Hence (1.17) is obtained upon substituting (5.5) and (5.6) into (5.4) and replacing q by
q2. This completes the proof.
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