k-Marked Dyson Symbols and Congruences for Moments of Cranks

William Y.C. Chen¹, Kathy Q. Ji² and Erin Y.Y. Shen³

^{1,2,3}Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P. R. China

¹Center for Applied Mathematics Tianjin University, Tianjin 300072, P. R. China

¹chen@nankai.edu.cn, ²ji@nankai.edu.cn, ³shenyiying@mail.nankai.edu.cn

Abstract. By introducing k-marked Durfee symbols, Andrews found a combinatorial interpretation of 2k-th symmetrized moment $\eta_{2k}(n)$ of ranks of partitions of n. Recently, Garvan introduced the 2k-th symmetrized moment $\mu_{2k}(n)$ of cranks of partitions of n in the study of the higher-order spt-function $spt_k(n)$. In this paper, we give a combinatorial interpretation of $\mu_{2k}(n)$. We introduce k-marked Dyson symbols based on a representation of ordinary partitions given by Dyson, and we show that $\mu_{2k}(n)$ equals the number of (k + 1)-marked Dyson symbols of n. We then introduce the full crank of a k-marked Dyson symbol and show that there exist an infinite family of congruences for the full crank function of k-marked Dyson symbols which implies that for fixed prime $p \geq 5$ and positive integers r and $k \leq (p-1)/2$, there exist infinitely many non-nested arithmetic progressions An + B such that $\mu_{2k}(An + B) \equiv 0 \pmod{p^r}$.

1 Introduction

Dyson's rank [9] and the Andrews-Garvan-Dyson crank [2] are two fundamental statistics in the theory of partitions. For a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$, the rank of λ , denoted $r(\lambda)$, is the largest part of λ minus the number of parts. The crank $c(\lambda)$ is defined by

$$c(\lambda) = \begin{cases} \lambda_1, & \text{if } n_1(\lambda) = 0, \\ \\ \mu(\lambda) - n_1(\lambda), & \text{if } n_1(\lambda) > 0, \end{cases}$$

where $n_1(\lambda)$ is the number of ones in λ and $\mu(\lambda)$ is the number of parts larger than $n_1(\lambda)$.

And rews [3] introduced the symmetrized moments $\eta_{2k}(n)$ of ranks of partitions of n given by

$$\eta_k(n) = \sum_{m=-\infty}^{+\infty} \binom{m + \lfloor \frac{k-1}{2} \rfloor}{k} N(m, n), \qquad (1.1)$$

where N(m, n) is the number of partitions of n with rank m.

In view of the symmetry N(-m, n) = N(m, n), we have $\eta_{2k+1}(n) = 0$. As for the even symmetrized moments $\eta_{2k}(n)$, Andrews [3] showed that for fixed $k \ge 1$, $\eta_{2k}(n)$ is equal to the number of (k+1)-marked Durfee symbols of n. Kursungoz [15] and Ji [13] provided the alternative proof of this result respectively. Bringmann, Lovejoy and Osburn [7] defined two-parameter generalization of $\eta_{2k}(n)$ and k-marked Durfee symbols. In [3], Andrews also introduced the full rank of a k-marked Durfee symbol and defined the full rank function $NF_k(r, t; n)$ to be the number of k-marked Durfee symbols of n with full rank congruent to r modulo t.

The full rank function $NF_k(r,t;n)$ have been extensively studied and they posses many congruence properties, see for example, [5–8,14]. Recently, Bringmann, Garvan and Mahlburg [6] used the automorphic properties of the generating functions of $NF_k(r,t;n)$ to prove the existence of infinitely many congruences for $NF_k(r,t;n)$. More precisely, for given positive integers $j, k \geq 3$, odd positive integer t, and prime Q not divisible by 6t, there exist infinitely many arithmetic progressions An + B such that for every $0 \leq r < t$, we have

$$NF_k(r,t;An+B) \equiv 0 \pmod{Q^j}.$$
(1.2)

Since

$$\eta_{2k}(n) = \sum_{r=0}^{t-1} NF_{k+1}(r,t;n),$$

by (1.2), we see that there exist an infinite family of congruences for $\eta_{2k}(n)$, namely, for given positive integers k and j, prime Q > 3, there exist infinitely many non-nested arithmetic progressions An + B such that

$$\eta_{2k}(An+B) \equiv 0 \pmod{Q^j}.$$

Analogous to the symmetrized moments $\eta_k(n)$ of ranks, Garvan [12] introduced the kth symmetrized moments $\mu_k(n)$ of cranks of partitions of n in the study of the higher-order spt-function $spt_k(n)$. To be more specific,

$$\mu_k(n) = \sum_{m=-\infty}^{+\infty} \binom{m + \lfloor \frac{k-1}{2} \rfloor}{k} M(m, n), \qquad (1.3)$$

where M(m, n) denotes the number of partitions of n with crank m for n > 1. For n = 1and $m \neq -1, 0, 1$, we set M(m, 1) = 0; otherwise, we define

$$M(-1,1) = 1, \ M(0,1) = -1, \ M(1,1) = 1.$$

It is clear that $\mu_{2k+1}(n) = 0$, since M(m, n) = M(-m, n).

In this paper, we give a combinatorial interpretation of $\mu_{2k}(n)$. We first introduce the notion of k-marked Dyson symbols based on a representation for ordinary partitions given

by Dyson [9]. We show that for fixed $k \ge 1$, $\mu_{2k}(n)$ equals the number of (k + 1)-marked Dyson symbols of n. Moreover, we define the full crank of a k-marked Dyson symbol and define full crank function $NC_k(r,t;n)$ to be the number of k-marked Dyson symbols of n with full crank congruent to r modulo t. We prove that for fixed prime $p \ge 5$ and positive integers r and $k \le (p+1)/2$, there exists infinitely many non-nested arithmetic progressions An + B such that for every $0 \le i \le p^r - 1$,

$$NC_k(i, p^r; An + B) \equiv 0 \pmod{p^r}.$$
(1.4)

Note that

$$\mu_{2k}(n) = \sum_{i=0}^{p^r - 1} NC_{k+1}(i, p^r; n),$$

so that from (1.4) we can deduce that there exist an infinite family of congruences for $\mu_{2k}(n)$, that is, for fixed prime $p \ge 5$, positive integers r and $k \le (p-1)/2$, there exist infinitely many non-nested arithmetic progressions An + B such that

$$\mu_{2k}(An+B) \equiv 0 \pmod{p^r}.$$

2 Dyson symbols and *k*-marked Dyson symbols

In this section, we introduce the notion of k-marked Dyson symbols. A 1-marked Dyson symbol is called a Dyson symbol, which is a representation of a partition introduced by Dyson [10]. For $1 \leq i \leq k$, we define the *i*-th crank of a k-marked Dyson symbol. Moreover, we define the function $F_k(m_1, m_2, \ldots, m_k; n)$ to be the number of k-marked Dyson symbol of n with the *i*-th crank equal to m_i for $1 \leq i \leq k$. The following theorem shows that the number of k-marked Dyson symbols of n can be expressed in terms of the number of Dyson symbols of n.

Theorem 2.1. For fixed integers m_1, m_2, \ldots, m_k , we have

$$F_k(m_1,\ldots,m_k;n) = \sum_{t_1,\ldots,t_{k-1}=0}^{+\infty} F_1\left(\sum_{i=1}^k |m_i| + 2\sum_{i=1}^{k-1} t_i + k - 1;n\right).$$
 (2.1)

For a partition $\lambda = (\lambda_1, \dots, \lambda_\ell)$, let $\ell(\lambda)$ denote the number of parts of λ and $|\lambda|$ denote the sum of parts of λ . A Dyson symbol of n is a pair of restricted partitions (α, β) satisfying the following conditions:

- (1) If $\ell(\alpha) = 0$, then $\beta_1 = \beta_2$;
- (2) If $\ell(\alpha) = 1$, then $\alpha_1 = 1$;
- (3) If $\ell(\alpha) > 1$, then $\alpha_1 = \alpha_2$;

Figure 2.1: The decomposition of λ .

(4)
$$n = |\alpha| + |\beta| + \ell(\alpha)\ell(\beta).$$

When we display a Dyson symbol, we shall put α on the top of β in the form of a Durfee symbol [3] or a Frobenius partition [1].

For example, there are 5 Dyson symbols of 4:

$$\left(\begin{array}{c}\\2\\2\end{array}\right), \left(\begin{array}{c}\\1\\1\end{array}\right), \left(\begin{array}{c}\\1\end{array}\right), \left(\begin{array}{c}\\2\end{array}\right), \left(\begin{array}{c}2\\2\end{array}\right), \left(\begin{array}{c}1\\1\end{array}\right), \left(\begin{array}{c}1\\1\end{array}\right).$$

Theorem 2.2 (Dyson). There is a bijection Ω between the set of partitions of n and the set of Dyson symbols of n.

For completeness, we give a proof of the above theorem.

Proof of Theorem 2.2: Let $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ be a partition of n. A Dyson symbol (α, β) of n can be constructed via the following procedure. There are two cases.

Case 1: One is not a part of λ . We set $\alpha = \emptyset$ and $\beta = \lambda'$.

Case 2: One is a part of λ . Assume that one occurs M times in λ . We decompose the Ferrers diagram of λ into three blocks as illustrated in Figure 2.1, where N is the number of parts of λ that are greater than M. In this case, we see that $\lambda = (\lambda_1, \ldots, \lambda_N, \lambda_{N+1}, \ldots, \lambda_s, 1^M)$, where $\lambda_N > M$, $\lambda_{N+1} \leq M$ and 1^M means M occurrences of 1. Then remove all parts equal to one from λ and insert a new part M, so that we get a partition $\mu = (\lambda_1, \ldots, \lambda_N, M, \lambda_{N+1}, \ldots, \lambda_s)$ as shown in Figure 2.2.

Figure 2.2: The Dyson symbol (α, β) .

Now the partitions α and β can be obtained from μ . First, let $\beta = (\lambda_1 - M, \lambda_2 - M, \ldots, \lambda_N - M)$, and let $\nu = (M, \lambda_{N+1}, \ldots, \lambda_s)$. Then we get $\alpha = (\nu'_1, \nu'_2, \ldots, \nu'_M)$, where ν' the conjugate of ν , see Figure 2.2.

It is easy to verify that (α, β) is a Dyson symbol of n and the above procedure is reversible, and hence the proof is complete.

For a Dyson symbol (α, β) , Dyson [10] considered the difference between the number of parts of α and β , which we call the crank of (α, β) . Let $F_1(m; n)$ denote the number of Dyson symbols of n with crank m. Dyson [10] observed the following relation based on the construction in Theorem 2.2.

Corollary 2.3 (Dyson). For $n \ge 2$ and integer m,

$$M(-m,n) = F_1(m;n).$$
 (2.2)

A k-marked Dyson symbol is defined as the following array

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_1, \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix},$$

consisting of k pairs of partitions $(\alpha^{(i)}, \beta^{(i)})$ and a partition $p = (p_{k-1}, p_{k-2}, \dots, p_0)$ subject to the following conditions:

(1) The smallest part of p equals 1, that is, $p_{k-1} \ge \cdots \ge p_1 \ge p_0 = 1$.

(2) For $1 \leq i \leq k-1$, each part of $\alpha^{(i)}$ and $\beta^{(i)}$ is between p_{i-1} and p_i , namely,

$$p_i \ge \alpha_1^{(i)} \ge \alpha_2^{(i)} \ge \dots \ge \alpha_\ell^{(i)} \ge p_{i-1}$$
 and $p_i \ge \beta_1^{(i)} \ge \beta_2^{(i)} \ge \dots \ge \beta_\ell^{(i)} \ge p_{i-1}$.

(3) Each part of $\alpha^{(k)}$ and $\beta^{(k)}$ is no less than p_{k-1} , namely,

$$\alpha_1^{(k)} \ge \alpha_2^{(k)} \ge \dots \ge \alpha_\ell^{(k)} \ge p_{k-1}$$
 and $\beta_1^{(k)} \ge \beta_2^{(k)} \ge \dots \ge \beta_\ell^{(k)} \ge p_{k-1}$.

(4) If $\ell(\alpha^{(k)}) = 1$, then $\alpha_1^{(k)} = p_{k-1}$; If $\ell(\alpha^{(k)}) > 1$, then $\alpha_1^{(k)} = \alpha_2^{(k)}$; If $\ell(\alpha^{(k)}) = 0$ and $\ell(\beta^{(k)}) = 1$, then $\beta_1^{(k)} = p_{k-1}$; If $\ell(\alpha^{(k)}) = 0$ and $\ell(\beta^{(k)}) \ge 2$, then $\beta_1^{(k)} = \beta_2^{(k)}$; If $\ell(\alpha^{(k)}) = 0$ and $\ell(\beta^{(k)}) = 0$, then $p_{k-1} = \max\{\alpha_1^{(k-1)}, \beta_1^{(k-1)}\}$.

For example, the array below

$$\eta = \begin{pmatrix} (5,5,4) & (3,3,2) & (1,1) \\ 4 & 2 & \\ (4) & (3,2,2) & (2,1,1) \end{pmatrix}$$
(2.3)

is a 3-marked Dyson symbol.

We next define the weight of a k-marked Dyson symbol. Recall that for a pair of partitions (α, β) with $\ell(\alpha) \geq \ell(\beta)$, a balanced part β_i of β is defined recursively as follow. If the number of parts greater than β_i in α is equal to the number of unbalanced parts before β_i in β , that is, the number of unbalanced parts β_j with $1 \leq j < i$; otherwise, we call β_i is an unbalanced part, see [13, p.992]. We use $b(\alpha, \beta)$ to denote the number of balanced parts of (α, β) .

For example, for the pair of partitions

$$\left(\begin{array}{c} \alpha\\ \beta \end{array}\right) = \left(\begin{array}{ccc} 3 & 3 & 1 & 1\\ 3 & 2 & 2 \end{array}\right),$$

the first part 3 of β is balanced, and the second part 2 and the third part 2 are unbalanced. Therefore, $b(\alpha, \beta) = 1$.

We now define the i-th crank and the i-th balanced number of a k-marked Dsyon symbol. Let

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_1 \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix}$$

be a k-marked Dyson symbol. The pair of partitions $(\alpha^{(i)}, \beta^{(i)})$ is called the *i*-th vector of η . For $1 \leq i \leq k$, we define $c_i(\eta)$, the *i*-th crank of η , to be the difference between the number of parts of $\alpha^{(i)}$ and $\beta^{(i)}$, that is, $c_i(\eta) = \ell(\alpha^{(i)}) - \ell(\beta^{(i)})$. For $1 \leq i < k$, we define $b_i(\eta)$, the *i*-th balanced number of η by

$$b_i(\eta) = \begin{cases} b(\alpha^{(i)}, \beta^{(i)}), & \text{if } \ell(\alpha^{(i)}) \ge \ell(\beta^{(i)}), \\ b(\beta^{(i)}, \alpha^{(i)}), & \text{if } \ell(\alpha^{(i)}) < \ell(\beta^{(i)}). \end{cases}$$

For i = k, we set $b_k(\eta) = 0$.

For the 3-marked Dyson symbol η in (2.3), we have $c_1(\eta) = -1$, $c_2(\eta) = 0$, $c_3(\eta) = 2$ and $b_1(\eta) = 1$, $b_2(\eta) = 1$, $b_3(\eta) = 0$.

For $1 \leq i \leq k$, we define $l_i(\eta)$, the *i*-th large length of η by

$$l_i(\eta) = \begin{cases} \ell(\alpha^{(i)}), & \text{if } \ell(\alpha^{(i)}) \ge \ell(\beta^{(i)}), \\ \ell(\beta^{(i)}), & \text{if } \ell(\alpha^{(i)}) < \ell(\beta^{(i)}). \end{cases}$$

Similarly, we define the *i*-th small length $s_i(\eta)$ of η by

$$s_i(\eta) = \begin{cases} \ell(\beta^{(i)}), & \text{if } \ell(\alpha^{(i)}) \ge \ell(\beta^{(i)}), \\ \ell(\alpha^{(i)}), & \text{if } \ell(\alpha^{(i)}) < \ell(\beta^{(i)}). \end{cases}$$

The weight of k-marked Dyson symbol is defined by

$$|\eta| = \sum_{i=1}^{k} (|\alpha^{(i)}| + |\beta^{(i)}|) + \sum_{i=1}^{k-1} p_i + (l(\eta) + D + k - 1)(s(\eta) - D),$$
(2.4)

where

$$l(\eta) = \sum_{i=1}^{k} l_i(\eta), \quad s(\eta) = \sum_{i=1}^{k} s_i(\eta), \quad \text{and} \quad D = \sum_{i=1}^{k} b_i(\eta).$$
(2.5)

For example, the weight of the 3-marked Dyson symbol η in (2.3) equals 97.

For a k-marked Dyson symbol η , if the weight of η equals n, we call η a k-marked Dyson symbol of n. We can now define the function $F_k(m_1, \ldots, m_k; n)$ as the number of k-marked Dyson symbols of n with the *i*-th crank equal to m_i for $1 \leq i \leq k$. Note that a 1-marked Dyson symbol is a Dyson symbol and $F_1(m; n) = M(-m, n)$. The following theorem shows the function $F_k(m_1, \ldots, m_k; n)$ has the mirror symmetry with respect to each m_i .

Theorem 2.4. For $n \ge 2$, $k \ge 1$ and $1 \le j \le k$, we have

$$F_k(m_1, \dots, m_j, \dots, m_k; n) = F_k(m_1, \dots, -m_j, \dots, m_k; n).$$
(2.6)

Proof. The above identity is trivial for $m_j = 0$. We now assume that $m_j > 0$. Let $H_k(m_1, \ldots, m_k; n)$ denote the set of k-marked Dyson symbols of n counted by $F_k(m_1, \ldots, m_k; n)$

 $m_k; n$). We aim to build a bijection Λ between the set $H_k(m_1, \ldots, m_j, \ldots, m_k; n)$ and the set $H_k(m_1, \ldots, -m_j, \ldots, m_k; n)$.

Let

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(j)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_j & & \dots & p_1 \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(j)}, & \dots, & \beta^{(1)} \end{pmatrix}$$

be a k-marked Dyson symbol in $H_k(m_1, \ldots, m_j, \ldots, m_k; n)$. To define the map Λ , we need to construct a new *j*-th vector $(\bar{\alpha}^{(j)}, \bar{\beta}^{(j)})$ from $(\alpha^{(j)}, \beta^{(j)})$. There are four cases.

Case 1:
$$1 \leq j \leq k-1$$
. Set $\bar{\alpha}^{(j)} = \beta^{(j)}$ and $\bar{\beta}^{(j)} = \alpha^{(j)}$.

Case 2: j = k and $\ell(\alpha^{(k)}) = 1$. In this case, we have $\alpha_1^{(k)} = p_{k-1}$ and $\beta^{(k)} = \emptyset$. Set $\bar{\alpha}^{(k)} = \emptyset$ and $\bar{\beta}^{(k)} = \alpha^{(k)}$.

Case 3:
$$j = k$$
, $\ell(\alpha^{(k)}) \ge 2$ and $\ell(\beta^{(k)}) \ne 1$. Let $t = \beta_1^{(k)} - \beta_2^{(k)}$. Set

$$\bar{\alpha}^{(k)} = (\beta_1^{(k)} - t, \ \beta_2^{(k)}, \ \dots, \ \beta_\ell^{(k)}) \text{ and } \bar{\beta}^{(k)} = (\alpha_1^{(k)} + t, \ \alpha_2^{(k)}, \ \dots, \ \alpha_\ell^{(k)}).$$

Case 4: j = k, $\ell(\alpha^{(k)}) \ge 2$ and $\ell(\beta^{(k)}) = 1$. Let $t = \beta_1^{(k)} - p_{k-1}$. Set

$$\bar{\alpha}^{(k)} = (\beta_1^{(k)} - t) \text{ and } \bar{\beta}^{(k)} = (\alpha_1^{(k)} + t, \ \alpha_2^{(k)}, \ \dots, \ \alpha_\ell^{(k)}).$$

From the above construction, it can be checked that

$$\ell(\bar{\alpha}^{(j)}) - \ell(\bar{\beta}^{(j)}) = -(\ell(\alpha^{(j)}) - \ell(\beta^{(j)})).$$

Then $\Lambda(\eta)$ is defined as

$$\begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \bar{\alpha}^{(j)}, & \dots, & \alpha^{(1)} \\ p_{k-1}, & p_{k-2}, & \dots & p_j & \dots & p_1 \\ \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \bar{\beta}^{(j)}, & \dots, & \beta^{(1)} \end{pmatrix}.$$

Hence $\Lambda(\eta)$ is a k-marked Dyson symbol in $H_k(m_1, \ldots, -m_j, \ldots, m_k; n)$. Furthermore, it can be seen that the above process is reversible. Thus Λ is a bijection.

We are now ready to prove Theorem 2.1, which says that the number of k-marked Dyson symbols of n can be expressed in terms of the number of Dyson symbols of n. This theorem is needed in the combinatorial interpretation of $\mu_{2k}(n)$ given in Theorem 3.1. By Theorem 2.4, we see that Theorem 2.1 can be deduced from the following formula.

Theorem 2.5. For $n \geq 2$ and $m_1, m_2, \ldots, m_k \geq 0$, we have

$$F_k(m_1, \dots, m_k; n) = \sum_{t_1, \dots, t_{k-1}=0}^{+\infty} F_1\left(\sum_{i=1}^k m_i + 2\sum_{i=1}^{k-1} t_i + k - 1; n\right).$$
(2.7)

To prove the above theorem, we introduce the structure of strict k-marked Dyson symbols. Recall that a strict bipartition of n is a pair of partitions (α, β) such that $\alpha_i > \beta_i$ for $i = 1, 2, ..., \ell(\beta)$ and $|\alpha| + |\beta| = n$. Note that for a strick bipartition (α, β) we have $\ell(\alpha) \ge \ell(\beta)$. For example,

$$\left(\begin{array}{rrrr} 3 & 3 & 2 & 2 & 1 \\ 2 & 1 & 1 & 1 & \end{array}\right)$$

is a strict bipartition.

Strict bipartitions are the building blocks of strict k-marked Dyson symbols. For $k \ge 2$, let

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ p_{k-1}, & p_{k-2}, & \dots & p_1 \\ \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix}$$

be a k-marked Dyson symbols of n. If $(\alpha^{(i)}, \beta^{(i)})$ is a strict bipartition for any $1 \leq i < k$, we say that η a strict k-marked Dyson symbol of n.

Notice that there is no balanced part in a strict bipartition. Consequently, if η is a strict k-marked Dyson symbol, then the *i*-th balanced number $b_i(\eta)$ of η equals zero for $1 \leq i < k$. To prove Theorem 2.5, we define a function $F_k^s(m_1, \ldots, m_k; n)$ as the number of strict k-marked Dyson symbols of n with the *i*-th crank equal to m_i for $1 \leq i \leq k$ and define a function $F_k(m_1, \ldots, m_k, t_1, \ldots, t_{k-1}; n)$ as the number of k-marked Dyson symbols of n with the *i*-th crank equal to m_i for $1 \leq i \leq k$ and the *i*-th balance number equal to t_i for $1 \leq i \leq k - 1$. The relation stated in Theorem 2.5 can be established via two steps as stated in the following two theorems.

Theorem 2.6. For $n \ge 2$, $k \ge 2$, $m_1, m_2, \ldots, m_k \ge 0$ and $t_1, t_2, \ldots, t_{k-1} \ge 0$, we have

$$F_k(m_1,\ldots,m_k,t_1,\ldots,t_{k-1};n) = F_k^s(m_1+2t_1,\ldots,m_{k-1}+2t_{k-1},m_k;n).$$
(2.8)

Theorem 2.7. For $n \ge 2$, $k \ge 2$ and $m_1, m_2, ..., m_k \ge 0$, we have

$$F_k^s(m_1, \dots, m_k; n) = F_1\left(\sum_{i=1}^k m_i + k - 1; n\right).$$
 (2.9)

To prove Theorem 2.6, we need a bijection in [13, Theorem 2.4]. Let P(r; n) denote the set of pairs of partitions (α, β) of n where there are r balanced parts and $\ell(\alpha) - \ell(\beta) \ge 0$, and let Q(r; n) denote the set of strict bipartitions $(\bar{\alpha}, \bar{\beta})$ of n with $\ell(\bar{\alpha}) - \ell(\bar{\beta}) \ge r$. Given two positive integers n and r, there is a bijection ψ between P(r; n) and Q(2r; n). Furthermore, the bijection ψ possesses the following properties. For $(\alpha, \beta) \in P(r; n)$, let $(\bar{\alpha}, \bar{\beta}) = \psi(\alpha, \beta)$. Then we have

$$\bar{\alpha}_1 = \max\{\alpha_1, \beta_1\}, \quad \bar{\alpha}_\ell = \alpha_\ell, \quad \text{and} \quad \bar{\beta}_\ell \ge \beta_\ell.$$
 (2.10)

$$\ell(\bar{\alpha}) = \ell(\alpha) + r \quad \text{and} \quad \ell(\bar{\beta}) = \ell(\beta) - r.$$
 (2.11)

We next give a proof of Theorem 2.6 by using the bijection ψ .

Proof of Theorem 2.6. Let $P_k(m_1, \ldots, m_k, t_1, t_2, \ldots, t_{k-1}; n)$ denote the set of k-marked Dyson symbols of n with the *i*-th crank equal to m_i and the *i*-th balanced number equal to t_i , and let $Q_k(m_1, \ldots, m_k; n)$ denote the set of strict k-marked Dyson symbols of n with the *i*-th crank equal to m_i . We proceed to define a bijection Ω between $P_k(m_1, \ldots, m_k, t_1, t_2, \ldots, t_{k-1}; n)$ and $Q_k(m_1 + 2t_1, \ldots, m_{k-1} + 2t_{k-1}, m_k; n)$.

Let

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_1 \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix}$$

be a k-marked Dyson symbol in $P_k(m_1, \ldots, m_k, t_1, t_2, \ldots, t_{k-1}; n)$. For $1 \leq i < k$, we apply the bijection ψ described above to $(\alpha^{(i)}, \beta^{(i)})$ to get a pair of partitions $(\bar{\alpha}^{(i)}, \bar{\beta}^{(i)})$. From the properties of the bijection ψ , we see that $(\bar{\alpha}^{(i)}, \bar{\beta}^{(i)})$ is a strict bipartition and

$$\bar{\alpha}_{1}^{(i)} = \max\{\alpha_{1}^{(i)}, \beta_{1}^{(i)}\}, \quad \bar{\alpha}_{\ell}^{(i)} = \alpha_{\ell}^{(i)}, \quad \bar{\beta}_{\ell}^{(i)} \ge \beta_{\ell}^{(i)}$$
(2.12)

and

$$\ell(\bar{\alpha}^{(i)}) = \ell(\alpha^{(i)}) + t_i, \quad \ell(\bar{\beta}^{(i)}) = \ell(\beta^{(i)}) - t_i.$$
(2.13)

Then $\Omega(\eta)$ is defined to be

$$\begin{pmatrix} \alpha^{(k)}, & \bar{\alpha}^{(k-1)}, & \dots, & \bar{\alpha}^{(1)} \\ p_{k-1}, & p_{k-2}, & \dots & p_1 \\ \beta^{(k)}, & \bar{\beta}^{(k-1)}, & \dots, & \bar{\beta}^{(1)} \end{pmatrix}$$

By (2.12), we see that that for $1 \leq i < k - 1$, each part of $\bar{\alpha}^{(i)}$ and $\bar{\beta}^{(i)}$ is between p_{i-1} and p_i , namely,

$$p_i \ge \bar{\alpha}_1^{(i)} \ge \bar{\alpha}_2^{(i)} \ge \dots \ge \bar{\alpha}_\ell^{(i)} \ge p_{i-1} \quad \text{and} \quad p_i \ge \bar{\beta}_1^{(i)} \ge \bar{\beta}_2^{(i)} \ge \dots \ge \bar{\beta}_\ell^{(i)} \ge p_{i-1}.$$

It is also clear from (2.13) that the *i*-th crank of $\Omega(\eta)$ is equal to $m_i + 2t_i$ for $1 \le i < k$ and the *k*-th crank of $\Omega(\eta)$ is equal to m_k . Using (2.13) again, we get

$$l(\Omega(\eta)) = \sum_{i=1}^{k-1} \ell(\bar{\alpha}^{(i)}) + \ell(\alpha^k) = \sum_{i=1}^k (\ell(\alpha^{(i)}) + t_i) = \sum_{i=1}^k \ell(\alpha^{(i)}) + D = l(\eta) + D$$

and

$$s(\Omega(\eta)) = \sum_{i=1}^{k-1} \ell(\bar{\beta}^{(i)}) + \ell(\beta^k) = \sum_{i=1}^{k} (\ell(\beta^{(i)}) - t_i) = \sum_{i=1}^{k} \ell(\alpha^{(i)}) - D = s(\eta) - D.$$

Thus the weight of $\Omega(\eta)$ is equal to

$$\sum_{i=1}^{k} (|\bar{\alpha}^{(i)}| + |\bar{\beta}^{(i)}|) + \sum_{i=1}^{k-1} p_i + (l(\Omega(\eta)) + k - 1) \cdot s(\Omega(\eta))$$
$$= \sum_{i=1}^{k} (|\alpha^{(i)}| + |\beta^{(i)}|) + \sum_{i=1}^{k-1} p_i + (l(\eta) + k - 1 + D) \cdot (s(\eta) - D),$$

which is in accordance with the definition of $|\eta|$. So $\Omega(\eta)$ is in $Q_k(m_1 + 2t_1, \ldots, m_{k-1} + 2t_{k-1}, m_k; n)$. Since ψ is a bijection, it is readily verified that Ω is also a bijection, and hence the proof is complete.

We now turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. Recall that $Q_k(m_1, \ldots, m_k; n)$ denotes the set of strict k-marked Dyson symbols of n with the *i*-th crank equal to m_i and $H_1(m; n)$ denotes the set of Dyson symbols of n with crank m. To establish a bijection Φ between $Q_k(m_1, \ldots, m_k; n)$ and $H_1(m_1 + \cdots + m_k + k - 1; n)$, let

$$\eta = \begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_1 \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix}$$

be a strict k-marked Dyson symbol in $Q_k(m_1, \ldots, m_k; n)$. Let α be the partition consisting of all parts of $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}$ together with p_1, \ldots, p_{k-1} , and let β be the partition consisting of all parts of $\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(k)}$. Then $\Phi(\eta)$ is defined to be (α, β) . From the definition of k-marked Dyson symbols, we see that (α, β) is a Dyson symbol. It is also easily seen that

$$\ell(\alpha) = l(\eta) + k - 1, \quad \ell(\beta) = s(\eta) \tag{2.14}$$

and

$$|\alpha| = \sum_{i=1}^{k} |\alpha^{(i)}| + \sum_{i=1}^{k-1} p_i, \quad |\beta| = \sum_{i=1}^{k} |\beta^{(i)}|.$$
(2.15)

It follows from (2.14) that

$$\ell(\alpha) - \ell(\beta) = \sum_{i=1}^{k} m_i + k - 1.$$

Combining (2.14) and (2.15), we deduce that the weight of (α, β) equals

$$|\alpha| + |\beta| + \ell(\alpha)\ell(\beta) = \sum_{i=1}^{k} |\alpha^{(i)}| + \sum_{i=1}^{k-1} p_i + \sum_{i=1}^{k} |\beta^{(i)}| + (\ell(\eta) + k - 1)s(\eta) = |\eta|.$$

This proves that (α, β) is a Dyson symbol in $H_1(m_1 + \cdots + m_k + k - 1; n)$.

We next describe the reverse map of Φ . Let

$$\left(\begin{array}{c} \alpha\\ \beta\end{array}\right) = \left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \dots & \alpha_\ell\\ \beta_1 & \beta_2 & \dots & \beta_\ell\end{array}\right)$$

be a Dyson symbol in $H_1(m_1 + \cdots + m_k + k - 1; n)$. We proceed to show that a strict k-marked Dyson symbol η can be recovered from the Dyson symbol (α, β) .

First, we see that the k-th vector $(\alpha^{(k)}, \beta^{(k)})$ of η and p_{k-1} can be recovered from (α, β) . Let j_k be largest nonnegative integer such that $\beta_{j_k} \geq \alpha_{m_k+j_k+1}$, that is, for any $i \geq j_k + 1$, we have $\beta_i < \alpha_{m_k+i+1}$. Define

$$\begin{pmatrix} \alpha^{(k)} \\ \beta^{(k)} \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_{m_k+j_k} \\ \beta_1 & \beta_2 & \dots & \beta_{j_k} \end{pmatrix} \text{ and } p_{k-1} = \alpha_{m_k+j_k+1}.$$

Obviously, $\ell(\alpha^{(k)}) - \ell(\beta^{(k)}) = m_k$.

To recover $(\alpha^{(k-1)}, \beta^{(k-1)})$ and p_{k-1} , we let

$$\begin{pmatrix} \alpha'\\ \beta' \end{pmatrix} = \begin{pmatrix} \alpha_{m_k+j_k+2} & \alpha_{m_k+j_k+3} & \dots & \alpha_{\ell}\\ \beta_{j_k+1} & \beta_{j_k+2} & \dots & \beta_{\ell} \end{pmatrix}$$

By the choice of j_k , we find that $\alpha_{m_k+j_k+i+1} > \beta_{j_k+i}$ for any i, in other words, $\alpha'_i > \beta'_i$. Consequently, (α', β') is a strict bipartition. Then $(\alpha^{(k-1)}, \beta^{(k-1)})$ and p_{k-1} can be constructed from (α', β') . Let j_{k-1} be the largest nonnegative integer such that $\beta'_{j_{k-1}} \ge \alpha'_{m_{k-1}+j_{k-1}+1}$. Define

$$\begin{pmatrix} \alpha^{(k-1)} \\ \beta^{(k-1)} \end{pmatrix} = \begin{pmatrix} \alpha'_1 & \alpha'_2 & \dots & \alpha'_{m_{k-1}+j_{k-1}} \\ \beta'_1 & \beta'_2 & \dots & \beta'_{j_{k-1}} \end{pmatrix} \text{ and } p_{k-2} = \alpha'_{m_{k-1}+j_{k-1}+1}.$$

Now we have $\ell(\alpha^{(k-1)}) - \ell(\beta^{(k-1)}) = m_{k-1}$. Since (α', β') is a strict bipartition, we deduce that $(\alpha^{(k-1)}, \beta^{(k-1)})$ is a strict bipartition.

The above procedure can be repeatedly used to determine $(\alpha^{(k-2)}, \beta^{(k-2)}), p_{k-3}, \ldots, (\alpha^{(2)}, \beta^{(2)}), p_1, (\alpha^{(1)}, \beta^{(1)})$. The k-marked Dyson symbol η can be defined as

$$\begin{pmatrix} \alpha^{(k)}, & \alpha^{(k-1)}, & \dots, & \alpha^{(1)} \\ & p_{k-1}, & p_{k-2}, & \dots & p_1 \\ & \beta^{(k)}, & \beta^{(k-1)}, & \dots, & \beta^{(1)} \end{pmatrix}.$$

It can be checked that η is a strict k-marked Dyson symbol in $Q_k(m_1, \ldots, m_k; n)$. Moreover, it can be seen that $\Phi(\eta) = (\alpha, \beta)$, that is, Φ is indeed a bijection. This completes the proof.

Here is an example to illustrate the reverse map Φ^{-1} . Assume that $m_1 = 1, m_2 = 1, m_3 = 0$, and

which a Dyson symbol of 127, that is, $(\alpha, \beta) \in H_1(4; 127)$. From (α, β) , we get

$$\begin{pmatrix} \alpha^{(3)} \\ \beta^{(3)} \end{pmatrix} = \begin{pmatrix} 6 & 6 & 3 \\ 5 & 5 & 4 \end{pmatrix}, \quad p_2 = 3, \quad \begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = \begin{pmatrix} 3 & 3 & 2 & 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & -1 \end{pmatrix}.$$

Based on (α', β') , we get

$$\begin{pmatrix} \alpha^{(2)} \\ \beta^{(2)} \end{pmatrix} = \begin{pmatrix} 3 & 3 & 2 & 2 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}, \quad p_2 = 1, \quad \begin{pmatrix} \alpha^{(1)} \\ \beta^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ \end{pmatrix}.$$

Finally, we obtain

$$\eta = \begin{pmatrix} (6\ 6\ 3) & (3\ 3\ 2\ 2\ 1) & (1) \\ 3 & & 1 \\ (5\ 5\ 4) & (2\ 1\ 1\ 1) \end{pmatrix}.$$

It can be checked that $\eta \in Q_3(1, 1, 0; 127)$.

3 A combinatorial interpretation of $\mu_{2k}(n)$

In this section, we use Theorem 2.1 to give a combinatorial interpretation of $\mu_{2k}(n)$ in terms of k-marked Dyson symbols.

Theorem 3.1. For $k \ge 1$ and $n \ge 2$, $\mu_{2k}(n)$ is equal to the number of (k + 1)-marked Dyson symbols of n.

Proof. By definition of $F_k(m_1, \ldots, m_k; n)$, the assertion of the theorem can be stated as follows

$$\sum_{m_1,\dots,m_{k+1}=-\infty}^{\infty} F_{k+1}(m_1,\dots,m_{k+1};n) = \mu_{2k}(n).$$
(3.1)

Using Theorem 2.1, we see that the left-hand side of (3.1) equals

$$\sum_{m_1,m_2,\dots,m_{k+1}=-\infty}^{\infty} F_{k+1}(m_1,\dots,m_{k+1};n)$$
$$= \sum_{m_1,m_2,\dots,m_{k+1}=-\infty}^{\infty} \sum_{t_1,\dots,t_k=0}^{\infty} F_1\left(\sum_{i=1}^{k+1} |m_i| + 2\sum_{i=1}^k t_i + k;n\right).$$
(3.2)

Given k and n, let $c_k(j)$ denote the number of integer solutions to the equation

$$|m_1| + \dots + |m_{k+1}| + 2t_1 + \dots + 2t_k = j$$

in $m_1, m_2, \ldots, m_{k+1}$ and t_1, t_2, \ldots, t_k subject to the further condition that t_1, t_2, \ldots, t_k are nonnegative. It can be shown that generating function of $c_k(j)$ is equal to

$$\sum_{j=0}^{\infty} c_k(j)q^j = \frac{1+q}{(1-q)^{2k+1}},$$

so that

$$c_k(j) = \binom{2k+j}{2k} + \binom{2k+j-1}{2k}.$$

Substituting j by m-k, we get

$$c_k(m-k) = \binom{m+k-1}{2k} + \binom{m+k}{2k}.$$

Thus (3.2) simplifies to

$$\sum_{m_1,m_2,\dots,m_{k+1}=-\infty}^{\infty} F_{k+1}(m_1,\dots,m_{k+1};n) = \sum_{m=1}^{\infty} \left[\binom{m+k-1}{2k} + \binom{m+k}{2k} \right] F_1(m;n).$$

Using Corollary 2.3 and noting that M(-m, n) = M(m, n), we conclude that

$$\sum_{m_1,m_2,\dots,m_{k+1}=-\infty}^{\infty} F_{k+1}(m_1,\dots,m_{k+1};n) = \sum_{m=1}^{\infty} \left[\binom{m+k-1}{2k} + \binom{m+k}{2k} \right] M(m,n),$$

which equals $\mu_{2k}(n)$, as claimed.

For example, for n = 5 and k = 1, we have $\mu_2(5) = 35$, and there are 35 2-marked Dyson symbols of 5 as listed in the following table.

$$\begin{pmatrix} & & 1 \\ (1 & 1 & 1 & 1) \end{pmatrix} \begin{pmatrix} & (1) \\ & 1 \\ (1) \end{pmatrix} \begin{pmatrix} & (1) \\ & 1 \end{pmatrix} \begin{pmatrix} & (1) \\ & 1 \\ (1 & 1) \end{pmatrix} \begin{pmatrix} & & (1) \\ & & (1 & 1) \\ & & (1 & 1) \end{pmatrix} \begin{pmatrix} & & (1) \\ & & (1 & 1) \end{pmatrix} \begin{pmatrix} & & (1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1 & 1) \end{pmatrix} \begin{pmatrix} & & (1 & 1) \\ & & & (1 & 1) \end{pmatrix}$$

$$\begin{pmatrix} (2) & (1) \\ 2 & \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ (1) & \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ (1) & \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ 1 & \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ (1 & 1) \end{pmatrix} \\ \begin{pmatrix} (1) & (1 & 1 & 1) \\ (1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ (1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1) \\ (1 & 1) \end{pmatrix} \\ \begin{pmatrix} 2 & (1) \\ (2) & \end{pmatrix} & \begin{pmatrix} (1) & (1) \\ 1 & (1 & 1) \end{pmatrix} & \begin{pmatrix} (1) & (1) \\ (1 & 1) \end{pmatrix} \\ \begin{pmatrix} 1 & (1 & 1 & 1) \end{pmatrix} & \begin{pmatrix} (1) & (1) \\ (1 & 1 & 1) \end{pmatrix} & \begin{pmatrix} (1) & (1 & 1) \\ (1 & 1 & 1) \end{pmatrix} \\ \begin{pmatrix} 2 & (2 & 1) \end{pmatrix} & \begin{pmatrix} (1) & (1 & 1) \\ (1 & 1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1) \\ (1 & 1 & 1) \end{pmatrix} \\ \begin{pmatrix} 2 & (2 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1) \\ (1 & 1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1) \\ (1 & 1 & 1) \end{pmatrix} \\ \begin{pmatrix} (2) & 2 \\ (1) \end{pmatrix} & \begin{pmatrix} (1 & 1 & (1 & 1) \\ (1) & (1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1 & 1) \\ (1 & 1 & 1) \end{pmatrix} \\ \begin{pmatrix} (1 & 1 & (1 & 1) \\ (1 & (1 & 1) \end{pmatrix} & \begin{pmatrix} (1 & 1 & (1 & 1) \\ (1 & (1 & 1) \end{pmatrix} \end{pmatrix} \\ \begin{pmatrix} (1 & 1 & (1 & 1) \\ (1 & (1 & 1) \end{pmatrix} & \begin{pmatrix} (2 & 2 \\ (1) \end{pmatrix} \end{pmatrix}$$

4 Congruences for $\mu_{2k}(n)$

In this section, we introduce the full crank of a k-marked Dyson symbol. We show that there exist an infinite family of congruences for the full crank function of k-marked Dyson symbols.

To define the full crank of a k-marked Dyson symbol η , denoted $FC(\eta)$, we recall that $c_k(\eta)$ denotes the k-th crank of η , $l(\eta)$ denotes the large length of η and $s(\eta)$ denotes the

small length of η and D denotes the balanced number of η . Then $FC(\eta)$ is given by

$$FC(\eta) = \begin{cases} l(\eta) - s(\eta) + 2D + k - 1, & \text{if } c_k(\eta) > 0, \\ -(l(\eta) - s(\eta) + 2D + k - 1), & \text{if } c_k(\eta) \le 0. \end{cases}$$

It is clear that for k = 1, the full crank of a 1-marked Dyson symbol reduces to the crank of a Dyson symbol.

Analogous to the full rank function for a k-marked Durfee symbol defined by Andrews [3], we define the full crank function $NC_k(i, t; n)$ as the number of k-marked Dyson symbols of n with the full crank congruent to i modulo t. The following theorem gives an infinite family of congruences of the full crank function.

Theorem 4.1. For fixed prime $p \ge 5$ and positive integers r and $k \le (p+1)/2$. Then there exist infinitely many non-nested arithmetic progressions An + B such that for each $0 \le i \le p^r - 1$,

$$NC_k(i, p^r; An + B) \equiv 0 \pmod{p^r}$$

Since

$$\mu_{2k}(n) = \sum_{i=0}^{p^r - 1} NC_{k+1}(i, p^r; n),$$

Theorem 4.1 implies the following congruences for $\mu_{2k}(n)$.

Theorem 4.2. For fixed prime $p \ge 5$, positive integers r and $k \le (p-1)/2$. Then there exists infinitely many non-nested arithmetic progressions An + B such that

$$\mu_{2k}(An+B) \equiv 0 \pmod{p^r}.$$

To prove Theorem 4.1, let $NC_k(m; n)$ denote the number of k-marked Dyson symbols of n with the full crank equal to m. In this notation, we have the following relation.

Theorem 4.3. For $n \ge 2$, $k \ge 1$ and integer m,

$$NC_k(m;n) = {\binom{m+k-2}{2k-2}}M(m,n).$$
 (4.1)

Proof. Recall that $F_k(m_1, \ldots, m_k, t_1, \ldots, t_{k-1}; n)$ is the number of k-marked Dyson symbols of n such that for $1 \leq i \leq k$, the *i*-th crank equal to m_i and the *i*-th balance number equal to t_i . By the definition of $NC_k(m, n)$, we see that if $m \geq 1$, then we have

$$NC_k(m;n) = \sum F_k(m_1, m_2, \dots, m_k, t_1, t_2, \dots, t_{k-1}; n),$$
(4.2)

where the summation ranges over all integer solutions to the equation

$$|m_1| + \dots + |m_k| + 2t_1 + \dots + 2t_{k-1} = m - k + 1$$
(4.3)

in m_1, m_2, \ldots, m_k and $t_1, t_2, \ldots, t_{k-1}$ subject to the further condition that m_k is positive and $t_1, t_2, \ldots, t_{k-1}$ are nonnegative.

Combining Theorem 2.6 and Theorem 2.7, we find that

$$F_k(m_1, m_2, \dots, m_k, t_1, t_2, \dots, t_{k-1}; n) = F_1\left(\sum_{i=1}^k |m_i| + 2\sum_{i=1}^{k-1} t_i + k - 1; n\right).$$
(4.4)

Substituting (4.4) into (4.2), we get

$$NC_k(m;n) = \sum F_1\left(\sum_{i=1}^k |m_i| + 2\sum_{i=1}^{k-1} t_i + k - 1; n\right),$$
(4.5)

where the summation ranges over all solutions to the equation (4.3). Let $\bar{c}_k(m-k+1)$ denote the number of integer solutions to the equation (4.3). It is not difficult to verify that

$$\bar{c}_k(m-k+1) = \binom{m+k-2}{2k-2}.$$

Thus, (4.5) simplifies to

in the proof of Theorem 4.1.

$$NC_k(m;n) = \binom{m+k-2}{2k-2}F_1(m;n).$$

Using Corollary 2.3 and noting that M(-m, n) = M(m, n), we conclude that

$$NC_k(m;n) = \binom{m+k-2}{2k-2}M(m,n),$$

as required. Similarly, it can be shown that relation (4.1) also holds for $m \leq 0$.

Let M(i,t;n) denote the number of partitions of n with the crank congruent to i modulo t. The following congruences for M(i,t;n) given by Mahlburg [16] will be used

Theorem 4.4 (Mahlburg). For fixed prime $p \ge 5$ and positive integers τ and r, there are infinitely many non-nested arithmetic progressions An + B such that for each $0 \le m \le p^r - 1$,

$$M(m, p^r; An + B) \equiv 0 \pmod{p^{\tau}}.$$

We are now ready to complete the proof of Theorem 4.1 by using Theorems 4.3 and 4.4.

Proof of Theorem 4.1. For $0 \le i \le p^r - 1$, by the definition of $NC_k(i, p^r; n)$, we have

$$NC_k(i, p^r; n) = \sum_{t=-\infty}^{+\infty} NC_k(p^r t + i; n).$$
 (4.6)

Replacing m by $p^r t + i$ in (4.1), we get

$$NC_k(p^r t + i; n) = {p^r t + i + k - 2 \choose 2k - 2} M(p^r t + i, n).$$
(4.7)

Substituting (4.7) into (4.6), we find that

$$NC_k(i, p^r; n) = \sum_{t=-\infty}^{+\infty} {p^r t + i + k - 2 \choose 2k - 2} M(p^r t + i, n).$$
(4.8)

Since p is a prime and $k \leq (p+1)/2$, we see that (2k-2)! is not divisible by p. It follows that

$$\binom{p^rt+i+k-2}{2k-2} \equiv \binom{i+k-2}{2k-2} \pmod{p^r}.$$

Thus (4.8) implies that

$$NC_k(i, p^r; n) \equiv \sum_{t=-\infty}^{+\infty} {i+k-2 \choose 2k-2} M(p^r t+i, n) \pmod{p^r}$$
$$= {i+k-2 \choose 2k-2} M(i, p^r; n).$$

Setting $\tau = r$ in Theorem 4.4, we deduce that there are infinitely many non-nested arithmetic progressions An + B such that for every $0 \le i \le p^r - 1$

$$M(i, p^r; An + B) \equiv 0 \pmod{p^r}.$$

Consequently, there are infinitely many non-nested arithmetic progressions An + B such that for every $0 \le m \le p^r - 1$

$$NC_k(i, p^r; An + B) \equiv 0 \pmod{p^r},$$

and hence the proof is complete.

Acknowledgments. This work was supported by the 973 Project and the National Science Foundation of China.

References

- G. E. Andrews, Generalized Frobenius partitions, Mem. Amer. Math. Soc. 49 (1984) No. 301 iv+ 44 pp.
- [2] G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988) 167–171.

- [3] G. E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks, Invent. Math. 169 (2007) 37–73.
- [4] A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003) 343–366.
- [5] K. Bringmann, On the explicit construction of higher deformations of partition statistics, Duke Math. J. 114 (2008) 195–233.
- [6] K. Bringmann, F. G. Garvan and K. Mahlburg, Partition statistics and quasiweak Maass forms, Int. Math. Res. Not. IMRN (2009) 63–97.
- [7] K. Bringmann, J. Lovejoy and R. Osburn, Automorphic properties of generating functions for generalized rank moments and Durfee symbols, Int. Math. Res. Not. IMRN (2010) 238–260.
- [8] K. Bringmann and B. Kane, Inequalities for full rank differences of 2-marked Durfee symbols, J. Combin. Theory A 119 (2012) 483–501.
- [9] F. J. Dyson, Some guesses in the theorem of partitions, Eureka (Cambridge) 8 (1944) 10–15.
- [10] F. J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory A 51 (1989) 169–180.
- [11] F. G. Garvan, New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7, 11, Trans. Amer. Math. Soc. 305 (1988) 47–77.
- [12] F. G. Garvan, Higher order spt-functions, Adv. Math. 228 (2011) 241–265.
- [13] K. Q. Ji, The combinatorics of k-marked Durfee symbols, Trans. Amer. Math. Soc. 363 (2011) 987–1005.
- [14] W. J. Keith, Distribution of the full rank in residue classes for odd moduli, Discrete Math. 309 (2009) 4960–4968.
- [15] K. Kursungoz, Counting k-marked Durfee symbols, Electron. J. Combin. 18 (2011) #P41.
- [16] K. Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. USA 102 (2005) 15373–15376.