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Abstract. By introducing k-marked Durfee symbols, Andrews found a combinatorial
interpretation of 2k-th symmetrized moment η2k(n) of ranks of partitions of n in terms
of (k + 1)-marked Durfee symbols of n. In this paper, we consider the k-th symmetrized
positive moment η̄k(n) of ranks of partitions of n which is defined as the truncated sum
over positive ranks of partitions of n. As combintorial interpretations of η̄2k(n) and
η̄2k−1(n), we show that for fixed k and i with 1 ≤ i ≤ k + 1, η̄2k−1(n) equals the number
of (k + 1)-marked Durfee symbols of n with the i-th rank being zero and η̄2k(n) equals
the number of (k + 1)-marked Durfee symbols of n with the i-th rank being positive.
The interpretations of η̄2k−1(n) and η̄2k(n) also imply the interpretation of η2k(n) given
by Andrews since η2k(n) equals η̄2k−1(n) plus twice of η̄2k(n). Moreover, we obtain the
generating functions of η̄2k(n) and η̄2k−1(n).

Keywords: rank of a partition, k-marked Durfee symbol, moment of ranks

AMS Classifications: 05A17, 11P83, 05A30

1 Introduction

This paper is concerned with a combinatorial study of the symmetrized positive moments
of ranks of partitions. The notion of symmetrized moments was introduced by Andrews
[1]. The odd symmetrized moments are zero due to the symmetry of ranks. For even
symmetrized moments, Andrews found a combinatorial interpretation by introducing k-
marked Durfee symbols. It is natural to investigate the combinatorial interpretation of
the odd symmetrized moments which are truncated sum over positive ranks of partitions
of n. We give combinatorial interpretations of the even and odd positive moments in
terms of k-marked Durfee symbols, which also lead to the combinatorial interpretation of
the even symmetrized moments of ranks given by Andrews.

The rank of a partition λ introduced by Dyson [6] is defined as the largest part minus
the number of parts. Let N(m,n) denote the number of partitions of n with rank m. The
generating function of N(m,n) is given by
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Theorem 1.1 (Dyson-Atkin-Swinnerton-Dyer [3]). For fixed integer m, we have

+∞∑
n=0

N(m,n)qn =
1

(q; q)∞

+∞∑
n=1

(−1)n−1qn(3n−1)/2+|m|n(1− qn). (1.1)

Recently, Andrews [1] introduced the k-th symmetrized moment ηk(n) of ranks of
partitions of n as given by

ηk(n) =
+∞∑

m=−∞

(
m+ bk−1

2
c

k

)
N(m,n). (1.2)

It can be easily seen that for given k, ηk(n) is a linear combination of the moments Nj(n)
of ranks given by Atkin and Garvan [4]

Nj(n) =
∞∑

m=−∞

mjN(m,n).

For example,

η6(n) =
1

720
N6(n)− 1

144
N4(n) +

1

180
N2(n).

In view of the symmetry N(−m,n) = N(m,n), we have η2k+1(n) = 0. As for the even
symmetrized moments η2k(n), Andrews gave the following combinatorial interpretation
by introducing k-marked Durfee symbols. For the definition of k-marked Durfee symbols,
see Section 2.

Theorem 1.2 (Andrews [1]). For fixed k ≥ 1, η2k(n) is equal to the number of (k + 1)-
marked Durfee symbols of n.

Andrews [1] proved the above theorem by using the k-fold generalization of Watson’s
q-analog of Whipple’s theorem. Ji [8] gave a combinatorial proof of Theorem 1.2 by
establishing a map from k-marked Durfee symbols to ordinary partitions. Kursungoz [9]
provided another proof of Theorem 1.2 by using an alternative representation of k-marked
Durfee symbols.

In this paper, we introduce the k-th symmetrized positive moment η̄k(n) of ranks as
given by

ηk(n) =
∞∑
m=1

(
m+ bk−1

2
c

k

)
N(m,n),

or equivalently,

η2k−1(n) =
∞∑
m=1

(
m+ k − 1

2k − 1

)
N(m,n) (1.3)
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and

η2k(n) =
∞∑
m=1

(
m+ k − 1

2k

)
N(m,n). (1.4)

Furthermore, it is easy to see that for given k, η̄k(n) is a linear combination of the positive
moments N j(n) of ranks introduced by Andrews, Chan and Kim [2] as given by

N j(n) =
∞∑
m=1

mjN(m,n).

For example,

η̄4(n) =
1

24
N4(n)− 1

12
N3(n)− 1

24
N2(n) +

1

12
N1(n),

η̄5(n) =
1

120
N5(n)− 1

24
N3(n) +

1

30
N1(n).

By the symmetry N(−m,n) = N(m,n), it is readily seen that

η2k(n) = 2η2k(n) + η2k−1(n). (1.5)

The main objective of this paper is to give combintorial interpretations of η̄2k(n) and
η̄2k−1(n). We show that for given k and i with 1 ≤ i ≤ k+ 1, η̄2k−1(n) equals the number
of (k + 1)-marked Durfee symbols of n with the i-th rank being zero and η̄2k(n) equals
the number of (k + 1)-marked Durfee symbols of n with the i-th rank being positive. It
should be noted that η̄2k−1(n) and η̄2k(n) are independent of i since the ranks of k-marked
Durfee symbols are symmetric, see Andrews [1, Corollary 12].

With the aid of Theorem 2.1 and Theorem 2.2 together with the generating function
(1.1) of N(m,n), we obtain the generating functions of η̄2k(n) and η̄2k−1(n).

2 Combinatorial interpretations

In this section, we give combinatorial interpretations of η̄2k−1(n) and η̄2k(n) in terms of
the k-marked Durfee symbols. For a partition λ, we write λ = (λ1, λ2, . . . , λs), so that
λ1 is the largest part and λs is the smallest part of λ. Recall that a k-marked Durfee
symbol of n introduced by Andrews [1] is a two-line array composed of k pairs (αi, βi) of
partitions along with a positive integer D which is represented in the following form:

τ =

(
αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)
D

,

where the partitions αi and βi satisfy the following four conditions:
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(1) The partitions αi (1 ≤ i < k) are nonempty, while αk and βi (1 ≤ i ≤ k) are allowed
to be empty;

(2) βi−11 ≤ αi−11 ≤ min{αis, βis} for 2 ≤ i ≤ k;

(3) αk1, βk1 ≤ D;

(4)
∑k

i=1(|αi|+ |βi|) +D2 = n.

Let

τ =

(
αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)
D

be a k-marked Durfee symbol. The pair (αi, βi) of partitions is called the i-th vector of
τ . Andrews defined the i-th rank ρi(τ) of τ as follows

ρi(τ) =

{
`(αi)− `(βi)− 1, for 1 ≤ i < k,

`(αk)− `(βk). for i = k.

For example, consider the following 3-marked Durfee symbol τ .

τ =


α3︷ ︸︸ ︷

53, 43,

α2︷ ︸︸ ︷
42, 32, 32, 22,

α1︷︸︸︷
21

43︸︷︷︸
β3

, 32, 22, 22︸ ︷︷ ︸
β2

, 21, 21︸ ︷︷ ︸
β1
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.

We have ρ1(τ) = −2, ρ2(τ) = 0, and ρ3(τ) = 1.

For odd symmetrized moments η̄2k−1(n), we have the following combinatorial inter-
pretation.

Theorem 2.1. For fixed positive integers k and i with 1 ≤ i ≤ k+ 1, η̄2k−1(n) is equal to
the number of (k + 1)-marked Durfee symbols of n with the i-th rank equal to zero.

For the even case, we have the following interpretation.

Theorem 2.2. For fixed positive integers k and i with 1 ≤ i ≤ k + 1, η̄2k(n) is equal to
the number of (k + 1)-marked Durfee symbols of n with the i-th rank being positive.

The proofs of the above two interpretations are based on the following partition i-
dentity given by Ji [8]. We shall adopt the notation Dk(m1,m2, . . . ,mk;n) as used by
Andrews [1] to denote the number of k-marked Durfee symbols of n with i-th rank equal
to mi.

Theorem 2.3. Given k ≥ 2 and n ≥ 1, we have

Dk(m1,m2, . . . ,mk;n) =
∞∑

t1,...,tk−1=0

N

(
k∑
i=1

|mi|+ 2
k−1∑
i=1

ti + k − 1, n

)
. (2.1)
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To prove the above two interpretations, we also need the following symmetric property
given by Andrews [1]. Boulet and Kursungoz [5] found a combinatorial proof of this fact.

Theorem 2.4. For k ≥ 2 and n ≥ 1, Dk(m1, . . . ,mk;n) is symmetric in m1, m2, . . . ,mk.

We are now in a position to prove Theorem 2.1 and Theorem 2.2 with the aid of
Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.1. By Theorem 2.4, it suffices to show that

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n) = η̄2k−1(n). (2.2)

Using Theorem 2.3, we get

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n)

=
∞∑

m2,m3,...,mk+1=−∞

∞∑
t1,...,tk=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
. (2.3)

Given k and n, let ck(n) denote the number of integer solutions to the equation

|m2|+ · · ·+ |mk+1|+ 2t1 + · · ·+ 2tk = n,

where the variables mi are integers and the variables ti are nonnegative integers. It is
easy to see that the generating function of ck(n) is equal to

∞∑
n=0

ck(n)qn = (1 + 2q + 2q2 + 2q3 + · · · )k(1 + q2 + q4 + q6 + · · · )k

=

(
1 + q

1− q

)k (
1

1− q2

)k
=

1

(1− q)2k

=
∞∑
n=0

(
n+ 2k − 1

2k − 1

)
qn. (2.4)

Equating the coefficients of qn on the both sides of (2.4), we get

ck(n) =

(
n+ 2k − 1

2k − 1

)
,

that is,

ck(m− k) =

(
m+ k − 1

2k − 1

)
.
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Thus, (2.3) can be written as

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n)

=
∞∑
m=1

(
m+ k − 1

2k − 1

)
N(m,n)

which is equal to η̄2k−1(n). This completes the proof.

Proof of Theorem 2.2. Similarly, by Theorem 2.4, it is enough to show that

∞∑
m1>0

m2,m3,...,mk+1=−∞

Dk+1(m1,m2, . . . ,mk+1;n) = η̄2k(n). (2.5)

Using Theorem 2.3, we get

∞∑
m1>0

m2,m3,...,mk+1=−∞

Dk+1(m1,m2, . . . ,mk+1;n)

=
∞∑

m1>0

m2,m3,...,mk+1=−∞

∞∑
t1,...,tk=0

N

(
m1 +

k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
. (2.6)

Given k and n, let c̄k(n) denote the number of integer solutions to the equation

m1 + |m2|+ · · ·+ |mk+1|+ 2t1 + · · ·+ 2tk = n,

where the variable m1 is a positive integer, the variables mi (2 ≤ i ≤ k + 1) are integers
and the variables ti are nonnegative integers. An easy computation shows that

∞∑
n=0

c̄k(n)qn =
q

(1− q)2k+1
, (2.7)

so that

c̄k(n) =

(
n+ 2k − 1

2k

)
.

We write

c̄k(m− k) =

(
m+ k − 1

2k

)
.
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It follows that

∞∑
m1>0

m2,m3,...,mk+1=−∞

Dk+1(m1,m2, . . . ,mk+1;n)

=
∞∑
m=1

(
m+ k − 1

2k

)
N(m,n),

which equals η̄2k(n), as required.

Note that the number Dk(m1, . . . ,mk;n) has the mirror symmetry with respect to
each mi, that is, for 1 ≤ i ≤ k, we have

Dk(m1, . . . ,mi, . . . ,mk;n) = Dk(m1, . . . ,−mi, . . . ,mk;n).

Using this mirror symmetry, Theorem 2.2 can be restated as follows.

Theorem 2.5. For fixed positive integers k and i with 1 ≤ i ≤ k+ 1, η̄2k(n) is also equal
to the number of (k + 1)-marked Durfee symbols of n with the i-th rank being negative.

η1(5) η2(5) η2(5)(
12 12 12 11

)
1

(
11 11 11 11

)
1

(
11

11 11 11

)
1(

12 11 11

11

)
1

(
12 11 11 11

)
1

(
12 11

11 11

)
1(

12 12 11

12

)
1

(
12 12 11 11

)
1

(
12 12 11

11

)
1(

11

12 12 12

)
1

(
11 11 11

11

)
1

(
11 11

11 11

)
1(

11 11

12 11

)
1

(
11 11 11

12

)
1

(
11

12 11 11

)
1(

12 11

12 12

)
1

(
12 11 11

12

)
1

(
12 11

12 11

)
1(

11

)
2

(
11 11

12 12

)
1

(
11

12 12 11

)
1

Table 2.1: 2-Marked Durfee Symbols of 5.
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For example, for n = 5, k = 1 and i = 1, there are twenty-one 2-marked Durfee symbols
of 5 as listed in Table 2.1. The first column in Table 2.1 gives seven 2-marked Durfee
symbols τ with ρ1(τ) = 0, the second column contains seven 2-marked Durfee symbols
τ with ρ1(τ) > 0 and the third column contains seven 2-marked Durfee symbols τ with
ρ1(τ) < 0. It can be verified that η1(5) = 7, η2(5) = 7 and η2(5) = η1(5) + 2η2(5) = 21.

3 The generating functions of η̄2k−1(n) and η̄2k(n)

In this section, we obtain the generating functions of η̄2k−1(n) and η̄2k(n) with the aid of
Theorem 2.1 and Theorem 2.2. In doing so, we use the generating function of N(m,n) to
derive the generating functions ofDk+1(0,m2, . . . ,mk+1;n) andDk+1(m1,m2, . . . ,mk+1;n)
(m1 > 0).

Theorem 3.1. For k ≥ 1, we have

∞∑
m2,...,mk+1=−∞

∞∑
n=0

Dk+1(0,m2, . . . ,mk+1;n)xm2
1 · · ·x

mk+1

k qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
(1− qn)∏k

j=1(1− xjqn)(1− x−1j qn)
. (3.1)

Proof. Let

Gk(x1, . . . , xk; q) =
∞∑

m2,...,mk+1=−∞

∞∑
n=0

Dk+1(0,m2, . . . ,mk+1;n)xm2
1 · · ·x

mk+1

k qn.

By Theorem 2.3, we have

Gk(x1, . . . , xk; q)

=
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · ·x

mk+1

k

∞∑
n=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
qn. (3.2)

Using (1.1) with m replaced by
∑k+1

i=2 |mi|+ 2
∑k

i=1 ti + k, we get

∞∑
n=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+n(
∑k+1

i=2 |mi|+2
∑k

i=1 ti+k)(1− qn).
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Therefore (3.2) becomes

Gk(x1, . . . , xk; q) =
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · ·x

mk+1

k

× 1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+n(
∑k+1

i=2 |mi|+2
∑k

i=1 ti+k)(1− qn).

(3.3)

Write (3.3) in the following form

Gk(x1, . . . , xk; q) =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn(1− qn)

×
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · · x

mk+1

k qn(
∑k+1

i=2 |mi|+2
∑k

i=1 ti). (3.4)

Notice that

+∞∑
a=−∞

+∞∑
b=0

xaqn(|a|+2b) =
1

(1− xqn)(1− x−1qn)
. (3.5)

Applying the above formula repeatedly to (3.4), we deduce that

Gk(x1, . . . , xk; q) =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
(1− qn)∏k

j=1(1− xjqn)(1− x−1j qn)
,

as required.

Setting xj = 1 for 1 ≤ j ≤ k in Theorem 3.1 and using Theorem 2.1, we obtain the
following generating function of η̄2k−1(n).

Corollary 3.2. For k ≥ 1, we have

∞∑
n=1

η̄2k−1(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
1

(1− qn)2k−1
. (3.6)

Taking k = 1 in (3.6) and observing that η̄1(n) = N1(n), we are led to the generating
function for N1(n) as given by Andrews, Chan and Kim in [2, Theorem 1].

The following generating function can be shown by using the same reasoning as in the
proof of Theorem 3.1.
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Theorem 3.3. For k ≥ 1, we have

∞∑
m1>0

m2,...,mk+1=−∞

∞∑
n=1

Dk+1(m1,m2, . . . ,mk+1;n)xm1
1 · · ·x

mk+1

k+1 qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n+1)/2+kn x1(1− qn)

(1− x1qn)
∏k+1

j=2(1− xjqn)(1− x−1j qn)
. (3.7)

Setting xj = 1 for 1 ≤ j ≤ k + 1 in Theorem 3.3 and using Theorem 2.2, we arrive at
the following generating function of η̄2k(n).

Corollary 3.4. For k ≥ 1, we have

∞∑
n=1

η̄2k(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n+1)/2+kn 1

(1− qn)2k
. (3.8)
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