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Abstract. Andrews, Lewis and Lovejoy introduced the partition function PD(n) as the
number of partitions of n with designated summands, where we assume that among parts
with equal size, exactly one is designated. They proved that PD(3n + 2) is divisible by
3 and showed that the generating function of PD(3n) can be expressed as an infinite
product of powers of (1 − q2n+1) times a function F (q2). We obtain a Ramanujan type
identity which implies the congruence for PD(3n + 2). We also find an explicit formula
for F (q2), which leads to a formula for the generating function of PD(3n). A formula
for the generating function of PD(3n + 1) is also obtained. Our proofs rely on Chan’s
identity on Ramanujan’s cubic continued fraction and identities on cubic theta functions.
By introducing a rank for partitions with designated summands, we give a combinatorial
interpretation of the congruence for PD(3n+ 2).
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1 Introduction

Andrews, Lewis and Lovejoy [2] investigated the number of partitions with designated
summands which are defined on ordinary partitions by designating exactly one part among
parts with equal size. For example, there are ten partitions of 4 with designated sum-
mands:

4′, 3′ + 1′, 2′ + 2, 2 + 2′, 2′ + 1′ + 1,

2′ + 1 + 1′, 1′ + 1 + 1 + 1, 1 + 1′ + 1 + 1, 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′.

Just for comparison, let us recall the notion of overpartitions. An overpartition of n is a
partition of n in which the first occurrence of each part can be overlined. For example,
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there are fourteen overpartitions of 4:

4 4′ 3 + 1 3′ + 1 3 + 1′ 3′ + 1′, 2 + 2

2′ + 2 2 + 1 + 1 2′ + 1 + 1 2 + 1′ + 1 2′ + 1′ + 1, 1 + 1 + 1 + 1 1′ + 1 + 1 + 1.

Overpartitions have been extensively studied, and they possess many analogous properties
to ordinary partitions, see, for example, [8, 9, 11, 13].

The concept of partitions with designated summands goes back to MacMahon [14].
He considered partitions with designated summands and with exactly k different sizes,
see also Andrews and Rose [5]. Let PD(n) denote the number of partitions of n with
designated summands. Andrews, Lewis and Lovejoy [2] derived the following generating
function of PD(n).

Theorem 1.1. We have

∞
∑

n=0

PD(n)qn =
(q6; q6)∞

(q; q)∞(q2; q2)∞(q3; q3)∞
, (1.1)

where ∣q∣ < 1 and (a; q)∞ stands for the q-shifted factorial

(a; q)∞ =
∞
∏

n=1

(1− aqn−1).

By using modular forms and q-series identities, Andrews, Lewis and Lovejoy showed
that the partition function PD(n) has many interesting divisibility properties. In partic-
ular, they obtained the following Ramanujan type congruence.

Theorem 1.2. ([2, Corollary 7]) For n ≥ 0, we have

PD(3n+ 2) ≡ 0 (mod 3). (1.2)

In this paper, we obtain the following Ramanujan type identity for the generating
function of PD(3n+ 2) which implies the above congruence.

Theorem 1.3. We have

∞
∑

n=0

PD(3n+ 2)qn = 3
(q3; q6)3

∞
(q6; q6)6

∞

(q; q2)5
∞
(q2; q2)8

∞

. (1.3)

Andrews, Lewis and Lovejoy also obtained explicit formulas for the generating func-
tions for PD(2n) and PD(2n+ 1) by using Euler’s algorithm for infinite products [1, P.
98] and Sturm’s criterion [15]. As for PD(3n), they showed that the generating function
permits the following form.
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Theorem 1.4. ([2, Theorem 23]) Define c(n) by

∞
∑

n=0

PD(3n)qn =

∞
∏

n=1

(1− qn)−c(n), (1.4)

then for any positive integer n,

c(6n+ 1) = 5,

c(6n+ 3) = 2,

c(6n+ 5) = 5.

Equivalently, the above theorem says that there exists a series F (q2) such that

∞
∑

n=0

PD(3n)qn =
F (q2)

(q; q6)5
∞
(q3; q6)2

∞
(q5; q6)5

∞

. (1.5)

We find an explicit formula for F (q2), that is,

F (q2) =
(q4; q4)6

∞
(q6; q6)4

∞

(q2; q2)10
∞
(q12; q12)2

∞

+ 3q2
(q12; q12)6

∞

(q2; q2)6
∞
(q4; q4)2

∞

, (1.6)

which leads to the following generating function of PD(3n).

Theorem 1.5. We have

∞
∑

n=0

PD(3n)qn =
1

(q; q6)5
∞
(q3; q6)2

∞
(q5; q6)5

∞

×

(

(q4; q4)6
∞
(q6; q6)4

∞

(q2; q2)10
∞
(q12; q12)2

∞

+ 3q2
(q12; q12)6

∞

(q2; q2)6
∞
(q4; q4)2

∞

)

. (1.7)

We also obtain the generating function for PD(3n+ 1).

Theorem 1.6. We have

∞
∑

n=0

PD(3n+ 1)qn =
(q3; q6)3

∞
(q6; q6)6

∞

(q; q2)5
∞
(q2; q2)8

∞

(

4q
(q; q2)2

∞

(q3; q6)6
∞

+
(q3; q6)3

∞

(q; q2)∞

)

. (1.8)

The proofs of the generating function formulas (1.3), (1.7) and (1.8) rely on Chan’s
identity on Ramanujan’s cubic continued fraction [10] and cubic theta functions [6,12]. In
Section 3, we shall give a combinatorial interpretation of the congruence PD(3n+2) ≡ 0
(mod 3) by introducing a rank for partitions with designated summands.
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2 Proofs

In this section, we give proofs of the generating functions for PD(3n), PD(3n + 1) and
PD(3n+2). It should be noted that the generating function of PD(3n) derived this way
does not directly lead to a formula for F (q2). To compute F (q2), we shall make use of
some identities on cubic theta functions.

Recall that Ramanujan’s cubic continued fraction �(q) is given by

�(q) :=
q

1

3

1 +

q + q2

1 +

q2 + q4

1 + ...
.

It is known that

�(q) = q
1

3

(q; q2)∞
(q3; q6)3

∞

,

see Andrews and Berndt [3, P. 94]. The following identity is due to Chan [10, Eq. (13)].

Theorem 2.1. We have

1

(q; q)∞(q2; q2)∞
=

(q9; q9)3
∞
(q18; q18)3

∞

(q3; q3)4
∞
(q6; q6)4

∞

×

{(

1

x2(q3)
− 2q3x(q3)

)

+ q

(

1

x(q3)
+ 4q3x2(q3)

)

+ 3q2
}

, (2.1)

where

x(q) = q−
1

3v(q) =
(q; q2)∞
(q3; q6)3

∞

. (2.2)

Proof of Theorems 1.3 and 1.6. Multiplying both sides of (2.1) by

(q6; q6)∞
(q3; q3)∞

,

we find

(q6; q6)∞
(q; q)∞(q2; q2)∞(q3; q3)∞

=
(q9; q9)3

∞
(q18; q18)3

∞

(q3; q3)5
∞
(q6; q6)3

∞

{(

1

x2(q3)
− 2q3x(q3)

)

+q

(

1

x(q3)
+ 4q3x2(q3)

)

+ 3q2
}

. (2.3)

Observe that the left-hand side of (2.3) is the generating function for PD(n). Extracting
those terms involving the powers q3n+1 and q3n+2 respectively, we deduce that

∞
∑

n=0

PD(3n+ 1)q3n+1 = q
(q9; q9)3

∞
(q18; q18)3

∞

(q3; q3)5
∞
(q6; q6)3

∞

(

4q3x2(q3) +
1

x(q3)

)

, (2.4)

∞
∑

n=0

PD(3n+ 2)q3n+2 = 3q2
(q9; q9)3

∞
(q18; q18)3

∞

(q3; q3)5
∞
(q6; q6)3

∞

. (2.5)
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Thus Theorem 1.3 can be deduced from (2.5) by dividing both sides by q2 and substituting
q3 by q. Similarly, Theorem 1.6 can be deduced from (2.4) by dividing both sides by q
and substituting q3 by q. This completes the proof.

If we extract the terms involving the powers q3n in (2.3), and substitute q3 by q, we
get

∞
∑

n=0

PD(3n)qn =
(q3; q3)3

∞
(q6; q6)3

∞

(q; q)5
∞
(q2; q2)3

∞

(

−2qx(q) +
1

x2(q)

)

. (2.6)

It turns out that F (q2) in the generating function formula for PD(3n) can be computed
from (2.6) with the aid of some identities for cubic theta functions. These cubic theta
functions are introduced by Borwein, Borwein and Garvan [7] and are defined by

a(q) =
∞
∑

m,n=−∞

qm
2+mn+n2

,

b(q) =
∞
∑

m,n=−∞

!m−nqm
2+mn+n2

, ! = e2�i/3,

c(q) =

∞
∑

m,n=−∞

qm
2+mn+n2+m+n.

Recall that

c(q) = 3
(q3; q3)3

∞

(q; q)∞
, (2.7)

see Berndt, Bhargava and Garvan [6, Eq. (5.5)]. We shall also use the following identities
for a(q) and c(q)

a(q) = a(q4) + 6q
(q4; q4)2

∞
(q12; q12)2

∞

(q2; q2)∞(q6; q6)∞
, (2.8)

c(q) = qc(q4) + 3
(q4; q4)3

∞
(q6; q6)2

∞

(q2; q2)2
∞
(q12; q12)∞

, (2.9)

a(q) = a(q2) + 2q
c2(q2)

c(q)
. (2.10)

Identity (2.8) for a(q) and identity (2.9) for c(q) are due to Hirschhorn, Garvan, and
Borwein [12, Eqs.(1.36) and (1.34)]. Identity (2.10) for a(q) and c(q) is obtained by
Berndt, Bhargava, Garvan [6, Eq. (6.3)].

We obtain the following identity on Ramanujan’s cubic continued fraction v(q), which
is stated in terms of x(q) as given by (2.2).

Theorem 2.2. We have

1

x2(q)
− 2qx(q) = 3q2

(q2; q2)2
∞
(q12; q12)6

∞

(q4; q4)2
∞
(q6; q6)6

∞

+
(q4; q4)6

∞

(q2; q2)2
∞
(q6; q6)2

∞
(q12; q12)2

∞

. (2.11)
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Proof. We first establish a connection between Ramanujan’s cubic continued fraction �(q)
and the cubic theta function c(q). It is easy to check that

1

x2(q)
=

(q3; q6)6
∞

(q; q2)2
∞

=
(q2; q2)2

∞

(q6; q6)6
∞

×

(

(q3; q3)3
∞

(q; q)∞

)2

=
(q2; q2)2

∞

9(q6; q6)6
∞

× c2(q), (2.12)

2qx(q) = 2q
(q; q2)∞
(q3; q6)3

∞

= 2q
(q6; q6)3

∞

(q2; q2)∞
×

(

(q; q)∞
(q3; q3)3

∞

)

= 6q
(q6; q6)3

∞

(q2; q2)∞
×

1

c(q)
. (2.13)

We now consider the 2-dissection of 1/x2(q). Identity (2.9) can be viewed as the
2-dissection of c(q). Hence we deduce that

c2(q) =

(

q2c2(q4) + 9
(q4; q4)6

∞
(q6; q6)4

∞

(q2; q2)4
∞
(q12; q12)2

∞

)

+ q

(

6c(q4)
(q4; q4)3

∞
(q6; q6)2

∞

(q2; q2)2
∞
(q12; q12)∞

)

.

This yields the 2-dissection of 1/x2(q),

1

x2(q)
=

(

q2c2(q4)
(q2; q2)2

∞

9(q6; q6)6
∞

+
(q2; q2)2

∞

(q6; q6)6
∞

(q4; q4)6
∞
(q6; q6)4

∞

(q2; q2)4
∞
(q12; q12)2

∞

)

+ q

(

6c(q4)
(q2; q2)2

∞

9(q6; q6)6
∞

(q4; q4)3
∞
(q6; q6)2

∞

(q2; q2)2
∞
(q12; q12)∞

)

=

(

q2
(q2; q2)2

∞
(q12; q12)6

∞

(q4; q4)2
∞
(q6; q6)6

∞

+
(q4; q4)6

∞

(q2; q2)2
∞
(q6; q6)2

∞
(q12; q12)2

∞

)

+ 2q

(

(q4; q4)2
∞
(q12; q12)2

∞

(q6; q6)4
∞

)

. (2.14)

Next, we aim to derive the 2-dissection of q/c(q). By (2.10), we find

q

c(q)
=

a(q)− a(q2)

2c2(q2)
. (2.15)

Substituting (2.8) into (2.15), we arrive at

q

c(q)
=

1

2c2(q2)

(

a(q4) + 6q
(q4; q4)2

∞
(q12; q12)2

∞

(q2; q2)∞(q6; q6)∞
− a(q2)

)

. (2.16)

Using (2.10) with q replaced by q2, we get

a(q2)− a(q4) = 2q2
c2(q4)

c(q2)
.

Hence (2.16) can be written as

q

c(q)
=

1

2c2(q2)

(

−2q2
c2(q4)

c(q2)
+ 6q

(q4; q4)2
∞
(q12; q12)2

∞

(q2; q2)∞(q6; q6)∞

)

= −q2
c2(q4)

c3(q2)
+ 3q

(q4; q4)2
∞
(q12; q12)2

∞

c2(q2)(q2; q2)∞(q6; q6)∞
.
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Thus, we obtain the following 2-dissection of 2qx(q),

2qx(q) = −6q2
(q6; q6)3

∞
c2(q4)

(q2; q2)∞c3(q2)
+ 18q

(q6; q6)3
∞
(q4; q4)2

∞
(q12; q12)2

∞

c2(q2)(q2; q2)2
∞
(q6; q6)∞

= −2q2
(q2; q2)2

∞
(q12; q12)6

∞

(q6; q6)6
∞
(q4; q4)2

∞

+ 2q
(q4; q4)2

∞
(q12; q12)2

∞

(q6; q6)4
∞

. (2.17)

Subtracting (2.17) from (2.14), we obtain (2.11). This completes the proof.

Proof of Theorem 1.5. By (2.6), we have

∞
∑

n=0

PD(3n)qn =
(q3; q3)3

∞
(q6; q6)3

∞

(q; q)5
∞
(q2; q2)3

∞

(

−2qx(q) +
1

x2(q)

)

=
(q3; q6)3

∞
(q6; q6)6

∞

(q; q2)5
∞
(q2; q2)8

∞

(

−2qx(q) +
1

x2(q)

)

=
1

(q; q6)5
∞
(q3; q6)2

∞
(q5; q6)5

∞

×
(q6; q6)6

∞

(q2; q2)8
∞

(

−2qx(q) +
1

x2(q)

)

. (2.18)

Applying (2.11) to (2.18), we are led to the generating function for PD(3n) as given by
(1.7). This completes the proof.

3 A combinatorial interpretation

In this section, we give a combinatorial interpretation of the congruence PD(3n+ 2) ≡ 0
(mod 3). In doing so, we introduce the pd-rank of a partition with designated summands.
This rank function enables us to divide the set of partitions of 3n + 2 with designated
summands into three equinumerous classes. The definition of the pd-rank is based on the
following representation of a partition with designated summands by a pair of partitions.

Theorem 3.1. There is a bijection Δ between the set of partitions of n with designated

summands and the set of pairs of partitions (�, �) with ∣�∣ + ∣�∣ = n, where � is an

ordinary partition and � is a partition into parts ∕≡ ±1 (mod 6).

It is clear that the above theorem is a consequence of formula (1.1) for the generating
function of partitions with designated summands. We shall give a combinatorial proof
of this theorem which give rise to the notion of the pd-rank. Our construction is based
on the bijective proof of MacMahon’s theorem given by Andrews, Eriksson, Petrov and
Romik [4].

Combinatorial proof of Theorem 3.1. Let � be a partition of n with designated summands.
We wish to construct a pair of partitions (�, �) such that ∣�∣ + ∣�∣ = n, where � is an
ordinary partition and � is a partition into parts ∕≡ ±1 (mod 6).
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Suppose that t is a part of �, and suppose that t appears mt times with the i-th part
being designated. There are two cases.

∙ If i = 1, then move all the parts equal to t (including the designated part) in � to
the partition �.

∙ If i ∕= 1, then move i parts equal to t in � to 
 and (mt − i) parts equal to t in � to
�.

It can be seen that each part occurs at least twice in 
 . The partition � with parts ∕≡ ±1
(mod 6) can be obtained from the partition 
 with the aid of the following bijection of
Andrews, Eriksson, Petrov and Romik.

First, write 
 as in the form of 1m12m2 ⋅ ⋅ ⋅ lml , where mk is the multiplicity of k. Since
mk ∕= 1 for any k, there is a unique way to write mk in the form mk = sk + tk, where
sk = 0 or 3, and tk ∈ {0, 2, 4, 6, 8, . . .}. Now, the partition � = 1b12b2 . . . is determined as
follows:

b6k+1 = 0, b6k+5 = 0,

b6k+2 =
1

2
t3k+1, b6k+4 =

1

2
t3k+2,

b6k+3 =
1

3
s2k+1 + t6k+3, b6k+6 =

1

3
s2k+2 + t6k+6.

It is clear that � is a partition into parts ∕≡ ±1 (mod 6) and the above procedure is
reversible. Hence Δ is a bijection. This completes the proof.

The pd-rank of a partition � with designated summands can be defined in terms of
the pair of partitions (�, �) under the map Δ.

Definition 3.2. Let � be a partition with designated summands and let (�, �) = Δ(�).
Then the pd-rank of �, denoted rd(�), is defined by

rd(�) = le(�)− le(�), (3.1)

where le(�) is the number of even parts of � and le(�) is the number of even parts of �.

The following theorem shows that the pd-rank can be used to divide the set of partitions
of 3n+ 2 with designated summands into three equinumerous classes.

Theorem 3.3. For i = 0, 1, 2, let Nd(i, 3;n) denote the number of partitions of n with

designated summands with pd-rank congruent to i (mod 3). Then we have

Nd(0, 3; 3n+ 2) = Nd(1, 3; 3n+ 2) = Nd(2, 3; 3n+ 2). (3.2)
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Proof. Let Nd(m;n) denote the number of partitions of n with designated summands with
pd-rank m. By the definition of the pd-rank, we see that

∞
∑

n=0

∞
∑

m=−∞

Nd(m;n)zmqn =
1

(zq2; q2)∞(q; q2)∞
×

1

(z−1q2; q2)∞(q3; q6)∞
. (3.3)

Setting z = � = e
2�i

3 , we find that

∞
∑

n=0

∞
∑

m=−∞

Nd(m;n)�mqn =

∞
∑

n=0

2
∑

i=0

Nd(i, 3;n)�
iqn

=
1

(�q2; q2)∞(q; q2)∞(�−1q2; q2)∞(q3; q6)∞

=
(−q3; q3)∞

(q; q2)∞(�q2; q2)∞(�−1q2; q2)∞
. (3.4)

Multiplying the right hand side of (3.4) by

(q2; q2)∞
(q2; q2)∞

,

and noting that
(1− x)(1− x�)(1− x�2) = 1− x3,

we deduce that

∞
∑

n=0

2
∑

i=0

Nd(i, 3;n)�
iqn =

(−q3; q3)∞
(q; q2)∞(�q2; q2)∞(�−1q2; q2)∞

×
(q2; q2)∞
(q2; q2)∞

=
(q2; q2)∞
(q; q2)∞

×
(−q3; q3)∞
(q6; q6)∞

.

By Gauss’s identity [1, P. 23]

(q2; q2)∞
(q; q2)∞

=
∞
∑

n=0

q(
n+1

2 ),

we get

∞
∑

n=0

2
∑

i=0

Nd(i, 3;n)�
iqn =

(−q3; q3)∞
(q6; q6)∞

∞
∑

n=0

q(
n+1

2 ). (3.5)

Since
(

n+ 1

2

)

≡ 0 or 1 (mod 3),
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the coefficient of q3n+2 in (3.5) is zero. It follows that

Nd(0, 3; 3n+ 2) +Nd(1, 3; 3n+ 2)� +Nd(1, 3; 3n+ 2)�2 = 0.

Since the minimal polynomial of � is 1 + x+ x2, we conclude that

Nd(0, 3; 3n+ 2) = Nd(1, 3; 3n+ 2) = Nd(2, 3; 3n+ 2).

This completes the proof.

For example, for n = 5, we have PD(5) = 15. The fifteen partitions of 5 with
designated summands, the corresponding pairs of partitions, and the pd-ranks modulo 3
are listed in Table 3.1. It can be checked that

Nd(0, 3; 5) = Nd(1, 3; 5) = Nd(2, 3; 5) = 5.

� (�, �) = Δ(�) rd(�) (mod 3)

5′ (5, ∅) 0

4′ + 1′ (4 + 1, ∅) 1

3′ + 2′ (3 + 2, ∅) 1

3′ + 1′ + 1 (3 + 1 + 1, ∅) 0

3′ + 1 + 1′ (3, 2) 2

2′ + 2 + 1′ (2 + 2 + 1, ∅) 2

2 + 2′ + 1′ (1, 4) 2

2′ + 1′ + 1 + 1 (2 + 1 + 1 + 1, ∅) 1

2′ + 1 + 1′ + 1 (2 + 1, 2) 0

2′ + 1 + 1 + 1′ (2, 3) 1

1′ + 1 + 1 + 1 + 1 (1 + 1 + 1 + 1 + 1, ∅) 0

1 + 1′ + 1 + 1 + 1 (1 + 1 + 1, 2) 2

1 + 1 + 1′ + 1 + 1 (1 + 1, 3) 0

1 + 1 + 1 + 1′ + 1 (1, 2 + 2) 1

1 + 1 + 1 + 1 + 1′ (∅, 3 + 2) 2

Table 3.1: The case for n = 5.
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