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Fast Multi-grid Methods for Minimizing Curvature
Energies

Zhenwei Zhang, Ke Chen, Ke Tang and Yuping Duan∗

Abstract—The geometric high-order regularization methods
such as mean curvature and Gaussian curvature, have been
intensively studied during the last decades due to their abilities in
preserving geometric properties including image edges, corners,
and contrast. However, the dilemma between restoration qual-
ity and computational efficiency is an essential roadblock for
high-order methods. In this paper, we propose fast multi-grid
algorithms for minimizing both mean curvature and Gaussian
curvature energy functionals without sacrificing accuracy for
efficiency. Unlike the existing approaches based on operator
splitting and the Augmented Lagrangian method (ALM), no
artificial parameters are introduced in our formulation, which
guarantees the robustness of the proposed algorithm. Meanwhile,
we adopt the domain decomposition method to promote parallel
computing and use the fine-to-coarse structure to accelerate
convergence. Numerical experiments are presented on image
denoising, CT, and MRI reconstruction problems to demonstrate
the superiority of our method in preserving geometric structures
and fine details. The proposed method is also shown effective in
dealing with large-scale image processing problems by recovering
an image of size 1024×1024 within 40s, while the ALM method
[1] requires around 200s.

Index Terms—Mean curvature, Gaussian curvature, multi-grid
method, domain decomposition method, image denoising, image
reconstruction.

I. INTRODUCTION

IMAGE restoration is a fundamental task in image process-
ing, which aims to recover the latent clean image u from the

observed noisy image f : Ω → R defined on an open bounded
domain Ω ⊂ R2. The total variation (TV) proposed by Rudin,
Osher, and Fatemi is the most successful regularization used
for image denoising problem [2], which minimizes the total
lengths of all level sets of the image. Although the Rudin-
Osher-Fatemi model has been proven to effectively remove
noise and preserve sharp edges, it also suffers from some
unfavorable properties including loss of image contrast and
staircase effect [3]. High-order regularization methods have
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been investigated for image restoration problems to overcome
the drawback of TV regularization including the fourth-order
partial differential equation (PDE) [4], total generalized vari-
ation [5], Euler’s elastica [6], mean curvature [7] and total
roto-translational variation [8] etc.

The curvature regularization methods achieved great success
by minimizing curvature-dependent energies, which are well-
known for their good geometric interpretability and strong
priors in the continuity of edges and has been applied to
various data processing tasks such as image decomposition
[9], graph embedding [10], and missing data recovery [11]
etc. Considering the associated image surface characterized by
(x, f(x)) for x ∈ Ω, the image restoration problem is to find a
piecewise smooth surface (x, u(x)) to approximate the noisy
surface and simultaneously remove the outliers. The curvature
minimization problem can be formulated as follows

min
u∈V

∫
Ω

|κ(u)|dx+
α

2

∫
Ω

(u− f)2dx, (1)

where κ(u) can be either the mean curvature or Gaussian
curvature of the image surface, and V is a function space.
The definitions of mean curvature and Gaussian curvature are
described in Table I. To the best of our knowledge, one has
not identified the proper function to formulate problem (1),
which should be a subset of L2(Ω).

The minimization of curvature energies is more challenging,
such that efficient algorithms for solving the model (1) are
still limited. Originally, the gradient descent method [7] was
presented to solve the mean curvature model, which has to
solve fourth-order nonlinear evolution equations. Liu et al.
[20] developed a fast numerical algorithm for solving the high-
order variational models based on the split Bregman method.
Zhu, Tai, and Chan [12] developed the augmented Lagrangian
method (ALM) for the mean curvature model. Brito-Loeza and
Chen [13] propose a multi-grid algorithm for solving the mean
curvature model, which is based on an augmented Lagrangian
formulation with a special linearized fixed point iteration. The
situation is even worse for Gaussian curvature minimization
since no fast algorithms are developed yet. There are not
many studies of effective numerical algorithms for Gaussian
curvature minimization. Alboul and Damme [21] used the
total absolute Gaussian curvature in the different contexts of
connectivity optimization for the triangulated surfaces. Gong
and Sbalzarini [22] proposed a variational model using the
local weighted Gaussian curvature as a regularization term,
which was effectively solved by the closed-form solution.
Elsey and Esedoglu [18] introduced the Gaussian curvature
regularization for surface processing as the natural analog of
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TABLE I
THE MEAN CURVATURE AND GAUSSIAN CURVATURE REGULARIZATION TERMS CAN BE USED IN THE IMAGE RESTORATION MODEL (1).

Curvature Definition Description References

Mean curvature ∇ ·
(

∇√
|∇u|2+1

)
the mean curvature of the zero level set z = u(x, y) [7], [12]–[14]

1
2
(κmin(u) + κmax(u)) the mean curvature of image surface (x, y, u(x, y)) [15]–[17]

Gaussian curvature
det(∇2u)

(1+|∇u|2)2 the Gaussian curvature of the zero level set z = u(x, y) [18], [19]
κmin(u)κmax(u) the Gaussian curvature of image surface (x, y, u(x, y)) [15]–[17]

1 κmax(u) and κmin(u) denotes the two principal normal curvatures.

the total variation, which was discretized on a triangulated
surface for reducing the difficulty of solution. Brito-Loeza
and Chen [19] presented a two-step method based on vector
field smoothing and gray level interpolation for solving the
Gaussian curvature minimization problem.

Zhong, Yin and Duan [16] formulated the following cur-
vature regularization model by minimizing either Gaussian
curvature or mean curvature over image surfaces

min
u

∫
Ω

g(κ)
√
1 + |∇u|2dx+

λ

2

∫
Ω

(u− f)2dx, (2)

where g(·) denotes a certain function of the curvature. In
[16], the minimization problem (2) was regarded as a re-
weighted minimal surface model and handled by the alter-
nating direction method of multipliers (ADMM). Although
the curvature function can be explicitly evaluated using the
current estimation, one nonlinear sub-minimization problem
has to be computed by the Newton method resulting in rising
computational costs.

Gong and Sbalzarini [15] developed the curvature filters
by minimizing either Gaussian curvature or mean curvature
to smooth the noisy images. Rather than solving the higher-
order PDEs, the pixel-wise solutions were presented to find
the locally developable and minimal surfaces, which give zero
Gaussian curvature and zero mean curvature, respectively.
The idea of curvature filters was further studied in [14],
[23]. However, the curvatures lack rigorous definitions, which
limits their performance in real applications. Besides, when
combined with the data fidelity term, gradient descent was
used to estimate the solution leading to the slow convergence.

The multi-grid method is a fast numerical method for
solving large-scale linear and nonlinear optimization prob-
lems [24]–[27] and has been successfully applied to image
processing models. Chen and Tai [28] proposed a nonlinear
multi-grid method for the total variation minimization based
on the coordinate descent method. Savage and Chen [29]
presented a nonlinear multi-grid method based on the full
approximation scheme for solving the total variation model.
Chan and Chen [30] proposed a fast multilevel method using
primal relaxations for the total variation image denoising
and analyzed its convergence. Zhang et al. [31] developed a
multi-level domain decomposition method for solving the total
variation minimization problems, which used the piecewise
constant functions to ensure fast computation. Tai, Deng and
Yin [32] proposed a multi-phase image segmentation method
by solving the min-cut minimization problem under the multi-
grid method framework. For the high-order model, Brito-
Loeza and Chen [13] presented a new multi-grid method based
upon a stabilized fixed point method for dealing with the mean

curvature model. The nonlinear multi-grid method was applied
to fourth-order models to accelerate the convergence in [33].
However, these methods require very high computational costs
to solve the high-order PDEs and result in low efficiency.

This work presents the efficient multi-grid method for
solving the highly nonlinear curvature regularization models.
We formulate a patch-based correction strategy from the
fine grid layer to coarse grid layers and then interpolate
the correction to each point nodal belonging to the patch.
We proposed a forward-backward splitting scheme [34], [35]
to solve the curvature minimization problem and prove its
convergence theoretically. More specifically, we first obtain
analytical solutions to the mean curvature/Gaussian curvature
minimization based on the local geometry property. In what
follows, we solve a convex optimization problem to estimate
the patch-wise update. To further improve the efficiency, we
use the four-color domain decomposition method on each
layer to enable all subproblems in the same color can be
solved in parallel. Numerous numerical experiments on both
image restoration and image reconstruction are presented to
demonstrate the efficiency and effectiveness of our algorithm
in dealing with large-scale image processing problems. To sum
up, our contributions are concluded as follows

• We propose an efficient multi-grid method based on
subspace correction method for solving the curvature
minimization problem (1), where the whole space is
transferred into small-size local patches;

• We use the forward-backward splitting scheme to solve
the non-convex patch-wise minimization problems, where
subproblems can be efficiently handled by the closed-
form solutions;

• The non-overlapping domain decomposition method is
applied to circumvent the dependencies between the
adjacent patches, which enables the parallel computation
for these subproblems;

• We develop a GPU-based curvature minimization pack-
age by utilizing the parallel computation ability of a GPU
card, which is desirable for high-speed real applications.
All our codes and data are available at https://github.com/
Duanlab123/MGMC.

• The application of the mean curvature minimization is
extended to CT and MR reconstruction problems to prove
our approach can well balance the image quality and
computational efficiency.

The rest of the paper is organized as follows. In Sect.
II, the coordinate descend method is proposed to solve the
mean curvature minimization problem and the coarse layers
are introduced to achieve a fast multi-grid algorithm. We
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Algorithm 1: The coordinate descend method for solving the minimization problem (3)
Input: u0, f , and α
for l = 0, 1, 2, · · · do

for k1 = 1, · · · ,m, k2 = 1, · · · , n do
• Compute the correction c from

c = argmin
c∈R

J(c) := |H(ul[k1, k2] + c)|+ α

2

(
c− f∗

l [k1, k2]
)2
, (5)

where f∗
l [k1, k2] = f [k1, k2]− ul[k1, k2].

• Update ul+1[k1, k2] by
ul+1[k1, k2] = ul[k1, k2] + c.

end
End till some stopping criterion meets;

end
Output: ul+1

extend the idea to Gaussian curvature minimization problem in
Sect. III. Numerical experiments are conducted to illustrate the
advantages by comparing with the curvature filters and other
curvature-related methods in Sect. IV. In Sect. V, our curvature
methods are extended to solve image reconstruction problems
including both CT and MR reconstruction. We conclude the
paper in Sect. VI with some remarks and future works.

II. THE MEAN CURVATURE MINIMIZATION PROBLEM

Without loss of generality, a gray-scale discrete image u of
size m×n has its pixel values u[k1, k2] defined at the locations
[k1, k2] in the domain Ω = {1, . . . ,m} × {1, . . . , n}, where
k1 and k2 are the row and column indices, respectively. Then
the discrete mean curvature energy of (1) can be given as

min
u

F (u) :=

m∑
k1=1

n∑
k2=1

|H(u[k1, k2])|+
α

2
(u[k1, k2]−f [k1, k2])

2,

(3)
where H(u[k1, k2]) = 1

2 (κmin(u[k1, k2]) + κmax(u[k1, k2]))
denotes the mean curvature of the pixel (k1, k2, u[k1, k2]). We
introduce a series of basis functions ϕk1,k2(x) on each pixel
[k1, k2] ∈ Ω as follows

ϕk1,k2
(x) =

{
1, if x = [k1, k2];
0, if x ̸= [k1, k2].

Relying on the above basis functions, the minimization prob-
lem (3) can be considered as finding the best correction to
minimize the curvature-related energy. Referred to [36], we
choose an initial value u0 and set l = 0. For k1 = 1, . . . ,m,
k2 = 1, . . . , n, we update u using the correction c ∈ R over
each pixel as follows

ul+1 = ul +

m∑
k1=1

n∑
k2=1

cϕk1,k2
(x). (4)

Relying on the coordinate descend method [28], [31], [37], the
correction equation (4) is transferred into a sequence of the
one-dimensional minimization problems, the details of which
is described as Algorithm 1.

The core issue becomes how to solve (5) effectively. Here,
we use the forward-backward splitting (FBS) method to refor-
mulate the local problem (5) into a couple of sub-minimization

problems. The forward-backward splitting algorithm is a pop-
ular choice for the minimization problem with a smooth data
fidelity; see for instance [38], [39]. The detailed algorithm is
provided as Algorithm 2.

Algorithm 2: The forward-backward splitting method
for solving the local minimization problem (5)
Input: ul, f , c0 = 0, and α, η0 = 1;
for t = 0, 1, 2, · · · do

• The forward step

ct+ 1
2
=argmin

c
|H(ul[k1, k2] + c)|+ 1

2ηt
(c− ct)

2;

(6)
• The backward step

ct+1=argmin
c

α

2

(
c−f∗

l [k1, k2]
)2
+

1

2ηt
(c−ct+ 1

2
)2;

(7)
• Update

ηt+1 = 1/
√
(1 + t);

• End till some stopping criterion meets;
end
Output: ct+1

Solution to the sub-minimization problem (6). We can use the
geometric interpretation to estimate the correction in a local
window according to well-known Bernstein’s theorem.

Proposition 1. Let dℓ be the distances of (k1, k2, u[k1, k2]) on
the image surface leaving from the tangent planes. Supposing
that the correction c is defined as c = 1

ι

∑ι
ℓ=1 dℓ with ι being

the total number of tangent planes, the mean curvature energy
|H(u[k1, k2] + c)| decreases.

Proof. According to Bernstein’s theorem, a graph of a real
function on R2 is a minimal surface, which should be a plane
in R3. Thus, the flatter the image surface, the smaller the mean
curvature regularization term. Suppose there are ι tangent
planes and the corresponding distances of (k1, k2, u[k1, k2])
to its tangent planes are denoted by dℓ, ℓ = 1, · · · , ι. To
make the image surface as flat as possible, we consider the
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following quadratic minimization problem

min
c∈R

ι∑
ℓ=1

(c− dℓ)
2,

where the optimal correction is c = 1
ι

∑ι
ℓ=1 dℓ.

As shown in Fig. 1, we enumerate total 8 local tangent
planes in a 3×3 window, which are denoted as T1 to T8 located
pairwise centrosymmetric and passed through the center point
to avoid the grid bias. Note that we can use more tangent

planes to obtain accurate principal curvatures, but this also
increases the calculation cost. Therefore, we later introduce
more tangent planes on the coarse layers in the multi-grid
framework to balance the effectiveness and efficiency.

Similar to our previous work [16], we compute the
distances dℓ, ℓ = 1, · · · , 8, as illustrated in Fig. 2. More
specifically, let the plane XY Z be a tangent plane of O and
n be the normal vector. The directed distance from O to the
tangent plane can be calculated by d =

−−→
XO · n as follows

d =
−−→
XO · n =

(u[k1, k2 − 1] + u[k1, k2 + 1]− 2u[k1, k2])√
(u[k1, k2 − 1] + u[k1, k2 + 1]− 2u[k1 − 1, k2])2 + (u[k1, k2 + 1]− u[k1, k2 − 1])2 + 4

, (8)

Fig. 1. Illustration of the eight tangent planes located in a 3× 3 local patch.

where n is defined by the cross product of the vector
−−→
XZ

and
−−→
XY , i.e., n =

−−→
XZ ×

−−→
XY . The computation of dℓ, ℓ =

1, . . . , 8, can be implemented in the same way. And the update
of ct+ 1

2
can be estimated as

ct+ 1
2
=

1

8

8∑
ℓ=1

dℓ. (9)

Solution to the sub-minimization problem (7). We are facing
a quadratic minimization problem, which is formulated as

min
c

α

2

(
c−f∗

l [k1, k2]
)2
+

1

2ηt
(c−ct)

2+
1

2ηt
(c−ct+ 1

2
)2. (10)

The minimization problem (10) can be solved by the closed-
form solution as follows

ct+1=
1

2 + αηt

(
ct + ct+ 1

2
+ αηtf

∗
l

)
. (11)

A. Convergence analysis of Algorithm 2
In the subsection, we present a brief discussion to show

the energy diminishing of Algorithm 2. Let c∗ ∈ R denote
a minimizer of model (5), the mean curvature term and date
fidelity term are denoted by f(c) = |H(ul[k1, k2] + c)| and
r(c) = α

2 (c − f∗[k1, k2])
2, respectively. The next lemma

provides a key tool for deriving convergence. For more details,
please refer to the forward-backward splitting scheme in [40].

Lemma 1. (Bounding Step Differences) Assume that the
norm of the gradient of r(c) and f(c) are bounded as

∥∇r(c)∥2 ≤ G2, ∥∂f(c)∥2 ≤ D2,

where G,D are the Lipschitz constant of ∇r(c) and ∂f(c),
respectively. We have

2ηt

(
f(ct) + r(ct+1)− J(c̃)

)
≤ ∥ct − c̃∥2

− ∥ct+1 − c̃∥2 + η2t (5G
2 + 3D2).

(12)

Fig. 2. Illustration for the computation of the directed distance d from the
center point O to the tangent plane XY Z.

Proof. The proof is sketched in Appendix.

Based on Lemma 1, we can prove the following result,
which is important to derive the convergence results.

Lemma 2. Assuming that the norm of ∥c̃∥2 ≤ E2 with E
being a positive constant, we sum the residuals (12) over t
from 1 through T and get a telescoping sum

T∑
t=1

ηt

[
f(ct) + r(ct)− J(c̃)

]
≤ G̃,

where G̃ = E2 + 3
∑T

t=1 η
2
t (G

2 +D2).

Proof. The proof is similar to Theorem 2 in [40].

Therefore, a direct consequence of Lemma 2 can be ob-
tained when running Algorithm 2 with ηt ∝ 1/

√
t or with

non-summable step sizes decreasing to zero.

Theorem 1. Assume that the conditions of Lemma 2 hold and
the step size ηt satisfy ηt → 0 and

∑∞
t=1 ηt = ∞. Then we

have
lim inf
t→∞

J(ct)− J(c∗) = 0.

Proof. For the first T iterations, Lemma 2 gives

min
t∈{0,··· ,T}

(
f(ct)+r(ct)−J(c̃)

) T∑
t=1

ηt ≤
T∑

t=1

ηt
[
f(ct)+r(ct)−J(c̃)

]
.

Let c̃ = c∗, we have

lim inf
t→∞

J(ct)− J(c∗) ≤ E2∑∞
t=1 ηt

+
3
∑∞

t=1 η
2
t (G

2 +D2)∑∞
t=1 ηt

→ 0.
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Fig. 3. Illustration of the eight tangent planes T9−T16 together with T1−T8

in Fig. 1 form a coherent whole for a 5× 5 patch on the first coarse layer.

Remark 1. The step size η can be a constant or diminishing
with iterations, e.g., ηt = 1/

√
t.

Remark 2. Since the mean curvature minimization subprob-
lem can be explicitly solved by (9), we simply set t = 0 in
Algorithm 2 for all numerical experiments.

B. Our multi-grid algorithm

Regarding problem (5) as the finest grid, we can use a larger
local window and generate the multi-grid algorithm for solving
the mean curvature minimization problem. Without loss of
generality, we assume the initial grid T consists of m×n grid
points. Starting from the finest grid T1 = T , we consider a
sequence of coarse structure, T1, T2, · · · , TJ , with J being the
total number of layers. Our multi-grid structure is constructed
by gathering the grids point into non-overlapping patches of
different sizes. Specifically, the size of the patch set τj on the
jth coarse layer is (2j−1)×(2j−1), and Tj contains mj×nj

patches with

mj = ⌈m/(2j − 1)⌉, nj = ⌈n/(2j − 1)⌉,

where ⌈·⌉ is a rounding up function. Then there are Nj =
mj ×nj patches on the jth coarse layers and the partition can
be expressed as Tj = {τ ij}

Nj

i=1. In order to ensure each patch is
complete, we prolongate the image domain before the partition
using boundary conditions. It is straightforward to define Vj

as a finite element space

Vj = {v : v|τj ∈ Pc(τj), ∀τj ∈ Tj},

where Pc denotes the space of all piecewise constant functions.
We equip the piecewise constant function space Vj with a set
of basis functions {ϕi

j}
Nj

i=1, which is defined as

ϕi
j(x) =

{
1, if x ∈ τ ij ;
0, if x /∈ τ ij ;

i = 1, · · · , Nj .

Associated with each basis function, we define the one dimen-
sional subspace V i

j = span{ϕi
j}. Then, the whole space V can

be expressed as V =
∑J

j=1

∑Nj

i=1 V
i
j .

On the coarse grids, we consider a larger local patch
including more local tangent planes to be enumerated. We
can come up with a recurrence formula for the number of
tangent planes on the jth layer as ι = 2j+2. For example, we
enumerate the total of 16 triangular planes for patches on the
first coarse layer, half of which are the same as the finest layer
and the left ones are displayed in Fig. 3. Correspondingly,

we define one-dimensional subspace minimization problem (7)
over the subspace V i

j , i = 1, · · · , Nj , j = 1, · · · , J as follows

min
c∈R

1

2

(
c− 1

ι

ι∑
ℓ=1

dℓ

)2

+
αs

2

(
c− f∗

l

)2
,

where f∗
l =

∑
[k1,k2]∈τ i

j

(f [k1, k2] − ul[k1, k2])/s, s =∑
x∈τ i

j

ϕi
j(x). The closed-form solution is defined as follows

cij =
1

2 + αs

(1
ι

ι∑
ℓ=1

dℓ + αsf∗
l

)
.

Then, the correction cj = (c1j , · · · , cij , · · · , c
Nj

j ) on the jth
layer is reshaped into a matrix of size mj × nj as follows

cj=



· · ·
...

...
... · · ·

... ci1−1,i2−1
j ci1−1,i2

j ci1−1,i2+1
j

...
... ci1,i2−1

j ci1,i2j ci1,i2+1
j

...
... ci1+1,i2−1

j ci1+1,i2
j ci1+1,i2+1

j

...

· · ·
...

...
... · · ·


mj×nj

,

where i1 = 1, · · · ,mj , i2 = 1, · · · , nj , and mj , nj are the
number of patches in the row direction and column direction,
respectively. Because we use the piecewise constant basis
function over the support set, we can define an interpolation
matrix Lj : Rmjnj → Rmn to update the solution on the finest
layer, i.e.

Ljcj=



· · ·
...

...
...

...
... · · ·

... ci1−1,i2−1j · · · ci1−1,i2j · · · ci1−1,i2+1j

...
... ci1,i2−1j ci1,i2j · · · ci1,i2j ci1,i2+1j

...

· · ·
... · · ·

... · · ·
... ci1,i2−1j ci1,i2j · · · ci1,i2j ci1,i2+1j

...
... ci1+1,i2−1j ci1+1,i2j · · · ci1+1,i2j ci1+1,i2+1j

...

· · ·
...

...
...

...
... · · ·


m×n

.

Then the solution can be defined as ul+1 = ul +
∑J

j=1 Ljcj .
We use the V-cycle to solve the minimization model from

the finest layer V1 to the coarsest layer VJ , and then from
the coarsest layer to the finest layer. In practice, we find
that half of the V-cycle is sufficient for the decrease of the
energy functional, while the other half of the V-cycle does
little improvement. Thus the coarse to fine subspace correction
can be omitted.

C. The domain decomposition strategy

The domain decomposition method (DDM) is another
promising technique to deal with large-scale problems, which
divides the large-scale problem into smaller problems for
parallel computation. In the following, we will apply the non-
overlapping domain decomposition method to enable parallel
computation.
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Fig. 4. Illustration of 4-color domain decomposition for a domain of size
9× 9, where the subproblems of the same color can be computed in parallel.

Fig. 4 displays the four-color decomposition on the finest
layer and the second layer, respectively. More specifically, we
divide the basis function {ϕi

j}
Nj

i=1 into four groups ∪4
k=1{ϕi

j :
i ∈ Ik} to reduce the dependency on the order of basis
functions and improve the parallelism for subproblems on
each layer, where Ik contains the indexes with the same color.
This decomposition guarantees that neighboring patches in a
4-connected neighborhood are in different subsets. We can see
that the support of the basic functions {ϕi

j : i ∈ Ik} are non-
overlapping for each k = 1, 2, 3, 4, and the minimization of
F (u+cijϕ

i
j) for i ∈ Ik can be solved in parallel. In particular,

four subproblems are solved in consecutive order

min
δu∈V

(k)
j

F (u+ δu), for k = 1, 2, 3, 4,

where V
(k)
j = span{ϕi

j : i ∈ Ik} and Vj =
∑4

k=1 V
(k)
j . It is

readily checked that

min
δu∈V

(k)
j

F (u+ δu) = min
c∈R|Ik|

F (u+
∑
i∈Ik

cijϕ
i
j). (13)

We denote cj,k = (c1j , c
2
j , · · · , c

|Ik|
j ) as the solution to (13),

where |Ik| is the total number of elements in Ik and Nj =∑4
k=1 |Ik|. Then, the implementation of the algorithm to solve

the mean curvature minimization problem (3) is summarized
in Algorithm 3.

Algorithm 3: The multi-grid method for solving the
mean curvature minimization model (3)

Input: u0, f , α;
for l = 0, 1, · · ·/* Outer iterations */
do

for j = 1 to J /* From the fine layer
to coarse layer */

do
for k = 1 to 4, /* the four-color DDM

iterations */
do

cj,k=arg min
c∈R|Ik|

F (ul +
∑
i∈Ik

cijϕ
i
j) ;

end
end
ul+1 = ul +

∑J
j=1 Lj(∪4

k=1cj,k);
End till some stopping criterion meets;

end
Output: ul+1

D. Complexity analysis

In this section, the floating point operations (FLO) are used
to evaluate the complexity of the algorithm. The cost of our
method is mainly related to the following two parts. The
first is the distances to the tangent planes dℓ, which is about
4 × 2j+2 floating point operations (FLO) on each patch set
τ ij . Therefore, the total cost on the coarse level j is about
O(4mjnj2

j+2) ≈ O(4mn/(2j − 1)). The second cost is
the interpolation operator Lj , which is about mn FLO. The
computation of f∗ is about 2(2j − 1)(2j − 1)mjnj ≈ 2mn.
Then the number of FLOs over all J levels should be
O(

∑J
j=1(3+4/(2j−1))mn). In particular, the computational

complexity of our multi-grid algorithm with 3 layers is about
O(12mn).

As a point of reference, the mean curvature method [12]
contains three sub-problems, which can be solved by either the
shrinkage operation or the FFT with the total computational
complexity of O(6mn log2 mn + 8mn). The computational
complexity of the total absolute mean curvature model [16]
and Euler’s elastica model [6] can be obtained similarly, which
are O(2mn log2 mn + 3mn) and O(6mn log2 mn + 4mn),
respectively. It is shown that our multi-grid algorithm is with
much low computational complexity compared to the existing
high order methods.

III. THE GAUSSIAN CURVATURE MINIMIZATION PROBLEM

We can directly extend the proposed multi-grid method to
solve the following Gaussian curvature minimization problem

min
u

F (u) :=

m∑
k1=1

n∑
k2=1

|K(u[k1, k2])|+
α

2
(u[k1, k2]−f [k1, k2])

2,

(14)
where K(u[k1, k2]) = κmin(u[k1, k2])κmax(u[k1, k2]) is the
Gaussian curvature over pixel (k1, k2, u[k1, k2]). The one-
dimensional problem for the Gaussian curvature minimization
problem over the finest grid is given as follows

min
c∈R

|K(u[k1, k2] + c)|+ α

2

(
c− f∗[k1, k2]

)2
. (15)

Similarly, we use the FBS scheme to solve the local problem
(15). The only difference is how to estimate the minimizer
of curvature regularization term. Supposing that ι tangent
planes are enumerated, we can estimate ι normal curvatures
κℓ, ℓ = 1, 2, · · · , ι in the local patch. According to differential
geometry theory, the normal curvature can be calculated as
the quotient of the second fundamental form and the first
fundamental form as follows

κℓ =
II

I
≈ dℓ

ds2
,

where dℓ denotes the distance of a neighboring point to
the tangent plane and ds denotes the arc-length between
the neighboring point and the central point. Then Gaus-
sian curvature can be defined by the two principal cur-
vatures, where the principal curvatures are obtained by
κmin = min{κℓ(u[k1, k2])}, κmax = max{κℓ(u[k1, k2])}
for ℓ = 1, · · · , ι. We further denote κ∗(u[k1, k2]) =
min{|κmin|, |κmax|} be the principal curvature with the
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smaller absolute value, and T ∗ be the corresponding tan-
gent plane. Thereupon, we have the following proposition
to estimate the analytical solution for Gaussian curvature
minimization.

Proposition 2. The correction c on each point
(k1, k2, u[k1, k2]) ∈ Ω to minimize the Gaussian curvature
|K(u[k1, k2]+c)| is given as c = d∗, where d∗ is the distance
of (k1, k2, u[k1, k2]) to the tangent plane T ∗.

Proof. Since the point (k1, k2, u[k1, k2] + d∗) is on the
tangent plane w.r.t. the principle curvature, we have 0 =∣∣K(u[k1, k2] + d∗)

∣∣ ≤ ∣∣K(u[k1, k2])
∣∣.

Then, we can use Algorithm 2 to solve the patch problem
(15), and both the multi-grid method and domain decompo-
sition method can be applied to solve the Gaussian curvature
minimization problem (14) without much effort. Therefore, we
omit the details here.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed multi-grid algorithm on the image denoising problem.
The qualities of the denoised images are measured by both
the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM). All of the experiments are
implemented in a MATLAB R2016a environment on a desktop
with an Intel Core i9 CPU at 3.3 GHz and 8 GB memory.

A. The effect of the multi-grid method

The choice of the maximal number of layers is important
in our multi-grid method, which affects the numerical conver-
gence of the curvature minimization problems. We implement
both multi-grid mean curvature (MGMC) model and multi-grid
Gaussian curvature (MGGC) model on test images shown in
Fig. 5, which are corrupted by white Gaussian noise with zero
mean and standard deviation σ = 10. In the experiment, the
regularization parameter varies as α ∈ {0.1, 0.06, 0.03} and
the number of layers changes as J ∈ {1, 2, 3, 4, 5, 6}. Both
MGMC and MGGC are stopped when the following relative
error of the numerical energy is smaller than the predefined
tolerance

RelErr
(
F (ul+1)

)
= |F (ul+1)− F (ul)|/|F (ul+1)| ≤ ϵ,

(16)
which is set as ϵ = 10−6.

Table II displays the number of iterations, CPU time, and
numerical energies for different combinations of the number
of grid layers J and regularization parameter α. As can be
seen, both MGMC and MGGC converge to similar numerical
energies for a fixed value of α. Besides, we also conclude the
following two observations
• Introducing the coarse layers can greatly reduce the outer

iterations. Much CPU time is saved by increasing the
maximum layers from J = 1 to J = 3. However, the
CPU time increases as J keeps increasing to J = 6 for
all examples.

• The advantage of the multi-grid method is dominant
when the regularization parameter α becomes smaller

Fig. 5. The test images used in the numerical experiments, where the image
‘Triangle’ and ‘Peppers’ are of size 512×512, image ‘Parrot’ and ‘Man’ are
of size 1024× 1024.

and smaller. The computational time of the single layer
method is almost doubled as α decreases from α = 0.1
to α = 0.03, while the growth of the multi-grid method
is much smaller.

Thus, the number of layers is fixed as J = 3 for both MGMC
and MGGC in the following experiments.

B. Complexity discussion

We verify the linear convergence of our multi-grid method
on both images ‘Triangle’ and ‘Parrot’, the size of which varies
as {128× 128, 256× 256, 512× 512, 1024× 1024, 2048×
2048}. All images are corrupted by Gaussian noises with zero
mean and standard deviation σ = 10. We set the regularization
parameter as α = 0.06 and the error tolerance as ϵ = 10−5.
We implement both V-cycle (fine-to-coarse-to-fine) and half V-
cycle (fine-to-coarse). The comparison results of the number of
iterations, PSNR, CPU(s), and CPU ratio are recorded in Table
III. By CPU ratio, it can be checked that the computational
time of both the V-cycle and half of the V-cycle is proportional
to the size of image N , and of complexity O(N). For different
sizes of images, half of the V-cycle algorithm always consumes
fewer costs than the V-cycle one, especially for images of
size 2048 × 2048 down by a sixth, without sacrificing any
accuracy. Therefore, the fine-to-coarse structure is used in our
experiments.

C. Properties of curvature regularization

Both mean curvature and Gaussian curvature are well-
known for their abilities in preserving image contrast and
structural features [7] [19]. Now we use our Gaussian cur-
vature regularization model as an example and compare it
with the Euler’s elastica regularization model on two synthetic
images. As shown in Fig. 6, both images are corrupted by
Gaussian noise with zero mean and standard deviation σ = 20.
The restoration images demonstrate that our model outper-
forms Euler’s elastica [6] in preserving edges and corners.
Moreover, the residual images obtained by Euler’s elastica also
contain more image information than ours, which confirms
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TABLE II
THE DENOISING RESULTS ON TEST IMAGES TO DIFFERENT NUMBERS OF LAYERS FOR THE NOISE LEVEL σ = 10.

ID
Mean curvature Gaussian curvature

α 0.1 0.06 0.03 0.1 0.06 0.03
J Iter CPU(s) Energy Iter CPU(s) Energy Iter CPU(s) Energy Iter CPU(s) Energy Iter CPU(s) Energy Iter CPU(s) Energy

#1

1 257 24.41 2.3158 378 38.01 2.4117 417 34.41 2.5074 118 10.05 1.8541 197 15.47 2.1098 275 21.10 2.3178
2 77 8.96 2.3004 80 9.43 2.4161 114 13.21 2.5077 32 4.84 1.8496 41 4.81 2.1064 40 6.72 2.2934
3 55 5.39 2.2835 62 5.47 2.4003 67 8.67 2.5071 27 3.66 1.8465 35 4.07 2.1002 43 5.82 2.2911
4 57 8.74 2.2821 65 8.98 2.4005 77 10.94 2.5078 31 4.84 1.8471 30 4.80 2.1005 43 5.92 2.2972
5 61 10.11 2.2891 61 6.65 2.4008 68 9.42 2.5077 31 4.68 1.8496 37 5.70 2.1005 41 6.26 2.2936
6 56 9.84 2.2875 60 7.91 2.4009 69 9.67 2.5072 30 4.80 1.8496 32 4.92 2.1006 37 5.68 2.2914

#2

1 195 21.28 2.2833 318 32.16 2.4764 431 43.97 2.4703 120 10.43 1.8855 188 15.46 2.1717 254 20.82 2.3629
2 80 9.23 2.2675 93 11.65 2.4754 107 12.91 2.4772 53 6.69 1.8776 73 9.33 2.1529 86 10.81 2.3661
3 56 7.56 2.2637 64 9.37 2.4557 95 13.64 2.4721 47 6.65 1.8641 59 8.14 2.1512 76 10.46 2.3635
4 50 7.98 2.2639 66 10.54 2.4558 106 15.81 2.4722 46 6.88 1.8691 65 9.81 2.1513 71 10.45 2.3625
5 52 8.03 2.2641 60 9.91 2.4595 98 14.45 2.4761 46 6.95 1.8655 56 9.21 2.1517 69 10.63 2.3646
6 60 10.45 2.2641 64 10.75 2.4578 106 16.61 2.4737 50 7.56 1.8684 56 9.86 2.1514 69 10.55 2.3642

#3

1 159 58.76 1.1672 227 85.18 1.3693 293 100.2 1.5325 124 46.99 8.7365 184 68.37 1.1333 246 90.40 1.3789
2 42 23.66 1.1512 54 32.49 1.3647 54 29.81 1.5339 46 25.92 8.7362 57 30.69 1.1205 63 35.93 1.3769
3 38 23.24 1.1512 51 26.86 1.3646 59 28.71 1.5155 44 27.30 8.7352 50 31.58 1.1024 54 33.96 1.3536
4 41 26.67 1.1529 43 29.01 1.3661 47 31.78 1.5174 45 23.91 8.7358 58 38.63 1.1094 84 57.77 1.3529
5 40 27.75 1.1522 42 29.35 1.3671 49 31.77 1.5220 44 29.23 8.7353 56 38.10 1.1028 73 51.80 1.3560
6 42 29.72 1.1548 42 27.87 1.3667 51 33.67 1.5202 44 29.56 8.7358 52 35.79 1.1038 77 54.39 1.3592

#4

1 177 65.96 1.2591 273 98.02 1.5321 350 124.4 1.7344 127 47.95 9.4909 186 69.20 1.2658 245 89.48 1.3643
2 54 25.59 1.2585 57 30.33 1.5366 59 30.44 1.7259 53 31.34 9.4814 60 36.25 1.2664 73 40.80 1.3463
3 43 26.36 1.2588 50 26.68 1.5371 53 29.32 1.7233 49 31.75 9.4709 56 34.67 1.2611 60 37.00 1.3406
4 38 24.23 1.2523 41 28.46 1.5320 57 30.74 1.7234 47 33.21 9.4702 55 35.73 1.2618 73 49.36 1.3412
5 45 28.58 1.2599 45 28.69 1.5364 51 32.33 1.7237 41 32.50 9.4716 52 35.68 1.2616 52 45.34 1.3415
6 47 30.81 1.2602 47 29.99 1.5323 43 31.45 1.7239 49 35.07 9.4724 54 38.92 1.2615 50 44.06 1.3411

TABLE III
THE COMPARED RESULT OF THE NUMBER OF ITERATIONS, PSNR, CPU(S), AND CPU RATIO FOR DIFFERENT SIZE IMAGES WITH V-CYCLE AND HALF OF

THE V-CYCLE (DENOTED BY H-V-CYCLE).

Method Sizes N #1 #3
# PSNR CPU CPU Ratio # PSNR CPU CPU Ratio

H-V-cycle

128 16384 85 32.63 0.72 − 78 22.93 0.84 −
256 65536 65 35.19 2.27 3.2 61 25.43 2.01 2.4
512 262144 65 38.91 9.14 4.0 57 28.23 8.21 4.0
1024 1048576 63 40.65 36.94 4.0 48 32.85 30.34 3.8
2048 4194304 62 41.19 148.50 4.0 47 34.15 122.45 4.0

V-cycle

128 16384 63 32.66 1.01 − 64 22.94 0.98 −
256 65536 63 35.12 2.83 2.8 58 25.42 2.68 2.7
512 262144 62 38.91 11.82 4.0 55 28.18 10.25 4.0
1024 1048576 60 40.68 44.01 4.0 47 32.85 38.31 3.8
2048 4194304 59 41.19 179.75 4.0 45 34.15 152.68 4.0

Gaussian curvature regularization is better at maintaining
image contrast. In addition, we display the image surface plots
of clean images and restored images of Euler’s elastica and
MGGC in Fig. 7, where our Gaussian curvature regularization
model effectively keeps the sharp corners and jumps.

D. Comparison with curvature filters

In what follows, we verify the advantages of the proposed
multi-grid method by comparing it with the multi-grid method
in [13] and curvature filter [23]. Note that the domain de-
composition method has been applied to the curvature filter
for a fair comparison. We degrade the test images in Fig. 5
by the white Gaussian noises with zero mean and standard
deviation σ = 10. The regularization parameter α are set as
α ∈ {0.1 0.06 0.03} and error tolerance is fixed as ϵ = 10−6

for all methods. There are no other parameters for the mean
curvature filter (CFMC) and Gaussian curvature filter (CFGC),
where both methods are solved by gradient flow as presented
in [23]. The parameters of multi-grid method [13] (denoted
by MG) are set as: the total number of iterations is 10, the
maximal level is 3, the stopping condition is set as (16), and
all other parameters are set as suggested by the paper.

Table IV records the PSNR, the number of iterations,
CPU time, and the numerical energies obtained by different
approaches. As can be seen, our method always achieves
higher PSNR and smaller energies than the curvature filter,
while providing better or similar PSNR as the MG method.
More importantly, much CPU time can be saved by our fine-
to-coarse strategy, especially for images of large scales and
regularization parameters. We notice that multi-grid method
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(a) Noisy image (b) Euler’s elastica (c) Zoom region (d) Residual image (e) MGGC (f) Zoom region (g) Residual image

Fig. 6. The denoising results of the smooth images A1 and A2 (from top to bottom) obtained by the Euler‘s elastica [6] and our Gaussian curvature model,
where we set the regularization parameter as α = 0.06 and the error tolerance as ϵ = 10−4.
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Fig. 7. The image surfaces of the clean images and restoration images were obtained by Euler’s elastic regularization model [6] and our Gaussian curvature
regularization model.

TABLE IV
THE COMPARISON OF IMAGE DENOISING BETWEEN THE MULTI-GRID METHOD AND MEAN CURVATURE FILTER FOR THE NOISE LEVEL σ = 10.

Curvature Mean curvature Gaussian curvature

Index Im α=0.1 α=0.06 α=0.03 α=0.1 α=0.06 α=0.03
CFMC MG MGMC CFMC MG MGMC CFMC MG MGMC CFGC MGGC CFGC MGGC CFGC MGGC

PSNR

#1 40.43 41.81 42.24 40.88 42.83 43.01 40.82 42.61 42.58 38.15 39.84 39.01 41.61 38.96 41.09
#2 33.54 35.42 35.49 33.67 35.57 35.61 33.24 35.39 35.52 33.67 35.64 33.87 35.85 33.19 35.41
#3 30.19 32.17 32.23 30.21 32.84 32.85 29.67 32.12 32.24 30.52 32.91 31.89 33.92 30.44 31.83
#4 30.17 32.51 32.42 30.26 32.62 32.68 29.46 31.37 32.25 29.49 31.66 29.84 32.23 29.41 30.44

Iter

#1 118 6 55 214 8 62 346 8 67 154 45 253 55 363 73
#2 125 7 56 220 8 64 325 8 95 114 47 268 59 335 76
#3 134 5 38 199 6 51 362 6 59 124 44 191 50 351 54
#4 135 6 43 208 8 50 382 8 53 124 49 186 56 350 60

CPU(s)

#1 9.21 110.25 5.39 10.15 124.31 5.47 17.21 148.01 8.67 9.31 3.66 13.25 4.07 20.13 5.82
#2 10.24 116.07 7.56 13.21 125.48 9.37 19.62 130.24 13.64 9.12 6.65 14.13 8.14 16.12 10.46
#3 27.15 475.21 23.24 45.15 482.68 26.86 51.64 499.21 28.71 34.41 27.30 47.41 30.58 80.46 33.96
#4 28.32 463.93 26.36 50.87 550.68 28.68 60.85 562.41 29.32 41.12 31.75 55.14 34.67 67.12 37.00

Energy

#1 2.4556 2.2946 2.2835 2.4871 2.4087 2.4003 2.5577 2.4982 2.5071 1.9186 1.8465 2.1904 2.1009 2.3539 2.2811
#2 2.3478 2.2746 2.2639 2.5609 2.4615 2.4557 2.5502 2.4821 2.4721 1.9261 1.8641 2.2485 2.1510 2.5352 2.3635
#3 1.2409 1.1588 1.1512 1.4527 1.3698 1.3646 1.6183 1.5213 1.5155 8.8509 8.7352 1.2284 1.1064 1.4294 1.3536
#4 1.3415 1.2598 1.2588 1.6692 1.5435 1.5371 1.8582 1.7998 1.7259 9.5501 9.4709 1.3216 1.2615 1.4164 1.3406

[13] is very time consuming for solving the high-order PDEs.
Obviously, our multi-grid method can well balance efficiency
and effectiveness.

More than that, we compare the performance of our multi-
grid methods with curvature filters on images corrupted by
different noise levels, i.e., σ ∈ {10, 20, 30}, where α is chosen
to achieve the best restoration results. As provided in Table
V, our multi-grid method always outperforms the curvature
filter in both image quality and computational efficiency.
The main reason behind this is that both mean curvature
and Gaussian curvature in our model are estimated by the
definitions in differential geometry. To make it more clear,

we present one representative restoration result in Fig. 8,
where the results of the one-layer multi-grid methods are also
illustrated for comparison. It can be observed the one-layer
multi-grid methods produce much better results than curvature
filters with much smoother details. And the multi-grid strategy
can further improve the restoration quality.

E. Comparison study and GPU implementation

In this subsection, we compare our mean curvature method
with several state-of-the-art image denoising methods on a
dataset containing 30 gray images as shown in Fig. 9, where



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE V
THE COMPARISON BETWEEN THE MULTI-GRID METHOD AND CURVATURE FILTER WITH DIFFERENT NOISE LEVELS OF σ = 10, 20, 30, RESPECTIVELY.

Index α
σ = 10, α = 0.06 σ = 20, α = 0.05 σ = 30, α = 0.04 σ = 10, α = 0.06 σ = 20, α = 0.05 σ = 30, α = 0.03
CFMC MGMC CFMC MGMC CFMC MGMC CFGC MGGC CFGC MGGC CFGC MGGC

PSNR

#1 40.88 43.01 35.17 38.11 33.87 35.53 39.01 41.61 34.51 37.33 32.31 35.19
#2 33.67 35.61 30.95 33.37 29.75 31.51 33.87 35.85 31.09 33.52 29.89 31.33
#3 30.21 32.85 28.22 30.48 26.94 29.11 31.89 33.92 27.97 29.61 26.21 28.14
#4 30.26 32.68 27.39 29.51 26.28 28.35 29.84 32.23 27.18 28.55 25.62 27.22

CPU(s)

#1 10.15 5.47 13.11 5.88 21.41 6.42 13.25 4.07 18.95 6.88 34.45 7.29
#2 13.21 9.37 15.41 10.34 24.47 14.78 14.13 8.14 19.25 11.17 37.76 10.47
#3 45.15 26.86 67.97 26.42 72.13 33.85 47.41 30.58 79.94 30.23 82.72 39.37
#4 50.87 28.68 70.98 29.42 78.67 35.11 55.14 34.67 97.42 36.41 98.42 40.45

Energy

#1 2.4871 2.4003 8.2315 8.1815 2.0181 2.0104 2.1904 2.1009 8.3539 8.2546 1.9741 1.9387
#2 2.5609 2.4557 8.5179 8.3194 2.0155 1.9791 2.2485 2.1575 8.4884 8.3789 1.9833 1.9257
#3 1.4527 1.3646 3.8236 3.6539 7.1025 6.9583 1.2284 1.1064 3.8313 3.7934 8.5485 8.3979
#4 1.6692 1.5371 3.9651 3.7614 6.8714 6.6511 1.3216 1.2615 3.9682 3.9344 8.7079 8.6038

(a) CFMC (29.75 dB) (b) CFGC (29.89 dB)

(c) one-layer MGMC (31.25
dB)

(d) one-layer MGGC (31.04
dB)

(e) MGMC (31.51 dB) (f) MGGC (31.33 dB)

Fig. 8. The denoised results obtained by curvature filter and our method on
image ‘Pepper’ with noise level σ = 30.

all images are degraded by white Gaussian noise of zero mean
and standard deviation σ = 20. All methods are terminated by
the relative error in u as given below

RelErr(ul+1) = ∥ul+1 − ul∥1/∥ul+1∥1 ≤ ϵ, (17)

where ϵ is fixed as ϵ = 10−4. The parameters of the
comparison methods are provided as follows

1) CFMC [23]: The regularization parameter is set as α =
0.05.

2) Hybrid first and second order model (TVTV2) [41]: The
parameters are set as α = 0.2, β = 0.2, p1 = 1, p2 = 2
and p3 = 20.

3) Total generalized variation (TGV) method [5]: The pa-
rameters are selected as suggested in the corresponding
papers, which are set as α0 = 1.5, r4 = 1.5 × 105 and
λ = 10.

4) Euler’s elastica model (denoted as Euler) [6]: The pa-
rameters of ALM are fixed as a = 1, b = 10, µ = 10,
η = 200, r1 = 2, r2 = 200, r4 = 250.

5) Mean curvature model (denoted as MC) [12]: The
parameters of ALM are set as ε = 0.4, λ = 1600,
r1 = 200, r2 = 200, r3 = 1× 104 and r4 = 1× 104.

6) Total absolute mean curvature model (denoted as TAC)
[16]: The model is solved by the ADMM-based algo-
rithm with the parameters given by a = 1, b = 0.4,
λ = 0.09, and r = 2.

7) MGMC: The regulation parameter is set as α = 0.05.
The iteration number for solving the sub-problem J(c)
is fixed as 15.

Table VI records both PSNR and SSIM obtained by different
methods, where our method gives the best restoration qualities.
We also display two representative restoration results, i.e.,
image #15 and #21, in Fig. 10. By observing the results
of image #15, our proposed method can preserve very good
textural structures, while other methods have smoothed out
the fine details. The reason behind this is that we use more
neighboring points to estimate the update for the central
point; see the examples in Fig. 11. Next, we compare the
numerical energy and relative error of CFMC [23], MC [7],
one-layer MGMC and MGMC on both image #15 and #21
in Fig. 12, which are corrupted by Gaussian noise with the
noise level σ = 20. As shown, with the same regularization
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Fig. 9. The test dataset includes 30 gray images, where the size of images #1−#15 is 512× 512 and the size of images #16−#30 is 1024× 1024.

(a) CFMC(27.45dB) (b) TVTV2(28.49dB) (c) TGV(28.52dB) (d) Euler(28.67dB) (e) MC(28.81dB) (f) TAC(28.88dB) (g) MGMC(29.08dB)

(h) CFMC(27.88dB) (i) TVTV2(29.31dB) (j) TGV(29.50dB) (k) Euler(28.81dB) (l) MC(29.54dB) (m) TAC(29.53dB) (n) MGMC(29.62dB)

Fig. 10. The denoised results were obtained by different methods on image #15 and #21 with the noise level of σ = 20.

parameter, our MGMC provides lower numerical energy and
faster convergence than the ALM-based algorithm in [12].

Fig. 11. The illustration of points used to estimate the update for the central
point (blue one), where the red points are used for calculation.

Since the sub-minimization problems of the same color in
Algorithm 3 are independent, we can use the GPU computa-
tion to improve its efficiency. The GPU implementation was
carried out on a computer with an Intel(R) Core i9 CPU at
3.30 GHz and Nvidia GeForce GTX 1050TI GPU card. Fig. 13
displays the running time of different methods, where the left
plot contains images numbered from #1 to #15 with the size
of 512×512 and the right plot contains images numbered from
#16 to #30 with the size of 1024×1024. It can be observed,
among the curvature minimization approaches, our MGMC
method is the fastest one followed by CFMC, TAC, Euler’s
elastica, MC, TGV, and TVTV2 model. Furthermore, both

MC and Euler’s elastica model spend similar computational
time, more than TAC, which is in accord with our complex-
ity analysis. Moreover, GPU implementation also accelerates
efficiency. For images of size 1024×1024, the computational
time is improved from the 40s to 25s, which is very important
for real applications. In summary, our multi-grid algorithm
achieves the best performance on image restoration problems
with very high efficiency, which does not trade accuracy for
speed.

V. APPLICATION TO IMAGE RECONSTRUCTION

In this section, we extend the curvature regularization
method and multi-grid algorithm to more general inverse
problems. The task is to recover u ∈ R2 from the observed
data defined by

b = Au+ ν, (18)

where ν is the random noise and A is a linear and bounded
operator varying with different image processing tasks. To
be specific, A represents the Radon transform and Fourier
transform for CT and MRI reconstruction, respectively.

We use the mean curvature as the regularization term and
are concern with the following image reconstruction problem

min
u

1

2

∥∥Au− b
∥∥2
2
+ α

∑
x∈Ω

∣∣H(u(x))
∣∣,
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TABLE VI
THE COMPARISON OF SSIM AND PSNR (DB) AMONG THE CFMC, TVTV2 , TGV, EULER’S ELASTICA, MEAN CURVATURE (MC), TOTAL ABSOLUTE

MEAN CURVATURE (TAC) AND OUR MGMC ON 30 TEST IMAGES.

ID SSIM PSNR
CFMC TVTV2 TGV Euler MC TAC MGMC CFMC TVTV2 TGV Euler MC TAC MGMC

#1 0.8362 0.8527 0.8543 0.8548 0.8618 0.8652 0.8678 30.94 32.81 32.94 32.85 33.05 33.12 33.23
#2 0.8348 0.8918 0.8976 0.8928 0.9115 0.9066 0.9124 30.00 31.73 31.95 31.77 31.85 31.97 32.32
#3 0.8758 0.9289 0.9297 0.9355 0.9391 0.9311 0.9393 28.81 30.55 30.76 30.33 30.70 30.55 30.80
#4 0.8225 0.8622 0.8590 0.8592 0.8683 0.8656 0.8692 24.01 26.55 26.16 25.98 26.44 26.16 26.75
#5 0.7652 0.9049 0.9015 0.9011 0.9142 0.9118 0.9169 31.35 32.55 32.46 32.32 32.61 32.54 32.81
#6 0.8142 0.8279 0.8384 0.8315 0.8323 0.8311 0.8410 30.27 31.53 31.33 31.32 31.42 31.51 31.66
#7 0.7634 0.8482 0.8467 0.8483 0.8491 0.8489 0.8496 25.71 27.99 28.11 27.93 28.22 28.09 28.24
#8 0.8319 0.8649 0.8671 0.8665 0.8787 0.8793 0.8798 28.54 31.41 31.11 31.13 31.37 31.29 31.42
#9 0.7365 0.7765 0.7715 0.7747 0.7945 0.7981 0.7981 27.78 28.33 28.13 28.28 28.48 28.63 28.63
#10 0.8008 0.9021 0.9038 0.9042 0.9095 0.9007 0.9098 29.37 30.98 31.13 30.98 31.38 31.37 31.71
#11 0.7369 0.7505 0.7511 0.7501 0.7521 0.7514 0.7572 23.30 24.59 24.52 24.73 24.68 24.72 24.75
#12 0.8381 0.8511 0.8603 0.8655 0.8764 0.8741 0.8791 30.04 32.51 32.38 32.32 32.74 32.73 32.97
#13 0.7536 0.8189 0.8119 0.8151 0.8194 0.8233 0.8235 27.18 28.55 29.07 28.73 29.08 28.84 29.16
#14 0.7269 0.8761 0.8791 0.8824 0.8855 0.8838 0.8875 29.54 32.19 32.22 32.12 32.37 32.24 32.36
#15 0.8206 0.8221 0.8214 0.8207 0.8311 0.8321 0.8324 27.45 28.49 28.52 28.67 28.81 28.88 29.08
AVG 0.7599 0.8588 0.8506 0.8502 0.8582 0.8569 0.8609 28.29 30.05 30.12 29.96 30.21 30.18 30.39
#16 0.7695 0.8524 0.8556 0.8539 0.8624 0.8622 0.8642 26.17 28.78 29.07 28.79 28.90 28.95 29.22
#17 0.8138 0.8255 0.8282 0.8307 0.8315 0.8308 0.8401 29.82 31.11 30.98 31.05 31.22 31.14 31.28
#18 0.8107 0.8399 0.8403 0.8408 0.8413 0.8352 0.8421 29.48 33.04 32.96 33.01 33.35 33.28 33.38
#19 0.7969 0.8984 0.8895 0.8942 0.9087 0.8931 0.9091 30.04 32.53 32.88 32.88 33.28 33.21 33.30
#20 0.7513 0.8266 0.8236 0.8329 0.8362 0.8389 0.8392 28.16 29.31 29.50 29.39 29.55 29.59 29.63
#21 0.7070 0.8228 0.8269 0.8268 0.8312 0.8280 0.8325 27.88 28.53 29.52 28.81 29.54 29.53 29.62
#22 0.8073 0.8794 0.8801 0.8794 0.8807 0.8803 0.8834 26.92 27.55 27.42 27.45 27.66 27.73 27.88
#23 0.8025 0.8799 0.8792 0.8835 0.8841 0.8852 0.8859 27.55 29.68 29.55 29.60 29.67 29.67 29.74
#24 0.8577 0.9136 0.9246 0.9248 0.9402 0.9439 0.9476 28.61 30.09 30.17 30.21 30.59 30.52 30.68
#25 0.8943 0.8859 0.8873 0.8861 0.8976 0.8965 0.8985 28.75 30.24 30.51 30.04 30.42 30.65 30.81
#26 0.8523 0.8846 0.8873 0.8959 0.8949 0.8966 0.8968 32.88 33.49 33.91 34.01 34.28 34.21 34.33
#27 0.7926 0.8349 0.8392 0.8451 0.8468 0.8489 0.8491 25.62 27.29 27.31 27.23 27.43 27.46 27.49
#28 0.8195 0.8311 0.8305 0.8397 0.8401 0.8387 0.8402 25.51 26.69 26.71 26.71 26.83 26.86 26.88
#29 0.8264 0.8828 0.8847 0.8796 0.8871 0.8869 0.8876 30.94 32.13 32.11 32.88 32.99 32.86 32.99
#30 0.8196 0.8691 0.8677 0.8659 0.8741 0.8738 0.8754 31.20 32.68 33.45 33.69 33.82 33.71 33.89
AVG 0.7588 0.8385 0.8396 0.8420 0.8471 0.8459 0.8494 28.50 30.08 30.27 30.38 30.64 30.62 30.74
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(d) Relative error of image #21

Fig. 12. The decays of the numerical energy and relative error for image #15 and #21 corrupted by Gaussian noise of level σ = 20.
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Fig. 13. The computational time comparison among different methods on the
30 test images.

which is solved by the aforementioned multi-grid method.

Similarly, we implement the non-overlapping domain decom-
position method on each layer to make the subproblems
become independent and can be solved in parallel. The sub-
minimization problems belonging to the same color are gath-
ered as follows

min
cj∈RNk

1

2

∥∥∥A(u+
∑
i∈Ik

cijϕ
i
j)−b

∥∥∥2
2
+α

∑
i∈Ik

∑
x∈τ i

j

∣∣H(u(x)+cijϕ
i
j(x))

∣∣.
According to Proposition 1, the above subproblem can be
further reformulated into the following quadratic problem

min
cj∈RNk

1

2

∥∥∥A(u+
∑
i∈Ik

cijϕ
i
j)− b

∥∥∥2
2
+ α

∑
i∈Ik

(
cij − dij

)2

,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE VII
THE COMPARISON IN TERMS OF PSNR, SSIM, CPU TIME, THE NUMBER OF ITERATIONS (DENOTED BY #) AND CPU TIME PER ITERATION (DENOTED BY

CPU/I) FOR CT RECONSTRUCTION WITH PROJECTION NUMBERS OF Np = 18 AND 36, WHERE IMAGE INTENSITY IS PROJECTED TO [0, 1].

Sizes 512 (σ = 0) 1024 (σ = 0) 512 (σ = 0.005) 1024 (σ = 0.005)
Examples Shepp-Logan Fobild-gen Shepp-Logan Fobild-gen Shepp-Logan Fobild-gen Shepp-Logan Fobild-gen
Methods MGMC MGTV MGMC MGTV MGMC MGTV MGMC MGTV MGMC MGTV MGMC MGTV MGMC MGTV MGMC MGTV

18

PSNR 36.85 34.08 33.01 31.38 32.42 30.88 28.52 27.18 29.37 28.52 24.67 24.18 29.37 28.99 24.48 23.57
SSIM 0.9901 0.9881 0.9801 0.9746 0.9044 0.8947 0.8574 0.8361 0.8846 0.8508 0.8579 0.7126 0.8949 0.8735 0.8818 0.8715
CPU 68.65 51.72 79.05 68.74 287.61 300.24 350.64 480.24 57.19 60.52 65.27 80.36 325.45 394.28 380.48 452.51
# 104 89 124 112 134 127 134 126 114 96 130 120 121 105 132 125
CPU/I 0.4782 0.3612 0.474 0.4647 1.9769 2.1793 2.6016 3.6585 0.5016 0.6304 0.5021 0.6696 2.6896 3.7551 2.8824 3.4041

36

PSNR 44.66 43.18 38.81 37.8 39.24 38.35 37.24 36.15 33.09 31.85 28.22 26.78 31.72 29.18 28.97 26.17
SSIM 0.9962 0.9911 0.993 0.991 0.9914 0.9899 0.9854 0.9749 0.8796 0.8506 0.8579 0.8391 0.9245 0.9024 0.8546 0.8355
CPU 90.65 73.23 98.85 77.23 376.43 454.75 486.42 654.75 80.54 90.23 89.85 110.25 345.52 425.45 454.46 500.58
# 116 108 134 128 145 139 168 151 128 125 151 142 138 131 152 148
CPU/I 0.6197 0.5188 0.594 0.4916 2.4745 3.1462 2.7804 4.2162 0.6291 0.7218 0.5956 0.7764 2.5037 3.2477 2.9767 3.3822

where the closed-form solution is given as

L1,1 · · · ⟨Aϕ1
j , Aϕ

Nk
j ⟩

⟨Aϕ2
j , Aϕ1

j⟩ · · · ⟨Aϕ2
j , Aϕ

Nk
j ⟩

...
...

...

⟨Aϕ
Nk−1

j , Aϕ1
j⟩ · · · ⟨Aϕ

Nk−1
j , Aϕ

Nk
j ⟩

⟨Aϕ
Nk
j , Aϕ1

j⟩ · · · LNk,Nk





c1j
c2j
...
c
Nk−1

j

c
Nk
j


=



r1j
r2j
...
r
Nk−1

j

r
Nk
j


,

(19)

with

Li,i = ⟨Aϕi
j , Aϕ

i
j⟩+ 2α, and rij = ⟨b−Au,Aϕi

j⟩+ 2αdij ,

for i = 1, · · · , Nk. For such a symmetric linear system, we
can implement the conjugate gradient as the numerical solver.

A. CT reconstruction

The CT reconstruction algorithms can be roughly divided
into two categories [42]: the analytic algorithms and the itera-
tive algorithms. The latter is known to be able to provide better
reconstruction images especially when the inverse problem
(18) becomes ill-posed [43]. The total variation regularization
[31], TV stokes model [44] and total generalized variation
(TGV) [45], [46] have been studied as the regularization and
was shown effective for sparse CT reconstruction problems.
Besides, the multi-grid method has also been applied for CT
reconstruction to achieve better reconstruction results [31],
[47].

Now we discuss the numerical examples of the proposed
multi-grid algorithm for CT reconstruction problem. Two
phantom images ‘Shepp-Logan’ and ‘Forbild-gen’ with the
size of 512 × 512 and 1024 × 1024, are used to evaluate the
performance. We adopt the parallel-beam geometry for both
images in the experiments and set the projection numbers to
be Np = 18 and 36.

In what follows, we evaluate the effectiveness and efficiency
of the proposed multi-grid method by comparing it with the
total variation model [31], which is also implemented by the
multi-grid method. The implementation details are described
as follows

1) The multi-grid total variation model (MGTV) [31]: The
parameters are set as α = 3.5 × 10−5 and 2 × 10−5

for projection number Np = 18 and 36, respectively,
and β = 10−6 for noiseless experiments. We set α =
3×10−4 and 5×10−4 for Np = 18 and 36 on the noise

(a) MGTV(27.18dB) (b) MGMC(28.52dB)

(c) MGTV(26.17dB) (d) MGMC(28.97dB)
Fig. 14. The comparison results on ’Forbild-gen’ with the size of 1024×1024
and projection numbers be Np = 18, while the second row is the result with
noise level 0.005 and the projection numbers be Np = 36.

level σ = 0.005, where the image intensity is projected
to [0, 1].

2) The multi-grid mean curvature model (MGMC): The
parameters are set as α = 4 × 10−3 and 3 × 10−3 for
projection number Np = 18 and 36, respectively. We set
α = 1× 10−4 and 2× 10−4 for Np = 18 and 36 on the
noise level σ = 0.005.

Both multi-grid methods are stopped using the relative error
of the numerical energy (16) for ϵ = 10−4 and the stopping
criteria for the linear system (19) is when the iteration number
reaches the maximum iteration number of 10. The number of
layers is set as J = 4 for both algorithms.

The comparison results of PSNR, SSIM, CPU time, the
number of iterations, and CPU time per iteration are all
recorded in Table VII. For different combinations of images
and projection numbers, our MGMC always gives higher
PSNR and SSIM than MGTV, which benefits from the strong
priors of the curvature regularization. In terms of compu-
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TABLE VIII
THE COMPARISON IN TERMS OF PSNR, SSIM, CPU TIME, THE NUMBER OF ITERATIONS (DENOTED BY #) AND CPU TIME PER ITERATION (DENOTED BY
CPU/I) AMONG DIFFERENT METHODS FOR COMPRESSED SENSING MRI RECONSTRUCTION PROBLEMS, WHERE THE ZERO-MEAN GAUSSIAN NOISE WITH

NOISE LEVEL OF σ = 10 IS INTRODUCED INTO BOTH DATA.

Images Methods Cartersian sampling (20.06%) Radial sampling (12.65%)
CPU # CPU/I PSNR SSIM CPU # CPU/I PSNR SSIM

Brain

TV 19.47 4993 0.0039 22.91 0.6401 35.57 7412 0.0041 30.42 0.9419
TGVST 24.32 191 0.1272 23.59 0.7842 15.11 151 0.1159 31.36 0.9615

BM3D-MRI 24.75 33 0.7487 23.72 0.6415 28.51 38 0.7500 31.47 0.9561
MGMC 15.14 174 0.087 24.62 0.7855 12.78 145 0.079 31.85 0.9674

Foot

TV 25.95 5768 0.0045 25.96 0.8443 29.57 7214 0.0043 27.9 0.8466
TGVST 23.27 185 0.1243 27.29 0.8556 22.34 160 0.1396 28.57 0.8546

BM3D-MRI 29.41 39 0.7514 27.11 0.8547 28.45 37 0.7546 28.63 0.8389
MGMC 13.45 149 0.085 27.63 0.8559 15.54 166 0.087 29.12 0.8569

(a) TV (b) TGVST (c) BM3D-MRI (d) MGMC (a) TV (b) TGVST (c) BM3D-MRI (d) MGMC

Fig. 15. MRI reconstruction results and residual images of the brain image and foot image under 12.65% radial sampling patterns and Gaussian noise of
σ = 10. Note that the residual images are displayed in [0, 0.2] and [−0.4, 0.4] for brain and foot images, respectively.

tational efficiency, because our local minimization problem
has an analytical solution, the computational efficiency of
our MGMC is quite high, which is verified by the CPU
time per iteration. On the other hand, it requires solving a
nonlinear PDE on the local problems for the TV regularization
model, which is time consuming. The advantages of our
method become stronger for the large-scale problems that
our curvature regularization model performs faster than TV
model. Finally, we present the selective reconstruction results
in Fig. 14. As can be seen, our MGMC outperforms the MGTV
method, which produces homogeneous results with fine details
and small structures.

B. MRI reconstruction

Similarly, different higher-order regularization terms have
been used for compressed sensing MRI reconstruction prob-
lems, such as total generalized variation and shearlet transform
(TGVST) [48], BM3D-MRI [49], Euler’s elastica [50], and
nonlocal elastica regularization [51] etc. These methods can
effectively recover the missing details and preserve geometric
information. We also apply the proposed MGMC method
for compressed sensing MRI problem, where A becomes a
composite operator defined as A = PF with P being the
selection operator and F being the Fourier transform.

In the following part, we use two MR images as examples,
one brain image and one foot image of size 256 × 256.
Both Cartersian sampling pattern and radial sampling pattern
are chosen for evaluation. We also introduced the zero-mean
complex Gaussian noise with the standard variation of σ = 10

into the under-sampled data. The performance of MGMC is
compared with state-of-the-art variational methods including
the TGVST [48] and BM3D method [49], the implementation
detail of which are presented as follows:

1) TV [52]: The TV regularization model was solved by
primal dual method. The step size is given as τ =
1/(2LF ) and σ = LF /L

2 for the primal and dual
variable, respectively, where L = ∥∇∥ and LF is
the Lipschitz constant of F (u) = ∥PFu − f∥22. The
regularization parameter is set as α = 3×10−3 for both
under-sampled patterns.

2) TGVST [48]: We implement the TGVST algorithm with
same parameters as the ones used in the original paper
such as β = 103, λ = 0.01, α0 is raised from 10−3 to
10−2 and α1 is fixed as 10−3.

3) BM3D-MRI [49]: The range of parameter for the obser-
vation fidelity is λBM3D ∈ [0, 5]. The total iteration
number is set as 50 to balance the performance and
efficiency. Both the iteration number and relative error
ϵ = 1× 10−4 are used as the terminating conditions.

4) MGMC: The parameters are set as α = 5 × 10−3 for
both under-sampled patterns.

Table VIII displays the PSNR, SSIM, and CPU time of
the comparison methods. As illustrated, all high-order regu-
larization methods produce higher PSNR and SSIM than TV
model. And our MGMC outperforms the TGVST and BM3D-
MRI in terms of PSNR, SSIM and CPU time. We also exhibit
reconstructed images and residual images in Fig. 15, which
are consistent with quantitative results in Table VIII. It can
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be observed that less structural information is presented in the
residual images obtained by our MGMC method.

VI. CONCLUSION

We proposed an efficient multi-grid algorithm for solving
the curvature-based minimization problems that rely on the
piecewise constant basic spanned subspace correction. The
original minimization was then transferred into a series of
local problems from the fine layer to the coarse layer, each of
which was solved by the forward-backward splitting scheme
with a convergence guarantee. More importantly, there existed
analytical solutions to the sub-minimization problems on local
patches, which can be solved very efficiently. We also applied
the non-overlapping domain decomposition method on each
layer to increase the parallelism for improving computational
efficiency. Furthermore, we implemented the proposed algo-
rithms by GPU computation to deal with large-scale image
processing tasks. Comparative experiments on image denois-
ing and reconstruction problems demonstrate the efficient
performance of the proposed method by comparing it with
several advanced denoising methods.

Although we proved the energy diminishing of the pixel-
wise minimization problem (5), it is difficult to show the
fine layer problem converges to a minimizer of (3) due
to the nonconvexity of the curvature energy. As far as we
know, the convergence analysis of curvature regularization
models has made some achievements, mainly for the Euler’s
elastica regularization model. In [8], [53], convex relaxation of
elastica energy via functional lifting was studied to establish
numerical algorithms with convergence guarantee. He, Wang
and Chen [54] proposed a penalty relaxation algorithm with
the theoretical guarantee to find a stationary point of Euler’s
elastica model. However, the convergent algorithms for solving
the mean curvature and Gaussian curvature energies are still
very limited, which we would like to study in the future. Other
future works include developing more efficient algorithms
for curvature-related minimization models and expanding the
applications of curvature regularization, e.g., improving the
robustness of deep neural network models [55]–[57].
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APPENDIX
PROOF OF LEMMA 1

Proof. We prove the lemma followed the Lemma 1 in [40].
The first-order optimality condition of Algorithm 2 gives

ct+1 = ct − ηt∂f(ct+ 1
2
)− ηt∇r(ct+1).

The convexity of r(c) implies that for any c̃

r(c̃) ≥ r(ct+1) + ⟨∇r(ct+1), c̃− ct+1⟩. (20)

Since there is ∥∇r(c)∥2 ≤ G2 and ∥∂f(c)∥2 ≤ D2, we
can obtain the following inequality from the Cauchy-Shwartz
inequality

⟨∇r(ct+1), ct+1 − ct⟩ = ⟨∇r(ct+1),−ηt∂f(ct+ 1
2
)− ηt∇r(ct+1)⟩

≤ ηt(G
2 +GD).

(21)

By expanding the squared norm of the difference between ct+1
and c̃, it gives

∥ct+1 − c̃∥2 = ∥ct − ηt∂f(ct+ 1
2
)− ηt∇r(ct+1)− c̃∥2

= ∥ct − c̃∥2 − 2ηt⟨∂f(ct+ 1
2
), ct − c̃⟩+ ∥ηt∂f(ct+ 1

2
) + ηt∇r(ct+1)∥2

− 2ηt[⟨∇r(ct+1), ct+1 − c̃⟩ − ⟨∇r(ct+1), ct+1 − ct⟩].

We now use (20) and (21) to get

∥ct+1 − c̃∥2 ≤ ∥ct − c̃∥2 − 2ηtr(ct+1) + 2ηtr(c̃)

+ η2
t (3G

2 +D2 + 4GD) + 2ηt⟨∂f(ct+ 1
2
), c̃− ct⟩.

(22)

By Proposition 1, we have f(ct+ 1
2
) ≤ f(c). Relying on the

definition of ∂f(ct+ 1
2
), we can estimate the last term

⟨∂f(ct+ 1
2
), c̃− ct⟩ = ⟨∂f(ct+ 1

2
), c̃− ct+ 1

2
⟩+ ⟨∂f(ct+ 1

2
), ct+ 1

2
− ct⟩

≤
〈f(ct+ 1

2
)− f(c̃)

ct+ 1
2
− c̃

, c̃− ct+ 1
2

〉
+

〈f(ct+ 1
2
)− f(ct)

ct+ 1
2
− ct

, ct+ 1
2
− ct

〉
≤ f(c̃)− f(ct).

(23)

By substituting (23) into (22), we can obtain

2ηt

(
f(ct) + r(ct+1)− J(c̃)

)
≤ ∥ct − c̃∥2

− ∥ct+1 − c̃∥2 + η2t (5G
2 + 3D2).

which completes the proof.
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