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Abstract

We propose an image restoration model based on the minimized surface regularization. The proposed model closely relates to

the classical smoothing ROF model [28]. We deduce two different conjugation forms via coupling the gradient operator with the

smoothing parameter α or not, and then provide the existence of the minimizer in the continuous setting. In order to efficiently

solving the proposed model, we employ the primal dual method by reformulating the proposed model as a min-max problem.

Relying on the convex conjugation, the convergence of the algorithm is provided as well. Numerical implementations mainly

emphasize the effectiveness of the proposed method by comparing it to other two well-known methods in terms of the CPU time

and restoration quality.
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1. Introduction

Image restoration is one of the most fundamental and important problems in low-level image processing, which

is the operation to recover (as good as possible) the clean image u : Ω ⊂ R
2 → R, from a contaminated image

f : Ω ⊂ R
2 → R as

f = Ku + η,

where K is linear degraded operator (e.g. blur operator) and η is an additive noise. An ideal restoration model is

expected to enhance image by reducing degradations and preserving edges as much as possible. However, it is often

difficult to simultaneously remove the noise and enhance edges because both the noise and edges are high frequency

signals.

During the past several decades, the models based on variational partial differential equation (PDE) have been

attracted much attention such as TV-based models [28, 36, 9, 33, 19] and nonlocal-based models [5, 13] and also

obtained some satisfactory results [2, 8, 29]. Different to aforementioned models, which are developed based on the
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image domain, the authors in [31, 18, 37] proposed to consider the image as an embedded surfaceM ∈ R
3 denoted

by

Ω→M : x→U(x),

where x := (x1, x2) denotes the local coordinates of the surface andU(x1, x2) :=
(
x1, x2, u(x1, x2)

)
. Note thatΩ andM

are viewed as the Riemannian manifold equipped with suitable metrics. By introducing metrics d2s = αd2x1 + αd2x2

on Ω and d2 s̃ = αd2x1 + αd2x2 + d2u onM, we can obtain

d2s̃ = (dx1, dx2)

[
α + u2

x1
ux1

ux2

ux1
ux2

α + u2
x2

] [
dx1

dx2

]
, (1)

where α > 0 is a shrinkage parameter for the local coordinates (dx1, dx2). Here d2(·) denotes
(
d(·)

)2
with the conven-

tion. In order to obtain a restored approximation u from f , we need to search forM with the minimal area. In this

way, singularities are smoothed. Let g denote the determinant of the second-order square matrix in (1). We consider

to minimize u as follows

min
u
Jα(∇u) :=

∫
Ω

√
gdx =

√
α

∫
Ω

√
α + |∇u|2dx. (2)

With the assumption of the suitable boundary condition, the Euler-Lagrange equation of the minimized problem (2)

can be deduced as

Eα(u) = 0, (3)

where

Eα(u) := div

⎛⎜⎜⎜⎜⎜⎝ ∇u√
|∇u|2 + α

⎞⎟⎟⎟⎟⎟⎠ .
It is clear that the mean curvature ofM is zero when α = 1. Surfaces of zero mean curvature are known as minimal

surfaces. Thus, we can solve the equation (3) by embedding it into the following dynamical scheme

dX
dt

(t) = Eα(u),

where X(t) = (x1, x2, u(t, x1, x2)). However, this scheme only considers how to regularize the image while ignoring to

preserve the image features. For example, if we use a (flat) ellipse as its boundary condition, then the minimization

problem extends to a flat surface as showing in the first row of Figure 1. On the other hand, using the different

boundary conditions can obtain the same results shown in 2nd-3rd rows of Figure 1. However, the image restoration

problem usually pursues the restored image similar to the real image as much as possible. So it is essential for adding

some prior information to the proposed model. Therefore, we propose a novel model by introducing a data fitting

term as follows

min
u
J(u) :=

λ

2
‖Ku − f ‖22 +

∫
Ω

√
α + |∇u|2dx, (4)

where λ > 0 is a positive parameter and ‖ · ‖2 denotes the L2-norm. Obviously, the objective functional in the model

(4) is strictly convex, so it has an unique solution.

Actually, the proposed model (4) reduces to the well-known ROF model proposed by Rudin, Osher and Fatemi

(ROF model) [28] when α = 0. On the other hand, when α > 0 in the model (4), we introduce extra smoothness into

the Total Variation (TV) model. Furthermore, we give two basic remarks on the proposed model (4):

1© For (locally) small values of |∇u|, we can obtain

√
α + |∇u|2 ≈

1

2
√
α

(2α + |∇u|2)

based on the Taylor expansion as h(t̃) =
√

1 + t̃2 ≈ 1+ t̃2

2
if t̃ is very small. This implies that the model (4) tends

to a classical Gaussian filtering process to damp down the small perturbations of the gradient while integrating

the coefficient 1
2
√
α

into the regularization parameter λ in (4).

2
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Figure 1. Using different boundary conditions to the equation (3) can obtain different evolution images. Here we set α = 1. First Column: Original

Image; Second Column: Middle Image; Second Column: Final Image.

2© For large values of |∇u|, the following relationship

√
α + |∇u|2 ≈ |∇u|

exists and the model (4) reduces to the ROF model. Therefore, the model (4) is expected to preserve edges as

the ROF model [28] while restoring degraded image.

These facts imply that choosing a smaller α compels the model (4) to keep these qualities.

In numerical implementations, since the model (4) relates to the smoothing ROF model, we then can employ some

classical numerical methods such as the time marching scheme [28] and the fixed point iteration scheme [35] to solve

it. These methods are usually restricted to the Courant-Friedrichs-Lewy (CFL) condition [32] and the data scale of

the operator inversion. Different to the aforementioned works, we here propose two different primal-dual methods

to solve the model (4) via choosing different conjugation schemes. Specifically, one of schemes dividually regards

variables ∇u and α, another scheme regards them as a whole when using the conjugation theory in the regularization

term. To the best of our knowledge, these methods have not been used to solve the model (4) although it has been

verified on some non-smoothing models in the field of image processing and machine learning. Moreover, we firstly

employ the Legendre-Fenchel transformation to reformulate the minimization problem (4) as a saddle-point problem

and use the alternative updating scheme to solve the primal and dual variables. Since the primal dual method can

avoid solving the nonlinear PDE directly as both primal and dual variables have closed form solution, it can avoid

the numerical difficulties when working solely with the primal variable as the aforementioned methods [28, 35] to

solve the model (3). Furthermore, we can classify the proposed method into the general framework of the primal

dual method, which means the convergence of the algorithm can be obtained as well. We use numerical experiments

to demonstrate the proposed primal-dual algorithms can achieve the solutions with satisfactory accuracy and in a

reasonable time.

The contents of the paper are arranged as follows. In Section 2, we discuss some properties of the proposed

model (4) such as the conjugation and existence of the solution. Based on the Section 3, we deduce two primal

3
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dual methods by defining different functional spaces for the regularized term. We describe the numerical algorithms

based on the discrete form of the proposed model (4) and the numerical methods in Section 4. Some numerical

comparisons between our proposed algorithms and other related classic algorithms are arranged in Section 5. We give

some concluding remarks in Section 6.

2. Some properties of the model (4)

In this section, we will consider some properties of the proposed model (4). In order to deduce the conjugate

form for the regularization term in the model (4), we first introduce the simplified version of a theorem that allows to

rephrase the optimization of an integrating functional as the pointwise optimization of its integrand [27].

Lemma 2.1. Let X = L2(Ω,Rm) and F : Ω×Rm be a normal integrand , i. e., a function whose epigraphical mapping
E(x) = epiF(x, ·) is closed-valued and measurable. Then, the integral functional ΥF : X → R ∪ {+∞}:

ΥF(v) :=

∫
Ω

F(x, v(x))dx

has the property that minimization and integration can be exchanged, i. e.,

inf
v∈X
ΥF(v) =

∫
Ω

[
inf

z∈Rm
F(x, z)

]
dx

as long as ΥF � ∞ on X. Likewise, unless this common value is −∞, the minimizers of the functional satisfy

v̄ ∈ arg inf
v∈X
ΥF(v)⇔ v̄(x) ∈ arg inf

z∈X
F(x, z) for almost all x ∈ Ω.

Obviously, the above result is also right for solving the sup-problem. In addition, the condition on the integrands

to be normal is rather straightforward to check

R(s) :=

∫
Ω

√
|s|2 + αdx,

where |s| =
√

s2
1
+ s2

2
. According to Example 14.29 in [27], R(s) is the Carathéordory integrand, which means that

are measurable in the first variable and continuous in the second, are normal integrands.

Theorem 2.1. The convex conjugation of R(s) is given by

R∗(t) =
∫
Ω

r∗(t)dx (5)

where t = (t1, t2)T ∈ L2(Ω ×Ω) and

r∗(t) =

⎧⎪⎪⎨⎪⎪⎩
−
√
α

√
1 − |t|2 if |t| ≤ 1,

+∞ if |t| > 1.

Proof. Based on the definition of convex conjugate and Lemma 2.1, we can get

R∗(t) = sup
s∈R2

[〈s, t〉X − R(s)] =

∫
Ω

sup
s∈R2

[
sT t −

√
|s|2 + α

]
dx.

The optimization of the integrated can be performed for each point x ∈ Ω. So we can transform to consider

r∗(t) = sup
s∈R2

[
sT t −

√
|s|2 + α

]
.

4
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By introducing the polar coordinates, this problem can be rewritten as

r∗(t) = sup
ρ≥0

sup
θ∈[0,2π]

[
〈(ρ cos θ, ρ sin θ), t〉 −

√
ρ2 + α

]

= sup
ρ≥0

[
ρ|t| −

√
ρ2 + α

]
.

Set h(ρ) = ρ|t| −
√
ρ2 + α, we can differentiate it as

h′(ρ) = |t| −
ρ√
ρ2 + α

and h′′(ρ) = −
α(

ρ2 + α
) 3

2

.

Then it is easy to find that h′(ρ) > 0 when |t| > 1, which implies that is increasing. So r∗(t) = +∞ when ρ → ∞. For

the case |t| = 1, we can get r∗(t) = lim
ρ→∞

h(ρ) = 0. When |t| < 1, we can set h′(ρ) = 0 and then we have the critical value

as ρ̄ :=
|t|
√
α√

1−|t|2
. Using the strictly concave based on h′′(ρ) < 0, we can deduce that r∗(t) = h(ρ̄) = −

√
α

√
1 − |t|2. In

summary, the assertion is hold.

Formally, we can also couple the variables s with the constant α into a uniform form for the regularization term in

the model (4) as

r̄(s;α) = |(s;
√
α)| =

√
s2

1
+ s2

2
+ α.

So its conjugate form can be written as

r̄∗( t̄) = sup
s∈R2

[
sT ť +

√
αt3 −

√
|s|2 + α

]
= sup

s∈R2

[
sT ť −

√
|s|2 + α

]
+
√
αt3

where t̄ =
(
ť; t3

)
:= ((t1, t2) ; t3).

Similar to the Theorem 2.1, we can obtain another convex conjugation form of R(s).

Corollary 2.1. The convex conjugate of R(s) is given by

R∗(t) =
∫
Ω

r̄∗( t̄)dx (6)

where r̄∗( t̄) is defined by

r̄∗( t̄) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√
α

(
t3 −

√
1 −

∣∣∣ ť∣∣∣2
)

if
∣∣∣ ť∣∣∣ ≤ 1,

+∞ if
∣∣∣ ť∣∣∣ > 1.

Now we consider the existence of the solution to the problem (4).

Theorem 2.2. Assume that u ∈ W1,1(Ω), f ∈ L2(Ω) and the linear operator K : L1(Ω)→ L2(Ω) is bounded, injective
and satisfies the shift-invariance. For any α > 0, the model (4) then has a unique solution.

Proof. For the objective function J(u), its first Fréchet derivative in the direction z ∈ C1
c(Ω) is

J(u,w) :=
d

dt
J(u + tw)|t=0 = λ

∫
Ω

KT (Ku − f )dx +

∫
Ω

(∇u)T∇w√
|∇u|2 + α

dx.

Then we have the Hessian of J(u) at the direction z as

d

dt
J(u + tw)|t=0 = λ

∫
Ω

KT Kdx +

∫
Ω

|∇w|2
(
|∇u|2 + α

)
−

∣∣∣(∇u)T∇w
∣∣∣2

(
|∇u|2 + α

) 3
2

dx

≥
∫
Ω

λKT K +
|∇w|2α(
|∇u|2 + α

) 3
2

dx :=

∫
Ω

j(u,w)dx.

5
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It is obvious that j(u,w) > 0, which implies that J(u) is strictly convex. Then the minimizer has to be unique if it

indeed to be existed.

For the existence part, we first need the coercivity of the functional J(u), i.e.,
∣∣∣∣J (

uk
)∣∣∣∣→ ∞ whenever

∥∥∥uk
∥∥∥→ ∞

for some sequence
{
uk

}
∈ W1,1(Ω). For this propose, by assuming that

∥∥∥uk
∥∥∥ → ∞, we can set uk = skvk such that

sk ≥ 0 and
∥∥∥vk

∥∥∥
2
= 1 with

{
vk

}
∈ W1,1(Ω). By employing the Sobolev inequality, there exists a constant C1 > 0 and

we can deduce that ∫
Ω

√∣∣∣∇uk
∣∣∣2 + αdx ≥

∫
Ω

∣∣∣∇uk
∣∣∣ dx =

∫
Ω

∣∣∣sk∇vk
∣∣∣ dx ≥ C1sk

∥∥∥vk
∥∥∥

2
= C1sk.

This implies that
∫
Ω

√∣∣∣∇uk
∣∣∣2 + α → ∞ when k → ∞. By using the fact that vk �→ ‖ · ‖2 is coercive, we can deduce

that J(u) is coercive. So we can deduce that
{
uk

}
is uniformly bounded. By compactness, there exists a subsequence,

for convenience still denoted by
{
uk

}
, which has an accumulation point u∗ such that u∗ ∈ W1,1(Ω). By the lower

semicontinuity of the smoothing convex function, we can deduce that

J (u∗) = lim inf
k→∞

J
(
uk

)

Then the existence is proved.

3. The primal-dual formulation

Let X and Y be two finite-dimensional real vector spaces equipped with an inner product 〈·, ·〉 and the norm

‖ · ‖ =
√
〈·, ·〉. Now we consider the problem

min
x

f (x) + g(Ax), (7)

where f and g are convex and lower semi-continuous function,A is a bounded linear operator with the operator norm

‖A‖ defined by

‖A‖ = max
{
‖Az‖ with ‖z‖ ≤ 1

}
.

Formally the problem can be efficiently solved by some general optimization methods such as the Newton method or

the gradient descent method when the objective functions are smooth. However, these methods are not suitable for

the case as the problem including 	1-norm or the operatorA with complex structures or bigger scale. In order to cope

with these, we can transform the problem (7) into the following min-max operator problem

min
x

max
y

f (x) + 〈Ax, y〉 − g∗(y)

based on the definition of the conjugation function. To efficiently solve this saddle problem, the authors in [38] pro-

posed to use a primal-dual hybrid method (named by PDHM) by applying gradient descending-ascending to primal-

dual variable. They showed this method to be very efficient, especially when combining with an acceleration scheme

consisting in decreasing the weight parameter in the updating of the original variable x and increasing the weight pa-

rameter in the updating of the dual variable y. Formally, Chambolle and Pock in [7] proposed to consider the following

primal-dual method (PDM) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yk+1 = (I + 
∂g∗)−1(yk + 
Ax̄k)

xk+1 = (I + τ∂ f )−1(xk − τA∗yk+1)

x̄k+1 = 2xk+1 − xk
(8)

to solve this saddle problem, where I is the identity operator and ∂ denotes the sub-gradient defined by ∂�(ȳ) :=

{v|�(x̄) − �(y) ≥ (v, x̄ − ȳ)} at the point ȳ for a function �. Then they also gave the following convergence result of the

scheme (8) as follows.

6
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Theorem 3.1. Let ‖A‖ = T and assume that the problem (7) has a saddle point (x∗, y∗). If τ
T 2 < 1 and choos-
ing some suitable original values

{(
x̄0, y0

)}
, then the sequence

{(
xk, yk

)}
by the scheme (8) converges to this saddle.

Furthermore, if the problem (7) has a global solution x∗, then the sequence
{
xk

}
converges to x∗.

Remark 3.1. The updating step in the iteration scheme (8) can be interpreted as an approximate extragradient and
indeed it is possible to show the convergence of Theorem 3.1 with a convergence rate O(1/k) as shown in [22]. In
addition, above primal-dual method is intimately connected with other splitting methods such as the proximity point
algorithm [16], Douglas-Rachford splitting method [17, 4], and alternating direction multiplier method [24, 14, 30],
etc.

4. Numerical method to the proposed model (4)

Throughout the rest of the paper, we assume the images are matrices with the size of M × N. For the boundary

conditions, there are many choices such as the zero Dirichlet boundary [3], the Neumann boundary (also called

symmetric or reflective) [23], the reflexive boundary [21], the antireflective boundary [10], the periodic boundary or

even without any boundary artifacts [26]. Here we only consider the periodic boundary condition. Let us define the

Euclidean space X = R
M×N and Y = X × X. The usual scalar products can be denoted as 〈v,w〉X :=

M∑
i=1

N∑
j=1

vi, jwi, j

with the norm ‖v‖X =
√
〈v, v〉X for v,w ∈ X and 〈p,q〉Y :=

M∑
i=1

N∑
j=1

2∑
ι=1

pιi, jq
ι
i, j for p,q ∈ Y . In the following, we define

the discrete gradient ∇u = (D+x u,D+y u) with the forward difference operators

D+x ui, j =

{
ui+1, j − ui, j if 1 ≤ i < M, 1 ≤ j ≤ N,
u1, j − ui, j if i = M, 1 ≤ j ≤ N,

D+y ui, j =

{
ui, j+1 − ui, j if 1 ≤ i ≤ M, 1 ≤ j < N,
ui,1 − ui, j if 1 ≤ i ≤ M, j = N.

We also define the backward difference operators as

D−x p1
i, j =

{
p1

i, j − p1
i−1, j if 1 < i ≤ M, 1 ≤ j ≤ N,

p1
i, j − p1

M, j if i = 1, 1 ≤ j ≤ N,

D−y p2
i, j =

{
p2

i, j − p2
i, j−1 if 1 ≤ i ≤ M, 1 < j ≤ N,

p2
i, j − p2

i,N if 1 ≤ i ≤ M, j = 1.

Based on the relation 〈u, divp〉X = −〈∇u,p〉Y in [6], we can obtain the divergence operator as

divp = D−x p1 + D−y p2

for p ∈ Y . Therefore, the discrete equivalent of (4) can be denoted by

min
u

λ

2
‖Ku − f ‖2X +

∥∥∥∥ √
α + |∇u|2

∥∥∥∥
X
, (9)

where |∇u|2 = (D+x u)2 + (D+y u)2. In the following we consider two different schemes to solve this discrete model (9),

which is a convex and smooth optimization problem.

4.1. Primal-dual method (I)

If settingA := A1 = ∇ and using the convex conjugate properties of Example 8.5 in [34] as

θ(t) =
√
α + t2 ⇐⇒ θ(t) = sup

‖s‖∞≤1

{
〈t, s〉 +

√
α

(
1 − s2

)}
,

7
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we can rewrite the minimization problem (9) as a min-max problem

min
u

max
‖p‖∞≤1

{
λ

2
‖Ku − f ‖2X − 〈u, divp〉X +

∥∥∥∥∥
√
α

(
1 − |p|2

)∥∥∥∥∥
X

}
(10)

for p ∈ Y . Since the subjective function (10) is proper convex, we can interchange the order of min and max and

then solve it by using the primal-dual scheme [7]. Therefore, we separate the problem (10) into the following two

subproblems.

• For the primal variable u in the problem (10): By ignoring the unrelated term to u, we can obtain

min
u

{
λ

2
‖Ku − f ‖2X − 〈u, divp〉X

}
,

which optimality condition is

λKT (Ku − f ) − divp = 0,

where T denotes the matrix transpose. In general, the blurring operator matrix K is ill-posed, we can use the

gradient method to compute u

uk − uk+1 = τ
(
λKT (Kuk+1 − f ) − divp

)
.

Due to the assumption of the periodic boundary condition, we can use the Fast Fourier Transform (FFT) to

solve u by

uk+1 := Uk+1(p) = F −1

(
F (uk) + λτF (KT f ) + τF (divp)

F (I) + λτF (KT K)

)
, (11)

where I is the identity matrix, F denotes the FFT operator and F −1 denotes its inverse transform.

• For the dual variable p in the problem (10): By ignoring the unrelated term to p and introducing an indicator

function, we have

χK (p) =

{
0, if p ∈ K ,
+∞, if p � K ,

where K := {p | ‖p‖∞ ≤ 1}. Then we have

max
p

{
〈∇u,p〉Y +

∥∥∥∥∥
√
α

(
1 − |p|2

)∥∥∥∥∥
X
+ χK (p)

}
.

The optimality condition of the above maximization problem is

(∇u + ∂χK (p))

√
1 − |p|2 −

√
αp = 0.

Note that ∂χK (p) = 0 because indicator function is a constant function. Based on the projection gradient

method, we have

pk+1 := Pk+1(u) =

pk + 


(
∇u

√
1 −

∣∣∣pk
∣∣∣2 − √αpk

)

max

{
1,

∣∣∣∣∣∣pk + 


(
∇u

√
1 −

∣∣∣pk
∣∣∣2 − √αpk

)∣∣∣∣∣∣
} . (12)

By combining (11) with (12) and using Theorem 3.1, we have the following convergence results.

8
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Corollary 4.1. Assume that τ
 ≤ 1/8 and choosing ū0 = f , then the sequence
{(

uk+1, pk+1
)}

generated by
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pk+1 := Pk+1
(
ūk

)
��� using the formula (12);

uk+1 := Uk+1
(
pk+1

)
��� using the formula (11);

uk
= 2uk+1 − uk;

(13)

converges to the saddle point (u∗, p∗) of the problem (10). Furthermore, u∗ is the solution of the problem (9).

Remark 4.1. For Corollary 4.1, if we set F(u) = λ
2
‖Ku − f ‖2X and G(∇u) =

∥∥∥∥ √
|∇u|2 + α

∥∥∥∥
X

, the iteration scheme (13)
is the exact Algorithm 1 used in [7]. Furthermore, the convergence can be kept since ‖∇‖Y ≤ 1/8 ( See Theorem 3.1
in [6]).

4.2. Primal-dual method (II)
As mentioned earlier, the image can be regarded as an embedded shrinkage surface

(√
αx1,

√
αx2, u (x1, x2)

)
in

M. One thus considers the surface φ (x1, x2) −
√
αz = 0 and motivated by the work in [39], we can set the operator

A := A2 =
(
∇,−
√
α
)
. As it makes no difference for replacing A2 =

(
∇,
√
α
)

by A2 =
(
∇,−
√
α
)

in the proposed

model, so we transform the model (9) into following min-max saddle model as

min
u

max
q

{
λ

2
‖Ku − f ‖2X +

〈
(u, 1),A∗2q

〉
+ χC (q)

}
, (14)

where q =
(
q1, q2; q3

)
and C =: {q | ‖q‖∞ ≤ 1}. Based on the divergence theorem and the definition of the operator

A2, we can deduce thatA∗2q =
(
−div

(
q1, q2

)
,
√
αq3

)
. Set q̄ = (q1, q2), then the solution of the subproblem uk in (14)

can be similarly obtained by

un+1 := Un+1 (q) = F −1

(
F (un) + λτF (KT f ) + τF (divq)

F (I) + λτF (KT K)

)
. (15)

To solve the subproblem q, we first focus on the optimization condition (14) to be written by

(∇u,
√
α) + ∂χC(q) = 0,

so we still use the projection gradient method to obtain the numerical solution as

qn+1 := Qn+1(u) =
qn + 


(
∇u,
√
α
)

max
{
1,

∣∣∣∣qn + 

(
∇u,
√
α
)∣∣∣∣
} . (16)

In order to keep the convergence of above scheme, we also need to know the spectral radius of the operator A2.

Formally, we can deduce that

‖A∗2q‖2X =
∑

1≤i≤M,1≤ j≤N

[(
q1

(i, j) − q1
(i−1, j) + q2

(i, j) − q2
(i, j−1)

)2
+ α

(
q3

(i, j)

)2
]

≤
∑

1≤i≤M,1≤ j≤N

[
4

((
q1

(i, j)

)2
+

(
q1

(i−1, j)

)2
+

(
q2

(i, j)

)2
+

(
q2

(i, j−1)

)2
)
+ α

(
q3

(i, j)

)2
]

≤8 ‖q̄‖2Y + α
∥∥∥q3

∥∥∥2

X ≤ max(8, α)‖q‖2Y×X .

Then based on above fact, we obtain the convergence result as

Corollary 4.2. Assume that τ
 ≤ 1/max(8, α) and choosing ū0 = f , then the sequence
{(

un+1, qn+1
)}

generated by
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qn+1 := Qn+1 (ūn) ��� using the formula (16);
un+1 := Un+1

(
qn+1

)
��� using the formula (15);

un
= 2un+1 − un;

(17)

converges to the saddle point (u∗, p∗) of the problem (10). Furthermore, u∗ is the solution of the problem (9).
9
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5. Numerical implementations

In numerical implementations, we only consider to use the proposed model (4) for the basic image restoration

problems, i.e., image denoising and deblurring. In fact, the model (4) has many other applications, for example

the CT or MRI reconstruction problems and image inpainting problems with different operators K, etc.. In order to

demonstrate the advantage of the proposed Primal-Dual Method (PDM) by respectively setting as the PDM(I) for the

iteration scheme (13) and setting as the PDM(II) for the iteration scheme (17). We also compare it with another two

classic numerical methods, which are the Time Marching Method (TMM) [28] and the Fixed Point Method (FPM)

[9], respectively. All the algorithms will stop when max
{ ‖uk+1−uk‖2
‖uk‖2

,
‖E(uk+1)−E(uk)‖
|E(uk)|

}
≤ 10−5 or the iteration arrives to

500. The simulations are preformed in Matlab (R20016a) on a PC with an Intel Core i7-5500U at 2.40 GHz and 8 GB

of memory.

We use the ”Lena” image of different sizes, i.e., 128 × 128, 256 × 256, 512 × 512 and another five images of

size 256 × 256 in the numerical experiments, which are shown in Figure 2. To standardize the discussions, we first

normalize the pixel values of the test image f̄ to be [0,255] by using the linear-stretch formula as f = 255×( f̄−min( f̄ ))

max( f̄ )−min( f̄ )
,

where max and min represent the maximum and minimum of f̄ , respectively.

(a) Synthesis image (b) Barchettas (c) Lena

(d) House (e) Cameraman (f) Barbara

Figure 2. Test images in numerical implementations.

For the sake of simplicity, we use σ to denote standard deviation of the white Gaussian noise and G(hsize, σ̃)

denotes the symmetric Gaussian low-pass filter of size hsize with the standard deviation σ̃. In order to compare the

visual perception and quality metric point of view, the performance of each method is evaluated in terms of the signal

to noise ratio (S NR) and the structural similarity index (S S IM): the higher S NR and S S IM implies better restoration

results. In addition, we explicitly give the update scheme of the TMM [28] and the FPM [34, 35] as follows

uk+1 − uk

dt
=

(
λKT

(
Kuk − f

)
− Eα

(
uk

))
(→ T MM) (18)⎛⎜⎜⎜⎜⎜⎝λKT K − div

⎛⎜⎜⎜⎜⎜⎝ ∇√
|∇uk |2 + α

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ uk+1 = λKT f (→ FPM) (19)

by choosing a suitable original value u0. We set dt = 0.05 for the TMM which can give a better numerical results for

all of implementations. To the PDM, we set τ = 
 = 1√
8

to keep its convergence. Note the matrix operator in the left

of the FPM is symmetric and positive definite. Therefore, we can employ the conjugate gradient method to solve it as

[34, 35].

10
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5.1. The choice of regularized parameter λ

In the proposed model, the restoration effectiveness depends on the regularization parameter λ that controls how

much filtering is introduced by the regularization. Often the key issue in connection with these methods is to find a

regularization parameter that gives a good balance, filtering out enough noise without losing too much information in

the computed solution. Over estimating the regularized parameter λ may lead to the domination for the regularization

term R(u). So it will over-penalize image details and obtain over smoothed blurry result with a low energy functional.

On the contrary, while underestimating it may leave the noise in the image unfiltered. Then we obtain a noisy image

and a high energy. So it is very important to find a suitable λ based on these relation. Some classic methods to choose

the suitable λ can be employed such as the L-curve method [15], the generalized cross validation (GCV) [12], the

discrepancy principle [20], or the variational Bayes approach [25].

In our experiments, the main aim is focused on the advantages of the proposed adaptive norms model and es-

pecially the proposed numerical method. If above methods for selecting regularization parameter are used, it will

bring great uncertainties for the comparison between the proposed and other traditional methods. Therefore, for a fair

comparison between different models, the regularization parameter was manually determined by attempting a series

of values and selecting the one with the highest S NR (in simulated experiments) or the best visual effect (in real

experiments). Specifically, we set the related parameters into a bigger range as [a, b] and then find a suitable sunset

as [c, d] ⊂ [a, b]. In the next we find a more suitable parameter in [c, d]. When the difference between the successive

S NR is below 0.001, we set this parameter as the best value to the regularization parameter λ.

5.2. Advantages of the proposed model

In order to distinctly illustrate the performance of the two approaches, we consider to restore the noisy image
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Figure 3. The SNR images with different parameters and related curves based on the image in Figure 2(a).

degraded by the white Gaussian noise with σ = 20. The algorithm will be stopped when the stopping condition is

met. We first show the abilities to keep edges and smoothing regions of the model (4) by employing the image (a) in

Figure 2 as the testing image. This choice is based on the fact that this image has clear edges and abundantly smoothing

regions. In order to choose suitable values of α and λ in the proposed model (4) comparing with the ROF model, i.e.,

setting α = 0 in the model (4). We first estimate original intervals of parameters and careful change their values in

these intervals with the suitable step distance. Specifically, we choose λ ∈ [0.025, 0.44] with the stepsize 0.02 for the

ROF model and λ ∈
[
10−5, 5 × 10−4

]
with the stepsize 5× 10−5 and α ∈ [0.1, 2] with the stepwise 0.1 for the proposed

model (4). The plot indicates that the SNR has a global maximum for different values of parameters. Especially, for

the ROF model, we set λ = 0.032 to obtain the best SNR of 24.4951 dB. Similarly, we choose λ = 5 × 10−5 and

α = 0.8 in the proposed model (4), which gives the best SNR of 25.1823 dB. In order to show the detail comparisons

for these two models, we show a piece of slice with the 80th row of the related images in Figure 3. It is obviously that

11
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the proposed model (4) have a robust restored abilities comparing with the ROF model, especially for suppressing the

staircase effect in the smoothing regions.

5.3. Impact of parameter α

As we can see the results from subsection 4.1 that α is one important parameter in the proposed model. Thus, we

test our proposed PDM(I) with different contaminated levels by the noise or the Gaussian blurring to validate their

effect in (10). We use the image ”Barchetta” shown in Figure 2 (b). Comparing with the artificial image used in the

subsection 4.1, this image includes more detail structures, so it is more suitable to test α by the effect of contamination.

We still follow the strategy for choosing suitable parameter λ and α used in subsection 4.1. Here the degraded images

are generated by the white Gaussian noise with σ = 10, 20, 30 or the Gaussian blurring with G(21, 0.6) and these

noises. To the ROF model, we again set the parameter α = 0 and solve it by the primal dual method as used in the

subsection 4.1. It is easy to deduce that the proposed model (4) can obtain a better restored image than the ROF model

based on the numerical results in Table 1. Furthermore, we should observe that the choice of α rarely depends on the

noise change if there are not any blurs. However, we need to decrease the value of α while increasing the noise level

in the blurring image. Actually, it is because of that more details are destroyed by the blurring and noise. On the other

hand, we need to decease the value of regularization parameter λ while increasing the noise level. This is based on

the fact we need to increase the weigh of data regularization term to keep the image details.

σ 10 20 30

Model ROF Model (4) ROF Model (4) ROF Model (4)

λ 0.19 0.12 0.07 0.05 0.04 0.03

α 0 0.05 0 0.06 0 0.06

SNR 18.6239 18.6320 14.4890 14.5216 12.4151 12.4878

SSIM 0.7537 0.7541 0.6112 0.6127 0.5197 0.5281

(σ,G) (10,G(21, 0.6)) (20,G(21, 0.6)) (30,G(21, 0.6))

Model ROF Model (4) ROF Model (4) ROF Model (4)

λ 0.33 0.32 0.08 0.09 0.05 0.05

α 0 0.006 0 0.001 0 0.0001

SNR 15.7181 15.7211 12.6904 12.7489 11.2536 11.2799

SSIM 0.6722 0.6723 0.5335 0.5371 0.4621 0.4630

Table 1. The related data by restoring contaminated ”Barchettas” images with different values of α. Here, λ denotes the regularization parameter.

5.4. Comparison with the TMM and FPM

We analyze the performance of our proposed PDM by comparing it with the TMM and FPM for restoration of

”Lena” images with different sizes. Here, the blur and noisy images are corrupted by additive white Gaussian noise

with σ = 10 and the Gaussian blur with G(21, 0.6). Table 2 illustrates the values of S NR, S S IM and CPU time when

the numerical algorithms stop. We can observe that S NR and CPU time increases while S S IM decreases when the

image size increases. In fact, large parameter λ is required to penalize the data fitting term when we increase the size

of the test image without increasing the level of noises. From the comparisons of S NR, S S IM, Time and Ite, our

proposed PDM is shown better than both the TMM and FPM, especially the CPU time. These also follow from the

observation in the Figure 4. Table 2 clearly shows that the TMM usually takes more iterations to obtain the steady

solution while although the FPM need less iteration, it requires to solve a linear equation using the conjugated gradient

method with inner iterations. Therefore, our proposed PDM is the most efficient one among the three algorithms,

especially, when dealing with the large scale image.

Image Lena image contaminated by noise with σ = 10.

(S,λ, α) (128 × 128, 0.16, 0.009) (256 × 256, 0.17, 0.03) (512 × 512, 0.12, 0.013)

Method TMM FPM PDM(13) PDM(17) TMM FPM PDM(13) PDM(17) TMM FPM PDM(13) PDM(17)

SNR 17.8674 17.9446 18.1622 18.0441 18.7203 19.3058 19.3350 19.3397 20.0060 20.0094 20.2870 20.1919

SSIM 0.8284 0.8408 0.8354 0.8433 0.7133 0.7406 0.7410 0.7404 0.6187 0.6041 0.6344 0.6159

Time(s) 13.5156 6.8750 0.9844 4.2500 27.8906 21.9531 7.7188 15.4844 384.1875 79.8438 21.4063 93.0781

Ite 303 20 27 149 180 19 65 136 500 18 33 152

Image Lena image contaminated by noise with σ = 10 and Gaussian blur with G(21, 0.6).

(S,λ,α) (128 × 128, 0.29, 0.02) (256 × 256, 0.26, 0.011) (512 × 512, 0.23, 0.02)

Method TMM FPM PDM(13) PDM(17) TMM FPM PDM(13) PDM(17) TMM FPM PDM(13) PDM(17)

SNR 13.7845 15.3528 15.3807 14.3120 15.4783 16.8419 16.8822 15.9692 17.5351 18.7662 18.7888 17.8123

SSIM 0.7146 0.7932 0.7905 0.7351 0.6069 0.6828 0.6821 0.6304 0.5350 0.5755 0.5773 0.5468

Time(s) 2.3906 31.7344 3.0781 1.5625 14.6406 94.5156 13.0625 6.5000 104.1875 293.9375 48.1406 39.4375

Ite 38 29 77 34 66 29 81 44 123 23 61 53

Table 2. The related data by restoring contaminated ”Lena” image of different sizes.

12



/ Final Version 00 (2018) 1–15 13

On the other hand, we fix the iteration number to be 500 and compare the energy decay of the objective functional,

the variations of the SNR, SSIM and the computational time. In Figure 4, we use the “Lena” with size of 256×256 as

an example and consider the same two cases, i.e., the test image is corrupted by only white Gaussian noise σ = 10 (the

first row in Figure 4, and both white Gaussian noise σ = 10 and Gaussian blur G(21, 0.6) (the second row in Figure 4,

respectively. As shown in Figure 4, we observe that the FPM, PDM (13) and (17) perform better than the TMM, the

numerical energies of which converge to the same value and are smaller than the TMM. Indeed, the FPM, PDM (13)

and (17) produce quite satisfactory and accurate restoration results. Our proposed PDM (13) and (17) outperforms the

FPM in computational costs due to its low expenses in each iteration, even though the FPM converges faster than the

PDM (13) and (17). In addition, we notice that the curves for the CPU time of the TMM, PDM (13) and (17) linearly

depend on the iteration. However, this curve is nonlinear to the FPM since using the conjugate gradient method [35]

to solve the linear equation system (19) effects the tendency of this curve. Now we need to give some discussions for

the PDM-type (13) and (17). Formally, we can find that the PDM (13) in most cases outperforms the PDM (17). The

reason is of that the dual variable in the PDM (13) has more compact form than in the PDM (17). So we can expect

to obtain more rust numerical results.

0 100 200 300 400 500
Iterations

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E(
u,

0.
01

)

106 Value of the problem (9)

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

SN
R

Signal to Noise Ratio

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

SS
IM

Structural Similarity Index Measurement 

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

0

50

100

150

200

250

T

Computational Time 

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E(
u,

0.
01

)

106 Value of the problem (9)

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

13.5

14

14.5

15

15.5

16

16.5

17

SN
R

Signal to Noise Ratio

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SS
IM

Structural Similarity Index Measurement 

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

0 100 200 300 400 500
Iterations

0

100

200

300

400

500

600

700

T

Computational Time 

TMM  (18)
FPM   (19)
PDM1(13)
PDM2(17)

Figure 4. Related curves by restoring the Lena image with the size 256×256 and fixed iteration as 500. First Column: Enegy decay of the objective

functional in the model (4); Second Column: Values of SNR; Third Column: Values of SSIM; Forth Column: CPU Time.

5.5. Extend to other three images

Here we test our proposed PDM on other degraded images, where each test image has its own specialty, i.e.,

”House” has much more sharp edges, ”Cameraman” has more affine regions, and ”Barbara” includes many texture

structures. To generate the degraded images, we add the additive white Gaussian noise and apply the Gaussian

convolution to the images. Similar results are obtained on these three test images, as shown in Table 3. Similarly, we

are able to conclude that our proposed PDM-types are more efficient than the other two methods.

Image House Cameraman Barbara

(σ, λ, α) (20, 0.041, 0.025) (22, 0.05, 0.007) (20, 0.06)

Method TMM FPM PDM(I) PDM(II) TMM FPM PDM(I) PDM(II) TMM FPM PDM(I) PDM(II)

SNR 116.4014 16.0192 16.9087 16.4325 15.2826 16.0762 16.1427 16.1467 10.0807 10.4062 10.5097 10.5236

SSIM 0.3896 0.3256 0.3820 0.3366 0.3825 0.3947 0.3963 0.3971 0.5605 0.5883 0.5922 0.5929

Time(s) 79.4688 29.8594 9.3594 47.4531 78.4219 30.6406 20.1250 40.5625 56.5156 34.3906 12.3594 41.5938

Ite 500 20 77 401 497 23 165 353 382 22 163 370

Image House Cameraman Barbara

(σ,G, λ, α) (20,G(21, 0.6), 0.058, 0.001) (22,G(21, 0.6), 0.06, 0.003) (25,G(21, 0.6), 0.06, 0.002)

Method TMM FPM PDM(I) PDM(II) TMM FPM PDM(I) PDM(II) TMM FPM PDM(I) PDM(II)

SNR 12.2995 15.7617 15.8030 15.7303 13.4439 13.5288 13.9426 13.9381 8.5448 8.5463 8.7650 8.7631

SSIM 0.3140 0.3246 0.3444 0.3520 0.3368 0.3285 0.3503 0.3512 0.4616 0.4894 0.4903 0.4891

Time(s) 28.7031 65.2344 16.7188 33.0938 61.1406 154.3594 14.7969 28.2188 56.1719 47.4688 14.3281 16.2188

Ite 141 10 90 210 315 25 80 210 331 9 74 197

Table 3. The related data by restoring contaminated image “House”, “Cameraman” and ”Barbara”.
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6. Conclusions

We presented an image restoration model based on the minimized surface regularization, which closely relates to

the smoothing ROF model [28]. By using the property of conjugate function, we reformulated the proposed model as a

min-max problem and used two different kinds of primal-dual methods [7] to solve it. The convexity of the model can

guarantee the proposed algorithm to converge to a unique global minimizer. Numerical experiments demonstrated

that the proposed methods hold the potential for efficient and stable computation by comparing to the classic time

marching method (TMM) [28] and the lagged diffusivity fixed point method (FPM) [34, 35], especially for the large-

scale images. In the future, we would like to extend the proposed methods to other image processing problems such

as image inpainting, reconstruction, registration and also for vector value images, etc..
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