ReaserchGate

Journal Paper

1. A.J.X. Guo and F. Zhu*. Improving deep hyperspectral image classification performance with spectral unmixing, Signal Processing,vol. 183, 2021.[link]
2. Y. Zhang, F. Zhu*, A Kernel-based Weight Decorrelation for Regularizing CNNs, Neurocomputing,vol. 429, pp.47-59, 2021.[link]
3. X. Zhao, Y. Liang, A.J.X. Guo*, F. Zhu, Classification of small-scale hyperspectral images with multi-source deep transfer learning, Remote Sensing Letters, vol. 11, no. 4, pp. 303-312, 2020.(IF:2.02) [link]
4. M. Li, F. Zhu*, A.J.X. Guo and J. Chen, A Graph Regularized Multilinear Mixing Model for Nonlinear Hyperspectral Unmixing, Remote Sensing, 11(19),2188, 2019.(IF:4.11) [link]
5. Y. Liang, X. Zhao, A.J.X. Guo* and F. Zhu. Hyperspectral Image Classification with Deep Metric Learning and Conditional Random Field, IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, pp. 1042-1046, June 2020.(IF:3.53)
6. A.J.X. Guo and F. Zhu*. A CNN-based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification,IEEE Transactions on Geoscience and Remote Sensing,57(9), pp.7170-7181, Sept.2019.(IF:5.63)[link]
7. A.J.X. Guo and F. Zhu*. Spectral-Spatial Feature Extraction and Classification by ANN Supervised With Center Loss in Hyperspectral Imagery,IEEE Transactions on Geoscience and Remote Sensing,57(3),pp.1755-1767, Mar.2019.(IF:5.63) [link]
8. F. Zhu, A. Halimi, P. Honeine*, B. Chen, and N. Zheng. Correntropy Maximization via ADMM: Application to Robust Hyperspectral Unmixing,IEEE Transactions on Geoscience and Remote Sensing,55(9),pp.4944-4955, Sept.2017.(IF:4.66) [link]
9. F. Zhu and P. Honeine*. Online kernel nonnegative matrix factorization, Signal Processing,131,143-153, Feb. 2017.(IF:3.47) [link]
10. F. Zhu and P. Honeine*. Bi-objective nonnegative matrix factorization Linear Versus Kernel-Based Models,IEEE Transactions on Geoscience and Remote Sensing,54(7),pp.4012-4022, Apr.2016.(IF:4.94) [link]

Conference Paper

1. M. Li, F. Zhu* and A.J.X. Guo, A robust multilinear mixing model with L2,1 norm for unmixing hyperspectral images, IEEE International Conference on Visual Communications and Image Processing (VCIP):2020.
2. F. Zhu, P. Honeine, J. Chen Pixel-wise linear/nonlinear nonnegative matrix factorization for unmixing of hyperspectral data. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): 4--8 May, 2020. [link]
3. F. Zhu, A. Halimi, P. Honeine, B. Chen, N. Zheng. ADMM for Maximum Correntropy Criterion. 2016 International Joint Conference on Neural Network, Vancouver, Canada, (IJCNN): 24--29 July, 2016. [link]
4. F. Zhu and P. Honeine. Pareto front of bi-objective kernel-based nonnegative matrix factorization. 23th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Bruges, Belgium, 22--24 Apr. 2015.
5. F. Zhu, P. Honeine and K. Maya. Kernel non-negative matrix factorization without the pre-image problem. 24th IEEE workshop on Machine Learning for Signal Processing (MLSP). Reims, France,21--24 Sept. 2014. [link]