
HIGH-ORDER COMPACT SPLITTING SPECTRAL METHODS FOR
THE ROTATING SPIN-1 BOSE-EINSTEIN CONDENSATES IN A

MAGNETIC FIELD ∗

XIN LIU† , XIANGYU MENG† , QINGLIN TANG‡ , AND YONG ZHANG†§

Abstract. We propose high-order compact splitting Fourier spectral methods to compute the
dynamics of rotating spin-1 Bose-Einstein condensates (BECs) under an Ioffe-Pritchard magnetic
field. We split the Hamiltonian into a linear part, which consists of the Laplace, rotation and
Zeeman energy terms, and a nonlinear part, which includes all the remaining terms. This “compact”
splitting, involving only two operators, significantly simplifies the construction of high-order schemes.
For the linear subproblem, we factorize the linear operator as a product of simple sub-operators using
the exact classical-quantum correspondence and semigroups decomposition, and such sub-operators
are well approximated by Fourier spectral method and integrated exactly in phase space as usual.
Importantly and surprisingly, the splitting coefficients, originally determined by a nonlinear equation,
can actually be computed exactly by solving a linear system, ending up with explicit formulas. For
the nonlinear subproblem, we derive an exact formula of the spin vector, which is not conserved
in presence of the magnetic field, and transform it into a linear problem. Then we design explicit
high-order schemes using Magnus integrators. Our scheme achieves spectral accuracy in space and
high-order precision in time with near-optimal efficiency. It is explicit, easy to implement and
unconditionally stable. In addition, we derive some properties of our numerical scheme and conduct
a comprehensive investigation, including accuracy confirmation, efficiency test, property verification,
interaction of quantized vortices and dynamics under honeycomb potential.
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1. Introduction. Since its first observation in 1995 [2, 14], the Bose-Einstein
condensation (BEC) has provided an incredible glimpse into the macroscopic quantum
world. At early stage, atoms were confined in magnetic traps and the spin degrees
of freedom were frozen. The particles are described by a scalar model and the wave
function is governed by the Gross-Pitaevskii equation (GPE) within the mean-field
approximation [15, 4]. Recently, the development of optical trapping techniques has
enabled to confine atoms independently of their spin orientation and thus so-called
spinor condensates. The spin-1 BEC was realized experimentally in 23Na and 87Rb
[25, 16]. In contrast to a scalar BEC, the spin-F BEC is described by the coupled
GPEs, which consists of 2F + 1 equations, each governing one of the 2F + 1 hyper-
fine states (mF = −F,−F + 1, . . . , F − 1, F ) within the mean field approximation
[18, 17, 21]. In fact, experimental achievements of spinor BECs have created great
opportunities to study the abundant quantum phenomena that are absent in scalar
BECs [5, 27].

For temperatures below the critical temperature, the dynamics of the rotating
spin-1 BEC are well described by the dimensionless coupled Gross-Pitaevskii equations
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(CGPEs) with an angular momentum rotational term in the d-dimension (d = 2 or
d = 3) [10, 7, 19]

i∂tψ1(x, t) =
[
− 1

2
∇2 + V (x) + E1 − ΩLz + βnρ+ βs(ρ1 + ρ0 − ρ−1)

]
ψ1

+βsψ̄−1ψ
2
0 +Bψ0,(1.1)

i∂tψ0(x, t) =
[
− 1

2
∇2 + V (x) + E0 − ΩLz + βnρ+ βs(ρ1 + ρ−1)

]
ψ0

+2βsψ1ψ−1ψ̄0 +B(ψ1 + ψ−1),(1.2)

i∂tψ−1(x, t) =
[
− 1

2
∇2 + V (x) + E−1 − ΩLz + βnρ+ βs(ρ0 + ρ−1 − ρ1)

]
ψ−1

+βsψ̄1ψ
2
0 +Bψ0,(1.3)

ψ`(x, 0) = ψ0
` (x), ` = 1, 0,−1.(1.4)

Here, x = (x, y, z)> ∈ R3 or x = (x, y)> ∈ R2 and t is the time. Ψ := (ψ1, ψ0, ψ−1)>

is the three-component wave function, and ρ = ρ1 + ρ0 + ρ−1 is the total density with
ρ` = |ψ`|2 (` = 1, 0,−1) being the density of `-th component . Lz = i(y∂x − x∂y)
is the z-component of the angular momentum and Ω represents the rotation speed.
E` ∈ R is the Zeeman energy, B ∈ R is the external Ioffe-Pitchard magnetic field, and
βn and βs are the mean-field and spin-exchange interaction constants respectively. f̄
denotes the conjugate of the function f . In most experiments, V (x) is usually chosen
as the harmonic potential, i.e.,

V (x) =
1

2

{
γ2
xx

2 + γ2
yy

2, d = 2,

γ2
xx

2 + γ2
yy

2 + γ2
zz

2, d = 3,
(1.5)

with γv (v = x, y, z) being the trapping frequencies in the v-direction.
Introduce the spin-1 matrices f := (fx, fy, fz)

> as

(1.6) fx =
1√
2

0 1 0
1 0 1
0 1 0

 , fy =
i√
2

0 −1 0
1 0 −1
0 1 0

 , fz =

1 0 0
0 0 0
0 0 −1

 ,

and the spin vector F := (Fx(Ψ), Fy(Ψ), Fz(Ψ))> := (ΨHfxΨ,ΨHfyΨ,ΨHfzΨ)>,
where ΨH is the conjugate transpose of Ψ, then the CGPEs (1.1)-(1.3) are refor-
mulated in the compact form shown below

(1.7) i∂tΨ = HΨ :=
[
(−1

2
∇2+V−ΩLz+βnρ)I3+diag{E1, E0, E−1}+βsF·f +B

]
Ψ,

where H is the Hamiltonian with I3 being the 3× 3 identity matrix and

F · f =

 Fz
1√
2
F− 0

1√
2
F+ 0 1√

2
F−

0 1√
2
F+ −Fz

 , B =

 0 B 0
B 0 B
0 B 0

 ,

with F± = Fx ± iFy.
Two important invariants of the time-dependent CGPEs (1.1)-(1.3) are the mass

(or normalization) of the wave function

(1.8) N(t) := N(Ψ(·, t)) :=

∫
Rd

1∑
`=−1

|ψ`(x, t)|2dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0
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and the energy per particle

E(t) := E(Ψ(·, t)) =

∫
Rd

[ 1∑
`=−1

(
1

2
|∇ψ`|2 + (V (x) + E`)|ψ`|2 − Ω ψ̄`Lzψ`

)
+
βn
2
ρ2 +

βs
2

(
|F+|2 + |Fz|2

)
+ 2B Re(ψ̄0(ψ1 + ψ−1))

]
dx

≡ E(Ψ(·, 0)), t ≥ 0.(1.9)

When B = 0, another important invariant is the total magnetization

(1.10) M(t) = M(Ψ(·, t)) :=

1∑
`=−1

∫
Rd
` |ψ`(x, t)|2 dx ≡ M(Ψ(·, 0)), t ≥ 0.

There is vast literature on mathematical and numerical studies of the dynamics
for scalar BEC, and we direct readers to [3, 5, 8, 9, 13, 34] for further information.
Along the numerical front, the time-splitting Fourier spectral method is one of the
most popular methods due to its efficiency, stability and implementation simplicity.
This method has been applied to spinor BECs [4, 10, 33, 31, 32]. For the rotating
spin-1 BEC, Bao et al. [6, 10] and Wang [33] proposed a second-order spectrally accu-
rate numerical method, where they all split the Hamiltonian into three parts. In [10]
and [33], they grouped the Laplace and rotation term as a linear part, and the linear
subproblem was solved either by finite difference/element in polar and spherical co-
ordinates or by Alternating Direction Implicit (ADI) combined with Fourier spectral
method. In [6], they grouped the Laplace, rotation and radial/cylindrical symmetric
part of trapping potential as a linear part, and solve it using generalized Laguerre-
Fourier-Hermite spectral method in polar/cylindrical coordinates on the whole space.
To efficiently investigate the fine structures of such rotating systems, including vortex
lines and/or vortex lattice, it is advantageous to employ high-order schemes. How-
ever, it is somewhat complicated to construct high-order schemes with such three
subproblems. It will be much easier if the Hamiltonian is split into two operators [35],
and we shall refer such splitting with fewer operators as “compact” splitting hereafter
[31, 32].

As far as we know, there are very limited research on compact splitting for spinor
BECs. For dynamics of spinor BECs without rotation term, Symes et al. proposed
a compact splitting scheme for spin-1 [32] and spin-2 BECs [31], where the nonlinear
subproblem was integrated analytically in physical space and the linear operator was
integrated in phase space. Recently, for rotating spin-1 BEC with the spin-orbit cou-
pling (SOC), Liu et al. [23] proposed a high-order compact splitting scheme, where the
Hamiltonian is split into two parts, and both subproblems are integrated exactly. For
rotating spinor BEC, there is no simple way to split the Hamiltonian into two parts
due to the presence of the rotation term. It is possible to switch to the rotating La-
grangian coordinates (RLC), a popular method developed by Bao et al. [8], where the
rotation term vanishes automatically. This allows utilizing operator splitting meth-
ods or exponential integrators to construct a high order scheme, such as exponential
Runge-Kutta methods and Lawson methods for scalar BEC [13]. However, when a
real-time dynamics at each time step is on request, one needs to rotate the wave
function ψ`(x, t) from the rotating Lagrangian coordinates to Cartesian coordinates
at every time step. Such coordinate switches are quite exhaustive numerically and
shall bottleneck the simulation efficiency.
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To design high-order compact splitting schemes, the exact integration of linear
subproblem is quite crucial. There exists some literature devoted to some partic-
ular coordinates or domain. For example, Bao et al. [6] proposed a generalized
Laguerre-Fourier-Hermite spectral method in the whole space Rd, and they integrate
the linear subproblem in polar/cylindrical coordinates. Wang et al. [34] introduced
a Chebyshev-Fourier spectral method on the bounded disk and integrated the linear
subproblem in polar coordinates. Liu et al. [23] successfully integrated the Laplace-
rotation-SOC subproblem exactly in Cartesian coordinates using function-rotation
mapping, but it is not optimal in terms of efficiency for non-SOC problems. Recently,
Bernier et al. [11, 12] proposed an exact integration method in Cartesian coordinates,
named as exact splitting method, for the Laplace-rotation-potential linear subprob-
lem. However, to obtain the splitting coefficients, one has to solve a nonlinear matrix
system via an iterative method. Amazingly, we managed to derive an explicit for-
mulation for such splitting coefficients by transforming the nonlinear system into a
linear equation followed by an elaborative block-by-block matrix matching. It is
fairly simple and easy to code using such exact and explicit splitting coefficients.

In this article, we split the CGPEs (1.7) into a linear subproblem

i∂tΨ(x, t) =
[
(−1

2
∇2 − ΩLz)I3 + diag{E1, E0, E−1}

]
Ψ(x, t) := HlinΨ(x, t),(1.11)

and a nonlinear subproblem

i∂tΨ(x, t) =
[
(V + βnρ)I3 + βsF · f + B

]
Ψ(x, t) := HnonΨ(x, t).(1.12)

Obviously, the linear subproblem is decoupled because each component is independent
of the other two and (− 1

2∇
2−ΩLz) commutes with constant E`. We derive an explicit

exact time integrator for the linear subproblem (1.11) and will refer to it as the
Explicit-Exact-Integrator (EEI) hereafter. In EEI, the wave function is discretized
by Fourier spectral method and integrated exactly in phase space. While for the
nonlinear subproblem (1.12), we can not integrate it as usual [32] since the spin vector
F is not conserved in presence of the magnetic field. Here we first derive an exact
time-dependent formula of the spin vector, with which the nonlinear subproblem is
transformed to a linear one, then we construct explicit high-order schemes using the
Magnus integrators [20]. To sum up, each subproblem can be efficiently and accurately
solved in either physical or phase space. This compact splitting significantly simplifies
the design of high-order schemes.

To sum up, the key advance is that we first design a fast and exact time-splitting
scheme for the Laplace-rotation subproblem with explicit splitting coefficients, which
are derived by solving a linear system instead of the nonlinear problem originally
proposed in [11]. Explicit coefficients allow for an easy implementation and adaptation
to rotating systems. Additionally, for the nonlinear subproblem, we transform it into
a linear problem by deriving an exact formula for the time-dependent spin vector, and
design explicit high-order schemes.

This paper is organized as follows. In Subsection 2.1 and 2.2, we propose an ex-
plicit exact integrator (EEI) for the linear subproblem, and explicit high-order Magnus
integrators for the nonlinear subproblem. In Subsection 2.3, we derive some proper-
ties of our numerical method, including mass-conservation (stability), magnetization-
conservation, time reversible, time-transverse invariant and rotational symmetry. De-
tailed spatial/temporal convergence and efficiency tests are presented in Section 3,
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together with some interesting numerical results. Finally, conclusions are drawn in
Section 4.

2. Compact splitting spectral method. Due to the trapping potential, the
wave functions decay to zero exponentially when |x| → ∞. Therefore, in practical
computation, we truncate the problem into a sufficiently large bounded rectangular
domain and impose periodic boundary conditions. In this section, we introduce a
high-order compact splitting Fourier spectral method for CGPEs (1.1)-(1.4). For
simplicity, we shall only present the scheme in 2D and generalization to the 3D case
is straightforward. We choose a square domain RL := [−L,L]2 and discretize each
spatial direction with the same mesh size h = (2L)/N with N being an even positive
integer. Define the physical, Fourier index and grid points sets as

IN =
{

(j, k) ∈ Z2
∣∣∣ 0 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1

}
,

TN =
{

(p, q) ∈ Z2
∣∣∣ −N/2 ≤ p ≤ N/2− 1, −N/2 ≤ q ≤ N/2− 1

}
,

G =
{
xjk := (xj , yk)> := (−L+ jh,−L+ kh)>, (j, k) ∈ IN

}
,

and denote ψn`,jk as the numerical approximation of ψ`(xj , yk, tn) for (j, k) ∈ IN .

As stated earlier, the presence of rotation term pose great challenges and a fea-
sible way is to work in the rotating Lagrangian coordinates to eliminate the rotation
term [8]. Unfortunately, direct application of RLC faces efficiency bottleneck when
coordinates switches are invoked for every time step in some real-time simulation.
In our method, we split the Hamiltonian into two parts: the linear operator Hlin

(Laplace-Rotation-Zeeman terms), and the nonlinear operator Hnon. For the linear
subproblem, we develop an exact integrator with explicit coefficients. The main idea
is to factorize the semigroup, generated by linear part, into products of semigroups,
which corresponds to differential operators that can be efficiently approximated using
the Fourier spectral method. Further details are provided in Subsection 2.1. For the
nonlinear subproblem, the presence of the magnetic field results in a time-dependent
spin vector, and it makes exact integration very difficult. In fact, we can first derive
an exact formula for the spin vector and reduce the nonlinear problem to a linear one.
Then we use Magnus integrators to develop efficient high-order schemes, which are to
be detailed in Subsection 2.2.

Specifically, we define the time sequence as tn = nτ with n = 0, 1, . . . for a given
time step τ > 0. The solutions to the linear and nonlinear subproblems from t = tn
are denoted as Ψ(t) = e−i(t−tn)HlinΨn and Ψ(t) = e−i(t−tn)HnonΨn respectively. In
practice, high-order splitting methods can be designed as [35]

Ψn+1 =

 m∏
j=1

e−iajτHline−ibjτHnon

Ψn

with the appropriate coefficients aj , bj ∈ C. For the standard second-order Strang
splitting, we adopt m = 2, a1 = a2 = 1

2 and b1 = 0, b2 = 1, while, fourth-order
scheme, proposed by Yoshida [35], is configured with m = 4, a1 = a4 = 1

2(2−21/3)
,

a2 = a3 = 1−21/3

2(2−21/3)
and b1 = b3 = 1

2−21/3 , b2 = − 21/3

2−21/3 , b4 = 0.
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2.1. Explicit exact time integrator for linear subproblem. The exact so-
lution to the following linear problem{

i∂tψ`(x, t) =
[
− 1

2∆− ΩLz + E`
]
ψ`(x, t), tn ≤ t ≤ tn+1,

ψ`(x, tn) = ψn` , x ∈ RL,
(2.1)

can be written formally as

ψ`(x, t) = ei(t−tn)[ 1
2 ∆+ΩLz−E`]ψn` (x) = e−i(t−tn)E`ei(t−tn)[ 1

2 ∆+ΩLz]ψn` (x).(2.2)

To compute eiτ [∆/2+ΩLz ], we aim to factorize it as a product of sub-operators that can
be numerically accessed with great efficiency. Based on the exact splitting method
proposed in [11, 12], we can factorize it as a product of five sub-operators as follows

(2.3) eiτ [∆/2+ΩLz ] = e−iτ(ζ1x
2+ζ2y

2)e−τξy∂xeiτ∇
>K∇e−τηx∂ye−iτx

>Px

with suitable coefficients ζ1, ζ2, ξ, η ∈ R and matrices K, P ∈ R2×2. While for the 3D
problem, using Baker-Campbell-Hausdorff (BCH) formula [26], we can still factorize
eiτ [∆/2+ΩLz ] as a product of five sub-operators instead of seven sub-operators proposed
in [11, 12]. Specifically,

eiτ [∆/2+ΩLz ] = eiτ [ 12∂zz ] eiτ[
1
2∂xx+ 1

2∂yy+ΩLz]

= e−iτ(ζ1x
2+ζ2y

2)e−τξy∂xeiτ [∇>⊥K∇⊥+ 1
2∂zz ]e−τηx∂ye−iτx

>
⊥Px⊥ ,(2.4)

where x⊥ = (x, y)> and ∇⊥ = (∂x, ∂y)>.
It appears unlikely to derive explicit formula for such coefficients and matrices,

because one has to solve a nonlinear system that involves some complicated matrix
exponentials [11, 12]. Fortunately, with an elaborative block-by-block matrix match-
ing technique, we succeeded in turning such nonlinear equations into a series of linear
equations, and deriving explicit and exact expressions in the following theorem.

Theorem 1. The coefficients of exact splitting (2.3) for eiτ [∆/2+ΩLz ] are given
explicitly by

ζ1 =
sec(Ωτ)− 1

2τ2
, ζ2 =

cos(Ωτ)− 1

2τ2
, ξ =

sin(2Ωτ)

2τ
, η = − tan(Ωτ)

τ
,(2.5)

K =
1

2
Θ−τ,ξ W Θτ,η, P =

1

2τ2

(
W> Θτ,ξ Θ>τ,η − I2

)
,(2.6)

where W =
(

cos(Ωτ) sin(Ωτ)

− sin(Ωτ) cos(Ωτ)

)
is a rotation matrix and Θτ,v :=

(
1 τv

0 1

)
with v = ξ, η.

Proof. Exact classical-quantum correspondence suggests a way to transform an
exact splitting of the differential operators into an exact splitting at the level of the
semigroup generated by operators [1]. That is,

e−τp
w
3 = e−τp

w
1 e−τp

w
2 ⇐⇒ e−2iτJ4Q3 = e−2iτJ4Q1e−2iτJ4Q2 ,(2.7)

where the Weyl quantization is defined as pwm := z>Qmz with z = (x>,−i∇>)> and
J4 is the fundamental symplectic matrix, i.e., J4 :=

(
0 I2
−I2 0

)
with I2 being the 2× 2

identity matrix. We rewrite the operator splitting (2.3) as

(2.8) e−τp
w

= e−τp
w
1 e−τp

w
2 e−τp

w
3 e−τp

w
4 e−τp

w
5 ,
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where

pw = −i(∆/2 + ΩLz) = z>
i

2

(
0 A>

A I2

)
z := z>Q z with A =

(
0 Ω
−Ω 0

)
,

pw1 = i(ζ1x
2 + ζ2y

2) = z>i(D 0
0 0 )z := z>Q1 z with D =

(
ζ1 0
0 ζ2

)
,

pw2 = ξy∂x = z>
i

2

(
0 M>ξ
Mξ 0

)
z := z>Q2 z with Mξ =

(
0 ξ
0 0

)
,

pw3 = −i∇>K∇ = z>i( 0 0
0 K )z := z>Q3 z,

pw4 = ηx∂y = z>
i

2

(
0 Mη

M>η 0

)
z := z>Q4 z with Mη =

(
0 η
0 0

)
,

pw5 = ix>Px = z>i( P 0
0 0 )z := z>Q5 z.

Using exact classical-quantum correspondence (2.7), the splitting (2.8) implies
that

e−2iτJ4Q = e−2iτJ4Q1e−2iτJ4Q2e−2iτJ4Q3e−2iτJ4Q4e−2iτJ4Q5 .(2.9)

Then, we calculate (2.9) explicitly as follows(
W τW

0 W

)
=
(

I2 0

−2τD I2

)(Θτ,ξ 0

0 Θ>−τ,ξ

)(
I2 2τK

0 I2

)(
Θ>τ,η 0

0 Θ−τ,η

)(
I2 0

−2τP I2

)
=

(
Θτ,ξΘ

>
τ,η−2τG12P 2τΘτ,ξKΘ−τ,η

−2τDΘτ,ξΘ
>
τ,η−2τG22P −2τDG12+Θ>−τ,ξΘ−τ,η

)
:=
(
G11 G12

G21 G22

)
.

At first glance, the above equation appears to be a complicated nonlinear system.
In fact, we can calculate these coefficients exactly by solving a linear system using
an elaborative block-by-block matching. Starting from the fact that G22 = W , we
calculate ζ1, η, ζ2 and ξ sequentially by solving a linear system. Then, we directly
compute K and P by matrix inversion for G11 = W and G12 = τW . Finally, we need
to verify G21 = 0 with these coefficients.

Specifically, using G22 = −2τDG12 + Θ>−τ,ξΘ−τ,η = W , we obtain{
1− 2τ2ζ1 cos(Ωτ) = cos(Ωτ), τη − 2τ2ζ1 sin(Ωτ) = sin(Ωτ),

−τξ + 2τ2ζ2 sin(Ωτ) = − sin(Ωτ), τ2ξη + 1− 2τ2ζ2 cos(Ωτ) = cos(Ωτ).

Solving the above system, we derive the formulas for ζ1, ζ2, ξ and η, as shown in (2.5).
Then, using

G12 = 2τΘτ,ξKΘ−τ,η = τW, G11 = Θτ,ξΘ
>
τ,η − 2τG12P = W,

we have

K =
1

2
Θ−1
τ,ξ W Θ−1

−τ,η =
1

2
Θ−τ,ξ W Θτ,η,

P =
1

2τ2
W−1

(
Θτ,ξ Θ>τ,η −W

)
=

1

2τ2

(
W> Θτ,ξ Θ>τ,η − I2

)
.

Using these coefficients and G22 = W , we have

(2τ2D + I2)Θτ,ξΘ
>
τ,η = W.



8 X. Liu, X. Meng, Q. Tang and Y. Zhang

Then, a simple calculation shows that

G21 = −2τDΘτ,ξΘ
>
τ,η − 2τW

[ 1

2τ2

(
W>Θτ,ξΘ

>
τ,η − I2

) ]
= −1

τ
(2τ2D + I2)Θτ,ξΘ

>
τ,η +

1

τ
W = −1

τ
W +

1

τ
W = 0.

Proof is completed.
The sub-operators in (2.3) or (2.4) can be well approximated by Fourier spectral

method with great efficiency thanks to FFT/iFFT [29]. To be specific, the spectral
approximations of wave function ψ` for d = 2 in the x- and y- directions are such that

ψ`(x, y) ≈
N/2−1∑
p=−N/2

(ψ̂y` )p e
iνxp (x+L), ψ`(x, y) ≈

N/2−1∑
q=−N/2

(ψ̂x` )q e
iνyq (y+L),(2.10)

where νxp = (2πp)/(2L), νyq = (2πq)/(2L). The Fourier coefficients in the x- and y-
directions are given as follows

(ψ̂y` )p =
1

N

N−1∑
j=0

ψ`(xj , y) e−iν
x
p (xj+L), (ψ̂x` )q =

1

N

N−1∑
k=0

ψ`(x, yk) e−iν
y
q (yk+L).(2.11)

The scheme (2.3) is then discretized as follows
(2.12)

ψ
(1)
`,jk = e−iτx

>
jkPxjkψn`,jk, ψ∗`,jq = e−iτηxjν

y
q (ψ̂

(1)
`,j )q,

ψ
(2)
`,jk =

N/2−1∑
p=−N/2

e−iτξykν
x
p

[ N/2−1∑
q=−N/2

e−iτν
>
pqKνpq (ψ̂∗`,q)p e

iνyq (yk+L)
]
eiν

x
p (xj+L),

ψn+1
`,jk = e−iτ(E`+ζ1x

2
j+ζ2y

2
k) ψ

(2)
`,jk,

with νpq = (νxp , ν
y
q )>.

Remark 2.1 (Efficiency). The coefficients ζ1, ζ2, ξ, η,K and P depend only
on the time step τ and the rotation speed Ω, and they can be computed once for
all in the pre-computation step. As for the computational costs, the scheme (2.12)
requires only dNd−1 pairs of one-dimensional FFT and iFFT, and the complexity
is O(Nd log(N)).

2.2. Magnus integrators for nonlinear subproblem. In this subsection, we
introduce explicit high-order schemes to solve{

i∂tΨ(x, t) =
[
(V + βnρ)I3 + βsF · f + B

]
Ψ(x, t) := HnonΨ(x, t),

Ψ(x, tn) = Ψn, x ∈ RL, tn ≤ t ≤ tn+1.
(2.13)

It is easy to verify that the density ρ is independent of time, i.e., ρ(x, t) ≡
ρ(x, tn) := ρn, tn ≤ t ≤ tn+1. Noticing the facts that fν(ν = x, y, z) are Hermi-
tian matrices and satisfy the commutator relations [fx, fy] := fxfy − fyfx = ifz,
[fy, fz] = ifx, [fz, fx] = ify, we obtain

∂tFν = ∂t(Ψ
HfνΨ) = iΨHHnonfνΨ− iΨHfνHnonΨ

= iβsΨ
H[F · f , fν ]Ψ + iΨH[B, fν ]Ψ

= iβs
(
FxΨH[fx, fν ]Ψ + FyΨH[fy, fν ]Ψ + FzΨ

H[fz, fν ]Ψ
)

+ iΨH[B, fν ]Ψ

= iΨH[B, fν ]Ψ, ν = x, y, z.
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Using the relation B =
√

2Bfx, we have

∂tFx = 0, ∂tFy = −
√

2BFz, ∂tFz =
√

2BFy,(2.14)

from which we derive exact and explicit formula for the spin vector F(t) as follows(
Fy(t)
Fz(t)

)
=

(
cos
(√

2B(t− tn)
)
− sin

(√
2B(t− tn)

)
sin
(√

2B(t− tn)
)

cos
(√

2B(t− tn)
) )(Fny

Fnz

)
, Fx(t) ≡ Fnx .

Clearly, we can see that the seemingly nonlinear operator Hnon actually depends on
only time variable t, therefore, the nonlinear system (2.13) is in fact a linear system.
We use Magnus integrators [20] to design an explicit high-order solver for this system
(2.13). The idea is to write the solution in the following form

Ψn+1(x) = e−iΩn(τ)Ψn(x), Ωn(τ) ∈ Cd×d.(2.15)

We given specific expressions for Ωn(τ) associated with the second-order and fourth-
order integrators respectively, and other high-order integrators can be obtained in a
similar manner [20]. That is,

• Second-order: The matrix Ωn(τ) reads as

Ωn(τ) =

∫ τ

0

Hnon(tn + σ)dσ.(2.16)

• Fourth-order: The matrix Ωn(τ) reads as

(2.17) Ωn(τ) =
∫ τ

0
Hnon(tn + σ)dσ + 1

2 i
∫ τ

0

[ ∫ σ
0
Hnon(tn + µ)dµ,Hnon(tn + σ)

]
dσ.

Fortunately, integrals in (2.16) and (2.17) can both be computed exactly. To be
specific, we obtain the second-order integrator of ODEs (2.13) as

Ψn+1(x) = e−iΩn(τ)Ψn(x) = e−iτ(V+βnρ
n)e−i

∫ τ
0
βsF(tn+σ)·f+B dσΨn(x)

:= e−iτ(V+βnρ
n)e−iS2ndΨn(x),(2.18)

where S2nd, a Hermitian matrix, is given explicitly as follows

S2nd :=

∫ τ

0

βsF(tn + σ) · f + B dσ =

β α 0
α 0 α
0 α −β

 ,(2.19)

with matrix entries

α = − iβs
2B

[
sin(
√

2Bτ)Fny + (cos(
√

2Bτ)− 1)Fnz

]
+ τ(

βs√
2
Fnx +B),(2.20)

β =
βs√
2B

[
(1− cos(

√
2Bτ))Fny + sin(

√
2Bτ)Fnz

]
.(2.21)

Since S2nd is Hermitian, it can be diagonalized as S2nd = UΛUH, where unitary
matrix U and real diagonal matrix Λ read as

U =
1

λ


−α − α|α|

β−λ
α|α|
β+λ

β |α| −|α|

α α|α|
β+λ − α|α|

β−λ

 , Λ =

0 0 0
0 λ 0
0 0 −λ

 , λ =
√
β2 + 2|α|2.
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Hence, e−iS2nd can be computed analytically as

e−iS2nd = Ue−iΛUH =

g11 g12 g13

g21 g22 −g21

g13 −g12 g11

 := G2nd,(2.22)

where

g11 = 1
λ2

[
|α|2 + 1

4q1(β2 + λ2) + 1
2q2βλ

]
, g12 = α c0, g13 = α2

2λ2 (q1 − 2),

g22 = 1
λ2

[
β2 + |α|2q1

]
, g21 = α c0, c0 = 1

2λ2

[
β(q1 − 2) + λq2

]
with q1 = 2 cos(λ) and q2 = −2i sin(λ). Therefore, we can obtain an explicit second-
order integrator for the subproblem (2.13), i.e.,

(2.23) Ψn+1(x) = e−iτ(V+βnρ
n) G2nd Ψn(x).

Remark 2.2 (Non-magnetic field). The integrator (2.23) is exact when the mag-
netic field disappears (i.e., B = 0), because ∂tFν = 0 for ν = x, y, z, which implies
Hnon(Ψ) = Hnon(Ψn). When B goes to zero, the matrix entries (2.20)-(2.21) tends
to α = 1√

2
τβsF

n
− and β = τβsF

n
z .

Remark 2.3 (Fourth-order integrator). The fourth-order integrator for the sub-
problem (2.13) reads as

(2.24) Ψn+1(x) = e−iτ(V+βnρ
n) G4th Ψn(x),

where the matrix G4th takes the same form as G2nd (2.22), and the only modification
is to replace α and β in G2nd with the expressions given in (A.1)-(A.2). A detailed
step-by-step computation can be found in Appendix A. It is worthy to emphasize that
other high-order integrators can be constructed in a similar way.

In implementation, from time t = tn to t = tn+1, we combine the solvers (2.12)
and (2.23) for linear and nonlinear subproblems via the classical Strang splitting and
provide a detailed stepwise algorithm (Algorithm 1).

Algorithm 1 Second-order compact operator splitting spectral method

1: Solve linear subproblem by EEI (2.12) for half time step τ/2 with initial data
provided at t = tn.

2: Solve nonlinear subproblem by (2.23) for one step τ beginning with the data
acquired from step 1.

3: Solve linear subproblem by EEI (2.12) for half time step τ/2 again with the data
obtained from step 2.

Remark 2.4 (Arbitrary high-order schemes). Using the EEI method for linear
subproblem and the Magnus integrators for nonlinear subproblem, it is simple to con-
struct arbitrary high-order schemes based on high-order operator splitting method [35].

2.3. Properties of the numerical scheme. There are many important dy-
namical properties for the CGPEs (1.1)-(1.3), and here we mention several important
ones that are still valid with our method on discrete level. In this subsection, we
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derive the properties of our numerical method, including the mass-conservation (sta-
bility), magnetization-conservation, time reversible, time-transverse invariant and ro-
tational symmetry. For convenience, we only provide proofs for the 2D case and
extension to 3D is simple. We denote the discrete l2-norm of ψn` as ‖ψn` ‖l2 =

(h2
∑N−1
j=0

∑N−1
k=0 |ψn`,jk|2)

1
2 .

Lemma 1 (Mass-conservation). For any h, τ > 0, the compact splitting Fourier
spectral method conserves the total mass on discrete level, i.e.,

1∑
`=−1

‖ψn` ‖2l2 =

1∑
`=−1

‖ψ0
`‖2l2 .(2.25)

In other words, our scheme is unconditionally stable in l2-norm.
Proof. For the nonlinear subproblem (2.15)-(2.17), it is easy to see that Ωn(τ) is

a Hermitian matrix, then we have

‖Ψn+1‖2l2 = ‖e−iΩn(τ)Ψn‖2l2 = ‖Ψn‖2l2 , where ‖Ψn‖2l2 :=

1∑
`=−1

‖ψn` ‖2l2 .

While for the linear subproblem (2.12), we have

‖ψ(1)
` ‖

2
l2 = h2

N−1∑
j=0

N−1∑
k=0

|e−iτx
>
jkPxjkψn`,jk|2 = ‖ψn` ‖2l2 .

Using the following identities

N/2−1∑
q=−N/2

ei2πjq/N =

N−1∑
q=0

ei2πjq/N =

{
0, j 6= mN,

N, j = mN,
m ∈ Z,(2.26)

we obtain

N−1∑
j=0

N/2−1∑
q=−N/2

∣∣∣ψ∗`,jq∣∣∣2 =

N−1∑
j=0

N/2−1∑
q=−N/2

∣∣∣e−iτηxjνq (ψ̂
(1)
`,j )q

∣∣∣2

=
1

N2

N−1∑
j=0

N/2−1∑
q=−N/2

∣∣∣N−1∑
k=0

ψ
(1)
`,jk e

i2πkq/N
∣∣∣2 =

1

N

N−1∑
j=0

N−1∑
k=0

|ψ(1)
`,jk|

2.

Similarly, we have

‖ψ(2)
` ‖

2
l2 = h2

N−1∑
j=0

N−1∑
k=0

|ψ(2)
`,jk|

2 = h2N2

N/2−1∑
p=−N/2

N/2−1∑
q=−N/2

|(ψ̂∗`,q)p|
2

= h2
N−1∑
j=0

N−1∑
k=0

|ψ(1)
`,jk|

2 = ‖ψ(1)
` ‖

2
l2 , ` = 1, 0,−1.(2.27)

To sum up, we can prove that the following relation

1∑
`=−1

‖ψn+1
` ‖2l2 =

1∑
`=−1

‖ψ(2)
` ‖

2
l2 =

1∑
`=−1

‖ψ(1)
` ‖

2
l2 =

1∑
`=−1

‖ψn` ‖2l2

holds true.



12 X. Liu, X. Meng, Q. Tang and Y. Zhang

Lemma 2 (Magnetization-conservation). For any h, τ > 0, the compact split-
ting Fourier spectral method conserves the magnetization on discrete level, i.e.,

1∑
`=−1

`‖ψn` ‖2l2 =

1∑
`=−1

`‖ψ0
`‖2l2 .(2.28)

Proof. For the linear subproblem, from the proof of Lemma 1, we have

‖ψn1 ‖2l2 − ‖ψn−1‖2l2 = ‖ψ0
1‖2l2 − ‖ψ0

−1‖2l2 .

For the nonlinear subproblem with B = 0, we have [32]

Ψn+1 = e−i(V+βnρ
n)τ

[
cos(βsτ |Fn|) Ψn − i sin(βsτ |Fn|)

|Fn|
S(Ψn)Ψn

]
,

where |Fn| =
√

(Fnx )2 + (Fny )2 + (Fnz )2. A direct calculation shows

|ψn+1
1 |2 − |ψn+1

−1 |
2 = cos2(βsτ |Fn|)

(
|ψn1 |2 − |ψn−1|2

)
+
sin2(βsτ |Fn|)
|Fn|2

(∣∣Fnz ψn1 +
1√
2
Fn−ψ

n
0

∣∣2 − ∣∣ 1√
2
Fn+ψ

n
0 − Fnz ψn−1

∣∣2)
= cos2(βsτ |Fn|)

(
|ψn1 |2 − |ψn−1|2

)
+

sin2(βsτ |Fn|)
|Fn|2 |Fn|2

(
|ψn1 |2 − |ψn−1|2

)
= |ψn1 |2 − |ψn−1|2,

which implies ‖ψn+1
1 ‖2l2 − ‖ψ

n+1
−1 ‖2l2 = ‖ψn1 ‖2l2 − ‖ψn1 ‖2l2 . We complete the proof.

Lemma 3 (Time reversible). The compact splitting Fourier spectral method is
time reversible, i.e., scheme (Algorithm 1) remains unchanged if we interchange n↔
n+ 1 and τ ↔ −τ .

Proof. It is sufficient to demonstrate that the numerical methods to both sub-
problems satisfy time-reversal property. For the nonlinear subproblem (2.15), we can
easily prove that Ωn+1(−τ) = −Ωn(τ) holds true for both second-order and fourth-
order scheme. Therefore, we have

e−iΩn+1(−τ)Ψn+1 = eiΩn(τ)
(
e−iΩn(τ)Ψn

)
= Ψn.

For the linear subproblem (2.2), the following equation

eiτE`e−iτ [∆/2+ΩLz ]ψn+1
` = eiτE`e−iτ [∆/2+ΩLz ]

[
e−iτE`eiτ [∆/2+ΩLz ]ψn`

]
= ψn` ,

holds evidently. The proof is completed.
Lemma 4 (Time-transverse invariant). If a constant C is added to the ex-

ternal potential V (x), i.e., V (x) → V (x) + C, then the discrete wave function Ψn
jk

obtained from Algorithm 1 shall get multiplied by a phase factor e−inτC . That is,

Ψn
jk → e−inτCΨn

jk.

Proof. Let Ψn
jk and Ψ̃n

jk be the wave function obtained by Algorithm 1 with
potential V and V + C respectively. Then, we have

Ψ̃1 = e−i[V+C+βnρ
n]τ G2nd Ψ0 = e−iτCΨ1,

Ψ̃2 = e−i[V+C+βnρ
n]τ G2nd Ψ1 = e−i2τCΨ2,

· · ·
Ψ̃n = e−i[V+C+βnρ

n]τ G2nd Ψn = e−inτCΨn.

The proof is completed.
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The rotating spin-1 CGPE (1.1)-(1.3) keeps rotational symmetry when the
trapping potential V (x) is radially symmetric. To be precise, for solutions starting

with initial value ψ0
` (x) and ψ̃0

` (x) = ψ0
` (R(θ)x), ψ̃`(x, t) is also the θ-rotation of

ψ`(x, t) at time t, i.e., ψ̃`(x, t) = ψ`(R(θ)x, t), where R(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
is the

rotational matrix. In other words, the system will keep the same rotational symmetry
as the initial wave function, e.g., ψ(x, t) is θ-rotational symmetric at any time t if
ψ0(x) is θ-rotational symmetric.

Lemma 5 (Rotational symmetry). For rotating spin-1 CGPE (1.1)-(1.3) with
radially symmetric potential, i.e., V (x) = V (|x|), the semi-discrete scheme keeps
rotational symmetry.

Proof. To confirm the rotational symmetry, it suffices to prove that

ψ̃n+1
` (x) = ψn+1

` (R(θ)x)

if ψ̃n` (x) = ψn` (R(θ)x). For simplicity, we shall denote x̃ = R(θ)x . As shown before,
the numerical solution to the nonlinear subproblem (2.13) reads explicitly as

Ψ̃n+1(x) = e−iτ
(
V (x)+βnρ̃

n(x)
)

G2nd(Ψ̃n(x)) Ψ̃n(x)

= e−iτ
(
V (x̃)+βnρ

n(x̃)
)

G2nd(Ψn(x̃)) Ψn(x̃)

= Ψn+1(x̃) = Ψn+1(R(θ)x).

While for the linear subproblem (2.1), using chain rule, we obtain

∆ψ̃n` (x) = ∆x̃ψ
n
` (x̃), Lzψ̃

n
` (x) = Lz̃ψ

n
` (x̃)

and

ψ̃n+1
` (x) = eiτ[

1
2 ∆+ΩLz−E`]ψ̃n` (x) = eiτ[

1
2 ∆x̃+ΩLz̃−E`]ψn` (x̃)

= ψn+1
` (x̃) = ψn+1

` (R(θ)x).

Therefore, we can conclude that the semi-discrete scheme keeps rotational symmetry.

3. Numerical results. In this section, we first test the accuracies and efficiency
in spatial and temporal directions. Then we study the dynamical properties, includ-
ing energy, mass and magnetization conservation, evolution of angular momentum
expectation and condensate widths, and carry out a comparison on the rotational
symmetry conservation with some existing numerical methods. Finally, we utilize our
method to study various interesting phenomena, such as the evolution of quantized
vortices and dynamics of BEC under honeycomb potential.

3.1. Accuracy confirmation. In this subsection, we test the temporal and
spatial convergence for both 2D and 3D cases. For simplicity, we denote the second-
order/fourth-order compact splitting as CS2/CS4. The numerical error is measured
in following norm

eh,τ` (t) := ‖ψref
` (t)− ψ(h,τ)

` (t)‖l2 / ‖ψref
` (t)‖l2 , ` = 1, 0,−1,

where ψ
(h,τ)
` (t) is the numerical approximation at time t obtained with the mesh size

h and time step τ , and ψref
` (t) is the reference solution at time t. In our simulations,

unless otherwise specified, we choose computational domain RL = [−16, 16]d, mesh
size h = 1/8, time step τ = 10−4. The harmonic potential is taken as V (x) = |x|2/2.
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Example 1 (Linear case). We test the temporal accuracy for linear subproblem
solver EEI (2.12). To this end, we choose h = 1/4, τ = 1, E` = 0 and consider the
following non-radially symmetric initial data

ψ0
` (x) =

1

π1/4
x2e−

1
2 |x|

2

.

The exact solution is given explicitly as

ψ`(x, t) =
1

π1/4

(
cos(Ωt)x− sin(Ωt)y

)2 − t2 + it

(1 + it)(d+4)/2
e−

1
2(it+1)

|x|2 .

Table 1
Temporal discretization errors eh,τ` (` = 1, 0,−1) of the EEI method in Example 1.

Ω 0.2 0.4 0.8

2D 6.2005E-16 4.7358E-16 4.6741E-16
3D 5.7673E-16 6.3983E-16 5.8956E-16

Table 1 lists the temporal errors of EEI method at time t = 1 with different Ω,
from which one can see that the EEI method is exact in time.

Example 2 (Nonlinear case). We verify the spectral accuracy in space and
high-order temporal convergence for both 2D and 3D cases. To this end, we choose
Ω = 0.2, E` = 1 and the following parameters

• 2D case: βn = 100, βs = −1, B = 2, and the initial data

(3.1) ψ0
1(x) = (x+iy)φ(x), ψ0

0(x) = 2φ(x), ψ0
−1(x) = (x+2iy)φ(x)

with φ(x) =
√

2/(15π)e−|x|
2/2.

• 3D case: βn = 10, βs = 1, B = 1, and the initial data

ψ0
1(x) = φ(x), ψ0

0(x) = 3
√

2φ(x), ψ0
−1(x) = φ(x)

with φ(x) =
√

0.05/π3/4(x+ iy)e−|x|
2/2.

To confirm the convergence of CS2/CS4, let ψref
` be the numerical reference so-

lution obtained by CS2/CS4 with very fine mesh size h0 = 1
27−d and small time step

τ0 = 10−4. To calculate the spatial errors, we always use time step τ0 so that the
errors from temporal discretization can be neglected compared to those from spatial
discretization. Similarly, the temporal errors are obtained when mesh size h0 is used.

We take the computational domain RL = [−12, 12]2 in 2D and [−8, 8]3 in 3D.
Table 2 lists the temporal and spatial errors of CS2 and CS4 at time t = 0.5 for the
2D problem, while Table 3 lists those at time t = 0.3 for the 3D case. From these
tables, one can see the spatial spectrally accuracy and second/fourth order temporal
convergence in CS2/CS4.

3.2. Efficiency test. To show the efficiency performance of our method, we
investigate the computational costs, measured in CPU time, as a function of the total
grid points.
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Table 2
Numerical errors of CS2 and CS4 at time t = 0.5 for 2D case in Example 2.

CS2

Temporal direction
τ 1/80 1/160 1/320 1/640

eh0,τ
1 3.8009E-04 9.4930E-05 2.3727E-05 5.9313E-06

rate 2.0014 2.0003 2.0001

eh0,τ
0 3.6387E-04 9.0816E-05 2.2695E-05 5.6731E-06

rate 2.0024 2.0006 2.0001

eh0,τ
−1 3.7662E-04 9.4058E-05 2.3508E-05 5.8767E-06

rate 2.0015 2.0004 2.0001

Spatial direction
h 1/2 1/4 1/8 1/16

eh,τ01 6.4844E-02 1.8722E-04 1.5849E-09 6.8645E-13

eh,τ00 7.4716E-02 2.5605E-04 1.1263E-09 6.1212E-13

eh,τ0−1 6.4912E-02 1.8862E-04 1.5153E-09 6.3363E-13

CS4

Temporal direction
τ 1/80 1/160 1/320 1/640

eh0,τ
1 7.0278E-06 4.3518E-07 2.7137E-08 1.6951E-09

rate 4.0134 4.0033 4.0008

eh0,τ
0 9.1809E-06 5.6785E-07 3.5400E-08 2.2110E-09

rate 4.0150 4.0037 4.0010

eh0,τ
−1 7.4004E-06 4.5812E-07 2.8565E-08 1.7834E-09

rate 4.0138 4.0034 4.0008

Spatial direction
h 1/2 1/4 1/8 1/16

eh,τ01 6.4844E-02 1.8722E-04 1.5849E-09 1.6546E-12

eh,τ00 7.4716E-02 2.5605E-04 1.1260E-09 1.3798E-12

eh,τ0−1 6.4912E-02 1.8862E-04 1.5153E-09 1.5307E-12

Example 3 (Efficiency). We test the efficiency by showing the computational
time variation versus the total grid number Ntot := Nd. The parameters are chosen
the same as in Example 2. The algorithms were implemented in FORTRAN, and run
on a single 2.30GH Intel(R) Xeon(R) Sliver 4316 CPU with a 30 MB cache in Ubuntu
GNU/Linux with the Intel complier ifort.

Figure 1 displays log-log plot of timing results for CS2/CS4, elapsed from time
t = 0 to t = 0.1 with time step τ = 10−3, versus the total grid number Ntot in both
2D and 3D cases. From Figure 1, we can see that our method is efficient and the
CPU time scales roughly as CNtot log(Ntot), which agrees well with our theoretical
analysis (Remark 2.1).

3.3. Property verification. In this subsection, we study the dynamical prop-
erties, including the energy/mass/magnetization conservation, evolution of angular
momentum expectation and condensate widths, and carry out a comparison on the
rotational symmetry conservation with existing numerical methods.

Example 4 (Dynamics of the mass and magnetization). Define the mass
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Table 3
Numerical errors of CS2 and CS4 at time t = 0.3 for 3D case in Example 2.

CS2

Temporal direction
τ 1/40 1/80 1/160 1/320

eh0,τ
1 5.5530E-05 1.3867E-05 3.4658E-06 8.6640E-07

rate 2.0016 2.0004 2.0001

eh0,τ
0 5.4062E-05 1.3501E-05 3.3745E-06 8.4357E-07

rate 2.0015 2.0004 2.0001

eh0,τ
−1 5.5530E-05 1.3867E-05 3.4658E-06 8.6640E-07

rate 2.0016 2.0004 2.0001

Spatial direction
h 1 1/2 1/4 1/8

eh,τ01 2.2153E-02 4.9362E-04 2.8204E-08 4.7221E-13

eh,τ00 2.1108E-02 4.6762E-04 2.5627E-08 4.6931E-13

eh,τ0−1 2.2153E-02 4.9362E-04 2.8204E-08 4.7256E-13

CS4

Temporal direction
τ 1/20 1/40 1/80 1/160

eh0,τ
1 2.6965E-06 1.6438E-07 1.0223E-08 6.3828E-10

rate 4.0360 4.0071 4.0015

eh0,τ
0 2.5321E-06 1.5431E-07 9.5966E-08 5.9912E-10

rate 4.0364 4.0072 4.0016

eh0,τ
−1 2.6965E-06 1.6438E-07 1.0223E-08 6.3828E-10

rate 4.0360 4.0071 4.0015

Spatial direction
h 1 1/2 1/4 1/8

eh,τ01 2.2153E-02 4.9362E-04 2.8204E-08 8.0481E-13

eh,τ00 2.1108E-02 4.6762E-04 2.5627E-08 7.9953E-13

eh,τ0−1 2.2153E-02 4.9362E-04 2.8204E-08 8.0492E-13

642 1282 1922 2562

0.08

1

10

643 1283 1923 2563

101

102

103

104

Fig. 1. Log-log plot of CPU time for CS2 and CS4 versus the total grid number Ntot for 2D
(left) and 3D (right) cases in Example 3.

(or density) of the spin component mF = ` as

N`(t) :=

∫
Rd
|ψ`(x, t)|2dx, t ≥ 0, ` = −1, 0, 1.
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We choose d = 2, Ω = 0.6, βn = 100 and the initial data (3.1). Figure 2 shows time
evolution of the mass of each component Nj(t), the total mass N(t), the magnetization
M(t) and the energy E(t) for the following five sets of parameters:

• Case 1: βs = 0, B = 0, E1 = 1, E0 = 2, E−1 = 4.

• Case 2: βs = 50, B = 0, E1 = 1, E0 = 2, E−1 = 4.

• Case 3: βs = 0, B = 2, E1 = E0 = E−1 = 1.

• Case 4: βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 3.

• Case 5: βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 4.
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d) 0 6 12
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1.5

e) 0 6 12
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0
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1.5

f) 0 6 12
7

8

9

10

Fig. 2. Evolution of Nj(t), N(t), M(t) for a) Case 1, b) Case 2, c) Case 3, d) Case 4, e) Case
5 and E(t) for f) Case 1-5 in Example 4.

From Figure 2, we can draw the following conclusions: (i) the total mass N(t)
is always conserved. (ii) When βs = 0, if furthermore B = 0, then the mass of each
component is also conserved (cf. Fig. 2 a) ), otherwise, it evolves periodically if B 6= 0
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(cf. Fig. 2 c) ). (iii) When B = 0, the magnetization is conserved (cf. Fig. 2 a) & b)
). (iv) When B 6= 0 but E1 +E−1 = 2E0, the magnetization evolves periodically (cf.
Fig. 2 c) & d) ). These are consistent with the dynamical laws derived in [10].

Example 5 (Dynamics of the angular momentum expectation). As a
measure of vortex flux, we define the total angular momentum expectation

〈Lz〉(t) =

1∑
`=−1

〈Lz〉`(t) with 〈Lz〉`(t) =

∫
Rd
ψ̄`(x, t)Lzψ`(x, t)dx, t ≥ 0.

In fact, 〈L̃z〉`(t) := 〈Lz〉`(t) / N`(t) is the angular momentum expectation of the `-th
component. In our simulations, we choose Ω = 0.6, βn = 100, E1 = 1, E0 = 0,
E−1 = 2, and the initial data

ψ0
` (x) = Ce−

r2

2 rm`eim`θ,

where the constant C is chosen such that the initial data satisfies the normalization
(1.8). Figure 3 shows evolution of the angular momentum expectation for the following
four sets of parameters

• Case 1: γx = γy = 1, βs = B = 0, m1 = 1, m0 = 0, m−1 = 2.

• Case 2: γx = γy = 1, βs = 50, B = 2, m1 = 1, m0 = 0, m−1 = 2.

• Case 3: γx = γy = 1, βs = 50, B = 2, m1 = m0 = m−1 = 1.

• Case 4: γx = 1, γy = 2, βs = 50, B = 2, m1 = m0 = m−1 = 1.

From Figure 3, we can draw the following conclusions: (i) if γx = γy, 〈Lz〉(t) is
conserved for any time t ≥ 0 (cf. Fig. 3 a), b) & c) ). Furthermore, if βs = B = 0

or m1 = m0 = m−1 := m, 〈L̃z〉`(t) is also conserved (cf Fig. 3 a) & c)). In addition,
if βs = B = 0, 〈Lz〉`(t) is also conserved (cf. Fig. 3 a) ). (ii) If γx 6= γy, 〈Lz〉(t)
and relate quantities 〈Lz〉`(t), 〈L̃z〉`(t) are, in general, not conserved (cf. Fig. 3 d) ).
These observations agree well with the analytical results in [10].

Example 6 (Dynamics of condensate widths). Another important quantity
characterizing the dynamics of the spin-1 BEC is the condensate width in the ν-
direction (where ν = x, y, z) defined as σν =

√
δν(t), where

δν(t) =

1∑
`=−1

δν,`(t) with δν,`(t) =

∫
Rd
ν2 |ψ`(x, t)|2 dx.

We choose Ω = 0.6, βn = 100, βs = 50, B = 0, E` = 0, and the initial data

ψ0
1(x) = φ(x), ψ0

0(x) = 3
√

2φ(x), ψ0
1(x) = φ(x),(3.2)

with φ(x) =
√

0.05/πe−|x|
2/2. Figure 4 shows evolution of the condensate widths δx(t),

δy(t) and δr(t) := δx(t) + δy(t) for the following two sets of parameters

• Case 1: γx = 1, γy = 1.

• Case 2: γx = 1, γy = 2.

From Figure 4, we can see that the condensate width δr(t) is a periodic function when
γx = γy, B = 0 and E` = 0. While they are not periodic when γx 6= γy. These are
consistent with the dynamical laws derived in [10].
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Fig. 3. Evolution of angular momentum expectation in Example 5 for Case 1-Case 4 (top to
bottom).
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a) 0 6 12
0

3
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b) 0 6 12
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Fig. 4. Evolution of the condensate widths in Example 6 for a) Case 1 and b) Case 2.

Example 7 (Rotational symmetry). We investigate the rotational symme-
try preservation property of two numerical methods, i.e., ADI scheme [33] and CS2.

That is, for solution starting with initial value ψ0
` (xjk) and ψ̃0

` (xjk) = ψ0
` (R(θ)xjk),

ψ̃`(xjk, t) is also the θ-rotation of ψ`(xjk, t) at time t, i.e., ψ̃`(xjk, t) = ψ`(R(θ)xjk, t).
Here, we define the following error function

Esym` (t) := max
xjk∈G

∣∣ψ`(R(θ)xjk, t)− ψ̃`(xjk, t)
∣∣ / max

xjk∈G

∣∣ψ`(R(θ)xjk, t)
∣∣.

In our simulation, we choose Ω = 0.4 and consider the following two cases

• Case 1: βn = 1, βs = 1, B = 1, E1 = 3, E0 = 2, E−1 = 1.

• Case 2: βn = 10, βs = 5, B = 0, E1 = E0 = E−1 = 0.

The initial data is chosen as

ψ0
1(x) = φ(x), ψ0

0(x) = 4
√

3φ(x), ψ0
−1(x) = φ(x),

where φ(x, y) =
√

0.02/πe−(x2+y2)/2(x+iy) for Case 1 and φ(x, y) =
√

0.02/πe−(x2+y2)/2

for Case 2.
In practice, we choose RL = [−32, 32]2, h = 1/16 and τ = 0.2 for Case 1, while

we choose h = 1/32 and τ = 0.2 for Case 2. Figure 5 presents the errors Esym` (t) over
the interval t ∈ [0, 100] for CS2 and ADI in Case 1, while Figure 6 shows the contour
plots of the densities at time t = 22 in Case 2. From Figure 5-6, we conclude that
ADI scheme dose not keep rotational symmetry, while the CS2 method do. We refer
the readers to Lemma 5 for a rigorous proof.

0 50 100
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0 50 100
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0
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8

12
10-3

Fig. 5. Errors of the rotational symmetry preservation for Case 1 in Example 7.

3.4. Applications. In the following, we study the evolution of quantized vor-
tices and dynamics under honeycomb potential in rotating spin-1 BECs.
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Fig. 6. Densities computed by CS2 (top) and ADI (bottom) for Case 2 in Example 7.

Example 8 (Dynamics of quantized vortices). Here, we choose βn = 200,
βs = 5, E1 = 1, E0 = E2 = 2, B = 1, Ω = 0.6. The initial data is chosen as [6, 28]

ψ`(x, y) = Ce−
x2+y2

4

9∏
j=1

[
(x− xj) + i(y − yj)

]
, ` = 1, 0,−1,

where (xj , yj) ∈ {(0, 0), (±3, 0), (0,±3), (±3
√

2/2,±3
√

2/2)} and the constant C is
chosen such that the initial data satisfies the normalization (1.8).

In our simulation, we adopt CS4 scheme with τ = 10−3 and h = 1/8. Figure 7
shows the contour plots of the densities |ψ`|2(` = 1, 0,−1) at different times.

Example 9 (Dynamics under honeycomb potential). In the following, we
study the dynamics under honeycomb potential

V (x) = 10 [cos(b1 · x) + cos(b2 · x) + cos((b1 + b2) · x)]

in rotating spin-1 BECs, where b1 = π
4 (
√

3, 1)> and b2 = π
4 (−
√

3, 1)>. We choose
the parameters Ω = 0.4, βn = 5, βs = −5, B = 1, E1 = 1, E0 = 2, E−1 = 1, and
the initial data (3.2).

In our simulation, we adopt CS4 scheme with τ = 10−3 and h = 1/16. Figure 8
shows the contour plots of the densities |ψ`|2 (` = 1, 0,−1) at different times.

4. Conclusions. We developed high-order compact splitting Fourier spectral
methods to simulate the dynamics of rotating spin-1 BEC held in the external Ioffe-
Pritchard magnetic field. We split the Hamiltonian into the linear part (Laplace,
rotation and Zeeman energy) and the nonlinear part (all the others terms). The linear
operator is decomposed into a product of five sub-operators with analytical splitting
coefficients, and all these sub-operators are integrated exactly in either physical space
or phase space. For the nonlinear subproblem, we derive an exact time-dependent
formula for the spin vector, therefore, this nonlinear subproblem is reduced to a linear
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Fig. 7. Contour plots of the densities |ψ`|2 (` = 1, 0,−1, from top to bottom) in Example 8.

one. Then we design explicit high-order schemes using Magnus integrators. Based
on such compact splitting, we can easily construct high-order spectral methods to
simulate the dynamics.

Our approach is explicit, achieves high-order temporal convergence and spatial
spectral accuracy, and conserves the mass and magnetization (when B = 0) on discrete
level. Additionally, it is unconditionally stable, time reversible, time transverse in-
variant and rotational symmetry preservation. Ample numerical results demonstrate
the effectiveness in simulating the dynamics of rotating spin-1 BEC. Furthermore,
the EEI method is simple to implement and can be easily adapted to rotating sys-
tems, such as the rotating spin-F BECs or BECs under the arbitrary-angle rotation
with/without dipole-dipole interactions [24, 30].

Appendix A. Fourth-order Magnus integrator. Here, we provide a
detailed derivation for the fourth-order integrator ((2.15) and (2.17)). Specifically,

Ψn+1(x) = e−iτ(V+βnρ
n)e−iS4thΨn(x),

where

S4th =

∫ τ

0

S(tn + σ)dσ +
1

2
i

∫ τ

0

[ ∫ σ

0

S(tn + µ)dµ, S(tn + σ)
]
dσ,

with S = βsF · f + B. In fact, S4th is a Hermitian matrix with the same structure as
the S2nd (2.19) with matrix entries

α =

∫ τ

0

α̃n(σ)dσ +
1

2
i

∫ τ

0

[
α̃n(σ)

∫ σ

0

β̃n(µ)dµ− β̃n(σ)

∫ σ

0

α̃n(µ)dµ

]
dσ,

β =

∫ τ

0

β̃n(σ)dσ +
1

2
i

∫ τ

0

[
α̃n(σ)

∫ σ

0

α̃n(µ)dµ− α̃n(σ)

∫ σ

0

α̃n(µ)dµ

]
dσ,
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Fig. 8. Contour plots of the densities |ψ`|2 (` = 1, 0,−1, from left to right) in Example 9.

with α̃n(σ) = α̃(tn +σ), α̃(t) := βsF−(t)/
√

2 +B and β̃(t) := βsFz(t). Both integrals
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can be computed analytically, i.e.,

α = −
iβs

2B

[
sin(
√

2Bτ)Fny + (cos(
√

2Bτ)− 1)Fnz

]
+ (

βs√
2
Fnx +B)τ +(A.1)

βs

2
√

2B

[
i(
βs√

2
Fnx +B)

(
(Fnz s1 − Fny c1)−

√
2B(Fny s2 + Fnz c2)

)
+
βsc1√

2
((Fny )2 + (Fnz )2)

]
,

β =
βs√
2B

[
sin(
√

2Bτ)Fnz − (cos(
√

2Bτ)− 1)Fny

]
+(A.2)

βs

2B
(
βs√

2
Fnx +B)

[
(Fny s1 + Fnz c1) +

√
2B(Fnz s2 − Fny c2)

]
,

where s1 = 1√
2B

[1 − cos(
√

2Bτ)], s2 = 1
2B2 [−

√
2Bτ cos(

√
2Bτ) + sin(

√
2Bτ)], c1 =

1√
2B

sin(
√

2Bτ)− τ and c2 = 1
2B2 [−1 + cos(

√
2Bτ) +

√
2Bτ sin(

√
2Bτ)].

We can obtain the explicit expression for G4th := e−iS4th in a similar way as
G2nd = e−iS2nd (2.22). Therefore, the matrix G4th remains in the form of G2nd

(2.22), and the only modification is to replace α and β in G2nd with the expressions
given in (A.1)-(A.2). Then the fourth-order integrator reads as (2.24).
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