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We introduce and analyze a mean-field model for polariton condensates which includes a velocity dependence1
of the effective polariton mass due to the photon and exciton components. The effective mass depends on the
in-plane wave vector k, which at the inflection point of the lower polariton energy branch becomes infinite, and
above this becomes negative. The polariton condensate modes of this mean-field theory are now sensitive to mass
variations and, for certain points of the energy dispersion, the polariton condensate mode represents fractional
quantum mechanics. The impact of the generalized kinetic-energy term is elucidated by numerical studies in two
dimensions showing significant differences for large velocities. Analytical expressions for plane-wave solutions
as well as a linear waves analysis show the significance of this model.

10

11

12

13

14

15

16

17

DOI: 10.1103/PhysRevB.00.005300 PACS number(s): 67.10.Hk, 03.75.Kk, 67.25.D−, 67.85.Jk18

I. INTRODUCTION19

About two decades ago, the fractional Schrödinger equation20

(FSE) was discovered as a mathematical extension within21

the Feynman path-integral formalism by transposing Brow-22

nian with Lèvy-type paths [1,2]. This generalization of the23

fundamental equation of single-body quantum mechanics has24

given rise to new intriguing mathematical structures and forms25

the base of fractional quantum mechanics [1–6]. The FSE26

incorporates the concept of an intrinsically nonlocal fractional27

kinetic energy,28

(−!)sf (r) ≡ F−1[|k|2sF(f )]

= 1
(2π )d

∫

Rd

|k|2s f̂ (k)eik·rdk, (1)

while the linear SE is the special case s = 1. F(f ) ≡29

f̂ (k) =
∫
Rd f (r) e−ik·rdr denotes the Fourier transform of30

f (r) = 1
(2π)d

∫
Rd f̂ (k) eik·rdk. On the other hand, the concept31

of velocity-dependent mass is well established in solid-state32

physics [7], suggesting a possible route for the implementation33

of fractional quantum mechanics or even more complex kinetic34

energies, as will be shown in this paper utilizing polariton35

condensates.36

To introduce the concept of generalized kinetic energy,37

we turn to the solid-state system of polariton Bose-Einstein38

condensates (BECs)—macroscopically occupied single-mode39

states that highlight properties of fundamental quantum me-40

chanics, ranging from quantum harmonic oscillators [8,9] to41

interference [10,11], while providing control over key system42

parameters [12–15]. We show that the type of kinetic energy in43

Schrödinger-like models is of fundamental importance for the44

modes and particularly for nonequilibrium polariton conden-45

sate behavior at different locations of the dispersion. Polariton46

condensates have kinetic energies of the mathematical form47

of a Fourier multiplier, F−1[g(k)F(f )], where g(k) is a48
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real-valued function associated with the two branches of the 49

polariton kinetic energy EL,U(k) through [7,16] 50

g(k) = !2|k|2

m(k)
= k2

2
∂2
k EL,U(k) := g(k), (2)

where k = |k| for k ∈ Rd with d = 2,1. Here EL,U(k) = 51

!ωL,U (k) with ωL,U (k) the two branches of the polariton 52

dispersion [14], which vary significantly over |k| and the 53

kinetic energy (2) depends on the |k| of the injected or 54

spontaneously populated condensate polaritons generally in a 55

nonparabolic way. In fact, one aim of the choice of (2) is so that 56

the kinetic equation is no longer a monotonically increasing 57

function with respect to |k|, while m(k) = 2!2

∂2
k EL,U(k)

= 2!
∂2
k ωL,U(k)

58

can be interpreted as the effective velocity-dependent mass of 59

the polariton, which can change sign with respect to k = |k|. 60

In fact, locally fractional kinetic energies can be implemented 61

due to the velocity-dependent mass m(k) that modifies the 62

parabolic dispersion accordingly—e.g., a modification of the 63

polariton condensate wave function due to effectively negative 64

mass was recently shown experimentally [16]. 65

In this paper, the whole spectrum of the lower polariton 66

branch is considered while taking the dynamical behavior into 67

account. We clarify the role of the generalized kinetic energy 68

as it is particularly important for implementations above the 69

inflection point and because several mathematically different 70

forms of the kinetic energy have been used in similar scenarios, 71

while neglecting the inherent mathematical inconsistencies of 72

the corresponding predictions as secondary effects [17–19]. 73

Current models catch aspects of the condensate wave function 74

at localized k in the regime when |k| is near zero, but the con- 75

cept introduced here incorporates the mean-field treatment for 76

more extended wave packets in k space, while being the more 77

accurate description even for localized wave packets. Concepts 78

such as energy relaxation can be included in the partial 279

differential equation (PDE) [11,19,20]. Numerically, we find 80

that a time-splitting Fourier pseudospectral method [21,22] 81

can be used to generate converging solutions, a method that 82

will be presented in more detail in a later work. 83
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II. THEORETICAL BACKGROUND84

Polaritons are quasiparticles consisting of excitons and cav-85

ity photons within semiconductor microcavities which obey86

Bose-Einstein statistics [14] and thus the potential to condense87

into a single-particle mode [23]. Excitons are coupled pairs of88

electrons and holes of oppositely charged spin-half particles in89

a semiconductor held together by the Coulomb force between90

them [15]. Excitons interact with light fields [24] and can form91

integer spin-polariton quasiparticles in the strong-coupling92

regime that are confined to the microcavity [25]. As polaritons93

are 109 times lighter than rubidium atoms [23], condensation94

is observed in CdTe/CdMgTe/GaAs microcavities [14,23,26]95

and, recently, even at room temperature in flexible polymer-96

based structures [27,28]. The basic Hamiltonian taking the97

interaction between the cavity light modes and excitons into98

account is stated in [14,15]. By diagonalizing this operator,99

one gets the lower and upper polariton eigenvalues [15],100

ωL,U (k) = 1
2

{
ωcav(k) + ωexc(k)

∓
√

[ωcav(k) − ωexc(k)]2 + 4%2
R

}
. (3)

The dispersion of the cavity photon is ωcav(k) = c
n0

√
q2

z + |k|2101

with c the speed of light, qz = 2πM
lz

the quantization in102

the z direction, M the number of the quantized z mode103

orthogonal to the k plane, n0 the refraction index between104

the cavity mirrors, and lz the cavity spacer length. The105

dispersion of the exciton ωexc(k) ≈ ω0
exc, which can be106

assumed as constant close to the center of the polariton107

dispersion. 2%R is the minimum splitting of the two po-108

lariton branches, which is obtained at ωcav(k) = ωexc(k). For109

our investigation, we set !ω0
exc = 1.557 eV, the mass of110

the cavity photon mcav ∼ 10−4 − 10−5me, and the effective111

exciton mass mexc ∼ 0.1 − 1me, with me the electron mass112

in accordance with recent results presented in [26]. When |k|113

is sufficiently small, ωcav(k) = ω0
cav

√
1 + !|k|2/(mcavω0

cav) ∼114

ω0
cav[1 + !|k|2

2mcavω0
cav

] = ω0
cav + !|k|2

2mcav
, with the notations ω0

cav =115

cqz

n0
= 2πcM

n0lz
and the effective cavity photon mass mcav =116

!n0qz

c
= !ω0

cav

c2/n2
0
. Thus, when |k| is sufficiently small,117

ωL,U (k) ∼ ω0
+ ∓

√
%2

R + (ω0
−)2+ !|k|2

4mcav
[1∓ ω0

−√
%2

R
+(ω0

−)2
]:=ωlin(k) with118

ω0
± = 1

2 [ω0
cav ± ω0

exc], which immediately implies that those119

models based on the Gross-Pitaevskii equation (GPE) for120

polariton condensates in the literature [14] are based on the121

approximate dispersion relation ωlin(k), i.e., constant mass.122

On the other hand, when |k| is sufficiently large, ωL (k) ∼ ω0
exc123

and ωU (k) ∼ |k|
√

!ω0
cav/mcav.124

In Fig. 1(a), we show the kinetic energy of the lower125

and upper branches of polariton !ωL,U (k), i.e., Eq. (3), the126

exciton energy !ωexc(k) ≈ !ω0
exc, and the linear approximation127

!ωlin(k), and in Fig. 1(b), we show the kinetic energy related128

to Eq. (2). Figure 1(b) shows that locally fractional and129

generalized quantum kinetic energies are present due to the130

varying curvature of the effective mass—an example is given131

for s = 5/6, which approximates the bottom of the polariton132

dispersion at k ∼ 0 to a higher accuracy than the parabolic133

dispersion. The effective mass switches sign from positive134

at k < kinf to negative at k > kinf . In between, it becomes135
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FIG. 1. (Color online) (a) Energy dispersions of the upper and
lower polariton energy branch (solid lines), and the cavity (parabolic)
and exciton (almost constant) dispersions (dashed lines). (b) Kinetic-
energy prefactors g(k) defined in Eq. (2), including velocity-
dependent mass (solid line) compared with constant mass (dashed
line) and fractional kinetic energy |k|5/3 (dotted line). The sign of the
kinetic energy switches for velocity-dependent mass.

infinite on a circle centered around the origin at k = 0 in the 3136

two-dimensional (2D) k plane—the inflection point k = kinf ∼ 137

1.3952 µm−1. While models of coupled PDEs separating 138

the photonic and the excitonic fraction have been discussed 139

previously [29,30], here we present a unifying approach for 140

the mean field of condensed polaritons resulting in a single 141

nonlocal PDE as a realistic model of generalized fractional 142

quantum mechanics in a highly controllable solid-state system. 143

III. GENERALIZED STATE EQUATION 144

Phenomenologically, the condensate wave function is 145

governed by a generalized Gross-Pitaevskii equation with 146

nonlocal kinetic interaction, damping, and pumping terms 147

[11,13–15,17,18], which includes the effects of polariton self- 148

interactions, polariton-reservoir interactions, and nonequi- 149

librium properties such as gain and decay of condensate 150

polaritons. An accurate quantum theory of polaritons is 151

provided in [31]. While in the mean-field regime the spin of 152

polaritons can become apparent through circular polarization 153

of the driving light source or transverse-magnetic–transverse- 4154

electric (TM-TE) splitting, even spontaneously [26], we 155

assume the spin coherent case for the introduction of the 156

velocity-dependent mass concept. We define the velocity- 157

dependent mass of the lower branch (2) (see [7]) and include 158

it mathematically, setting q(r) = F−1[g(k)]. Thus the kinetic 159

energy becomes F−1[g(k) · f̂ ] = F−1[F(q) · F(f )] = q ⋆ f 160

up to a constant, with ⋆ denoting a convolution. Consequently, 161

the polariton state equation resembling a coherent driving 162

scheme [14,32], by setting ! = 1,me = 1, reads as follows: 163

i∂tψ(r,t) = (1 − iη)q ⋆ ψ(r,t) + iP (r,t) − iγψ(r,t)

+ [β|ψ |2 + V (r,t) + ω]ψ(r,t), (4)

where ω is a constant, β is the dimensionless self-interaction 164

strength, V (r,t) is an external potential, γ ! 0 is the loss 165

rate of polaritons due to their decay, and η ! 0 is the energy 166

relaxation rate [33]. The coherent pumping field is [14,32] 167

P (r,t) = P0(r)eiki·re−iωit , (5)

with P0(r) denoting the pump profile amplitude, ki denoting 168

the 2D pump wave vector, and ωi = ωL(ki). Figure 1(a) shows 169
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that locally close to the particular ki under consideration,170

fractional kinetic energies emerge and thus the presented171

model (4) includes, as a special case, a feasible implementation172

of (driven) fractional quantum mechanics. Via ki, we can173

choose experimentally at which particular k the condensate174

wave function is formed on the dispersion in k space.175

Alternatively, with incoherent driving schemes, one could176

control k of the condensate by adjusting the spot size, which177

determines the final velocity of condensed polaritons [12].178

IV. PLANE WAVES WITHOUT TRAPPING179

Let us now present analytical plane-wave solutions with180

respect to the velocity-dependent mass of the polariton system181

with homogeneous pumping and no trapping. In Eqs. (4)182

and (5), we assume homogeneous pumping P0(r) ≡ Pc, with183

Pc a constant, and no external potential V (r,t) ≡ 0. Then184

we can set an ansatz for the stationary solution ψ(x,t) =185

ψce
iki·re−iωit , with ψc being a constant. Substituting the ansatz186

into Eq. (4), we get187

[ωi − ω − β|ψc|2 + iγ − (1 − iη)(q ⋆ eiki·r)e−iki·r]ψc

= iPc. (6)

By using properties of the Fourier transform, we have188

(q ⋆ eiki·r)e−iki·r = F−1[q̂(k)(2π )dδ(k − ki)]e−iki·r

= q̂(ki) = g(ki). (7)

Hence,189

[ωi − ω − (1 − iη)g(ki) − β|ψc|2 + iγ ]ψc = iPc. (8)

This resembles an equation of the form190

(αi + iγi − β|ψc|2)ψc = iPc (9)

when introducing the abbreviations αi = ωi − ω − g(ki) and191

γi = γ + ηg(ki). When β = 0 and Pc ̸= 0, Eq. (9) has a unique192

solution ψc = iPc

αi+iγi
if either αi ̸= 0 or γi ̸= 0, and it has no193

solution if αi = γi = 0, e.g., no damping with γ = η = 0 and194

pumping with ωi = g(ki) and ω = 0. When β ̸= 0, it has three195

solutions as196

ψ ±
c = − (1 ± i

√
3)(αi + iγi)

2ξ 1/3
− (1 ∓ i

√
3)ξ 1/3

6β
(10)

and197

ψ0
c = αi + iγi

ξ 1/3
+ ξ 1/3

3β
, (11)

with ξ = −27iβ2Pc+
√

−4(3αiβ+3iγiβ)3−729β4P 2
c

2 .198

The density ρ+
c = |ψ+

c |2 tends to zero for Pc → 0, which199

corresponds to no pumping of polaritons into the condensate,200

and it increases monotonically with Pc. The solutions are201

modified by the velocity-dependent mass (2) and the constant202

mass case is obtained by substituting m(k) ≡ mc, with mc a203

constant. For the plane-wave scenario, respecting m(k) implies204

including its value at ki of the dispersion [see Fig. 1(a)], which205

modifies the magnitude of the wave function (or the luminosity206

of the microcavity). Nonlocal effects can be expected in more207

general pumping schemes, as shown below.208

V. LINEAR WAVES ANALYSIS 209

For the sake of simplicity, we shall restrict ourselves here 210

to the illustrative case of a spatially homogeneous system, i.e., 211

V (r,t) ≡ 0 in (4) under a coherent pump with P0(r) ≡ Pc, with 212

Pc a constant and ki = 0 in (5). As shown in the previous sec- 213

tion, Eq. (4) admits plane-wave solution ψo(r,t) = ψce
−iω0

i t 214

and denotes ρc = |ψc|2. To find the linearized elementary 215

excitation equation around the plane wave ψo(r,t), taking 216

an ansatz ψ(r,t) = [ψc + δψ(r,t) − δψ∗(r,t)]e−iω0
i t with δψ 217

and δψ∗ small perturbations and f̄ the complex conjugate 218

of f , plugging it into (4), and keeping only up to linear 219

terms in terms of δψ and δψ∗ (by ignoring all high-order 220

terms) [14,17], we obtain the Bogoliubov equation for the 221

polariton field modulation δψ and δψ∗ which reads 222

i∂tδψ = (1 − iη)q ⋆ δψ +
[
ω − ω0

i + 2βρc − iγ
]
δψ

+βψ2
c δψ∗ + P1, (12)

i∂tδψ
∗ = −(1 + iη)q ⋆ δψ∗ −

[
ω − ω0

i + 2βρc + iγ
]
δψ∗

−βψ̄2
c δψ + P̄1, (13)

where P1 = iPc + [ω − ω0
i + βρc − iγ + (1 − iη)g(0)]ψc. 223

Assume ψc satisfies (8) with ki = 0, i.e., ψ(r,t) is a stationary 224

state; then the inhomogeneous terms will disappear, i.e., P1 = 225

0 in (12) and (13). Choosing the Bogoliubov modes in a plane- 226

wave form of wave vector k as δψ(r,t) = δψk eik·re−iωBog(k)t
227

and δψ∗(r,t) = δψ∗
k eik·re−iωBog(k)t , the above Bogoliubov 228

equation reduces to an eigenvalue problem with its eigenvalue 229

given by the so-called Bogoliubov dispersion of excitations, 230

ωBog(k) = −iγk ±
√

α2
k − β2ρ2

c , (14)

where γk = γ + ηg(k) and αk = ω − ω0
i + g(k) + 2βρc. The 231

signs correspond to the positive and negative Bogoliubov 232

branch and, as expected, the presence of the velocity- 233

dependent mass adapts the excitation energy by a nonparabolic 234

|k| dependence of the effective kinetic energy. 235

To consider the traveling-wave solution of the Bogoliubov 236

equations (12) and (13), we set the ansatz δψ(r,t) = 237

δφ(r − vt) := δφ(r′) and δψ∗(r,t) = δφ∗(r − vt) := δφ∗(r′), 238

with r′ = r − vt and v ∈ R2 the traveling-wave velocity. By 239

(a)

ky

kx

(b)

kx

ky

FIG. 2. (Color online) (a) |δψk| including velocity dependence
of the effective mass for parameters vx = 0 and vy = 1 in k space.
(b) |δψk| for the same parameters but for constant mass. From zero
magnitude (blue) to stronger magnitude (red, toward center of figure).
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FIG. 3. (Color online) Converged mass M in both the velocity-
dependent and constant mass model. The red line corresponds to the
L2 norm, including the velocity-dependent mass effect. The blue line
corresponds to the constant mass model.

plugging the ansatz into the Bogoliubov equations (12)240

and (13), noticing ∂tδψ(r,t) = −(v · ∇)δφ(r′) and5 241

∂tδψ
∗(r,t) = −(v · ∇)δφ∗(r′), dropping the superscripts,242

and then taking the Fourier transform, we obtain, for243

δφk = F(δφ) and δφ∗
k = F(δφ∗) by taking ψc = √

ρc,244

µ = βρc, µk = βρc + g(k), and ω = ω0
i − µ,245

(k · v)δφk = (µk − iγk)δφk + µ δφ∗
k + F(P1)k, (15)

(k · v)δφ∗
k = −(µk + iγk)δφ∗

k − µ δφk − F(P1)k. (16)

Solving the above system, we get246

δφk = [(k · v) + µk + iγk]F(P1)k − µF(P1)k

[(k · v) + iγk]2 − µ2
k + µ2

. (17)

This solution is a natural extension of the equilibrium atomic247

BEC solutions presented in [34,35] and those for constant248

mass discussed in [14]. In Fig. 2, we compare the solutions 249

δφk due to constant and velocity-dependent mass. For the sake 250

of simplicity, we assume F(P1)k ≡ 1, γ = 1, µ = 1, and g(k) 251

is given as described above. The results indicate a significant 252

difference in the linear wave condensate dynamics, which, in 253

particular, will be investigated numerically in more detail in 254

the following section. 255

VI. NUMERICAL RESULTS IN 2D 256

Here we report numerical results for the model (4) with 257

coherent pumping (5) in 2D under the velocity-dependent 258

mass scenario with EL(k) = ωL(k) =
√

1 + 2|k|2 − 259√
105.04 + 2|k|2 in (2), and, respectively, the constant mass 260

scenario with g(k) = |k|2 [in dimensionless form by setting 261

! = 1, me = 1, ω0
cav = 2, and mcav = 1/4 in Eq. (3)]. We take 262

a Gaussian pump profile P0(r) = A0 exp [−(|r − d|)2/σ 2], 263

where A0 is the amplitude, d denotes the position of the pump, 264

and σ is its width. For coherent pumping, we always take 265

ωi = ωL(ki) in Eq. (5) and ω = 0 in Eq. (4). The pumping 266

vector is chosen as ki = (a,a)/
√

2 with a ! 0 and the initial 267

wave function is taken as ψI (x,y) = exp[−(x2 + y2)]. The 268

simulation results shown below are computed for η = 0.05, 269

β = 0.001, γ = 0.3, A0 = 10, σ = 1, and d = 0 on a bounded 270

computational domain [−8,8]2 with mesh size h = 1/16 271

in both the x and y direction and time step !t = 10−4
272

by an efficient and accurate numerical method [36]. The 273

stationary state is obtained when ∥ρn − ρn+1∥max " 10−8
274

is reached, where ρn = |ψn|2 with ψn is the numerical 275

solution at time t = tn = n!t . In order to quantify the 276

dynamics of the solution, we define the mass at time t as 277

M(t) :=
√ ∫

R2 |ψ(r,t)|2dr. Over a long time, denoted by t∞, 278

both models converges to a stationary state of different L2
279

norms M(t∞). 280

A. No external potential 281

Here we will present numerical results without external 282

potential, i.e., V (r,t) ≡ 0 in Eq. (4). 283

In Fig. 3, we show a comparison of the converged mass 284

M(t∞) between the velocity-dependent and constant mass 285

models. The mass of the condensate increases with |ki| for 286

the velocity-dependent mass model, while it decreases for the 287

FIG. 4. (Color online) Comparison between the density profiles ρ(r,t∞) generated by the velocity-dependent mass model: upper row
a = {0,0.7,1.39,2,7,10.38} from the left to the right; and correspondingly in the lower row stemming from the constant mass model (brighter
areas correspond to higher density).
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FIG. 5. (Color online) Comparison between the 2D density pro-
files due to a Gaussian pumping spot ρ(r,t∞) = |ψ |2 simulated by
the m(k) model: upper line a = {0,1.39,10.38} from the left to the
right; and correspondingly in the lower line ρ stemming from the
constant mass model. Blue corresponds to lower densities and red is
associated with higher densities. The red line is a guide for the eye.

constant mass case. A qualitative comparison of the density288

profiles is presented in Fig. 4. The impact of effective attraction289

between polaritons is less visible than shown in Fig. 5 where290

an external trap has been applied.291

B. Harmonic potential292

Here we will present numerical results with a harmonic293

potential, i.e., V (r,t) = 20|r|2 in Eq. (4).294

In Fig. 6(a), we show a comparison of the total mass of295

a perturbed condensate wave function as it varies in time296

for a fixed ki, i.e., a = 1.3952. The constant mass implies297

oscillations of the L2 norm/total density over time, while the298

velocity-dependent mass acts as a damping term, as shown in299

Fig. 6(a). To elucidate the differences in the total mass of the300

condensate, we show in Fig. 6(b) a comparison for different301

ki(µm−1). Similarly, as |ki| increases, M(t∞) monotonically302

increases for the m(k) model while it decreases for the classic303

model, hence offering an experimentally feasible test of the304

theory (4). In addition, we present the qualitative results of the305

converged density along the x axis in Fig. 7.306
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FIG. 6. (Color online) Polaritons in a harmonic potential trap.
(a) Red line corresponds to the M(t), including the m(k) effect over
time t with [t] = ps. The blue line corresponds to the constant mass
model. (b) The red line corresponds to M(t∞), including the m(k)
effect. The blue line corresponds to the constant mass model. Units
are [ki] = µm−1.
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FIG. 7. (Color online) The red line in (a) corresponds to the x-
axis slice plot of the density profile for the velocity-dependent mass
model. The blue line in (b) corresponds to the constant mass model. 6

C. Mexican hat potential 307

Here we will present numerical results with a Mexican hat 308

potential, i.e., V (r,t) = |r|2 + 50 exp(−|r|2/0.2) in Eq. (4). 309

In Fig. 8, we show a comparison of the density distributions 310

of stationary states for different ki with a ∈ {0,10.38}. We ob- 311

serve that the density cloud/luminosity for velocity-dependent 312

mass contracts as |ki| increases—a behavior analogous to 313

attractive atomic BEC in traps [37–40]. Instead of nega- 7314

tive/attractive self-interactions, the negative mass induces a 315

relative sign between the kinetic energy and the still repulsive 316

self-interactions (4), leading to the observed contraction 317

consistent with the experimental results in [16]. The diameter 318

of the ring-shaped condensate increases with |ki| for the m(k) 319

005300-5
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(a) (b) (aa) (bb)

(c) (d) (cc) (dd)

FIG. 8. (Color online) Comparison between the converged den-
sities governed by the m(k) model in the upper row: (a) density and
(aa) phase for a = 0 and (b) density and (bb) phase for a = 10.38.
Correspondingly, in the lower row, (c),(d) density and (cc),(dd) phase
stemming from the classic model. Blue corresponds to lower densities
and red is associated with higher densities.

model given by Figs. 8(a) and 8(b), while it decreases for the320

classic theory given by Figs. 8(c) and 8(d).321

The qualitative behavior of the density profiles for velocity-322

dependent and constant mass highlighting evident differences323

in the mode formation, particularly the squeezing of the density324

distribution as well as the higher luminosity, are examples of325

the effects due to the velocity dependence of mass.326

VII. CONCLUSIONS327

We have identified the polariton condensate wave functions328

with those of fractional quantum mechanics by considering329

the velocity-dependent mass of polaritons in the governing330

PDE. More generally, because the k-dependent kinetic energy331

of the polariton condensate deviates significantly from the332

parabolic form, different phenomena could be observed. Re-8 333

markably, for k ∼ 0, a fractional nonlinear Schrödinger-type334

equation is the more accurate model compared to the classic335

parabolic nonlinear SE-type models previously used. Via a 336

feasible coherent pumping scheme—driving the polariton to 337

condense at a chosen single point of its dispersion—one 338

can effectively switch between different points of the energy 339

dispersion, enabling tests of the effects of velocity-dependent 340

mass. The importance of the in-plane momentum for the 341

emerging polariton condensate shown in explicit analytical 342

expressions and linear waves analysis suggests significant 343

different dynamical behavior. Numerical simulations in 2D 344

scenarios, for which a time-splitting Fourier pseudospectral 9345

method has been developed, reveal evident differences in the 346

predictions for the polariton condensate to classic results. The 347

dynamics shows a suppression of total density oscillations due 348

to the velocity-dependent mass, with total mass increasing for 349

larger k, while classic mean-field models predict a reduction 350

in mass. The latter phenomenon is a feasible test of the 351

theory presented here. In addition, condensates forming above 352

the inflection point show attractive-type density profiles, in 353

accordance with the observations in [16]. While the coherent 354

driving scheme utilized in this paper defines the phase and 355

suppresses the spontaneous emergence of excitations such 356

as vortices or dark and bright solitons, incoherent driving 357

schemes may reveal interesting pattern formation in the future. 358
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