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1. Introduction

Highly oscillatory Schrödinger equations. Relevant applications including the time evolution of Bose–
Einstein condensates under strongly anisotropic external potentials and the long-term propagation of waves
in the presence of small potentials give reasons for the study of highly oscillatory time-dependent Schrödinger
equations; as well, suitable rescalings of the cubic or quintic Schrödinger equations with small initial data have
this nature. Linear Schrödinger equation of this type have been considered in [10]; the more demanding nonlinear
case is treated in [3,4,6,14,15]. So far, numerical simulations for highly oscillatory Schrödinger equations have
been a challenge, since the efficiency of established time integration methods such as operator splitting methods
is significantly affected by the necessity to choose the time increments sufficiently small, in order to resolve the
rapid oscillations. The recent contribution [7] provides numerical experiments which confirm that an alternative
approach based on composition and splitting leads to a favourable class of time discretisation methods.

Objective. In this work, our main objective is to provide a rigorous convergence analysis for multi-revolution
composition methods (MRCMs) applied to highly oscillatory Schrödinger equations.
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Evolutionary Schrödinger equation. For the purpose of a compact formulation, we consider the evolu-
tionary Schrödinger equation{

d
dτ v(τ) = 1

ε Av(τ) +B v(τ) , τ ∈ (0, T ] , 0 < ε << 1 ,

v(0) = v0 .

Our basic assumptions are that the unbounded linear operator A : D(A) ⊂ X → X generates a unitary group
on the underlying Banach space (X, ‖ · ‖X) and that the associated propagator EA(·) is periodic in time with
period T0 > 0; that is, the relation EA(T0) = I : X → X holds. In order to reduce the intricacy of our
stability and error analysis, we require B : X → X to be a bounded linear operator. Moreover, we suppose that
1
εA+B : D(A)→ X generates a unitary group (E 1

εA+B(t))t∈R.

Model equation. The scope of applications in particular includes time-dependent Schrödinger equations
with mono-frequent linear main part. Throughout, we focus on a model equation

i ∂tψ(x, t) = − 1
ε ∆ψ(x, t) + V (x)ψ(x, t) , (x, t) ∈ Ω× (0, T ] , 0 < ε << 1 ,

which comprises the Laplace operator defined on a cartesian product of bounded intervals Ω ⊂ Rd; a natural
choice for the underlying function space is the Lebesgue-space L2(Ω,C). We point out that the real-valued
potential V : Rd → R and the final time T > 0 are independent of the decisive small parameter 0 < ε << 1.

Reformulation. For theoretical purposes, it is useful to employ the time scaling t = τ
ε , which leads to a

long-term problem for u : [0, 1
ε T ]→ X : t 7→ u(t) = v(ε t)

d
dt u(t) = Au(t) + εB u(t) , t ∈ (0, 1

ε T ] , 0 < ε << 1 , (1.1)

with initial condition u(0) = v0; this reformulation will be the starting point for our considerations.

Multi-revolution composition time-splitting methods. Multi-revolution composition methods for highly
oscillatory (ordinary) differential equations were introduced and studied in [7], see also [9, 21] and references
given therein. The basic idea is to approximate the value of the evolution operator associated with (1.1) at an
integer multiple of the period by a composition of the form

CA+εB(N0T0) =

r∏
j=1

(
EA−βjεN0B(−T0) EA+αjεN0B(T0)

)
≈ EA+εB(N0T0) ;

the real coefficients (αj , βj)
r
j=1 are determined by certain order conditions [7]. With regard to utility of the

method, we always employ the assumption N0 >> r (see comparison of computational costs).

First-order approximation. The simplest multi-revolution composition method involving a single factor

CA+εB(N0T0) = EA+εN0B(T0) (1.2a)

leads to a first-order approximation with respect to the increment H = εN0, that is, the relation

CA+εB(N0T0)− EA+εB(N0T0) = O
(
HP+1

)
(1.2b)

is valid with P = 1; suitable choices of the coefficients (αj , βj)
r
j=1 in dependence of N0 permit to increase the

approximation rate, see for example (4.3).

Realisation by time-splitting pseudo-spectral methods. In the context of (low-dimensional) time-
dependent Schrödinger equations, the computation of EA+γB(T0) for γ = α1εN0 = α1H, e.g., relies on the
application of time-splitting pseudo-spectral methods, known to be favourable for this class of problems, see [2,
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5, 12, 13, 17, 19] and references therein. For instance, the first-order Lie–Trotter splitting method applied with
time stepsize h = 1

K T0 for some integer K > 0 is given by

SKA+γB(T0) =
(
EγB(h) EA(h)

)K ≈ EA+γB(T0) .

The Lie–Trotter splitting method satisfies the relation

SKA+γB(T0)− EA+γB(T0) = O
(
hp
)

with p = 1; for our purposes it is essential that additionally the factor γ can be extracted. Again, the approx-
imation rate can be raised by using a higher-order splitting methods with real coefficients (aj , bj)

s
j=1, see for

example (4.4) for the widely used second-order Strang splitting method.

Computational costs. Numerical experiments for the time-dependent cubic Schrödinger equation, presented
in [7], confirm that second- and fourth-order multi-revolution composition methods combined with the Strang
time-splitting Fourier pseudo-spectral method are beneficial. In particular, for smaller values of the decisive
parameter 0 < ε << 1, reflected in the magnitude of the final time 1

ε T >> 1, the resulting discretisation methods
are superior in efficiency compared to a sole application of the Strang time-splitting Fourier pseudo-spectral
method for the long-term integration; indeed, to compute the value of the fully discrete solution at final time,
which without loss of generality may be assumed to fulfill the relation 1

ε T = NN0T0 with integer N0, N > 0,
the sole application of a s-stage splitting method with time stepsize h = 1

K T0 requires in total NN0Ks spectral
transforms, whereas the realisation of a r-stage multi-revolution composition method based on this splitting
method requires N2rKs spectral transforms.

Convergence analysis. The main original contribution of this work is the derivation of a convergence result
for multi-revolution composition time-splitting methods applied to time-dependent highly ocillatory Schrödinger
equations that can be cast into the form (1.1); in particular, we show that an improved global error estimate
holds when the employed time-splitting method is symmetric.

Approach. The derivation of our main result relies on suitable estimates for the discretisation errors caused
by multi-revolution composition methods and time-splitting methods.
(i) Discretisation error caused by multi-revolution composition methods. In the context of evolutionary
Schrödinger equations (1.1), the presence of the unbounded operator A requires to adapt the strategies for
deducing local error estimates for multi-revolution composition methods. Contrary to [7], where infinite Taylor
series expansions of EA+γB(T0) have been used, it is essential to employ a stepwise expansion of the evolution
operator associated with (1.1) by means of the variation-of-constants formula and to specify the remainder
terms. We exemplify the approach for the simplest case (1.2a), where a repeated application of the variation-
of-constants formula

EA+εB(N0T0) = EA(N0T0) + ε

∫ N0T0

0

EA(N0T0 − τ)B EA(τ) dτ

+ ε2

∫ N0T0

0

∫ τ

0

EA(N0T0 − τ)B EA(τ − σ)B EA+εB(σ) dσ dτ

together with the fundamental periodicity requirement EA(T0) = I leads to an expansion of the form

EA+εB(N0T0) = I + ε

∫ N0T0

0

f(τ) dτ +O
(
H2
)
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involving a T0-periodic integrand; a decomposition of the interval [0, N0T0] and a suitable integral transformation
permit a reduction to the primary interval [0, T0]

EA+εB(N0T0) = I + εN0

∫ T0

0

f(τ) dτ +O
(
H2
)
,

which suggests to consider the composition method (1.2a) and proves (1.2b) with P = 1, that is

EA+εB(N0T0) = EA+εN0B(T0) +O
(
H2
)
.

(ii) Discretisation error caused by splitting methods. In order to deduce error estimates for time-splitting
methods that capture the dependencies on the decisive quantities, we adapt the approach developed in our
recent work [8]. Compared to other contributions that study the error behaviour of high-order splitting method
for Schrödinger equations, see [19] and references therein, to justify the numerically observed superconvergent
behaviour, it is essential to distinguish between non-symmetric and symmetric splitting methods.

Extensions. As a rigorous convergence analysis of high-order time discretisation methods for nonlinear
Schrödinger equations would overburden the present work, we focus on a detailed treatment of the linear
model equation comprising the Laplace operator and a bounded potential. The considerations can be extended
to Schrödinger equations defined by a self-adjoint operator, employing the associated countable complete or-
thonormal system of eigenfunctions, see for instance [13, 16, 20]. The restriction to the linear case significantly
reduces the complexity in the derivation of stability results and error expansions. With regard to the contribu-
tions [13, 17, 19], we expect that qualitatively the same global error estimate holds for the practically relevant
case involving an unbounded nonlinear operator, for instance for the time-dependent cubic Schrödinger equation
with nonlinearity defined by B : D(B) → L2(Ω,C) : u 7→ |u|2u, under stronger regularity requirements on the
exact solution.

Numerical experiments. In order to confirm and complement our theoretical investigations, we present
numerical experiments for different multi-revolution composition time-splitting Fourier pseudo-spectral methods,
applied to linear and nonlinear test equations. The obtained results in particular confirm the improved error
behaviour of symmetric splitting methods.

Notation and basic assumptions. We denote by N = {n ∈ Z : n ≥ 0} the set of non-negative integer
numbers. The composition of operators is defined downward

n∏
`=m

Q` =

{
Qn · · ·Qm , m ≤ n ,
I , m > n ,

m, n ∈ N .

We employ standard notation and results for Lebesgue and Sobolev spaces, see [1]. In particular, the Lebesgue
space L2(Ω) = L2(Ω,C) comprising all square-integrable complex-valued functions defined on a domain Ω ⊆ Rd
is endowed with inner product and associated norm given by

(
f
∣∣g)

L2 =

∫
Ω

f(x) g(x) dx ,
∥∥f∥∥

L2 =
√(

f
∣∣f)

L2 , f, g ∈ L2(Ω) ;

we note that we apply complex conjugation in the second argument. Henceforth, we focus on the case where
multi-revolution composition time-splitting methods constitute efficient full discretisation methods for time-
dependent Schrödinger equations, that is, we tacitely assume that the parameter 0 < ε << 1 is relatively small
such that the final time 1

ε T >> 1 is relatively large. In order to be consistent with the definition of splitting
methods given in [19], it is natural to employ a formulation of multi-revolution composition methods which
differs from [7]. We employ the reasonable assumptions that the considered increments H = εN0, related to a
multi-revolution composition method, and the time stepsizes h = 1

K T0, related to the application of a splitting
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method on the interval [0, T0], satisfy 0 < H < 1 as well as 0 < h < 1 so that Hm+1 < Hm as well as hm+1 < hm

holds for m ∈ N. We may suppose that the final time of integration coincides with a multiple of the period T0;
otherwise, an additional short-time integration involving few time steps is performed, and the statement of the
convergence result remains valid.

2. Highly oscillatory Schrödinger equations and their discretisation

In this section, we state the general hypotheses on the considered class of highly oscillatory evolutionary
Schrödinger equations; furthermore, we justify these requirements for the model equation involving the Laplacian
and indicate the extension to related situations. For details on the employed functional analytic framework,
we refer to [11, 18, 20]. Finally, we introduce the general format of multi-revolution composition time-splitting
methods.

2.1. Analytical framework

Evolutionary Schrödinger equation. Let (X, ‖ · ‖X) denote the underlying Banach space. Henceforth, we
consider the initial value problem{

u′(t) = Au(t) + εB u(t) , t ∈ (0, 1
ε T ] , 0 < ε << 1 ,

u(0) given ,
(2.1a)

involving an unbounded linear operator A : D(A) ⊂ X → X and a bounded linear operator B : X → X. In
order to indicate the dependence of the solution on the current time and on the operator defining the right-hand
side of the evolution equation, we use the notation

u(t) = EA+εB(t)u(0) , t ∈ [0, 1
ε T ] . (2.1b)

Hypotheses. We employ the following hypotheses on the operators defining (2.1). For any exponent ϑ ≥ 0,
we denote by Xϑ = D(Aϑ) ⊆ X the fractional power spaces associated with A; in particular, the relations
X0 = X and X1 = D(A) hold.

Hypothesis 1. (i) Assume that the unbounded linear operator A : D(A) → X generates a unitary group(
EA(t)

)
t∈R on the underlying Banach space and that the associated propagator is T0-periodic for some T0 > 0

EA(T0) = I . (2.2a)

Suppose further that the evolution operator is unitary on any fractional power space∥∥EA(t)
∥∥
Xϑ←Xϑ

= 1 , t ∈ R , ϑ ≥ 0 . (2.2b)

(ii) Assume that the linear operator B : X → X is bounded, that is, the following estimate is satisfied for ϑ0 = 0
with some constant CB,0 > 0

‖B v‖Xϑ0 ≤ CB,ϑ0 ‖v‖Xϑ0 , v ∈ Xϑ0 . (2.2c)
(iii) Assume that the linear operator A+ εB : D(A)→ X generates a unitary group on X.

Remark. (a) The hypotheses (i)-(ii) imply that A + εB : D(A) → X generates a strongly continuous
semigroup, see for instance [18, Ch. 3].
(b) The statement of Theorem 3 remains valid when replacing hypothesis (iii) with the requirement∥∥EA+εB(t)

∥∥
X←X ≤ eCt , t ∈ R ,
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for some constant C > 0; the unitarity assumption is usually satisfied by account of Stone’s Theorem, see
Sections 2.2 and 3.1, and slightly simplifies the derivation of a global error estimate.
(c) Provided that the considered potential is sufficiently regular, it is also justified to require the bound (2.2c)
to hold for certain integer exponents ϑ0 > 0, see Section 2.2; this additional assumption will be used in the
derivation of our main result.

2.2. Model equation

Model equation. The general hypotheses on (2.1) are according to time-dependent linear Schrödinger
equations involving a selfadjoint differential operator and a regular real-valued potential

i ∂tψ(x, t) = A(x)ψ(x, t) + ε V (x)ψ(x, t) , (x, t) ∈ Ω× (0, 1
ε T ] ; (2.3a)

we focus on the practically most relevant case

A = −∆ , Ω = (−a1, a1)× · · · × (−ad, ad) ⊂ Rd , (2.3b)

with a` > 0 for any ` ∈ {1, . . . , d}.
Basic results. As is well known, for our model equation, the eigenvalue relation

ABµ = λµ Bµ , µ ∈ Zd , (2.4a)

holds with Fourier functions Bµ : Rd → C and corresponding non-negative eigenvalues given by

Bµ(x) =

d∏
`=1

1√
2 a`

eiµ`π(x`/a`+1) , λµ = π2
d∑
`=1

µ2
`

a2`
≥ 0 ,

where x = (x1, . . . , xd) ∈ Rd and µ = (µ1, . . . , µd) ∈ Zd; evidently, the Fourier functions satisfy periodic
boundary conditions on Ω. Making use of the fact that the Fourier functions form a complete orthonormal
system (

Bµ
∣∣Bµ̃)L2 = δµµ̃ , µ, µ̃ ∈ Zd , (2.4b)

in the Hilbert space L2(Ω), the spectral representation

v =
∑
µ∈Zd

cµ(v)Bµ , cµ(v) =
(
v
∣∣Bµ)L2 , µ ∈ Zd , v ∈ L2(Ω) , (2.4c)

follows, and by Parseval’s identity the relation

‖v‖2L2 =
∑
µ∈Zd

∣∣cµ(v)
∣∣2 , v ∈ L2(Ω) , (2.4d)

holds. By means of the spectral decomposition (2.4c) and the eigenvalue relation (2.4a), the representation

E−iA(t) v =
∑
µ∈Zd

cµ(v) e−itλµBµ , t ∈ R , v ∈ L2(Ω) , (2.4e)

is obtained. For any exponent ϑ ≥ 0, the fractional power space

Xϑ =
{
v ∈ L2(Ω) :∥∥Aϑv∥∥2

L2 =
∥∥∥ ∑
µ∈Zd

cµ(v)λϑµ Bµ
∥∥∥2

L2
=
∑
µ∈Zd

∣∣cµ(v)
∣∣2 λ2ϑ

µ <∞
} (2.4f)
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forms a Hilbert space with inner product and associated norm defined by(
v
∣∣w)

Xϑ
=
(
v
∣∣w)

L2 +
(
Aϑv

∣∣Aϑw)
L2 , v, w ∈ Xϑ ,

‖v‖2Xϑ = ‖v‖2L2 +
∥∥Aϑv∥∥2

L2 , v ∈ Xϑ ,
(2.4g)

see also (2.4c), (2.4a), and (2.4d); especially, we have X0 = L2(Ω) and D(A) = X1.

Verification of hypotheses. The model problem (2.3) corresponds to an evolutionary Schrödinger equation
on X = L2(Ω), with A = − iA = i ∆ : X1 → X and operator B = − iV : X → X, acting as a multiplication
operator. In the present situation, it is straightforward to justify the requirements of Hypothesis 1.
(i) (a) Stone’s Theorem ensures that A is the infinitesimal generator of a strongly continuous one-parameter
family

(
EA(t)

)
t∈R of unitary operators, see [18, Ch. 1, Ch. 7]; in particular, the first relation in (2.2a) follows

from the solution representation (2.4e) and Parseval’s identity (2.4d).
(b) Provided that the ratios of the positive real numbers defining the spatial domain Ω ⊂ Rd are rational, the
propagator EA(·) is periodic in time. More precisely, whenever the relation r` a2

` = a2
1 holds with r` ∈ Q for any

integer ` such that 2 ≤ ` ≤ d , there exists a positive integer ν ∈ N such that

kµ = ν

d∑
`=1

r` µ
2
` ∈ N

for every µ ∈ Zd; setting T0 = 2
π a

2
1 ν yields

T0λµ = T0 π
2

d∑
`=1

µ2
`

a2`
= 2πkµ ,

which implies e−iT0λµ = 1 for all µ ∈ Zd or equivalently EA(T0) = I, see (2.4e). Especially, whenever a` = π for
all ` ∈ {1, . . . , d}, the propagator EA(·) is 2π-periodic.
(c) For any exponent ϑ > 0 the spectral decomposition (2.4c), the solution representation (2.4e), the eigenvalue
relation (2.4a), and Parseval’s identity (2.4d) imply

∥∥AϑEA(t) v
∥∥2

L2 =
∥∥∥ ∑
µ∈Zd

cµ(v) e−itλµλϑµ Bµ
∥∥∥2

L2
=
∥∥Aϑv∥∥2

L2 , v ∈ Xϑ , t ∈ R ,

which further yields∥∥EA(t)
∥∥
Xϑ←Xϑ

= sup
‖v‖Xϑ=1

∥∥EA(t) v
∥∥
Xϑ

= sup
‖v‖Xϑ=1

(∥∥EA(t) v
∥∥2

L2 +
∥∥AϑEA(t) v

∥∥2

L2

) 1
2

= sup
‖v‖Xϑ=1

(
‖v‖2L2 +

∥∥Aϑv∥∥2

L2

) 1
2

= sup
‖v‖Xϑ=1

‖v‖Xϑ = 1 ,

see also (2.4g) for the definition of the norm in the fractional power space Xϑ.
(ii) (a) Provided that the potential satisfies V ∈ C(Ω), the estimate

‖B v‖L2 ≤ CB,0 ‖v‖L2 , v ∈ L2(Ω) ,
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follows at once with CB,0 = ‖V ‖C(Ω).
(b) Assuming that V ∈ C2ϑ0(Ω) holds for some integer ϑ0 > 0, our aim is to deduce a bound for

‖B v‖Xϑ0 =
(
‖B v‖2L2 +

∥∥Aϑ0(B v)
∥∥2

L2

) 1
2

.

For any multi-index κ = (κ1, . . . , κd) ∈ Nd we set |κ| = κ1 + · · ·+κd as well as ∂κx = ∂κ1
x1
· · · ∂κdxd . Straightforward

differentiation by means of the Leibniz rule shows that Aϑ0(B v) = − iϑ0+1 ∆ϑ0(V v), ϑ0 ∈ N, comprises terms
of the form ∂κ−κ̃x V ∂κ̃xv with κ, κ̃ ∈ Nd such that |κ| = 2ϑ0 and κ̃ ≤ κ, componentwise. The representation (2.4c)
together with the eigenvalue relation (2.4a) imply the estimate∥∥∂κxv∥∥L2 ≤

∥∥A 1
2 |κ|v

∥∥
L2 , v ∈ X 1

2 |κ|
, κ ∈ Nd .

As a consequence, the relation
‖B v‖Xϑ0 ≤ CB,ϑ0 ‖v‖Xϑ0 , v ∈ Xϑ0 ,

follows with constant CB,ϑ0 > 0 depending on the bounds for the derivatives of the potential V up to order 2ϑ0.
(iii) The unitarity of the evolution operator follows from Stone’s Theorem.

Extensions. Making use of the fact that the considered differential operator A : D(A) → X is self-adjoint
and positive semi-definite with pure point spectrum, permits to incorporate relevant problems of the form (2.3a)
that are related to other spectral methods such as the Hermite or generalised Laguerre–Fourier–Hermite spectral
method, see [13, 16] and references therein. In this situation, standard results [20] ensure that the family of
eigenfunctions forms a countable complete orthonormal system in the underlying Hilbert space.

2.3. Time discretisation

In this section, we introduce the general format of multi-revolution composition time-splitting methods for the
numerical solution of time-dependent highly oscillatory Schrödinger equations; for this purpose, it is convenient
to employ the compact formulation as abstract evolution equation (2.1).

Exact solution values. Throughout, we suppose that the final time is an integer multiple of the period

1
ε T = NN0T0 , N,N0 ∈ N≥1 , (2.5a)

see also (2.2a); we note that the size of the increment

0 < H = εN0 < 1 (2.5b)

effects the quality of the numerical approximation. Clearly, the identity

T = NHT0

holds. The aim is to determine numerical approximations to the exact solution values

ûn = u(nN0T0) , n ∈ {1, . . . , N} . (2.6)

Approximation by composition. In a first step, we apply a multi-revolution composition method of
order P ∈ N≥1, defined by real coefficients (αj , βj)

r
j=1. The resulting approximations require the evaluation of

certain exact evolution operators associated with different right-hand sides

un+1 = CA+εB(N0T0)un ≈ ûn+1 = EA+εB(N0T0) ûn ,

CA+εB(N0T0) =

r∏
j=1

(
EA−βjεN0B(−T0) EA+αjεN0B(T0)

)
,

(2.7)
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where n ∈ {0, . . . , N − 1},

Time discretisation. For the time discretisation of (2.1), the composition approach (2.7) is combined with an
exponential operator splitting method of order p ∈ N≥1, defined by real coefficients (ak, bk)sk=1. More precisely,
for the approximation of EA+γB(T0) a splitting method with time stepsize h = T0

K > 0 for some K ∈ N≥1 is
applied

SKA+γB(T0) =
(
SA+γB(h)

)K ≈ EA+γB(T0) ,

SA+γB(h) =

s∏
`=1

(
EγB(b`h) EA(a`h)

)
≈ EA+γB(h) ,

(2.8a)

and analogously for the computation of the adjoint operator EA−γB(−T0). This yields the following relation
involving the time-discrete evolution operator

vn+1 = DA+εB(N0T0) vn ≈ un+1 = CA+εB(N0T0)un ,

DA+εB(N0T0) =

r∏
j=1

(
SKA−βjεN0B(−T0)SKA+αjεN0B(T0)

)
,

(2.8b)

where n ∈ {0, . . . , N − 1}.

Initial approximation. We suppose v0 ≈ û0 = u(0) to be a suitably chosen initial approximation for (2.8)
and set u0 = v0 in (2.7).

3. Convergence analysis

In this section, we deduce our main result on the convergence behaviour of multi-revolution composition time-
splitting methods applied to highly oscillatory evolution equations of Schrödinger type. The considered class of
time discretisations inherits the favourable properties of the underlying methods in regard to stability, accuracy,
efficiency, and the preservation of physically relevant quantities. Essential prerequisites for the estimation of
the global error are stability estimates and bounds for the defects. Due to the unitarity of the arising evolution
operators, it is straighforward to establish stability results with respect to the underlying Banach space, see
Section 3.1. A fundamental error estimate for high-order multi-revolution composition methods is stated in
Section 3.2, and a result explaining the improved error behaviour of splitting methods is given in Section 3.3.

3.1. Stability

Unitarity of exact evolution operator. We make use of the hypothesis that the exact evolution operator
associated with the linear operator A+ γB is unitary on the underlying Banach space∥∥EA+γB(t) v

∥∥
X

= ‖v‖X , v ∈ X , t ∈ R , γ ∈ R , (3.1)

see Section 2.1. In practical applications, this identity is obtained by Stone’s Theorem, see also Section 2.2.

Stability results. The above unitarity result at once implies∥∥∥(CA+εB(N0T0)
)`
v
∥∥∥
X

= ‖v‖X ,
∥∥∥(DA+εB(N0T0)

)`
v
∥∥∥
X

= ‖v‖X ,

for any v ∈ X and for all integers ` ∈ N, see also (2.7) and (2.8).
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3.2. Error bounds for MRCMs

In this section, we study the approximation error of multi-revolution composition methods for evolution
equations of Schrödinger type; in particular, we aim at an error estimate of the form

∥∥CA+εB(N0T0) v − EA+εB(N0T0) v
∥∥
X
≤ C HP+1 ‖v‖X ,

showing that the increment 0 < H = εN0 < 1 and the order P ∈ N≥1 of the composition method determine
the approximation quality.

Auxiliary result. A fundamental auxiliary result used in the derivation of such an error estimate ensures
that the evolution operator over one period and its adjoint operator are near-identity smooth maps with respect
to ε ∈ R and provides bounds for their derivatives.

Lemma 1. The evolution operator over one period and its adjoint

R −→ L(X) : ε 7−→ Φε = EA+εB(T0) ,

R −→ L(X) : ε 7−→ Φ∗ε = Φ−1
−ε = EA−εB(−T0) ,

are near-identity smooth maps, satisfying Φ0 = I = Φ∗0 and the bounds

∥∥∂nε Φεv
∥∥
X
≤
(
CB,0 T0

)n ‖v‖X , ∥∥∂nε Φ∗εv
∥∥
X
≤
(
CB,0 T0

)n ‖v‖X , n ∈ N .

Proof. Let ε, t ∈ R, n ∈ N≥1, and v ∈ X. The linear variation-of-constants formula reads

EA+εB(t) v = EA(t) v +

∫ t

0

EA(t− τ) εB EA+εB(τ) v dτ ,

and hence differentiation with respect to ε yields

U(t) = ∂nε EA+εB(t) v =

∫ t

0

EA(t− τ)
(
εB U(τ) + nB ∂n−1

ε EA+εB(τ) v
)

dτ .

Making use of the fact that this is just the representation by the variation-of-constants formula for the solution
to the initial value problem

U ′(t) = AU(t) + εB U(t) + nB ∂n−1
ε EA+εB(t) v , t ∈ R , U(0) = 0 ,

the following relation

U(t) = ∂nε EA+εB(t) v = n

∫ t

0

EA+εB(t− τ)B ∂n−1
ε EA+εB(τ) v dτ

and, by an induction argument, the bound

∥∥∂nε EA+εB(t) v
∥∥
X
≤ (CB,0 t)

n ‖v‖X
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is obtained. Indeed, assuming that the claimed result holds true at step n − 1, the above representation and
the unitarity of EA+εB(·) yield

∥∥∂nε EA+εB(t) v
∥∥
X
≤ n

∫ t

0

∥∥B ∂n−1
ε EA+εB(τ) v

∥∥
X

dτ

≤ nCB,0
∫ t

0

∥∥∂n−1
ε EA+εB(τ) v

∥∥
X

dτ

≤ nCB,0
∫ t

0

(CB,0 τ)n−1 dτ ‖v‖X = (CB,0 t)
n ‖v‖X .

Finally, setting t = T0 or t = −T0, respectively, proves the assertion. �

Theorem 1. Under the requirements of Hypothesis 1, a multi-revolution composition method of the form (2.7)
applied to the evolution equation (2.1) fulfills the error estimate∥∥CA+εB(N0T0) v − EA+εB(N0T0) v

∥∥
X
≤ C

(P+1)! C
P+1
B,0 TP+1

0 HP+1 ‖v‖X , v ∈ X ,

provided that the coefficients satisfy the (nonstiff) conditions for order P ∈ N≥1.

Proof. Our proof in the lines of [7] is based on the fact that the flow map associated with a multi-revolution
composition method can be written as Φεv = v + εΦ

(1)
ε v, where Φ

(1)
ε is smooth with respect to ε ∈ R; indeed,

in the present situation, the evolution operator over one period can be cast into this form

Φε v = EA+εB(T0) v = v + ε

∫ T0

0

EA(T0 − τ)B EA+εB(τ) v dτ ,

for any v ∈ X, see the proof of Lemma 1. Employing the abbreviation

ΨH =

r∏
j=1

(
Φ∗βjH ΦαjH

)
, H = εN0 ,

the approximation error takes the form

CA+εB(N0T0)− EA+εB(N0T0) = ΨH − ΦN0

H/N0
.

We perform Taylor expansions of ΨH and ΦN0

H/N0
with respect to the increment H; we note that, by construction,

the validity of the order conditions ensure that the leading contributions in these expansions coincide such that

ΨH − ΦN0

H/N0
= 1

P !

∫ H

0

(H − τ)P
(
∂P+1
τ Ψτ − ∂P+1

τ ΦN0

τ/N0

)
dτ ,

see [7]. Thus, it remains to estimate the (P + 1)-st derivatives of the mappings τ 7→ Ψτ and τ 7→ ΦN0

τ/N0
. On

the one hand, by the chain rule we obtain

∂P+1
ε ΦN0

ε =
∑

m1+···+mN0
=P+1

(P+1)!
m1! ···mN0

! ∂
m1
ε Φε · · · ∂

mN0
ε Φε ,

which by Lemma 1 further implies∥∥∂P+1
ε ΦN0

ε v
∥∥
X
≤

∑
m1+···+mN0

=P+1

(P+1)!
m1! ···mN0

! (CB,0 T0)P+1 ‖v‖X

≤ (CB,0N0 T0)P+1 ‖v‖X ;
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a change of variable yields ∥∥∂P+1
τ ΦN0

τ/N0
v
∥∥
X
≤ (CB,0 T0)P+1 ‖v‖X .

Similar arguments lead to the relation

∂P+1
τ Ψτ =

∑
m1+···+m2r=P+1

(P+1)!
m1! ···m2r! ∂

m1
τ Φ∗β1τ · · · ∂

m2r
τ Φαrτ

=
∑

m1+···+m2r=P+1

(P+1)!
m1! ···m2r! β

m1
1 · · ·αm2r

r ∂m1
ε Φ∗β1τ · · · ∂

m2r
ε Φαrτ ,

which by the validity of the first-order conditions implies the estimate∥∥∂P+1
τ Ψτ v

∥∥
X
≤ (|α1|+ · · ·+ |αr|+ |β1|+ · · ·+ |βr|)P+1(CB,0 T0)P+1 ‖v‖X
≤ C (CB,0 T0)P+1 ‖v‖X ;

we note that the coefficients defining the multi-revolution composition method, which in general depend on N0,
are bounded, see [7]. Altogether this leads to the bound

∥∥ΨH v − ΦN0

H/N0
v
∥∥
X
≤ C

P ! (CB,0 T0)P+1

∫ H

0

τP dτ ‖v‖X

≤ C
(P+1)! C

P+1
B,0 TP+1

0 HP+1 ‖v‖X ,

which concludes the proof. �

3.3. Error bounds for splitting methods

In this section, we analyse the approximation error due to the application of splitting methods for the
realisation of multi-revolution composition methods.

Notation and telescopic identity. For the following considerations it is convenient to employ the abbre-
viations Φγ,h = SKA+γB(T0), Φγ = EA+γB(T0), and Φ∗γ = EA−γB(−T0) for γ ∈ R; thus, the error takes the
form

DA+εB(N0T0)− CA+εB(N0T0) =

r∏
j=1

(
Φ−βjH,−h ΦαjH,h

)
−

r∏
j=1

(
Φ∗βjH ΦαjH

)
.

By means of a telescopic identity the difference reads

DA+εB(N0T0)− CA+εB(N0T0)

=

r∑
`=1

(
`−1∏
j=1

(
Φ−βjH,−h ΦαjH,h

))
Φ−β`H,−h

(
Φα`H,h − Φα`H

)
×

(
r∏

k=`+1

(
Φ∗βkH ΦαkH

))

+

r∑
`=1

(
`−1∏
j=1

(
Φ−βjH,−h ΦαjH,h

))(
Φ−β`H,−h − Φ∗β`H

)
Φα`H

×

(
r∏

k=`+1

(
Φ∗βkH ΦαkH

))
.
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Auxiliary expansion. The following auxiliary result provides an expansion for the error of a time-splitting
method over one period; this result is adapted from [8], where the corresponding estimate was proven in the
nonlinear case.

Lemma 2. Consider a splitting method of order p ∈ N≥1 for the time integration of the highly oscillatory
linear evolution equation (2.1) over a single period. Provided that the time stepsize h > 0 satisfies the condition
T0/h ∈ N, the decomposition

Φε,h − Φε = ε Sh + ε2 Th + ε3 rε,h

holds; the operators Sh, Th are independent of ε ∈ R, and for all σ ∈ N the following relations are valid

∀m ∈ N ∀ v ∈ X(σ+m)/2 :
∥∥Sh v∥∥Xσ/2 ≤ Chm‖v‖X(σ+m)/2

,

∀ q ∈ N with q ≤ p ∀ v ∈ X(σ+q)/2 :
∥∥Th v∥∥Xσ/2 ≤ Chq‖v‖X(σ+q)/2

,

∀ q ∈ N with q ≤ p ∀ v ∈ X(σ+q)/2 :
∥∥rε,h v∥∥Xσ/2 ≤ Chq‖v‖X(σ+q)/2

.

Error estimate. With the help of the telescopic identity and the auxiliary result the following error estimate
is obtained.

Theorem 2. Under the requirements of Hypothesis 1 on the highly oscillatory evolution equation (2.1), a
multi-revolution composition method combined with a time-splitting method of order p ∈ N≥1 fulfills the error
estimate ∥∥DA+εB(N0T0) v − CA+εB(N0T0) v

∥∥
X
≤ CHhm‖v‖Xm/2 + CH2hp‖v‖Xp/2 ;

provided that the multi-revolution composition method is of order P ∈ N≥2 and the splitting method is symmetric,
the improved bound∥∥DA+εB(N0T0) v − CA+εB(N0T0) v

∥∥
X
≤ CHhm‖v‖Xm/2 + CεHhp‖v‖Xp/2

is valid.

Proof. (i) Non-symmetric splitting methods. From Lemma 2 one deduces that, for all m ∈ N∗, for all ` and for
all v ∈ Xm/2 ∩Xp/2, we have ∥∥Φα`H,h v − Φα`H v

∥∥
X

+
∥∥Φ−β`H,−h v − Φ∗β`H v

∥∥
X

≤ CHhm‖v‖Xm/2 + CH2hp‖v‖Xp/2 .

Here we used that the coefficients α` and β` are uniformly bounded with respect to ε, h and N0. Inserting this
estimate into the telescopic identity and using the uniform boundedness of Φε and Φε,h on fractional power
spaces, yields the stated bound for non-symmetric splitting methods.
(ii) Symmetric splitting methods. Let σ ∈ N. If the underlying multi-revolution composition method at least of
order two and the chosen splitting method is symmetric, the error estimate can be slightly improved. By means
of the linear variation-of-constants formula

EA+εB(T0) = I + εΨε , Ψε =

∫ T0

0

EA(T0 − τ)B EA+εB(τ) dτ , (3.2)

we obtain the estimate

∀ v ∈ Xσ/2 :
∥∥Ψε v

∥∥
Xσ/2

= 1
ε

∥∥Φε v − v
∥∥
Xσ/2

≤ C ‖v‖Xσ/2 . (3.3)

Similarly, using (3.3) together with the estimate of Lemma 2 with m = q = 0, we get

∀ v ∈ Xσ/2 :
∥∥Ψε,h v

∥∥
Xσ/2

= 1
ε

∥∥Φε,h v − v
∥∥
Xσ/2

≤ C ‖v‖Xσ/2 . (3.4)
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Consequently, applying again Lemma 2 with q = p together with (3.3) and (3.4) and using the uniform bound-
edness of Φε and Φε,h on fractional power spaces, we deduce from the telescopic identity that

DA+εB(N0T0)− CA+εB(N0T0)

=

r∑
`=1

(
Φα`H,h − Φα`H

)
+

r∑
`=1

(
Φ−β`H,−h − Φ∗β`H

)
+Aε,h ,

(3.5)

where the remainder Aε,h is bounded for all m ∈ N∗ and v ∈ Xm/2 ∩Xp/2∥∥Aε,h v∥∥X ≤ CHhm ‖v‖Xm/2 + CH3hp ‖v‖Xp/2 . (3.6)

Next, we estimate the principal terms in (3.5). Lemma 2 yields∥∥Φε,h v − Φε v − ε2Th v
∥∥
X
≤ C |ε|hm ‖v‖Xm/2 + |ε|3 hp ‖v‖Xp/2 . (3.7)

We note that the time reversibility of the Schrödinger flow implies Φ∗ε = EA−εB(−T0) =
(
EA−εB(T0)

)−1
= Φ−1

−ε
and that, for a symmetric splitting method, we have Φε,−h = Φ−1

ε,h. Employing the decompositions Φ∗ε = I+εΨ∗ε
as well as Φ−ε,−h = I − εΨ−ε,−h and the resolvent formula, we thus have

Φ−1
−ε,h − Φ−1

−ε = −Φ−1
−ε
(
Φ−ε,h − Φ−ε

)
Φ−1
−ε,h = −Φ∗ε

(
Φ−ε,h − Φ−ε

)
Φ−ε,−h

= −Φ∗ε
(
− ε Sh + ε2 Th − ε3 r−ε,h

)
Φ−ε,−h

= εΦ∗ε Sh Φ−ε,−h + ε3 Φ∗ε r−ε,h Φ−ε,−h −
(
I + εΨ∗ε

)
ε2 Th

(
I − εΨ−ε,−h

)
= − ε2 Th + εΦ∗ε Sh Φ−ε,−h + ε3 r̃ε,h

with remainder given by

r̃ε,h = −Ψ∗ε Th + Th Ψ−ε,−h + εΨ∗ε Th Ψ−ε,−h + Φ∗ε r−ε,h Φ−ε,−h .

Hence, using the uniform boundedness of the operators Φε, Φε,h, Ψε and Ψ−ε,−h in fractional power spaces and
the estimates given in Lemma 2, we obtain∥∥Φ−ε,−h v − Φ∗ε v + ε2 Th v

∥∥
X
≤ C |ε|hm ‖v‖Xm/2 + |ε|3 hp ‖v‖Xp/2 . (3.8)

Finally, from (3.5), (3.6), (3.7) and (3.8), we deduce the decomposition

DA+εB(N0T0)− CA+εB(N0T0) =

r∑
`=1

(
α2
` − β2

`

)
H2 Th +Bε,h

with remainder satisfying the bound∥∥Bε,h v∥∥X ≤ CHhm ‖v‖Xm/2 + CH3hp ‖v‖Xp/2 .

Provided that the underlying multi-revolution composition method is at least of order two, the order condition

r∑
`=1

(α2
` − β2

` ) =
1

N0
,

is fulfilled, see [7]. Altogether, we finally obtain the stated error estimate. �
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3.4. Convergence result

In order to deduce a convergence estimate for the proposed time discretisations, our basic approach is to
decompose the global error at the final time 1

ε T such that the building blocks reflect the stability properties
and defects of the underlying methods. Interposing the approximation obtained by composition (2.7) yields
vN − ûN = uN − ûN + vN − uN , see also (2.6). The repeated application of a telescopic identity leads to the
global error representation

vN − ûN

=
(
CA+εB(N0T0)

)N (
u0 − û0

)
+

N∑
n=1

(
CA+εB(N0T0)

)N−n (CA+εB(N0T0)− EA+εB(N0T0)
)
ûn−1

+

N∑
n=1

(
DA+εB(N0T0)

)N−n (DA+εB(N0T0)− CA+εB(N0T0)
)
un−1 ;

(3.9)

we recall that the error of the numerical initial value is captured by v0 ≈ û0 = u(0) and that u0 = v0 holds by
assumption.

Convergence result. By means of the provided auxiliary results, we are able to establish the following
convergence result.

Theorem 3 (Global error estimate). For the time discretisation of the linear Schrödinger equation (2.1) con-
sider (2.8), defined by a multi-revolution composition method of nonstiff order P ∈ N≥1, applied with increment
0 < H < 1, and a time-splitting method of nonstiff order p ∈ N≥1, applied with stepsize 0 < h < 1. Under
Hypothesis 1 with ϑ0 ≥ p

2 and the additional assumptions that the initial state u0 and the exact solution values
remain bounded in the fractional power space Xϑ0

, the following global error estimate holds

∥∥vN − u( 1
ε T
)∥∥
X
≤
∥∥u0 − u(0)

∥∥
X

+ C
(
HP + h2ϑ0 +Hhp

)
;

provided that the considered multi-revolution composition method is at least of order two and the splitting method
is symmetric, the improved global error estimate

∥∥vN − u( 1
ε T
)∥∥
X
≤
∥∥u0 − u(0)

∥∥
X

+ C
(
HP + h2ϑ0 + ε hp

)
is valid. The arising constant C > 0 in particular depends on upper bounds for ‖V ‖Xϑ0 and max{‖u(t)‖Xϑ0 :

0 ≤ t ≤ 1
ε T}.

Proof. Estimation of the global error (3.9) by means of the stability results given in Section 3.1 leads to

∥∥vN − ûN∥∥X ≤ ∥∥u0 − û0

∥∥
X

+

N∑
n=1

∥∥CA+εB(N0T0) ûn−1 − EA+εB(N0T0) ûn−1

∥∥
X

+

N∑
n=1

∥∥DA+εB(N0T0)un−1 − CA+εB(N0T0)un−1

∥∥
X
.
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The bound for the defect of a multi-revolution composition method, stated in Theorem 1, together with the
relation T = NHT0 at once implies

N∑
n=1

∥∥∥CA+εB(N0T0) ûn−1 − EA+εB(N0T0) ûn−1

∥∥∥
X

≤ C
(P+1)! C

P+1
B,0 T TP0 H

P max
{
‖ûn‖X : 0 ≤ n ≤ N − 1

}
.

Theorem 2 yields the error estimate

N∑
n=1

∥∥DA+εB(N0T0)un−1 − CA+εB(N0T0)un−1

∥∥
X

≤ C
(
hm +Hhp

)
max

{
‖un‖Xmax{m,p}/2 : 0 ≤ n ≤ N − 1

}
and the improved result for symmetric splitting methods

N∑
n=1

∥∥DA+εB(N0T0)un−1 − CA+εB(N0T0)un−1

∥∥
X

≤ C
(
hm + εhp

)
max

{
‖un‖Xmax{m,p}/2 : 0 ≤ n ≤ N − 1

}
.

Altogether, this proves the stated convergence estimate. �

4. Numerical experiments

In this section, we illustrate the convergence behaviour of multi-revolution composition methods combined
with time-splitting methods for linear and nonlinear Schrödinger equations. In order to confirm the dependence
of our global error estimate with respect to the increment H and time stepsize h, we first consider problems in
a single space dimension, which facilitates the numerical tests; as a further illustration, we include the results
for a two-dimensional problem. The space discretisation based on the Fourier pseudo-spectral method is chosen
such that the spatial error is negligible. Further numerical experiments illustrating the favourable behaviour of
time-splitting pseudo-spectral methods for the space discretisation of this type of problems are found in [8,19],
see also references given therein.

Linear and nonlinear test equations (1D). We consider a linear Schrödinger equation imposing a periodic
bounded real-valued potential and a periodic initial state

i ∂tψ(x, t) = − ∂xxψ(x, t) + ε V (x)ψ(x, t) , (x, t) ∈ (0, 2π)× (0, 1
ε T ] ,

V (x) = 2 cos(2x) , ψ(x, 0) = sinx+ cosx , x ∈ (0, 2π) .
(4.1)

In the present situation, the requirements of Hypothesis 1 are satisfied with T0 = 2π; moreover, it is ensured
that the exact solution remains bounded in higher fractional power spaces which correspond to Sobolev-spaces
of higher degree. In addition, we consider the nonlinear test equation

i ∂tψ(x, t) = − ∂xxψ(x, t) + ε V (x)
∣∣ψ(x, t)

∣∣2 ψ(x, t) , (x, t) ∈ (0, 2π)× (0, 1
ε T ] , (4.2)

with function V and initial state chosen as above.

Space and time discretisation. For the spatial discretisation of (4.1)–(4.2) we apply the Fourier pseudo-
spectral method with M = 256 basis function; hence, the spatial error can be considered as insignificant. The
time discretisation (2.8) relies on second- and fourth-order multi-revolution composition methods combined with
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Figure 1. Numerical solution of linear (first row) and nonlinear (second row) test equations
(1D) by second-order (left) and fourth-order (right) MRCM, respectively, combined with fourth-
order splitting method applied with stepsize h = T0 · 10−3. Global errors versus increments H
for ε = 2−10−j with j ∈ {0, 1, 2, 3} or ε = 2−8−j with j ∈ {0, 1, 2, 3}, respectively. Reference
lines of slopes 2 and 4 are drawn correspondingly.

second- and fourth-order splitting methods: we apply the second-order multi-revolution composition method
with coefficients given by

P = 2 : r = 1 , α1 = 1
2

(
1 + 1

N0

)
, β1 = 1

2

(
1− 1

N0

)
, (4.3)

and a fourth-order method constructed in [7]; moreover, we apply a non-symmetric second-order splitting
method with coefficients s = 2, a1 = 1

6 , a2 = 1 − a1, b1 = 3
5 , b2 = 1 − b1, the widely used symmetric Strang

splitting method given by

p = 2 : s = 2 , a1 = 1
2 = a2 , b1 = 1 , b2 = 0 , (4.4)
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Figure 2. Numerical solution of linear (first row) and nonlinear (second row) test equations
(1D) by second-order MRCM combined with non-symmetric or symmetric second-order split-
ting method, respectively. Global errors versus time stepsizes h. Non-symmetric case (left):
Lines of same color represent errors for same ε but different increments H = 8 ε (circles), 16 ε
(diamonds), 32 ε (squares) for ε = 2−11−j with j ∈ {0, 1, 2, 3}. Symmetric case (right): Lines of
same color represent errors for same ε but different increments H = 4 ε (circles), 8 ε (diamonds),
16 ε (squares) for ε = 2−10−j with j ∈ {0, 1, 2, 3, 4}.

and a symmetric fourth-order splitting method constructed by Yoshida [22]. We recall that H = εN0 with
integer N,N0 > 0 such that T = NHT0; provided that the time stepsizes is chosen in the form h = T0/K
for integer K > 0, an improved error behaviour can be expected for symmetric splitting methods. Reference
solutions ψref(T ) at the final time T = π

4 are computed by means of the fourth-order splitting method, applied
with time stepsize ∆t = 2π ·10−4. The approximation errors are measured with respect to the discrete `2-norm.

Numerical results. In Figure 1, the global errors of the second-order and fourth-order multi-revolution
composition methods combined with the fourth-order splitting method, obtained for the linear and nonlinear
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Figure 3. Numerical solution of linear (left) and nonlinear (right) test equations (1D) by
fourth-order MRCM combined with symmetric fourth-order splitting method. Global errors
versus time stepsizes h. Lines of same color represent errors for same ε but different increments
H = 4 ε (circles), 8 ε (diamonds), 16 ε (squares) for ε = 2−10−j with j ∈ {0, 1, 2, 3, 4}.
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Figure 4. Numerical solution of linear test equation (2D) by second-order MRCM combined
with Strang splitting method (left) and fourth-order MRCM combined with splitting method
by Yoshida (right), respectively, applied with stepsize h = T0 · 10−3. Global errors versus
increments H for ε = 2−8−j with j ∈ {0, 1, 2, 3} or ε = 2−7−j with j ∈ {0, 1, 2, 3}, respectively.
Reference lines of slopes 2 and 4 are drawn correspondingly.

test equations, are displayed; for clarity, the numerical results are also given in Table 1. For the fixed time
stepsize h = T0 · 10−3 the error caused by the splitting method is relatively small compared to the error caused
by the multi-revolution composition methods. In Figure 2, the global errors of the second-order multi-revolution
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Figure 5. Numerical solution of linear test equation (2D) by second-order MRCM combined
with Strang splitting method (left) and fourth-order MRCM combined with splitting method
by Yoshida (right), respectively. Global errors versus time stepsizes h. Lines of same color
represent errors for same ε but different increments H = 4 ε (squares), 8 ε (diamonds), 16 ε
(circles) for ε = 2−9−j with j ∈ {0, 1, 2, 3, 4} (left) and H = 8 ε (squares), 16 ε (diamonds), 32 ε
(circles) for ε = 2−9−j with j ∈ {0, 1, 2, 3} (right).

Linear test equation

P = 2 N0 = 22 N0 = 23 N0 = 24 N0 = 25 N0 = 26 N0 = 27

ε = 2−10 2.704e-6 1.136e-5 4.598e-5 1.846e-4 7.405e-4 2.991e-3
ε = 2−11 6.761e-7 2.839e-6 1.149e-5 4.611e-5 1.847e-4 7.407e-4
ε = 2−12 1.691e-7 7.099e-7 2.873e-6 1.153e-5 4.615e-5 1.847e-4
ε = 2−13 4.225e-8 1.775e-7 7.183e-7 2.882e-6 1.154e-5 4.616e-5
P = 4 N0 = 22 N0 = 23 N0 = 24 N0 = 25 N0 = 26 N0 = 27

ε = 2−8 1.824e-8 3.071e-7 4.968e-6 7.936e-5 1.919 1.919
ε = 2−9 1.148e-9 1.920e-8 3.109e-7 4.984e-6 7.942e-5 1.919
ε = 2−10 9.822e-11 1.202e-9 1.944e-8 3.119e-7 4.987e-6 7.943e-5
ε = 2−11 3.349e-11 8.206e-11 1.216e-9 1.950e-8 3.121e-7 4.988e-6

Nonlinear test equation

P = 2 N0 = 22 N0 = 23 N0 = 24 N0 = 25 N0 = 26 N0 = 27

ε = 2−8 2.455e-4 1.046e-3 4.495e-3 2.426e-2 1.923 1.919
ε = 2−9 6.136e-5 2.586e-4 1.062e-3 4.524e-3 2.436e-2 1.923
ε = 2−10 1.535e-5 6.453e-5 2.621e-4 1.067e-3 4.534e-3 2.441e-2
ε = 2−11 3.840e-6 1.613e-5 6.534e-5 2.631e-4 1.068e-3 4.539e-3
P = 4 N0 = 22 N0 = 23 N0 = 24 N0 = 25 N0 = 26 N0 = 27

ε = 2−8 2.022e-6 3.386e-5 5.556e-4 9.809e-3 1.920 1.919
ε = 2−9 1.262e-7 2.107e-6 3.416e-5 5.564e-4 9.801e-3 1.921
ε = 2−10 7.879e-9 1.315e-7 2.127e-6 3.423e-5 5.564e-4 9.797e-3
ε = 2−11 4.920e-10 8.215e-9 1.328e-7 2.132e-6 3.424e-5 5.564e-4

Table 1. Numerical solution of linear and nonlinear test equations (1D) by second-order (P =
2) and fourth-order (P = 4) MRCM, respectively, combined with fourth-order splitting method
applied with stepsize h = T0 · 10−3. Global errors in dependence of increments H = εN0.

method combined with the non-symmetric versus the symmetric second-order splitting method are displayed;
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Linear test equation

Non-symmetric case h = T0/2
4 h = T0/2

5 h = T0/2
6 h = T0/2

7 h = T0/2
8

ε = 2−12
N0 = 32 2.1674e-4 2.2936e-5 1.1679e-5 1.1471e-5 1.1509e-5
N0 = 16 1.1878e-4 1.3719e-5 3.8496e-6 2.9196e-6 2.8724e-6
N0 = 8 7.6928e-5 1.1060e-5 2.5726e-6 9.2760e-7 7.2437e-7

ε = 2−13
N0 = 32 1.0841e-4 1.0572e-5 3.2363e-6 2.8815e-6 2.8779e-6
N0 = 16 5.9452e-5 6.7697e-6 1.4957e-6 7.7663e-7 7.2102e-7
N0 = 8 3.8492e-5 5.5233e-6 1.2509e-6 3.4896e-7 1.9227e-7

ε = 2−14
N0 = 32 5.4234e-5 5.1676e-6 1.0687e-6 7.3413e-7 7.2022e-7
N0 = 16 2.9744e-5 3.3734e-6 6.8373e-7 2.3514e-7 1.8314e-7
N0 = 8 1.9253e-5 2.7607e-6 6.2090e-7 1.5683e-7 5.7897e-8

Symmetric case h = T0/2
4 h = T0/2

5 h = T0/2
6 h = T0/2

7 h = T0/2
8

ε = 2−11
N0 = 16 1.6779e-4 3.7116e-5 1.3948e-5 1.1548e-5 1.1468e-5
N0 = 8 1.6778e-4 3.6074e-5 9.1198e-6 3.5389e-6 2.8809e-6
N0 = 4 1.6778e-4 3.6009e-5 8.7379e-6 2.2622e-6 8.6306e-7

ε = 2−12
N0 = 16 8.3891e-5 1.8143e-5 5.1381e-6 3.0349e-6 2.8765e-6
N0 = 8 8.3890e-5 1.8012e-5 4.4090e-6 1.2882e-6 7.5727e-7
N0 = 4 8.3890e-5 1.8003e-5 4.3604e-6 1.0938e-6 3.1817e-7

ε = 2−13
N0 = 16 4.1945e-5 9.0190e-6 2.2824e-6 8.9140e-7 7.2852e-7
N0 = 8 4.1945e-5 9.0024e-6 2.1851e-6 5.6805e-7 2.2238e-7
N0 = 4 4.1945e-5 9.0014e-6 2.1790e-6 5.4199e-7 1.4123e-7

Nonlinear test equation

Non-symmetric case h = T0/2
4 h = T0/2

5 h = T0/2
6 h = T0/2

7 h = T0/2
8

ε = 2−12
N0 = 32 8.9539e-4 5.0786e-4 7.5686e-5 6.7614e-5 6.6061e-5
N0 = 16 4.8553e-4 2.6290e-4 2.9169e-5 1.9026e-5 1.6974e-5
N0 = 8 3.0798e-4 1.5007e-4 1.7851e-5 7.0669e-6 4.7344e-6

ε = 2−13
N0 = 32 4.4565e-4 2.5170e-4 2.2886e-5 1.7617e-5 1.6677e-5
N0 = 16 2.4208e-4 1.3081e-4 1.1104e-5 5.5264e-6 4.4203e-6
N0 = 8 1.5374e-4 7.4814e-5 8.1245e-6 2.6001e-6 1.3724e-6

ε = 2−14
N0 = 32 2.2242e-4 1.2542e-4 7.9512e-6 4.7816e-6 4.2559e-6
N0 = 16 1.2088e-4 6.5262e-5 4.7412e-6 1.7871e-6 1.1959e-6
N0 = 8 7.6811e-5 3.7353e-5 3.8688e-6 1.0773e-6 4.4191e-7

Symmetric case h = T0/2
4 h = T0/2

5 h = T0/2
6 h = T0/2

7 h = T0/2
8

ε = 2−11
N0 = 16 7.0791e-4 2.7695e-4 1.0184e-4 7.3457e-5 6.7292e-5
N0 = 8 7.0789e-4 2.6092e-4 6.0151e-5 2.5910e-5 1.8384e-5
N0 = 4 7.0789e-4 2.5774e-4 5.0710e-5 1.4767e-5 6.3339e-6

ε = 2−12
N0 = 16 3.5395e-4 1.3287e-4 3.6842e-5 2.0849e-5 1.7393e-5
N0 = 8 3.5394e-4 1.2940e-4 2.6939e-5 9.2361e-6 5.2156e-6
N0 = 4 3.5394e-4 1.2864e-4 2.4654e-5 6.5860e-6 2.2703e-6

ε = 2−13
N0 = 16 1.7697e-4 6.5243e-5 1.5078e-5 6.5247e-6 4.6452e-6
N0 = 8 1.7697e-4 6.4446e-5 1.2714e-5 3.7333e-6 1.6299e-6
N0 = 4 1.7697e-4 6.4260e-5 1.2153e-5 3.1011e-6 9.2182e-7

Table 2. Numerical solution of linear and nonlinear test equations (1D). Global errors of
second-order MRCM combined with non-symmetric versus second-order splitting method.

the corresponding results are also given in Table 2. In Figure 3, the global errors of the fourth-order multi-
revolution method combined with the symmetric fourth-order splitting method are given. All numerical results
are in accordance with our convergence estimate; indeed in the non-symmetric case, we expect the global error to
be dominated by the terms O

(
HP
)

+O
(
Hhp

)
, and in the symmetric case, we expect the global error behaviour

O
(
HP
)

+O
(
ε hp

)
.

Linear test equation (2D). As an extension of (4.1), we consider the two-dimensional linear test equation

i ∂tψ(x, y, t) = −∆ψ(x, y, t) + ε V (x, y)ψ(x, y, t) ,

V (x, y) = 2 cos(2x) sin(4y) , ψ(x, 0) = (sinx+ cosx) cos(y) ,

(x, y, t) ∈ (0, 2π)× (0, 2π)× [0, 1
ε T ] .

(4.5)
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For the spatial discretisation, we apply the Fourier pseudo-spectral method withMx = My = 256 basis function;
the time discretisation relies on the second-order multi-revolution composition method combined with the
symmetric second-order Strang splitting method and the fourth-order multi-revolution composition method
combined with the symmetric fourth-order Yoshida splitting method. Reference solutions ψref(T ) at time T = π

4

are computed by the fourth-order splitting method, applied with time stepsize ∆t = 2π ·10−3; the approximation
errors are measured with respect to the discrete `2-norm. The numerical results are displayed in Figures 4 and 5;
as expected, they confirm our convergence estimate and qualitatively conform to the one-dimensional case.
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