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 a b s t r a c t

We perform a dimension reduction for spin-1 dipolar Bose-Einstein condensate (BEC), which is 
described by the mean-field Gross-Pitaevskii equations (GPEs) coupled with dipole-dipole interac-
tion (DDI), under strongly anisotropic external confining potentials. The original three dimensions 
(3D) problem is then reduced to quasi-2D and quasi-1D models for pancake- and cigar-shaped 
trapping potentials respectively. To compute the ground state, we propose an efficient and ac-
curate algorithm by incorporating the kernel truncation method (KTM) for the dipolar potential 
evaluation into the projected gradient flow (PGF) method. The long-range dipolar potential is 
computed efficiently and accurately by KTM with optimal zero-padding factor, and the resulted 
PGF-KTM algorithm achieves spectral accuracy in the ground states. We compute the ground 
states in different space dimensions, and confirm the convergence and rates of dimension re-
duction from 3D to quasi-2D and from 3D to quasi-1D. Extensive numerical results of ground 
states for BECs with ferromagnetic/antiferromagnetic interaction and various external potentials 
in 1D/2D/3D are reported.

1.  Introduction

Research in dilute cold atomic quantum gases remains very active, especially after the experimental realizations of Bose-Einstein 
condensate (BEC) in alkali atomic gases in 1995 [1]. In recent years, BEC with internal degrees of freedom, the so-called spinor 
BEC, has attracted much attention experimentally and theoretically [13]. Spinor BEC opens up a new paradigm where the order 
parameter of condensates is described by a multi-component vector [26]. This can be possible by optically trapping cold atoms where 
all hyperfine states are liberated, while magnetic trapping freezes its freedom. One of the salient features of gaseous BECs is the 
magnetic dipole-dipole interaction, which is long-range, anisotropic, and exerts a tensor force. There is everlasting enthusiasm in 
studying the ground state of spinor dipolar BECs theoretically since the observation of a dipolar BEC in a system of spin-polarized 
52Cr atoms [19,22,27]. The dipolar interaction is expected to yield rich and novel phenomena when combined with spin degrees of 
freedom, such as the Einstein-de Haas effect [21], ground-state spin textures and mass currents [22].

A spin-𝐹  (𝐹 ∈ ℕ) dipolar condensate is described by a generalized coupled GPE, which consists of 2𝐹 + 1 equations, each governing 
one of the 2𝐹 + 1 hyperfine states within the mean-field approximation. The mathematical model for spin-1 BEC with magnetic 
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\begin {align}{\rm i} \, \hbar \partial _t \psi _{1}(\bx ,t) &= H_0 \psi _{1} + (g_{ s} F_z + g_dD_z ) \psi _{1} + (g_{ s}F_{-} + g_dD_-)\psi _0, \label {eq:tgp1} \\ {\rm i} \, \hbar \partial _t \psi _{0}(\bx ,t) &= H_0 \psi _{0} + (g_{ s} F_{+}+g_dD_+) \psi _{1}+ (g_{ s} F_{-}+ g_dD_-)\psi _{-1}, \label {eq:tgp2} \\[0.4em] {\rm i} \, \hbar \partial _t \psi _{-1}(\bx ,t) &= H_0 \psi _{-1} + (g_{ s}F_{+} + g_dD_+)\psi _0-(g_{ s} F_z + g_dD_z ) \psi _{-1}. \label {eq:tgp3}\end {align}


${\rm i} =\sqrt {-1}$


$\bx =(x,y,z)^\top $


$t$


$\hbar $


$\Psi = (\psi _1,\psi _0,\psi _{-1})^\top $


$H_0 := -\frac {\hbar ^2 \nabla ^2}{2m} + V(\bx ) + g_{n} \rho \,$


$\rho =\sum _{j=-1}^{1}|\psi _j|^2$


\begin {equation}V(\bx )=\frac {1}{2} m (\omega _x^2 x^2 + \omega _y^2y^2+\omega _z^2z^2), \label {TrapHarmonic}\end {equation}


${\omega }_x$


${\omega }_y$


${\omega }_z$


$x-$


$y-$


$z-$


$m$


$g_{n} = \frac {4 \pi \hbar ^2}{m} \cdot \frac {a_0 + 2a_2}{3}$


$g_{s} = \frac {4 \pi \hbar ^2}{m} \cdot \frac {a_2 - a_0}{3}$


$a_{0}$


$a_{2}$


$s$


$g_n$


$g_s$


$g_d = \frac {\mu _0(g_F\mu _B)^2}{3}$


$\mu _0,\,g_F,\,\mu _B$


$g$


$\mathbf {f}=(f_x,f_y,f_z)^\top $


\begin {equation}f_x=\frac {1}{\sqrt {2}} \begin {pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end {pmatrix}, \quad f_y=\frac {{\rm i}}{\sqrt {2}} \begin {pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end {pmatrix}, \quad f_z= \begin {pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end {pmatrix},\end {equation}


${\mathbf F} := (F_x(\Psi ),F_y(\Psi ),F_z(\Psi ))^\top : =(\Psi ^{\mathsf {H}} f_x \Psi ,\Psi ^{\mathsf {H}} f_y \Psi ,\Psi ^{\mathsf {H}} f_z \Psi )^\top $


$\Psi ^{\mathsf {H}}$


$\Psi $


\begin {equation*}F_x= \frac {1}{\sqrt {2}}\left [ \bar {\psi }_1\psi _0+ \bar {\psi }_0\left (\psi _1+\psi _{-1}\right )+\bar {\psi }_{-1}\psi _0\right ],\nn \quad F_y=\frac {{\rm i}}{\sqrt {2}}\left [ -\bar {\psi }_1\psi _0+ \bar {\psi }_0\left (\psi _1-\psi _{-1}\right )+\bar {\psi }_{-1}\psi _0\right ],\end {equation*}


$F_z=|\psi _1|^2-|\psi _{-1}|^2$


${\mathbf D} = (D_x,D_y,D_z)$


\begin {equation}D_\nu (\bx )= \int _{{\mathbb {R}}^3} \frac {3}{4\pi }\frac {1}{|\bx -\bx '|^3} \left [F_\nu (\bx ')-3 \,e_\nu \,\mathbf {F(\bx ')\cdot e}\right ] {\rm d} \bx ', {\mathbf e} =\frac {\bx -\bx '}{|\bx -\bx '|},\nu =x,y,z. \label {dipolar}\end {equation}


$F_{\pm } = (F_x \pm {\rm i} F_y)/\sqrt {2}$


$D_{\pm } = (D_x \pm {\rm i} D_y)/\sqrt {2}$


\begin {equation}\tilde {\Psi }_j(\tilde \bx ,\tilde t )=N^{-\frac {1}{2}} b_0^{\frac {3}{2}} \Psi _j(\bx ,t), \quad j=1,0,-1, \label {dm11s}\end {equation}


$N$


$\sim $


\begin {align}\label {eq:dm} {\rm i} \, \p _t \Psi (\bx ,t)&=\left [ -\frac {1}{2}\btd ^2+V(\bx )+\ld _n\rho +\ld _s \textbf {F}\cdot \textbf {f}+\ld _d\textbf {D}\cdot \textbf {f}\right ]\Psi ,\\ \Psi (\bx ,0)&=\Psi ^{(0)}(\bx ), \quad \bx \in {\mathbb {R}}^3 \nn ,\end {align}


$\textbf {F}\cdot \textbf {f}=\sum _{\eta } F_\eta f_\eta $


$\textbf {D}\cdot \textbf {f}=\sum _{\nu } D_\nu f_\nu $


$\sum _{\eta }$


$\sum _{\nu }$


$\sum _{\eta \in \{x,y,z\}}$


$\sum _{\nu \in \{x,y,z\}}$


\begin {align*}V(\bx )=\frac {1}{2}(\gm _x^2x^2+\gm _y^2y^2+\gm _z^2z^2),\end {align*}


$\gamma _{\nu }=\frac {{\omega }_{\nu }}{{\omega }_m}, \,\nu = x,y,z$


$\lambda _{n}= \frac {4\pi N}{3} \frac {a_0+2a_2}{b_0}, \lambda _{s}=\frac {4\pi N}{3} \frac {a_2-a_0}{b_0},\lambda _{d}=\frac {\mu _0(g_F\mu _B)^2N}{3{\omega }_m b_0^3\hb }$


\begin {align}D_\nu &= \sum _{\eta } U_{\eta \nu } \ast F_\eta = -3\sum _{\eta } \frac {1}{4\pi |\bx |} \ast (\p _{\eta \nu } F_\eta )-F_\nu \nn \\ &= -3\sum _{\eta } \partial _{\eta \nu } \left (\frac {1}{4\pi |\bx |} \ast F_\eta \right )-F_\nu := -3\sum _{\eta } \partial _{\eta \nu } \varphi _\eta -F_\nu .\label {field_1}\end {align}


$U_{\eta \nu }$


\begin {align*}U_{\eta \nu }(\bx ) = \frac {3}{4\pi }\;\frac {1}{|\bx |^3}\left (\delta _{\eta \nu }-3\frac {x_\eta x_\nu }{|\bx |^2}\right ), \quad \eta , \nu =x,y,z,\end {align*}


$\delta _{\eta \nu }$


$\varphi _\eta $


$F_\eta $


\begin {equation}\label {Coulomb} \varphi _\eta (\bx ) = \left (\frac {1}{4\pi |\bx |}\ast F_\eta \right )(\bx ) = \frac {1}{4\pi }\int _{{\mathbb {R}}^3} \frac {1}{|\bx -\by |} F_\eta (\by ) {\rm d}\by .\end {equation}


$\mathcal {M}(\Psi (\cdot ,t)):=\int _{{\mathbb {R}}^3} \sum _{j=-1}^{1} j |\psi _j (\bx ,t )|^2 \;{\rm d}\bx $


\begin {equation}\mathcal {N}(\Psi (\cdot ,t))=\| \Psi (\cdot ,t) \|^2 :=\sum _{j=-1}^{1} \int _{{\mathbb {R}}^3} |\psi _j (\bx ,t )|^2 \;{\rm d}\bx \equiv \mathcal {N}(\Psi (\cdot ,0))=1, \quad t\geq 0, \label {norm}\end {equation}


\begin {equation}\mathcal {E}(\Psi (\cdot ,t)) := \int _{{\mathbb {R}}^3} \left [ \sum _{j=-1}^{1} \bar {\psi } _j\left ( - \frac { \nabla ^2}{2} + V \right ) \psi _j+ \frac {\lambda _{n}}{2} \rho ^2+\frac {\lambda _{ s}}{2}|{\bf F}|^2 \right ] \;{\rm d} \bx + V_{dd} \equiv \mathcal {E}(\Psi (\cdot ,0)), \quad t\geq 0, \label {eq:Energy1}\end {equation}


$|\textbf {F}|^2 = F_x^2+F_y^2+F_z^2$


$V_{dd}$


\begin {equation*}V_{dd}= \frac {\lambda _{d}}{2} \sum _{\eta } \int _{{\mathbb {R}}^3} F_\eta (\bx ) \left [ \sum _{\nu } \int _{{\mathbb {R}}^3} U_{\eta \nu }(\bx -\bx ')F_\nu (\bx ')\; {\rm d}\bx '\right ] {\rm d}\bx .\end {equation*}


$\Phi ^g=(\phi _1^g,\phi _0^g,\phi _{-1}^g)^\top $


$\mathcal {S}$


\begin {equation}\Phi ^g = \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1({\mathbb {R}}^3))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}. \label {gsDef}\end {equation}


$\mu =\mu ^g$


$\Phi =\Phi ^g$


\begin {align}\label {EL} \mu \Phi =\left [ -\frac {1}{2}\btd ^2+V(\bx )+\ld _n\rho +\ld _s \textbf {F}\cdot \textbf {f}+\ld _d\textbf {D}\cdot \textbf {f}\right ]\Phi :=\textbf {H}(\Phi ),\end {align}


$\textbf {H}(\Phi )=(H_1, H_0, H_{-1})^\top $


$\mu $


$\mu =\sum _{j=-1}^{1} \int _{{\mathbb {R}}^3} \bar {\phi }_j H_j(\Phi ) {\rm d}\bx $


$(\Phi ,\mu )$


$F_\eta $


$\p _{\eta \nu } F_\eta $


$\mathcal {O}(M\log M)$


$M$


$V_{\varepsilon }(\bx )$


$Case ~I ~(pancake-shaped).$


$z$


\begin {equation}V_{\varepsilon }(\bx )=V_{2d}(\bx _\perp )+\frac {1}{{\varepsilon }^2}V_z(\frac {z}{{\varepsilon }}). \label {eq:pot1}\end {equation}


$Case ~II ~(cigar-shaped).$


$\bx _\perp $


\begin {equation}V_{\varepsilon }(\bx )=V_{1d}(z)+\frac {1}{{\varepsilon }^2}V_\perp (\frac {\bx _\perp }{{\varepsilon }}), \label {eq:pot2}\end {equation}


$\bx = (\bx _\perp , z), \bx _\perp \in {\mathbb {R}}^2$


$0<\varepsilon \ll 1$


\begin {align}{\rm i} \, \pa {t} \psi _1(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _1+ (\ld _s-\ld _d)\left ( F_z\psi _1+F_{-}\psi _0 \right ) \nn \\ &-3\ld _d \su {\eta } \left [ \psi _1 \left ( \p _{z\eta } \varphi _{\eta } \right )rg + \frac {1}{\sqrt {2}} \psi _0 \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \psi _0 \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {eq3D1} \\ {\rm i} \, \pa {t} \psi _0(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _0+\left ( \ld _s-\ld _d \right )\left (F_+\psi _1+F_{-}\psi _{-1} \right ) \nn \\ &- 3\ld _d \su {\eta } \left [ \left ( \frac {1}{\sqrt {2}}\psi _1+\frac {1}{\sqrt {2}}\psi _{-1} \right ) \left ( \p _{x\eta } \varphi _{\eta } \right ) + \left ( \frac {{\rm i}}{\sqrt {2}}\psi _1-\frac {{\rm i}}{\sqrt {2}}\psi _{-1} \right ) \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {3D_2} \\ {\rm i} \, \pa {t} \psi _{-1}(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _{-1}+\left ( \ld _s-\ld _d \right )\left (-F_z\psi _{-1}+F_{+}\psi _0 \right ) \nn \\ &-3\ld _d \su {\eta } \left [ -\psi _{-1} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \psi _0 \left ( \p _{x\eta } \varphi _{\eta } \right ) + \frac {{\rm i}}{\sqrt {2}} \psi _0 \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {eq3D3} \\ \psi _j(\bx ,0)=&\psi _j^{(0)}(\bx ), \quad \bx \in {\mathbb {R}}^3, \quad j=1,0,-1. \nn \end {align}


${\varepsilon } \rightarrow 0^+$


$\Psi (\bx ,t)$


$z$


$H_z^{{\varepsilon }}:=-\frac {1}{2}\p _{zz}+\frac {1}{{\varepsilon }^2}V_z(\frac {z}{{\varepsilon }})$


${\omega }_{1d}(z)={\varepsilon }^{-\frac {1}{2}}\pi ^{-\frac {1}{4}} e^{-\frac {z^2}{2{\varepsilon }^2}}$


\begin {equation}\psi _{j}(\bx ,t) \approx \psi _{j}^{2d}(x,y,t){\omega }_{1d}(z) e^{-\frac {{\rm i} t}{2{\varepsilon }^2}}, \quad \bx \in {\mathbb {R}}^3, \quad t\geq 0, j=1,0,-1. \label {dr_2d_1}\end {equation}


$\Psi ^{2d}=(\psi _1^{2d},\psi _0^{2d},\psi _{-1}^{2d})^\top $


$F_\eta ^{2d} =(\Psi ^{2d})^{\mathsf {H}} F_\eta \Psi ^{2d}$


$F_{\pm }^{2d} = (F_x^{2d} \pm {\rm i} \, F_y^{2d})/\sqrt {2}$


$\rho _{2d}=\sum _{j=-1}^1 |\psi _j^{2d}|^2$


${\omega }_{1d}(z)$


$z$


$\pp {1}{2}$


$\int _\mathbb {R} {\omega }_{1d}^2(z) {\rm d}z=1$


$\int _\mathbb {R} {\omega }_{1d}^4(z) {\rm d}z=1/\sq {2\pi }{\varepsilon }$


\begin {equation}\su {\eta }\int ^{\infty }_{-\infty } \left [ \pp {1}{2}{\omega }_{1d}^{2} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \pp {0}{2}{\omega }_{1d}^{2} \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \pp {0}{2}{\omega }_{1d}^{2} \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ] {\rm d}z. \label {dr_2d_3}\end {equation}


$\frac {1}{4\pi |\bx |}$


$-\nabla ^2 U_{3d}(\bx )=\de (\bx )$


$U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2)$


$z$


$\p _{z\eta } \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2) \right )$


$\p _{\eta z} \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2) \right )$


$z$


$\eta =x,y$


\begin {align}& -\frac {1}{\sq {2\pi }{\varepsilon }}\ff {z}{2}\pp {1}{2} -\ii \pp {1}{2}{\omega }_{1d}^{2} \na \left ( U_{3d}*(\ff {z}{2}{\omega }_{1d}^{2}) \right ) {\rm d}z \nn \\ & +\su {\eta \in \{x,y\}} \ii \pp {0}{2}{\omega }_{1d}^{2} \left [ \left ( \frac {1}{\sqrt {2}} \p _{x\eta }- \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^{2}) \right ) \right ] {\rm d}z, \label {dr_2d_4}\end {align}


$\p _{z\eta }$


$\p _{\eta z}$


\begin {align}{\rm i} \, \p _{t}\pp {1}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {1}{2}+ \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {-}{2}\pp {0}{2} +\frac { \left ( \ld _{s}^{2d}+2\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {z}{2}\pp {1}{2} \nn \\ & +\frac {3}{2} \ld _{d}^{2d} \left [ \pp {1}{2} \na \varphi _{z}^{2d}-\su {\eta \in \{x,y\}}\pp {0}{2} \left ( \frac {1}{\sqrt {2}} \p _{x\eta }- \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ]. \label {2D1}\end {align}


\begin {align}{\rm i} \, \p _{t}\pp {0}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {0}{2}+\left (\ff {+}{2}\pp {1}{2}+ \ff {-}{2}\pp {-1}{2}\right ) \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right )}{\sq {2\pi }{\varepsilon }} \nn \\ & -\frac {3}{2} \ld _{d}^{2d} \su {\eta \in \{x,y\}} \left [ \pp {1}{2}\left ( \frac {1}{\sqrt {2}}\p _{x\eta } + \frac {{\rm i}}{\sqrt {2}}\p _{y\eta } \right ) \varphi _{\eta }^{2d} + \pp {-1}{2}\left ( \frac {1}{\sqrt {2}}\p _{x\eta } - \frac {{\rm i}}{\sqrt {2}}\p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ], \label {2D_2} \\ {\rm i} \, \p _{t}\pp {-1}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {-1}{2}+ \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {+}{2}\pp {0}{2} -\frac { \left ( \ld _{s}^{2d}+2\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {z}{2}\pp {-1}{2} \nn \\ & -\frac {3}{2} \ld _{d}^{2d} \left [ \pp {-1}{2} \na \varphi _{z}^{2d}+\su {\eta \in \{x,y\}}\pp {0}{2} \left ( \frac {1}{\sqrt {2}} \p _{x\eta }+ \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ], \label {2D3}\end {align}


\begin {equation*}\varphi _{\eta }^{2d}=U_{2d}*F_{\eta }^{2d}, \quad U_{2d}(x,y)=\frac {2}{(2\pi )^{3/2}}\int _0^\infty \frac {e^{-\frac {{\rm s}^2}{2}}}{\sq {|\bx _\perp |^2+{\varepsilon }^2{\rm s}^2}} {\rm d}{\rm s}.\end {equation*}


\begin {align}\label {2dParm} \ld _n^{2d}= \frac {4\pi N(a_0+2a_2)}{3 b_{\perp }},\quad \ld _s^{2d}= \frac {4\pi N(a_2-a_0)}{3 b_{\perp }},\quad \ld _d^{2d}=\frac {\mu _0(g_F\mu _B)^2N m}{3 b_{\perp }\hb ^2},\end {align}


$b_{\perp }=\sqrt {\frac {\hb }{m{\omega }_\perp }}, {\varepsilon }=\sqrt {\frac {{\omega }_\perp }{{\omega }_z}}.$


$\psi _{j}^{(0)}$


$\psi _{j}^{(0)}(\bx ) \approx \pp {j}{2}(\bx _\perp ) {\omega }_{1d}(z)$


${\omega }_{1d}(z)$


$z$


$\mathbb {R}$


\begin {equation*}\psi _{j}^{2d}(\bx _\perp ,0)=\int _\mathbb {R} \psi _{j}^{(0)}(\bx _\perp ,z) {\omega }_{1d}(z) \,{\rm d}z, \quad \bx _\perp \in {\mathbb {R}}^2.\end {equation*}


\begin {align*}\mathcal {E}(\Psi ^{2d}) :=& \int _{{\mathbb R}^2} \left \{ \sum _{j=-1}^{1} \bar {\psi }_j^{2d} \left ( - \frac { \nabla _{\perp }^2}{2} + V_{2d} \right ) \psi _j^{2d}+ \frac {\lambda _{n}^{2d}}{\sqrt {2\pi }{\varepsilon }} \rho _{2d}^2+\frac {\lambda _{s}^{2d}-\ld _d^{2d}}{\sqrt {2\pi }{\varepsilon }}\left | {\bf F}^{2d} \right |^2 +\frac {3\ld _d^{2d}}{\sqrt {2\pi }{\varepsilon }} \left | F_z^{2d} \right |^2 \right . \\ &\left .+\frac {3}{2}\ld _d^{2d} \left [ \btd _{\perp }^2 \varphi _z^{2d} F_z^{2d}-\su {\eta \in \{x,y\}} \left ( \p _{x\eta } \varphi _{\eta }^{2d} F_x^{2d} +\p _{y\eta } \varphi _{\eta }^{2d} F_y^{2d} \right ) \right ] \right \} {\rm d} \bx _\perp .\end {align*}


$\Phi ^g$


\begin {equation*}\Phi ^g= \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1({\mathbb {R}}^2))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}.\end {equation*}


$\Psi (\bx _\perp ,z,t)$


$\bx _\perp $


$H_\perp ^{\varepsilon }:=-\frac {1}{2}\Dt _\perp +\frac {1}{{\varepsilon }^2}V_\perp (\frac {\bx _\perp }{{\varepsilon }})$


${\omega }_{2d}(\bx _\perp )={\varepsilon }^{-1}\pi ^{-\frac {1}{2}} e^{- \frac {| \bx _\perp |^2}{2{\varepsilon }^2} }$


\begin {equation}\psi _{j}(\bx ,t)\approx \psi _{j}^{1d}(z,t){\omega }_{2d}(\bx _\perp ) e^{-\frac {{\rm i} t}{{\varepsilon }^2}} , \quad \bx \in {\mathbb {R}}^3, \quad t\geq 0, \quad j=1,0,-1. \label {re1d0}\end {equation}


$\Psi ^{1d}=(\psi _1^{1d},\psi _0^{1d},\psi _{-1}^{1d})^\top $


$F_\eta ^{1d} =(\Psi ^{1d})^{\mathsf {H}} F_\eta \Psi ^{1d}$


$F_{\pm }^{1d} = (F_x^{1d} \pm {\rm i} \, F_y^{1d})/\sqrt {2}$


$\rho _{1d}=\sum _{j=-1}^1 |\psi _j^{1d}|^2$


${\omega }_{2d}(\bx _\perp )$


$x\,-\,y$


$z$


$\int _{{\mathbb {R}}^2} {\omega }_{2d}^2(x,y) {\rm d}x{\rm d}y=1$


$\int _{{\mathbb {R}}^2} {\omega }_{2d}^4(x,y) {\rm d}x{\rm d}y=1/2\pi {\varepsilon }^2$


\begin {equation}\su {\eta }\int _{{\mathbb {R}}^2} \left [ \pp {1}{1}{\omega }_{2d}^{2} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \pp {0}{1}{\omega }_{2d}^{2} \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \pp {0}{1}{\omega }_{2d}^{2} \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ] {\rm d}x{\rm d}y. \label {dr_1d_2}\end {equation}


$U_{3d}$


${\omega }_{2d}$


$x$


$y$


$U_{3d}$


$\ff {\eta }{1}{\omega }_{2d}^2$


$x$


$y$


$U_{3d}*(\ff {\eta }{1}{\omega }_{2d}^2)$


$\p _{xy},\p _{xz},\p _{yz}$


$U_{3d}*(\ff {\eta }{1}{\omega }_{2d}^2)$


$x$


$y$


\begin {equation}-\frac {1}{4\pi {\varepsilon }^2} \pp {0}{1} \ff {-}{1}+ \int _{{\mathbb {R}}^2} {\omega }_{2d}^2 \left [ \pp {1}{1} \p _{zz} \left ( U_{3d}*(\ff {z}{1}{\omega }_{2d}^2) \right )- \frac {1}{2} \pp {0}{1} \p _{zz} \left ( U_{3d}*(\ff {-}{1}{\omega }_{2d}^2) \right ) \right ] {\rm d}x{\rm d}y, \label {dr_1d_4}\end {equation}


\begin {align}{\rm i} \,\p _{t}\pp {1}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {1}{1}+ \frac { \left ( \ld _{s}^{1d}-\ld _{d}^{1d} \right ) }{2\pi {\varepsilon }^2} \ff {z}{1}\pp {1}{1} + \frac { \left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right ) }{4\pi {\varepsilon }^2} \ff {-}{1}\pp {0}{1} \nn \\ & -\frac {3}{2\pi }\ld _{d}^{1d} \left ( \pp {1}{1} \p _{zz}\varphi _{z}^{1d}- \frac {1}{2}\pp {0}{1} \p _{zz}\varphi _{-}^{1d} \label {1D_1} \right ).\end {align}


\begin {align}{\rm i} \,\p _{t}\pp {0}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {0}{1}+ \frac {\left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right )}{4\pi {\varepsilon }^2} \left ( \ff {+}{1}\pp {1}{1}+\ff {-}{1}\pp {-1}{1} \right ) \nn \\ & +\frac {3}{4\pi } \ld _{d}^{1d} \left ( \pp {1}{1} \p _{zz}\varphi _{+}^{1d}+ \pp {-1}{1} \p _{zz}\varphi _{-}^{1d} \right ), \label {1D_2} \\ {\rm i} \,\p _{t}\pp {-1}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {-1}{1}- \frac { \left ( \ld _{s}^{1d}-\ld _{d}^{1d} \right ) }{2\pi {\varepsilon }^2} \ff {z}{1}\pp {-1}{1} +\frac { \left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right ) }{4\pi {\varepsilon }^2} \ff {+}{1}\pp {0}{1} \nn \\ & +\frac {3}{2\pi } \ld _{d}^{1d} \left ( \pp {-1}{1} \p _{zz}\varphi _{z}^{1d}+ \frac {1}{2}\pp {0}{1} \p _{zz}\varphi _{+}^{1d} \right ), \label {1D_3}\end {align}


\begin {equation*}\varphi _{\nu }^{1d}=U_{1d}*F_{\nu }^{1d}, \quad \varphi _{\pm }^{1d}=U_{1d}*F_{\pm }^{1d}, \quad U_{1d}(z)=\frac {1}{4 {\varepsilon }^2} \int _{0}^\infty \frac {e^{-\frac {{\rm u}}{2 {\varepsilon }^2}}}{\sqrt {z^2+{\rm u}}} {\rm d}{\rm u}.\end {equation*}


\begin {align}\label {1dParm} \ld _n^{1d}= \frac {4\pi N(a_0+2a_2)}{3 b_{z}}, \quad \ld _s^{1d}= \frac {4\pi N(a_2-a_0)}{3 b_{z}}, \quad \ld _d^{1d}=\frac {\mu _0(g_F\mu _B)^2N m}{3 b_{z}\hb ^2},\end {align}


$b_{z}=\sqrt {\frac {\hb }{m{\omega }_{z}}}, {\varepsilon }=\sqrt {\frac {{\omega }_z}{{\omega }_\perp }}.$


$\psi _{j}^{(0)}$


$\psi _{j}^{(0)}(\bx ) \approx \pp {j}{1}(z) {\omega }_{2d}(\bx _\perp )$


${\omega }_{2d}(\bx _\perp )$


$\bx _\perp $


${\mathbb {R}}^2$


\begin {equation*}\psi _{j}^{1d}(z,0)=\int _{{\mathbb {R}}^2} \psi _{j}^{(0)}(\bx _\perp ,z) {\omega }_{2d}(\bx _\perp ) \, {\rm d}\bx _\perp , \quad z\in \mathbb {R}.\end {equation*}


\begin {align*}\mathcal {E}(\Psi ^{1d}) :=& \int _{{\mathbb R}} \left \{ \sum _{j=-1}^{1} \bar {\psi }_j^{1d} \left ( - \frac { \p _{zz}}{2} + V_{1d} \right ) \psi _j^{1d}+ \frac {\lambda _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d}^2+\frac {\lambda _{s}^{1d}-\ld _d^{1d}}{2\pi {\varepsilon }^2}\left | {\bf F}^{1d} \right |^2 +\frac {3\ld _d^{1d}}{2\pi {\varepsilon }^2} \left | F_-^{1d} \right |^2 \right .\nn \\ &\left .-\frac {3}{2\pi }\ld _d^{1d} \left [ \p _{zz} \varphi _z^{1d} F_z^{1d}- \frac {1}{2} \su {\eta \in \{x,y\}} \p _{zz} \varphi _{\eta }^{1d} F_\eta ^{1d} \right ] \right \} {\rm d} z.\end {align*}


$\Phi ^g$


\begin {align*}\Phi ^g= \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1(\mathbb {R}))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}.\end {align*}


$\Phi (\bx ,t)=(\phi _1(\bx ,t), \phi _0(\bx ,t),\phi _{-1}(\bx ,t))^\top $


\begin {equation}\label {PGF} \begin {array}{@{}ll} &\p _t \phi _{j}(\bx ,t) = -H_j(\Phi )+\mu _{\Phi }(t)\phi _j, \quad \bx \in {\mathbb {R}}^d, \quad t>0, \quad j=1,0,-1, \end {array}\end {equation}


$\Phi (\bx ,0)=\Phi ^{(0)}(\bx ) \in \mathcal {S}$


$\mu _{\Phi }(t)$


\begin {equation}\mu _{\Phi }(t)=\frac {P_{\Phi }(t)}{N_{\Phi }(t)}, \label {eq:lag1}\end {equation}


\begin {equation}N_{\Phi }(t) = \sum _{j=-1}^{1} \int _{{\mathbb {R}}^d} \bar {\phi }_j\phi _j {\rm d}\bx , \quad P_{\Phi }(t) = \sum _{j=-1}^{1} \int _{{\mathbb {R}}^d} \bar {\phi }_j H_j(\Phi ) {\rm d}\bx . \label {eq:lag2}\end {equation}


$\Phi (\bx , t=0)=\Phi ^{(0)}(\bx ) \in \mathcal {S}$


$\Phi (\cdot ,t)$


$t\geq 0$


\begin {equation}\frac {{\rm d}}{{\rm d} t} \mathcal {N}(\Phi (\cdot ,t))=2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov {\phi }_j\p _t\phi _j {\rm d} \bx = 2 \left ( -P_{\Phi }(t)+N_{\Phi }(t)\cdot \mu _{\Phi }(t) \right )=0, \label {eq:CNGF_mass}\end {equation}


\begin {align*}\frac {\rm d}{{\rm d} t} \mathcal {E}(\Phi (\cdot ,t))&= 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \frac {\dt \mathcal {E}(\Phi )}{\dt \phi _j} \p _t\phi _j {\rm d} \bx = 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov {H_j(\Phi )} \p _t\phi _j {\rm d} \bx \\ &= 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov { (H_j(\Phi )-\mu _{\Phi }(t) \phi _j)}\p _t \phi _j {\rm d} \bx \\ &= -2 \sum _{j=-1}^1 \int _{{\mathbb {R}}^d} \ov { (H_j(\Phi )-\mu _{\Phi }(t) \phi _j)}(H_j(\Phi )-\mu _{\Phi }(t)\phi _j) {\rm d} \bx \leq 0,\end {align*}


$t_n=n\tau $


$n =0, 1, 2, {\ldots }$


$\tau > 0$


$\Phi ^n=(\phi _1^n,\phi _0^n,\phi _{-1}^n)^\top (n =1, 2, {\ldots })$


$\Phi (\cdot ,t_n)$


$\Phi ^{n+1}$


$\Phi ^{n}$


$\Phi (\cdot ,t_n)=\Phi ^n$


$[t_n, t_{n+1}]$


$\mu _{\Phi ^n}=\mu _\Phi (t_n)$


\begin {align}\frac {\phi _{1}^* - \phi _{1}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _1^* \,-\left ( V + \lambda _{n} \rho ^n + \lambda _{s} F_z^n + \lambda _d D_z^n \right ) \phi _{1}^n - (\lambda _{s}F_{-}^n + \lambda _d D_{-}^n)\phi _0^n+ \mu _{\Phi ^n}\phi _1^n , \label {evo_1}\\ \frac {\phi _{0}^* - \phi _{0}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _0^* \,\,\,-\left ( V + \lambda _{n} \rho ^n \right ) \phi _{0}^n - (\lambda _{s} F_{+}^n + \lambda _d D_+^n) \phi _{1}^n - (\lambda _{s} F_{-}^n + \lambda _d D_{-}^n) \phi _{-1}^n+ \mu _{\Phi ^n}\phi _0^n, \label {evo_2}\\ \frac {\phi _{-1}^*- \phi _{-1}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _{-1}^* -\left ( V + \lambda _{n} \rho ^n -\lambda _{s} F_z^n - \lambda _d D_z^n \right ) \phi _{-1}^n- (\lambda _{s}F_{+}^n + \lambda _d D_{+}^n)\phi _0^n + \mu _{\Phi ^n}\phi _{-1}^n. \label {evo_3}\end {align}


$\sg _j^n(j=1,0,-1)$


\begin {equation}\Phi ^{n+1}:=\text {diag}(\sg _1^n,\sg _0^n,\sg _{-1}^n) \Phi ^*. \label {proj}\end {equation}


$\sg _j^{n} (j=-1,0,1)$


$\Phi ^{n+1}$


$\mathcal {N}(\Phi ^{n+1})= \| \Phi (\cdot ,t_{n+1}) \|^2=1.$


\begin {equation}\sum _{j=-1}^{1}(\sg _j^{n})^2 \| \phi _j^* \|^2=1. \label {eq:cst2}\end {equation}


$\sg _j^{n}$


\begin {equation}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}. \label {eq:cst3}\end {equation}


\begin {equation}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}= \left ( \|\phi _1^*\|^2+ \|\phi _0^*\|^2+\|\phi _{-1}^*\|^2 \right )^{-\frac {1}{2}}.\end {equation}


\begin {equation}\fl {\| \Phi ^{n+1}-\Phi ^n \|}{\tau } \leq \varepsilon _{\text {tol}} \label {stopping},\end {equation}


$\varepsilon _{\text {tol}}$


$\Phi $


$\mathbb R^d$


$\Omega $


$\Omega =[-L,L]^d$


$h=2L/M$


$M$


\begin {align*}\mathcal {Q}_M^d&=\left \{ (\ell _1,\ell _2,\ldots ,\ell _d)\in \mathbb {Z}^d | 0 \leq \ell _j \leq M-1, j=1,\ldots ,d \right \},\\ \mathcal {I}_M^d&=\left \{ (k_1,k_2,\ldots ,k_d)\in \mathbb {Z}^d | -M/2\leq k_j \leq M/2-1, j=1,\ldots ,d \right \}, \\ \mathcal {T}_M^d&=\left \{ (x_1,x_2,\ldots ,x_d) | x_j=-L+\ell _j h, (\ell _1,\ell _2,\ldots ,\ell _d)\in \mathcal {Q}_M^d \right \}.\end {align*}


\begin {align*}W_{\bk }(\bx ):= \prod _{\nu =x,y,z} e^{{\rm i} v_{k_\nu }^\nu (\nu +L)}, \quad \bk =(k_x,k_y,k_z) \in \mathcal {I}_M^3,\end {align*}


$v_{k_\nu }^\nu = \pi k_\nu /L$


$\phi _j (j=1,0,-1)$


$\bx _{mnl} \in \mathcal {T}_M^3$


\begin {align*}\phi _j(\bx _{mnl})\approx \wtd {\phi _j}(\bx _{mnl})&:=\sum _{\bk \in \mathcal {I}_M^3} (\widehat {\phi _j})_{\bk } W_{\bk }(\bx _{mnl}), \quad (m,n,l) \in \mathcal {Q}_M^3,\\ \p _\nu \phi _j(\bx _{mnl}) \approx \dob {\p _\nu }\wtd {\phi _j}(\bx _{mnl})&:=\sum _{\bk \in \mathcal {I}_M^3} ({\rm i} \, v_{k_\nu }^\nu ) \widehat {(\wtd {\phi _j})}_{\bk } W_{\bk }(\bx _{mnl}), \\ \p _{\eta \nu } \phi _j(\bx _{mnl}) \approx \dob {\p _{\eta \nu }}\wtd {\phi _j}(\bx _{mnl})&:=-\sum _{\bk \in \mathcal {I}_M^3}(v_{k_\eta }^\eta )(v_{k_\nu }^\nu ) \widehat {(\wtd {\phi _j})}_{\bk } W_{\bk }(\bx _{mnl}), \quad \eta ,\nu =x,y,z,\end {align*}


$(\widehat {\phi _j})_{\bk }$


\begin {align*}(\widehat {\phi _j})_{\bk }=\frac {1}{M^3} \sum _{(m,n,l)\in \mathcal {Q}_M^3} \phi _j(\bx _{mnl}) \ov {W}_{\bk }(\bx _{mnl}).\end {align*}


$\dob {\btd }:=(\dob {\p _x},\dob {\p _y},\dob {\p _z})^\top $


$\dob {\Dt }:= \dob {\p _x^2}+\dob {\p _y^2}+\dob {\p _z^2}$


$\wtd {\phi _j}$


$\phi _j$


\begin {equation*}\btd \phi _j(\bx _{mnl}) \approx \dob {\btd } \wtd {\phi _j}(\bx _{mnl}), \quad \Dt \phi _j(\bx _{mnl}) \approx \dob {\Dt } \wtd {\phi _j}(\bx _{mnl}), \quad (m,n,l) \in \mathcal {Q}_M^3.\end {equation*}


$\dob { }$


$F_\eta (\eta =x,y,z)$


$\mathbf {R}_L:=[-L,L]^d$


$\Phi $


$\varphi _\eta $


\begin {align}\varphi _\eta (\bx ) &= \int _{{\mathbb {R}}^d} U(\bx -\by ) F_\eta (\by ) {\rm d}\by = \int _{\mathbf {R}_L} U(\bx -\by )F_\eta (\by ) {\rm d}\by \nn \\ &= \int _{\bx +\mathbf {R}_L} U(\by ) F_\eta (\bx -\by ){\rm d}\by =\int _{\mathcal {B}_G} U(\by )F_\eta (\bx -\by ) {\rm d}\by , \quad \bx \in \mathbf {R}_L, \label {ten}\end {align}


$\mathcal {B}_G$


$G:=\text {max}_{\bx ,\by \in \mathbf {R}_{L}} |\bx -\by |=2\sqrt {d}L$


$\mathbf {R}_{L}$


$F_\eta (\bx )$


$\mathbf {R}_{\text {ess}}:=\mathbf {R}_{(2\sqrt {d}+1)L}$


$\bx -\by \in \mathbf {R}_{(2\sqrt {d}+1)L}$


$\bx \in \mathbf {R}_L$


$\by \in \mathcal {B}_G$


$F_\eta (\bx )$


$\mathbf {R}_{\text {ess}}$


$\mathbf {R}_{SL}$


$S=\lceil \sqrt {d}+1\rceil $


$\sqrt {d}+1$


$\mathbf {R}_{SL}$


$F_\eta (\bx )$


\begin {equation*}F_\eta (\bx ) \approx (F_\eta )_M(\bx ):= \sum _{\bk \, \in \mathcal {I}_{SM}^d} \widehat {F_\eta }(\bk ) e^{{\rm i} \frac {\pi \bk }{SL} \cdot \bx }, \quad \bx \in \mathbf {R}_{SL},\end {equation*}


\begin {equation*}\widehat {F_\eta }(\bk )=\frac {1}{(SM)^d} \sum _{\bx _{{\bf p}} \in \mathcal {T}_{SM}^d } F_\eta (\bx _{{\bf p}}) e^{-{\rm {i}} \frac {\pi \bk }{SL} \cdot \bx _{{\bf p}} }, \quad \bk \in \mathcal {I}_{SM}^d.\end {equation*}


$(F_\eta )_M$


$F_\eta $


\begin {align}\varphi _\eta (\bx ) &\approx \int _{\mathcal {B}_G} U(\by )(F_\eta )_M(\bx -\by ) {\rm d}\by = \sum _{{\bf k} \in \mathcal {I}_{SM}^d} \left ( \int _{\mathcal {B}_G} U(\by ) e^{-{\rm i}\frac {\pi \bk }{SL}\cdot \by } {\rm d}\by \right ) \widehat {F_\eta } \,e^{{\rm i}\frac {\pi \bk }{SL}\cdot \bx } \nn \\ &:= \sum _{{\bf k} \,\in \mathcal {I}_{SM}^d} \widehat {U_G}(\bk ) \widehat {F_\eta } \,e^{{\rm i}\frac {\pi \bk }{SL}\cdot \bx },\quad \quad \bx \in \mathbf {R}_L,\end {align}


$\widehat {U_G}(\bk )$


\begin {equation*}\widehat {U_G}(\bk ):= \int _{\mathcal {B}_G} U(\by ) e^{-{\rm i}\frac {\pi \bk }{SL}\cdot \by } {\rm d}\by .\end {equation*}


$\mathbf {R}_L^{\boldsymbol {\vec {\gm }}}:=\Pi _{j=1}^d [-L\gm _j,L\gm _j]^d$


$\boldsymbol {\vec {\gm }}=(\gm _1,\ldots ,\gm _d)\in {\mathbb {R}}^d$


$j$


\begin {align}S_j= \left \lceil 1+\gm _j^{-1} \sqrt {1+\gm _2^2+\ldots +\gm _d^2} \right \rceil .\end {align}


$d$


\begin {equation*}\varphi _\eta (x_m, y_n, z_l) = \sum \limits _{(m',n',l')\in \mathcal {I}_M^3} T_{m-m',n-n', l-l'}(F_\eta )_{ m',n',l'},\end {equation*}


$T_{m,n,l}$


\begin {equation*}T_{m,n,l}=\frac {1}{(SM)^3} \sum _{(k_x,k_y,k_z)\in \mathcal {I}_{SM}^3} \widehat {U_G}\left ( k_x, k_y, k_z \right ) e^{\frac {2\pi {\rm i}}{SM}(k_x m+k_y n+k_z l)}, \quad (m,n,l) \in \mathcal {I}_{2M}^3,\end {equation*}


$\{ \widehat {U_G}(\bk ),\bk \in \mathcal {I}_{SM}^3 \} \subset \mathbb {C}^{(SM)^3}$


$S_{\rm t} = S_1 S_2 S_3$


$\mathcal {O}(S_{\rm t} M^3\log (S_{\rm t}M^3))$


\begin {equation*}U_{1d}(z) = \frac {\sqrt {\pi }}{2\sqrt {2} {\varepsilon }} e^\frac {z^2}{2{\varepsilon }^2} \text {erfc}(\frac {|z|}{\sqrt {2}{\varepsilon }}), \quad U_{2d}(r)= \frac {1}{{\varepsilon } (2\pi )^{3/2}}\,e^{\frac {r^2}{4{\varepsilon }^2}}K_0(\frac {r^2}{4{\varepsilon }^2}), \quad r=|\bx _\perp |,\end {equation*}


$\text {erfc}(x)=\frac {2}{\sqrt {\pi }} \int _x^\infty e^{-t^2} {\rm d}t$


$K_0(x)$


\begin {equation*}\widehat {(U_{1d})_G}(k)=2 \int _0^G U_{1d}(z)\text {cos}(k z)\, {\rm d}z, \quad \widehat {(U_{2d})_G}(k)=2\pi \int _0^G U_{2d}(r)J_0(k r)r \,{\rm d}r, \quad k \in \mathbb {R},\end {equation*}


$J_0$


$N=10^4$


$m$


$a_0$


$a_2$


$^{23}$


$m = 3.816 \times 10^{-26}[\text {kg}], ~a_0 =2.646[\text {nm}], ~a_2 = 2.911[\text {nm}]$


$^{87}$


$m = 1.443 \times 10^{-25}[\text {kg}], ~a_0 = 5.387[\text {nm}], ~a_2 = 5.313[\text {nm}]$


\begin {align*}&(a)\,\phi _a(\bx )=\frac {1}{\pi ^{d/4}} e^{-\frac {|\bx |^2}{2}},\quad \quad \quad ~ (b)\,\phi _b(\bx )=(x+{\rm i}\,y)\phi _a(\bx ),\quad (\bar {b})\,\phi _{\bar {b}}(\bx )=\bar {\phi }_b(\bx ),\\ &(c)\,\phi _c(\bx )=\frac {\phi _a(\bx )+\phi _b(\bx )}{\left \| \phi _a(\bx )+\phi _b(\bx ) \right \|}, \quad (\bar {c})\, \phi _{\bar {c}}(\bx )=\bar {\phi _c}(\bx ),\quad \quad \quad \quad \,(d)\,\phi _d(\bx )=\frac {\phi _g^{\text {TF}}(\bx )}{\left \| \phi _g^{\text {TF}}(\bx ) \right \|},\end {align*}


\begin {equation*}\phi _g^{\text {TF}}(\bx )= \left \{\begin {array}{@{}ll} \sqrt {(\mu _g^{\text {TF}}-V(\bx ))/\ld _n}, & V(\bx )<\mu _g^{\text {TF}}, \\ 0,& {\rm {otherwise}}, \end {array}\right . \quad {\rm {with}} \quad {\mu }_g^{\rm {TF}}=\frac {1}{2} \left \{\begin {array}{@{}ll} (3\ld _n\gm _x)^{2/3}, & d=1,\\ (4\ld _n\gm _x\gm _y)^{1/2}, & d=2, \\ (15\ld _n \gm _x\gm _y\gm _z/{4\pi })^{2/5},& d=3. \end {array}\right .\end {equation*}


$\Phi ^0=(\phi _1^0,\phi _0^0,\phi _{-1}^0)^\top /\sqrt {3}$


$\phi _1^0, \phi _0^0$


$\phi _{-1}^0$


$\tau =0.1$


$\varepsilon _{\text {tol}}=10^{-12}$


$h_x=h_y=h_z=1/16$


$\Phi _g=(\phi _1^g,\phi _0^g,\phi _{-1}^g)^\top $


$h=1/16$


$\Phi _g^h$


$h$


$E_g:=\mathcal {E}(\Phi _g)$


$\mu _g:=\mu (\Phi _g)$


$l^2$


\begin {equation*}e_h:=\left \| \Phi _g-\Phi _g^h\right \|_{l^2}/\left \| \Phi _g\right \|_{l^2}.\end {equation*}


${\omega }_x = {\omega }_y = {\omega }_z = 2\pi \times 200 [\text {Hz}]$


$V(\bx )=\frac {1}{2}(x^2+y^2+z^2)$


$^{23}$


$\ld _n=239.2, \ld _s=7.485, \ld _d=20.84$


$^{87}$


$\ld _n=879.6, \ld _s=-4.065, \ld _d=15.32$


$\Omega =[-8,8]^3$


$E_g=3.7810$


$\mu _g=5.0528$


$E_g=6.0035$


$\mu _g=8.2367$


${\omega }_z = 2\pi \times 400 [\text {Hz}], {\omega }_x = {\omega }_y =2\pi \times 20 [\text {Hz}]$


${\varepsilon }=\frac {1}{\sqrt {20}}$


$V(\bx )=\frac {1}{2}(x^2+y^2)$


$^{23}$


$\ld _{n} =75.64, \ld _{s} =2.367, \ld _{d} =6.59$


$^{87}$


$\ld _{n} = 278.1, \ld _{s} = -1.285, \ld _{d} = 4.846.$


$\Omega =[-16,16]^2$


$E_g=4.5350$


$\mu _g=6.6591$


$E_g=8.4545$


$\mu _g=12.5916$


${\omega }_x = {\omega }_y = 2\pi \times 400 [\text {Hz}], {\omega }_z =2\pi \times 8 [\text {Hz}]$


${\varepsilon }=\frac {1}{\sqrt {50}}$


$V(x)=x^2/2$


$^{23}$


$\ld _{n} =47.839, \ld _{s} =1.497, \ld _{d} =4.168$


$^{87}$


$\ld _{n} = 175.886, \ld _{s} =-8.127, \ld _{d} = 3.065$


$\Omega =[-16,16]$


$E_g=20.6681$


$\mu _g=34.4236$


$E_g=47.9598$


$\mu _g=79.9218$


$\varepsilon _\nu $


$\nu $


$\nu =x,y,z$


$|\Phi _g(\bx )|^2=0.001$


$\varepsilon _\nu $


$\vep _x=\vep _y=1$


$\vep _z=1/\sqrt {160},\,\vep _y=1$


\begin {equation}V_z(z)=\frac {z^2}{2}, \quad V_{2d}(x,y)=\frac {1}{2}(x^2+y^2), \quad V_{\varepsilon }(x,y,z)=\frac {1}{2}(x^2+y^2+\frac {z^2}{\vep ^4}).\end {equation}


$\Phi _g:=\Phi _g(x,y,z)$


$\mathbf {R}_{\varepsilon }=[-12,12]^2\times [-12{\varepsilon },12{\varepsilon }]$


$h_x=h_y=1/16, h_z={\varepsilon }/16$


$\Phi _g^{2d}:=\Phi _g^{2d}(x,y)$


${\Omega }=[-12,12]^2$


$h_x=h_y=1/16$


$\chi (z)=[ \int _{{\mathbb {R}}^2} |\Phi _g(x,y,z)|^2 {\rm d}x{\rm d}y]^{1/2}$


$\Phi _g$


$z$


$\| \Phi _g-\Phi _g^{2d} {\omega }_{1d}(z) \|_{l^2}$


$\| \chi -{\omega }_{1d} \|_{l^2}$


$\| \Phi _g-\Phi _g^{2d} {\omega }_{1d}(z) \|_{l^2}$


$\| \chi -{\omega }_{1d} \|_{l^2}$


$\vep $


$z$


$\vep $


$\varepsilon \rightarrow 0$


\begin {align}V_z(z)=\frac {z^2}{2}, \quad V_{2d}(x,y)=\frac {1}{2}(x^2+y^2), \quad V_{\varepsilon }(x,y,z)=\frac {1}{2}(z^2+\frac {x^2+y^2}{\vep ^4}).\end {align}


$\mathbf {R}_{\varepsilon }=[-12{\varepsilon },12{\varepsilon }]^2\times [-12,12]$


$h_x=h_y={\varepsilon }/16, h_z=1/16$


$\Phi _g^{1d}:=\Phi _g^{1d}(z)$


${\Omega }=[-12,12]$


$h_z=1/16$


$\| \Phi _g-\Phi _g^{1d} {\omega }_{2d}(z) \|_{l^2}$


$\| \Phi _g-\Phi _g^{1d} {\omega }_{2d}(\bx _\perp ) \|_{l^2}$


$\vep $


$(x,y)$


$\vep $


$z$


$V(\bx )$


\begin {align}\label {potential} V(\bx )&= \begin {cases} \frac {x^2}{2}+\kappa \,\sin ^2(\frac {\pi x}{4}), \,\,\quad d=1,\\ \frac {1}{2}(x^2+y^2)+\kappa \,[\sin ^2(\frac {\pi x}{4})+\sin ^2(\frac {\pi y}{4})], \,\quad d=2, \\ \frac {1}{2}(x^2+y^2+z^2)+\kappa [\sin ^2(\frac {\pi x}{4})+\sin ^2(\frac {\pi y}{4})+\sin ^2(\frac {\pi z}{4})],\quad d=3, \end {cases}\end {align}


$\kappa $


$\kappa =10$


${\varepsilon }=\frac {1}{\sqrt {50}}$


$\Omega =[-16,16]$


$E_g=25.4681$


$\mu _g=39.1845$


$E_g=52.8612$


$\mu _g=84.7055$


${\varepsilon }=\frac {1}{\sqrt {20}}$


\begin {equation*}V(\bx )=\frac {1}{2}(x^2+y^2)+\beta _0\,[\cos ({\bf b_1}\cdot \bx )+\cos ({\bf b_2}\cdot \bx )+\cos (({\bf b_1}+{\bf b_2})\cdot \bx )],\end {equation*}


${\bf b_1}=\frac {\pi }{4}(\sqrt {3},1), {\bf b_2}=\frac {\pi }{4}(-\sqrt {3},1)$


$\beta _0$


$\Omega =[-16,16]^2$


$\beta _0=5$


$\beta _0=40$


$E_g=11.8976$


$\mu _g=14.9370$


$E_g=16.8160$


$\mu _g=21.3889$


$E_g=1.4263$


$\mu _g=3.8406$


$\beta _0=5$


$E_g=-39.7288$


$\mu _g=-34.7968$


$\beta _0=40$


$E_g=6.1017$


$\mu _g=11.0848$


$\beta _0=5$


$E_g=-31.6668$


$\mu _g=-24.0668$


$\beta _0=40$


$\Omega =[-8,8]^3$


$|\phi _1(x,y,z)|=0.01$


$|\phi _0(x,y,z)|\equiv 0$


$|\phi _{-1}(x,y,z)|=0.01$


$|\phi _1(x,y,z)|=0.01$


$|\phi _0(x,y,z)|=0.01$


$|\phi _{-1}(x,y,z)|=0.01$


$E_g=13.1852$


$\mu _g=15.6923$


$E_g=17.0860$


$\mu _g=20.5723$


$F$


$U_{\bn \bm }(\bx )=\frac {3}{4\pi }\frac {1}{|\bx |^3} \left ( (\bn \cdot \bm )-3 \frac {(\bx \cdot \bn )(\bx \cdot \bm )}{|\bx |^2} \right )$


$\bn ,\bm \in \mathbb R^3$


$f(\bx ) \in C_c^\infty ({\mathbb {R}}^3)$


\begin {equation}\left [U_{\bn \bm } \ast f\right ](\bx )=-(\bn \cdot \bm )f(\bx )-3\left [ \left (\frac {1}{4\pi |\bx |} \right ) \ast \p _{\bn \bm } f \right ](\bx ).\end {equation}


\begin {equation}u(\bx )=-3 \p _{\bn \bm } \left ( \frac {1}{4\pi |\bx |} \right ).\end {equation}


${\varepsilon }>0$


$B_{{\varepsilon }}=\{\bx \in {\mathbb {R}}^3| |\bx |<{\varepsilon }\}$


$B_{{\varepsilon }}^c=\{\bx \in {\mathbb {R}}^3| |\bx |\geq {\varepsilon }\}$


\begin {equation}U_{\bn \bm }(\bx )=u(\bx ), \quad 0\neq \bx \in {\mathbb {R}}^3. \label {A3}\end {equation}


\begin {align}-\frac {1}{3} \int _{B_{{\varepsilon }}^c} U_{\bn \bm }(\bx )f(\bx ) {\rm d}\bx &=-\frac {1}{3} \int _{B_{{\varepsilon }}^c} u(\bx )f(\bx ) {\rm d}\bx =\int _{B_{{\varepsilon }}^c} \p _{\bn \bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) {\rm d}\bx \nn \\ &= \int _{B_{{\varepsilon }}^c} \left [ \p _\bn \left ( \p _\bm \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \right ) -\p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn } f \right ] {\rm d}\bx \nn \\ &= -\int _{\p B_{{\varepsilon }}} \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \frac {\bx \cdot \bn }{|\bx |} {\rm d}S- \int _{B_{{\varepsilon }}^c} \left [ \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn } f \right ] {\rm d}\bx \nn \\ &= I_1^{{\varepsilon }}- \int _{B_{{\varepsilon }}^c} \left [ \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \p _{\bn } f \right )- \frac {1}{4\pi |\bx |} \p _{\bm \bn } f \right ]{\rm d}\bx \nn \\ &= I_1^{{\varepsilon }}+I_2^{{\varepsilon }}+\int _{B_{{\varepsilon }}^c} \frac {1}{4\pi |\bx |} \left ( \p _{\bm \bn } f \right ){\rm d}\bx , \label {A4}\end {align}


\begin {equation}I_1^{{\varepsilon }}:=-\int _{\p B_{{\varepsilon }}} \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \frac {\bx \cdot \bn }{|\bx |} {\rm d}S, \quad I_2^{{\varepsilon }}:=\int _{\p B_{{\varepsilon }}} \frac {1}{4\pi |\bx |} \left ( \p _\bn f \right ) \frac {\bx \cdot \bm }{|\bx |} {\rm d}S. \label {A5}\end {equation}


\begin {align}I_1^{{\varepsilon }} &= \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} f(\bx ) {\rm d}S \nn \\ &= \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} f({\bf 0}) {\rm d}S+ \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [f(\bx )-f({\bf 0})] {\rm d}S. \label {A6}\end {align}


\begin {align}\int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm ) (\bx \cdot \bn )}{|\bx |^2} {\rm d}S &= \int _{\p B_{{\varepsilon }}} \frac {\rm n_1m_1x^2+n_2m_2y^2+n_3m_3z^2}{|\bx |^2}{\rm d}S \nn \\ &= \int _{\p B_{{\varepsilon }}} \frac {\frac {1}{3}(\rm n_1m_1|\bx |^2+n_2m_2|\bx |^2+n_3m_3|\bx |^2)} {|\bx |^2}{\rm d}S \nn \\ &= \int _{\p B_{{\varepsilon }}} \frac {(\bn ,\bm )|\bx |^2}{3|\bx |^2} {\rm d}S = {4\pi {\varepsilon }^2} \frac {(\bn ,\bm )}{3}, \label {A7}\end {align}


\begin {align}\left | \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [f(\bx )-f({\bf 0})] {\rm d}S \right |&= \left | \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [\bx \cdot \btd f(\theta \bx )] {\rm d}S \right | \nn \\ &\leq {\varepsilon } \| \btd f \|_{L^\infty (B_{{\varepsilon }})} \int _{\p B_{{\varepsilon }}} {\rm d}S=4\pi {\varepsilon }^3 \| \btd f \|_{L^\infty (B_{{\varepsilon }})}, \label {A8}\end {align}


$1 \leq \theta \leq 1$


\begin {equation}I_1^{{\varepsilon }}\rightarrow \frac {1}{3} f(\bf 0)(\bn ,\bm ), \quad {\varepsilon }\rightarrow 0^+. \label {A9}\end {equation}


${\varepsilon }\rightarrow 0^+$


\begin {equation}\left | I_2^{{\varepsilon }} \right | \leq \| \btd f \|_{L^\infty (B_{{\varepsilon }})} \int _{\p B_{{\varepsilon }}} \frac {1}{4\pi {\varepsilon }}{\rm d}S= {\varepsilon } \| \btd f \|_{L^\infty (B_{{\varepsilon }})}\rightarrow 0. \label {A10}\end {equation}


${\varepsilon }\rightarrow 0^+$


\begin {equation}\int _{{\mathbb {R}}^3} U_{\bn \bm }(\bx )f(\bx ) {\rm d}\bx = -(\bn ,\bm ) f({\bf 0})-3\int _{{\mathbb {R}}^3} \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn \bm } f(\bx ) {\rm d}\bx . \label {A11}\end {equation}


$f_\by (\bx ):=f(\by -\bx )$


$\forall \by \in {\mathbb {R}}^3$


\begin {equation}\left [U_{\bn \bm } \ast f\right ](\bx )=-(\bn \cdot \bm )f(\bx )-3\left [ \left (\frac {1}{4\pi |\bx |} \right ) \ast \p _{\bn \bm } f \right ](\bx ).\end {equation}


$F$


$t_{n}\leq t<t_{n+1}, n\geq 1$


\begin {align}\label {GFDN} \p _t \Phi (\bx ,t) =\left [ \frac {1}{2}\btd ^2- V(\bx )-\ld _n\rho -\ld _s \textbf {F}\cdot \textbf {f}-\ld _d\textbf {D}\cdot \textbf {f}\right ]\Phi ,\end {align}


\begin {align}\phi _j(\bx ,t_{n+1}):=\phi _j(\bx ,t_{n+1}^+) =\sg _j^n\phi _j(\bx ,t_{n+1}^-), \quad \bx \in \Omega , \quad j=1,0,-1, \label {GFDN_4}\end {align}


$\phi _j(\bx ,t_{n+1}^\pm )=\lim _{t\rightarrow t_{n+1}^\pm } \phi _j(\bx ,t)$


$\sg _j^n$


$\| \Phi (\cdot ,t_{n+1}) \|^2=\sum _{j=-1}^{1} \| \phi _j(\cdot ,t_{n+1}) \|^2=1.$


\begin {equation*}\p _t \phi _{j}(\bx ,t)=\mu _{\Phi }(t)\,\phi _j, \quad t_{n}\leq t\leq t_{n+1}, \quad n \geq 0.\end {equation*}


\begin {equation*}\phi _j(\bx ,t_{n+1})=\text {exp}\left ( \int _{t_{n}}^{t_{n+1}} \mu _{\Phi }(\tau ) {\rm d}\tau \right ) \phi _j(\bx ,t_{n}), \quad j=1,0,-1.\end {equation*}


\begin {equation*}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}.\end {equation*}
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dipolar-dipolar interaction field is the following nonlocal coupled Gross-Pitaevskii equations [20,32,36]:
iℏ𝜕𝑡𝜓1(𝐱, 𝑡) = 𝐻0𝜓1 + (𝑔𝑠𝐹𝑧 + 𝑔𝑑𝐷𝑧)𝜓1 + (𝑔𝑠𝐹− + 𝑔𝑑𝐷−)𝜓0, (1.1)

iℏ𝜕𝑡𝜓0(𝐱, 𝑡) = 𝐻0𝜓0 + (𝑔𝑠𝐹+ + 𝑔𝑑𝐷+)𝜓1 + (𝑔𝑠𝐹− + 𝑔𝑑𝐷−)𝜓−1, (1.2)

iℏ𝜕𝑡𝜓−1(𝐱, 𝑡) = 𝐻0𝜓−1 + (𝑔𝑠𝐹+ + 𝑔𝑑𝐷+)𝜓0 − (𝑔𝑠𝐹𝑧 + 𝑔𝑑𝐷𝑧)𝜓−1. (1.3)

Here i =
√

−1 is the imaginary unit, 𝐱 = (𝑥, 𝑦, 𝑧)⊤ is the Cartesian coordinate vector, 𝑡 is the time, ℏ is the Planck constant, Ψ =
(𝜓1, 𝜓0, 𝜓−1)⊤ is the time-dependent complex-valued wave function. The Hamiltonian operator 𝐻0 ∶= − ℏ2∇2

2𝑚 + 𝑉 (𝐱) + 𝑔𝑛𝜌  and 𝜌 =
∑1
𝑗=−1 |𝜓𝑗 |

2 represents the total density. The trapping potential

𝑉 (𝐱) = 1
2
𝑚(𝜔2

𝑥𝑥
2 + 𝜔2

𝑦𝑦
2 + 𝜔2

𝑧𝑧
2), (1.4)

where 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 are the trap frequencies in the 𝑥−, 𝑦−, and 𝑧−direction, respectively. Interaction between atoms of mass 𝑚 is 
characterized by the interaction strengths through the “density” channel, 𝑔𝑛 = 4𝜋ℏ2

𝑚 ⋅ 𝑎0+2𝑎23 , and the “spin” channel, 𝑔𝑠 = 4𝜋ℏ2
𝑚 ⋅ 𝑎2−𝑎03 , 

where 𝑎0 and 𝑎2 are the 𝑠-wave scattering length with the total spin 0 (anti-parallel spin collision) and 2 (parallel spin collision) 
channels, respectively. The mean-field interaction 𝑔𝑛 is positive for repulsive interaction and negative for attractive interaction. The 
spin-exchange interaction 𝑔𝑠 is positive for anti-ferromagnetic interaction and negative for ferromagnetic interaction. The dipolar 
interaction parameter is 𝑔𝑑 = 𝜇0(𝑔𝐹 𝜇𝐵 )2

3  with 𝜇0, 𝑔𝐹 , 𝜇𝐵 being the magnetic permeability of vacuum, the hyperfine 𝑔 factor and the 
Bohr magneton, respectively.

Introduce the spin-1 matrices 𝐟 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)⊤ as

𝑓𝑥 = 1
√

2

⎛

⎜

⎜

⎝

0 1 0
1 0 1
0 1 0

⎞

⎟

⎟

⎠

, 𝑓𝑦 =
i

√

2

⎛

⎜

⎜

⎝

0 −1 0
1 0 −1
0 1 0

⎞

⎟

⎟

⎠

, 𝑓𝑧 =
⎛

⎜

⎜

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎟

⎟

⎠

, (1.5)

and the spin vector 𝐅 ∶= (𝐹𝑥(Ψ), 𝐹𝑦(Ψ), 𝐹𝑧(Ψ))⊤ ∶= (Ψ𝖧𝑓𝑥Ψ,Ψ𝖧𝑓𝑦Ψ,Ψ𝖧𝑓𝑧Ψ)⊤ (Ψ𝖧 is the conjugate transpose of Ψ) of the condensate 
is given explicitly as

𝐹𝑥 = 1
√

2

[

𝜓̄1𝜓0 + 𝜓̄0
(

𝜓1 + 𝜓−1
)

+ 𝜓̄−1𝜓0
]

, 𝐹𝑦 =
i

√

2

[

−𝜓̄1𝜓0 + 𝜓̄0
(

𝜓1 − 𝜓−1
)

+ 𝜓̄−1𝜓0
]

,

and 𝐹𝑧 = |𝜓1|
2 − |𝜓−1|

2. The effective dipolar field, denoted by 𝐃 = (𝐷𝑥, 𝐷𝑦, 𝐷𝑧), is defined below

𝐷𝜈 (𝐱) = ∫ℝ3

3
4𝜋

1
|𝐱 − 𝐱′|3

[

𝐹𝜈 (𝐱′) − 3 𝑒𝜈 𝐅(𝐱′) ⋅ 𝐞
]

d𝐱′, 𝐞 = 𝐱 − 𝐱′
|𝐱 − 𝐱′|

, 𝜈 = 𝑥, 𝑦, 𝑧. (1.6)

Furthermore, we define the transverse magnetization and transverse dipolar field by 𝐹± = (𝐹𝑥 ± i𝐹𝑦)∕
√

2 and 𝐷± = (𝐷𝑥 ± i𝐷𝑦)∕
√

2, 
respectively.

Introduce the following parameters 
𝑡 = 𝜔𝑚𝑡, 𝐱̃ = 𝐱∕𝑏0, 𝑏0 =

√

ℏ∕(𝑚𝜔𝑚), 𝜔𝑚 = min{𝜔𝑥, 𝜔𝑦, 𝜔𝑧},

and the wave function

Ψ̃𝑗 (𝐱̃, 𝑡) = 𝑁− 1
2 𝑏

3
2
0 Ψ𝑗 (𝐱, 𝑡), 𝑗 = 1, 0,−1, (1.7)

where 𝑁 is the total number of particles in the condensate. Plugging Eq. (1.7) into equations Eqs. (1.1)–(1.3) and removing all ∼, we 
obtain the dimensionless nonlocal GPEs

i 𝜕𝑡Ψ(𝐱, 𝑡) =
[

−1
2
∇2 + 𝑉 (𝐱) + 𝜆𝑛𝜌 + 𝜆𝑠F ⋅ f + 𝜆𝑑D ⋅ f

]

Ψ, (1.8)

Ψ(𝐱, 0) = Ψ(0)(𝐱), 𝐱 ∈ ℝ3,

where F ⋅ f = ∑

𝜂 𝐹𝜂𝑓𝜂 , D ⋅ f =
∑

𝜈 𝐷𝜈𝑓𝜈 (we use 
∑

𝜂 and 
∑

𝜈 to denote 
∑

𝜂∈{𝑥,𝑦,𝑧} and 
∑

𝜈∈{𝑥,𝑦,𝑧} respectively unless otherwise specified). 
The external trapping potential is 

𝑉 (𝐱) = 1
2
(𝛾2𝑥𝑥

2 + 𝛾2𝑦𝑦
2 + 𝛾2𝑧𝑧

2),

with 𝛾𝜈 = 𝜔𝜈
𝜔𝑚
, 𝜈 = 𝑥, 𝑦, 𝑧, and the strength of density channel, spin channel and dipole-dipole interaction (DDI) are scaled as 𝜆𝑛 =

4𝜋𝑁
3

𝑎0+2𝑎2
𝑏0

, 𝜆𝑠 =
4𝜋𝑁
3

𝑎2−𝑎0
𝑏0

, 𝜆𝑑 = 𝜇0(𝑔𝐹 𝜇𝐵 )2𝑁
3𝜔𝑚𝑏30ℏ

. Using the convolution identity in Appendix A, the effective dipolar field is rewritten as

𝐷𝜈 =
∑

𝜂
𝑈𝜂𝜈 ∗ 𝐹𝜂 = −3

∑

𝜂

1
4𝜋|𝐱|

∗ (𝜕𝜂𝜈𝐹𝜂) − 𝐹𝜈

= −3
∑

𝜂
𝜕𝜂𝜈

(

1
4𝜋|𝐱|

∗ 𝐹𝜂

)

− 𝐹𝜈 ∶= −3
∑

𝜂
𝜕𝜂𝜈𝜑𝜂 − 𝐹𝜈 . (1.9)
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The DDI convolution kernel 𝑈𝜂𝜈 reads as 

𝑈𝜂𝜈 (𝐱) =
3
4𝜋

1
|𝐱|3

(

𝛿𝜂𝜈 − 3
𝑥𝜂𝑥𝜈
|𝐱|2

)

, 𝜂, 𝜈 = 𝑥, 𝑦, 𝑧,

where 𝛿𝜂𝜈 is the Kronecker symbol and 𝜑𝜂 , the Coulomb potential generated by spin density 𝐹𝜂 , is defined as follows

𝜑𝜂(𝐱) =
(

1
4𝜋|𝐱|

∗ 𝐹𝜂

)

(𝐱) = 1
4𝜋 ∫ℝ3

1
|𝐱 − 𝐲|

𝐹𝜂(𝐲)d𝐲. (1.10)

It is worth noting that, due to the presence of DDI, the magnetization (or the spin angular momentum) of Eq. (1.8), i.e., (Ψ(⋅, 𝑡)) ∶=
∫ℝ3

∑1
𝑗=−1 𝑗|𝜓𝑗 (𝐱, 𝑡)|

2 d𝐱 is not conserved [32]. Two important invariants are the mass 

 (Ψ(⋅, 𝑡)) = ‖Ψ(⋅, 𝑡)‖2 ∶=
1
∑

𝑗=−1
∫ℝ3

|𝜓𝑗 (𝐱, 𝑡)|2 d𝐱 ≡  (Ψ(⋅, 0)) = 1, 𝑡 ≥ 0, (1.11)

and the energy per particle

(Ψ(⋅, 𝑡)) ∶= ∫ℝ3

[ 1
∑

𝑗=−1
𝜓̄𝑗

(

−∇2

2
+ 𝑉

)

𝜓𝑗 +
𝜆𝑛
2
𝜌2 +

𝜆𝑠
2
|𝐅|2

]

d𝐱 + 𝑉𝑑𝑑 ≡ (Ψ(⋅, 0)), 𝑡 ≥ 0, (1.12)

where |F|2 = 𝐹 2
𝑥 + 𝐹 2

𝑦 + 𝐹 2
𝑧  and the dipolar energy 𝑉𝑑𝑑 is given explicitly

𝑉𝑑𝑑 =
𝜆𝑑
2

∑

𝜂 ∫ℝ3
𝐹𝜂(𝐱)

[

∑

𝜈 ∫ℝ3
𝑈𝜂𝜈 (𝐱 − 𝐱′)𝐹𝜈 (𝐱′) d𝐱′

]

d𝐱.

The ground state, denoted as Φ𝑔 = (𝜙𝑔1 , 𝜙
𝑔
0 , 𝜙

𝑔
−1)

⊤, is defined as minimizer of the energy functional over constraint manifold , that 
is,

Φ𝑔 = argmin
Φ∈

(Φ),  where  ∶= {Φ = (𝜙1, 𝜙0, 𝜙−1)⊤ ∈ (𝐻1
0 (ℝ

3))3|‖Φ‖

2 = 1, (Φ) < ∞}. (1.13)

In fact, there exist 𝜇 = 𝜇𝑔 and Φ = Φ𝑔 satisfying the following Euler-Lagrangian equation 

𝜇Φ =
[

−1
2
∇2 + 𝑉 (𝐱) + 𝜆𝑛𝜌 + 𝜆𝑠F ⋅ f + 𝜆𝑑D ⋅ f

]

Φ ∶= H(Φ), (1.14)

where H(Φ) = (𝐻1,𝐻0,𝐻−1)⊤ and the chemical potential 𝜇 is computed as 𝜇 =
∑1
𝑗=−1 ∫ℝ3 𝜙̄𝑗𝐻𝑗 (Φ)d𝐱. In addition, Eq. (1.14) is actually 

a nonlinear eigenvalue problem for (Φ, 𝜇) under the constraint Eq. (1.11), and therefore, the ground state is the eigenfunction with 
the lowest energy.

Different numerical methods have been developed in the literature to compute the ground state of a single-component BEC. 
Roughly speaking, they can be divided into the minimization methods based on GP energy and eigenvalue solvers based on Euler-
Lagrangian equation. For minimization approach, the ground state is regarded as the solution of a constrained minimization problem, 
and gradient flow based methods and optimization algorithms are the two main popular approaches. The former includes gradient 
flow with discrete normalization (GFDN) [5,7], projected gradient flow (PGF) [7], scalar auxiliary variable approach coupled with a 
penalty term [38], and gradient flow with Lagrange multiplier (GFLM) [23]. The optimization approach includes directly minimizing 
energy functional [11], Sobolev gradient method [14], Riemannian optimization method [15], preconditioned nonlinear conjugate 
gradient method [2] and regularized Newton method [35] etc.

Due to presence of the external potential, all spin component 𝐹𝜂 are smooth and fast decaying, then the DDI computation boils down 
to the evaluation of Coulomb potential which is generated by 𝜕𝜂𝜈𝐹𝜂 . During the last decades, various accurate and fast algorithms, 
starting from the convolution or Fourier integral form, have been proposed, including Nonuniform Fast Fourier transform method 
[18], Gaussian-Sum based method [16], Kernel Truncation Method (KTM) [33] and anisotropic kernel truncation method [17]. All 
such algorithms achieve spectral accuracy and share a FFT-like complexity (𝑀 log𝑀) with 𝑀 being the total number of grid points, 
and have been successfully applied to study various BECs [3,4,9,30,31].

So far as we know, there are few studies on mathematical and numerical study of the ground state for spin-1 dipolar BECs. To 
compute the ground state numerically, the difficulties lie in the proper treatment of the mass constraint Eq. (1.11) and resolving the 
hyperfine spatial structure induced by the anisotropic dipole-dipole interaction and spin effects, which correspondingly requires the 
ground state solver to be accurate enough in space and capable to escape from local minima. The widely-used PGF-based methods 
treat the mass constraint as a Lagrange multiplier, and have been successfully applied to spinor systems [6,10,12,34]. The PGF-based 
method allows for flexible spaital-temporal discretizations and proves to be accurate, efficient and robust, therefore, it stands out 
as a good candidate. As for the computation of dipole-dipole interaction, due to the kernel singularity, convolution non-locality and 
density anisotropy, accurate and fast evaluation of DDI is quite challenging. Classical PDE-based method encounter “accuracy locking” 
phenomenon due to the limited accuracy of boundary condition approximation [9]. Thus, we shall turn to integral-based solver, and, 
among all feasible and efficient algorithms, KTM is the simplest one and has been widely adopted in the physics community [28,29]. 
This motivates us to extend PGF method by integrating KTM, which can be equipped with optimal zero-padding [24] for better 
efficiency and stability, for the DDI evaluation, and we can reasonably expect implementation easiness and excellent performance in 
terms of accuracy and efficiency when computing the ground state.
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The paper is organized as follows. In Section 2, one and two dimensional mean-field equations for cigar and pancake-shaped spin-1 
dipolar Bose-Einstein condensates are derived via a dimension reduction procedure. In Section 3, we propose an efficient and accurate 
numerical method for computing the ground state by integrating KTM into PGF. In Section 4, spatial accuracy and convergence rates 
of the dimension reduction are verified, and detailed ground state results under different potentials from 1D to 3D are reported. 
Finally, some conclusions are drawn in Section 5.

2.  Dimension reduction

In many physical experiments with spin-1 dipolar BECs, the condensates are confined by a strong harmonic trap in one or two axis 
directions, resulting in a pancake- or cigar-shaped BEC, respectively. Mathematically speaking, this corresponds to the anisotropic 
potentials 𝑉𝜀(𝐱) of the following forms:

𝐶𝑎𝑠𝑒 𝐼 (𝑝𝑎𝑛𝑐𝑎𝑘𝑒 − 𝑠ℎ𝑎𝑝𝑒𝑑). The potential is strongly confined in the vertical 𝑧-direction with

𝑉𝜀(𝐱) = 𝑉2𝑑 (𝐱⟂) +
1
𝜀2
𝑉𝑧(

𝑧
𝜀
). (2.1)

𝐶𝑎𝑠𝑒 𝐼𝐼 (𝑐𝑖𝑔𝑎𝑟 − 𝑠ℎ𝑎𝑝𝑒𝑑). The potential is strongly confined in the horizontal 𝐱⟂-plane with

𝑉𝜀(𝐱) = 𝑉1𝑑 (𝑧) +
1
𝜀2
𝑉⟂(

𝐱⟂
𝜀
), (2.2)

where 𝐱 = (𝐱⟂, 𝑧), 𝐱⟂ ∈ ℝ2 and 0 < 𝜀 ≪ 1 is a small parameter describing the confining strength.
Plugging Eqs. (1.9) into (1.8) and noticing (1.10), we can reformulate nonlocal Eq. (1.8) as the following coupled equations

i 𝜕𝑡𝜓1(𝐱, 𝑡) =
(

−∇2

2
+ 𝑉 + 𝜆𝑛𝜌

)

𝜓1 + (𝜆𝑠 − 𝜆𝑑 )
(

𝐹𝑧𝜓1 + 𝐹−𝜓0
)

− 3𝜆𝑑
∑

𝜂

[

𝜓1
(

𝜕𝑧𝜂𝜑𝜂
)

𝑟𝑔 + 1
√

2
𝜓0

(

𝜕𝑥𝜂𝜑𝜂
)

− i
√

2
𝜓0

(

𝜕𝑦𝜂𝜑𝜂
)

]

, (2.3)

i 𝜕𝑡𝜓0(𝐱, 𝑡) =
(

−∇2

2
+ 𝑉 + 𝜆𝑛𝜌

)

𝜓0 +
(

𝜆𝑠 − 𝜆𝑑
)(

𝐹+𝜓1 + 𝐹−𝜓−1
)

− 3𝜆𝑑
∑

𝜂

[(

1
√

2
𝜓1 +

1
√

2
𝜓−1

)

(

𝜕𝑥𝜂𝜑𝜂
)

+

(

i
√

2
𝜓1 −

i
√

2
𝜓−1

)

(

𝜕𝑦𝜂𝜑𝜂
)

]

, (2.4)

i 𝜕𝑡𝜓−1(𝐱, 𝑡) =
(

−∇2

2
+ 𝑉 + 𝜆𝑛𝜌

)

𝜓−1 +
(

𝜆𝑠 − 𝜆𝑑
)(

−𝐹𝑧𝜓−1 + 𝐹+𝜓0
)

− 3𝜆𝑑
∑

𝜂

[

−𝜓−1
(

𝜕𝑧𝜂𝜑𝜂
)

+ 1
√

2
𝜓0

(

𝜕𝑥𝜂𝜑𝜂
)

+ i
√

2
𝜓0

(

𝜕𝑦𝜂𝜑𝜂
)

]

, (2.5)

𝜓𝑗 (𝐱, 0) =𝜓
(0)
𝑗 (𝐱), 𝐱 ∈ ℝ3, 𝑗 = 1, 0,−1.

In such cases, analogous to the dimension-reduction procedure presented in [8], the above Eqs. (2.3)–(2.5) in 3D can be formally 
reduced to two dimensions (2D) and one dimension (1D), respectively.

2.1.  Quasi-2D spin-1 dipolar BEC

In Case I, when 𝜀 → 0+, evolution of the solution Ψ(𝐱, 𝑡) of (2.3)-(2.5) in the 𝑧-direction would essentially occur in the ground 
state mode of 𝐻𝜀

𝑧 ∶= − 1
2 𝜕𝑧𝑧 +

1
𝜀2
𝑉𝑧(

𝑧
𝜀 ), which is spanned by 𝜔1𝑑 (𝑧) = 𝜀−

1
2 𝜋−

1
4 𝑒−

𝑧2

2𝜀2 . We write the factorized wave function as

𝜓𝑗 (𝐱, 𝑡) ≈ 𝜓2𝑑
𝑗 (𝑥, 𝑦, 𝑡)𝜔1𝑑 (𝑧)𝑒

− i𝑡
2𝜀2 , 𝐱 ∈ ℝ3, 𝑡 ≥ 0, 𝑗 = 1, 0,−1. (2.6)

Define Ψ2𝑑 = (𝜓2𝑑
1 , 𝜓2𝑑

0 , 𝜓2𝑑
−1)

⊤, 𝐹 2𝑑
𝜂 = (Ψ2𝑑 )𝖧𝐹𝜂Ψ2𝑑 , 𝐹 2𝑑

± = (𝐹 2𝑑
𝑥 ± i𝐹 2𝑑

𝑦 )∕
√

2, 𝜌2𝑑 =
∑1
𝑗=−1 |𝜓

2𝑑
𝑗 |

2. Plugging (2.13) into (2.3)–(2.5), here 
we take (2.3) as an example for brevity. After multiplying both sides by 𝜔1𝑑 (𝑧) and integrating over the 𝑧 direction, we can obtain a 2D 
wave equation for 𝜓2𝑑

1 . The integration is straightforward for all but the convolution term because ∫ℝ 𝜔2
1𝑑 (𝑧)d𝑧 = 1 and ∫ℝ 𝜔4

1𝑑 (𝑧)d𝑧 =

1∕
√

2𝜋𝜀, in the following we only present the integration of the convolution term
∑

𝜂 ∫

∞

−∞

[

𝜓2𝑑
1 𝜔2

1𝑑
(

𝜕𝑧𝜂𝜑𝜂
)

+ 1
√

2
𝜓2𝑑
0 𝜔2

1𝑑
(

𝜕𝑥𝜂𝜑𝜂
)

− i
√

2
𝜓2𝑑
0 𝜔2

1𝑑
(

𝜕𝑦𝜂𝜑𝜂
)

]

d𝑧. (2.7)

Since the Coulomb kernel 1
4𝜋|𝐱|  happens to be the Green’s function of the Laplace operator in 3D, we use the identity −∇2𝑈3𝑑 (𝐱) = 𝛿(𝐱). 

As 𝑈3𝑑 ∗ (𝐹 2𝑑
𝜂 𝜔2

1𝑑 ) is even in 𝑧, 𝜕𝑧𝜂
(

𝑈3𝑑 ∗ (𝐹 2𝑑
𝜂 𝜔2

1𝑑 )
)

 and 𝜕𝜂𝑧
(

𝑈3𝑑 ∗ (𝐹 2𝑑
𝜂 𝜔2

1𝑑 )
)

 become odd in 𝑧 with 𝜂 = 𝑥, 𝑦, thus Eq. (2.7) becomes

− 1
√

2𝜋𝜀
𝐹 2𝑑
𝑧 𝜓2𝑑

1 − ∫

∞

−∞
𝜓2𝑑
1 𝜔2

1𝑑∇
2
⊥
(

𝑈3𝑑 ∗ (𝐹 2𝑑
𝑧 𝜔2

1𝑑 )
)

d𝑧
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+
∑

𝜂∈{𝑥,𝑦}
∫

∞

−∞
𝜓2𝑑
0 𝜔2

1𝑑

[(

1
√

2
𝜕𝑥𝜂 −

i
√

2
𝜕𝑦𝜂

)

(

𝑈3𝑑 ∗ (𝐹 2𝑑
𝜂 𝜔2

1𝑑 )
)

]

d𝑧, (2.8)

where the 𝜕𝑧𝜂 and 𝜕𝜂𝑧 term disappear because the integral of odd functions vanishes. After expanding the convolution in (2.8) and 
changing the variables for simplification, we get the mean-field equation for the quasi-2D spin-1 dipolar BEC

i 𝜕𝑡𝜓2𝑑
1 =

(

−
∇2
⟂
2

+ 𝑉2𝑑 +
𝜆2𝑑𝑛

√

2𝜋𝜀
𝜌2𝑑

)

𝜓2𝑑
1 +

(

𝜆2𝑑𝑠 − 𝜆2𝑑𝑑
)

√

2𝜋𝜀
𝐹 2𝑑
− 𝜓2𝑑

0 +

(

𝜆2𝑑𝑠 + 2𝜆2𝑑𝑑
)

√

2𝜋𝜀
𝐹 2𝑑
𝑧 𝜓2𝑑

1

+ 3
2
𝜆2𝑑𝑑

[

𝜓2𝑑
1 ∇2

⊥𝜑
2𝑑
𝑧 −

∑

𝜂∈{𝑥,𝑦}
𝜓2𝑑
0

(

1
√

2
𝜕𝑥𝜂 −

i
√

2
𝜕𝑦𝜂

)

𝜑2𝑑
𝜂

]

. (2.9)

Similarly, we have

i 𝜕𝑡𝜓2𝑑
0 =

(

−
∇2
⟂
2

+ 𝑉2𝑑 +
𝜆2𝑑𝑛

√

2𝜋𝜀
𝜌2𝑑

)

𝜓2𝑑
0 +

(

𝐹 2𝑑
+ 𝜓2𝑑

1 + 𝐹 2𝑑
− 𝜓2𝑑

−1
)

(

𝜆2𝑑𝑠 − 𝜆2𝑑𝑑
)

√

2𝜋𝜀

− 3
2
𝜆2𝑑𝑑

∑

𝜂∈{𝑥,𝑦}

[

𝜓2𝑑
1

(

1
√

2
𝜕𝑥𝜂 +

i
√

2
𝜕𝑦𝜂

)

𝜑2𝑑
𝜂 + 𝜓2𝑑

−1

(

1
√

2
𝜕𝑥𝜂 −

i
√

2
𝜕𝑦𝜂

)

𝜑2𝑑
𝜂

]

, (2.10)

i 𝜕𝑡𝜓2𝑑
−1 =

(

−
∇2
⟂
2

+ 𝑉2𝑑 +
𝜆2𝑑𝑛

√

2𝜋𝜀
𝜌2𝑑

)

𝜓2𝑑
−1 +

(

𝜆2𝑑𝑠 − 𝜆2𝑑𝑑
)

√

2𝜋𝜀
𝐹 2𝑑
+ 𝜓2𝑑

0 −

(

𝜆2𝑑𝑠 + 2𝜆2𝑑𝑑
)

√

2𝜋𝜀
𝐹 2𝑑
𝑧 𝜓2𝑑

−1

− 3
2
𝜆2𝑑𝑑

[

𝜓2𝑑
−1∇

2
⊥𝜑

2𝑑
𝑧 +

∑

𝜂∈{𝑥,𝑦}
𝜓2𝑑
0

(

1
√

2
𝜕𝑥𝜂 +

i
√

2
𝜕𝑦𝜂

)

𝜑2𝑑
𝜂

]

, (2.11)

where

𝜑2𝑑
𝜂 = 𝑈2𝑑 ∗ 𝐹 2𝑑

𝜂 , 𝑈2𝑑 (𝑥, 𝑦) =
2

(2𝜋)3∕2 ∫

∞

0

𝑒−
s2
2

√

|𝐱⟂|2 + 𝜀2s2
ds.

The strength of density channel, spin channel and dipole-dipole interaction are scaled as 

𝜆2𝑑𝑛 =
4𝜋𝑁(𝑎0 + 2𝑎2)

3𝑏⟂
, 𝜆2𝑑𝑠 =

4𝜋𝑁(𝑎2 − 𝑎0)
3𝑏⟂

, 𝜆2𝑑𝑑 =
𝜇0(𝑔𝐹𝜇𝐵)2𝑁𝑚

3𝑏⟂ℏ2
, (2.12)

with 𝑏⟂ =
√

ℏ
𝑚𝜔⟂

, 𝜀 =
√

𝜔⟂
𝜔𝑧
. Since the initial data 𝜓 (0)

𝑗  satisfies 𝜓 (0)
𝑗 (𝐱) ≈ 𝜓2𝑑

𝑗 (𝐱⟂)𝜔1𝑑 (𝑧), multiplying by 𝜔1𝑑 (𝑧) and integrating for 𝑧
over ℝ, we get the initial data for the Eqs. (2.9)–(2.11) as

𝜓2𝑑
𝑗 (𝐱⟂, 0) = ∫ℝ

𝜓 (0)
𝑗 (𝐱⟂, 𝑧)𝜔1𝑑 (𝑧) d𝑧, 𝐱⟂ ∈ ℝ2.

Associated to the quasi-2D Eqs. (2.9)–(2.11), the energy is

(Ψ2𝑑 ) ∶=∫ℝ2

{ 1
∑

𝑗=−1
𝜓̄2𝑑
𝑗

(

−
∇2
⟂
2

+ 𝑉2𝑑

)

𝜓2𝑑
𝑗 +

𝜆2𝑑𝑛
√

2𝜋𝜀
𝜌22𝑑 +

𝜆2𝑑𝑠 − 𝜆2𝑑𝑑
√

2𝜋𝜀
|

|

|

𝐅2𝑑 |
|

|

2
+

3𝜆2𝑑𝑑
√

2𝜋𝜀
|

|

|

𝐹 2𝑑
𝑧

|

|

|

2

+3
2
𝜆2𝑑𝑑

[

∇2
⟂𝜑

2𝑑
𝑧 𝐹

2𝑑
𝑧 −

∑

𝜂∈{𝑥,𝑦}

(

𝜕𝑥𝜂𝜑
2𝑑
𝜂 𝐹

2𝑑
𝑥 + 𝜕𝑦𝜂𝜑2𝑑

𝜂 𝐹
2𝑑
𝑦

)

]}

d𝐱⟂.

The ground state Φ𝑔 is defined as
Φ𝑔 = argmin

Φ∈
(Φ),  where  ∶= {Φ = (𝜙1, 𝜙0, 𝜙−1)⊤ ∈ (𝐻1

0 (ℝ
2))3|‖Φ‖

2 = 1, (Φ) < ∞}.

2.2.  Quasi-1D spin-1 dipolar BEC

In Case II, evolution of the solution Ψ(𝐱⟂, 𝑧, 𝑡) of Eqs. (2.3)–(2.5) in the 𝐱⟂-direction would essentially occur in the ground state 
mode of 𝐻𝜀

⟂ ∶= − 1
2Δ⟂ + 1

𝜀2
𝑉⟂(

𝐱⟂
𝜀 ), which is spanned by 𝜔2𝑑 (𝐱⟂) = 𝜀−1𝜋−

1
2 𝑒−

|𝐱⟂ |

2

2𝜀2 . The wave function separates into

𝜓𝑗 (𝐱, 𝑡) ≈ 𝜓1𝑑
𝑗 (𝑧, 𝑡)𝜔2𝑑 (𝐱⟂)𝑒

− i𝑡
𝜀2 , 𝐱 ∈ ℝ3, 𝑡 ≥ 0, 𝑗 = 1, 0,−1. (2.13)

Define Ψ1𝑑 = (𝜓1𝑑
1 , 𝜓1𝑑

0 , 𝜓1𝑑
−1)

⊤, 𝐹 1𝑑
𝜂 = (Ψ1𝑑 )𝖧𝐹𝜂Ψ1𝑑 , 𝐹 1𝑑

± = (𝐹 1𝑑
𝑥 ± i𝐹 1𝑑

𝑦 )∕
√

2, 𝜌1𝑑 =
∑1
𝑗=−1 |𝜓

1𝑑
𝑗 |

2. Plugging (2.6) into (2.3)-(2.5), here 
we take (2.3) as an example for brevity. After multiplying both sides by 𝜔2𝑑 (𝐱⟂) and integrating over the 𝑥 − 𝑦 plane, we can 
obtain an equation in 𝑧 only. The integration is straightforward for all but the convolution term because ∫ℝ2 𝜔2

2𝑑 (𝑥, 𝑦)d𝑥d𝑦 = 1 and 
∫ℝ2 𝜔4

2𝑑 (𝑥, 𝑦)d𝑥d𝑦 = 1∕2𝜋𝜀2, in the following we only present the integration of the convolution term
∑

𝜂 ∫ℝ2

[

𝜓1𝑑
1 𝜔2

2𝑑
(

𝜕𝑧𝜂𝜑𝜂
)

+ 1
√

2
𝜓1𝑑
0 𝜔2

2𝑑
(

𝜕𝑥𝜂𝜑𝜂
)

− i
√

2
𝜓1𝑑
0 𝜔2

2𝑑
(

𝜕𝑦𝜂𝜑𝜂
)

]

d𝑥d𝑦. (2.14)
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We recall the symmetry of 𝑈3𝑑 and 𝜔2𝑑 in 𝑥 and 𝑦, and 𝑈3𝑑 is the Green’s function of the Poisson equation. It is worth noting that 
𝐹 1𝑑
𝜂 𝜔2

2𝑑 is an even function respect to 𝑥 and 𝑦, and so is 𝑈3𝑑 ∗ (𝐹 1𝑑
𝜂 𝜔2

2𝑑 ), which implies that the partial derivatives 𝜕𝑥𝑦, 𝜕𝑥𝑧, 𝜕𝑦𝑧 of 
𝑈3𝑑 ∗ (𝐹 1𝑑

𝜂 𝜔2
2𝑑 ) are odd functions in 𝑥 and 𝑦. Thus Eq. (2.14) becomes

− 1
4𝜋𝜀2

𝜓1𝑑
0 𝐹 1𝑑

− + ∫ℝ2
𝜔2
2𝑑

[

𝜓1𝑑
1 𝜕𝑧𝑧

(

𝑈3𝑑 ∗ (𝐹 1𝑑
𝑧 𝜔2

2𝑑 )
)

− 1
2
𝜓1𝑑
0 𝜕𝑧𝑧

(

𝑈3𝑑 ∗ (𝐹 1𝑑
− 𝜔2

2𝑑 )
)

]

d𝑥d𝑦, (2.15)

because the integral of odd functions vanishes. After expanding the convolution in Eq. (2.15) and changing the variables for simpli-
fication, we get the mean-field equation for a quasi-1D dipolar BEC

i 𝜕𝑡𝜓1𝑑
1 =

(

−1
2
𝜕𝑧𝑧 + 𝑉1𝑑 (𝑧) +

𝜆1𝑑𝑛
2𝜋𝜀2

𝜌1𝑑

)

𝜓1𝑑
1 +

(

𝜆1𝑑𝑠 − 𝜆1𝑑𝑑
)

2𝜋𝜀2
𝐹 1𝑑
𝑧 𝜓1𝑑

1 +

(

2𝜆1𝑑𝑠 + 𝜆1𝑑𝑑
)

4𝜋𝜀2
𝐹 1𝑑
− 𝜓1𝑑

0

− 3
2𝜋
𝜆1𝑑𝑑

(

𝜓1𝑑
1 𝜕𝑧𝑧𝜑

1𝑑
𝑧 − 1

2
𝜓1𝑑
0 𝜕𝑧𝑧𝜑

1𝑑
−

)

. (2.16)

Similarly, we obtain

i 𝜕𝑡𝜓1𝑑
0 =

(

−1
2
𝜕𝑧𝑧 + 𝑉1𝑑 (𝑧) +

𝜆1𝑑𝑛
2𝜋𝜀2

𝜌1𝑑

)

𝜓1𝑑
0 +

(

2𝜆1𝑑𝑠 + 𝜆1𝑑𝑑
)

4𝜋𝜀2
(

𝐹 1𝑑
+ 𝜓1𝑑

1 + 𝐹 1𝑑
− 𝜓1𝑑

−1
)

+ 3
4𝜋
𝜆1𝑑𝑑

(

𝜓1𝑑
1 𝜕𝑧𝑧𝜑

1𝑑
+ + 𝜓1𝑑

−1𝜕𝑧𝑧𝜑
1𝑑
−
)

, (2.17)

i 𝜕𝑡𝜓1𝑑
−1 =

(

−1
2
𝜕𝑧𝑧 + 𝑉1𝑑 (𝑧) +

𝜆1𝑑𝑛
2𝜋𝜀2

𝜌1𝑑

)

𝜓1𝑑
−1 −

(

𝜆1𝑑𝑠 − 𝜆1𝑑𝑑
)

2𝜋𝜀2
𝐹 1𝑑
𝑧 𝜓1𝑑

−1 +

(

2𝜆1𝑑𝑠 + 𝜆1𝑑𝑑
)

4𝜋𝜀2
𝐹 1𝑑
+ 𝜓1𝑑

0

+ 3
2𝜋
𝜆1𝑑𝑑

(

𝜓1𝑑
−1𝜕𝑧𝑧𝜑

1𝑑
𝑧 + 1

2
𝜓1𝑑
0 𝜕𝑧𝑧𝜑

1𝑑
+

)

, (2.18)

where

𝜑1𝑑
𝜈 = 𝑈1𝑑 ∗ 𝐹 1𝑑

𝜈 , 𝜑1𝑑
± = 𝑈1𝑑 ∗ 𝐹 1𝑑

± , 𝑈1𝑑 (𝑧) =
1
4𝜀2 ∫

∞

0

𝑒−
u

2𝜀2
√

𝑧2 + u
du.

The strength of density channel, spin channel and dipole-dipole interaction are scaled as 

𝜆1𝑑𝑛 =
4𝜋𝑁(𝑎0 + 2𝑎2)

3𝑏𝑧
, 𝜆1𝑑𝑠 =

4𝜋𝑁(𝑎2 − 𝑎0)
3𝑏𝑧

, 𝜆1𝑑𝑑 =
𝜇0(𝑔𝐹𝜇𝐵)2𝑁𝑚

3𝑏𝑧ℏ2
, (2.19)

with 𝑏𝑧 =
√

ℏ
𝑚𝜔𝑧

, 𝜀 =
√

𝜔𝑧
𝜔⟂
. Since the initial data 𝜓 (0)

𝑗  satisfies 𝜓 (0)
𝑗 (𝐱) ≈ 𝜓1𝑑

𝑗 (𝑧)𝜔2𝑑 (𝐱⟂), multiplying by 𝜔2𝑑 (𝐱⟂) and integrating for 𝐱⟂
over ℝ2, we get the initial data for the (2.9)-(2.11) as

𝜓1𝑑
𝑗 (𝑧, 0) = ∫ℝ2

𝜓 (0)
𝑗 (𝐱⟂, 𝑧)𝜔2𝑑 (𝐱⟂) d𝐱⟂, 𝑧 ∈ ℝ.

Associated to the quasi-1D (2.9)-(2.11), the energy is

(Ψ1𝑑 ) ∶=∫ℝ

{ 1
∑

𝑗=−1
𝜓̄1𝑑
𝑗

(

−
𝜕𝑧𝑧
2

+ 𝑉1𝑑

)

𝜓1𝑑
𝑗 +

𝜆1𝑑𝑛
2𝜋𝜀2

𝜌21𝑑 +
𝜆1𝑑𝑠 − 𝜆1𝑑𝑑
2𝜋𝜀2

|

|

|

𝐅1𝑑 |
|

|

2
+

3𝜆1𝑑𝑑
2𝜋𝜀2

|

|

|

𝐹 1𝑑
−

|

|

|

2

− 3
2𝜋
𝜆1𝑑𝑑

[

𝜕𝑧𝑧𝜑
1𝑑
𝑧 𝐹

1𝑑
𝑧 − 1

2
∑

𝜂∈{𝑥,𝑦}
𝜕𝑧𝑧𝜑

1𝑑
𝜂 𝐹

1𝑑
𝜂

]}

d𝑧.

The ground state Φ𝑔 is defined as 
Φ𝑔 = argmin

Φ∈
(Φ),  where  ∶= {Φ = (𝜙1, 𝜙0, 𝜙−1)⊤ ∈ (𝐻1

0 (ℝ))
3
|‖Φ‖

2 = 1, (Φ) < ∞}.

3.  Numerical algorithm

In this section, we are inspired by the work in [7] to propose the projected gradient flow (PGF) method as an efficient and accurate 
numerical implementation for computing the ground states of spin-1 dipolar BECs. The basic idea is to evolve the vector wave function 
by iterating a two-step procedure based on a first-order time splitting of the PGF.

3.1.  Projected gradient flow

We first generalize the PGF to the spin-1 dipolar case for Φ(𝐱, 𝑡) = (𝜙1(𝐱, 𝑡), 𝜙0(𝐱, 𝑡), 𝜙−1(𝐱, 𝑡))⊤:

𝜕𝑡𝜙𝑗 (𝐱, 𝑡) = −𝐻𝑗 (Φ) + 𝜇Φ(𝑡)𝜙𝑗 , 𝐱 ∈ ℝ𝑑 , 𝑡 > 0, 𝑗 = 1, 0,−1, (3.1)
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with the initial condition Φ(𝐱, 0) = Φ(0)(𝐱) ∈ . Here, 𝜇Φ(𝑡) is chosen such that the above PGF is mass (or normalization) conservative, 
it can be computed as

𝜇Φ(𝑡) =
𝑃Φ(𝑡)
𝑁Φ(𝑡)

, (3.2)

with

𝑁Φ(𝑡) =
1
∑

𝑗=−1
∫ℝ𝑑

𝜙̄𝑗𝜙𝑗d𝐱, 𝑃Φ(𝑡) =
1
∑

𝑗=−1
∫ℝ𝑑

𝜙̄𝑗𝐻𝑗 (Φ)d𝐱. (3.3)

It is easy to show that the PGF Eq. (3.1) is mass-conservative and energy-diminishing:
Proposition 3.1. For a given initial data Φ(𝐱, 𝑡 = 0) = Φ(0)(𝐱) ∈ , if the solution Φ(⋅, 𝑡) of the PGF Eq. (3.1) has at least one nonzero 
components for all 𝑡 ≥ 0, then 
 (Φ(⋅, 𝑡)) ≡ 1, (Φ(⋅, 𝑡)) ≤ (Φ(⋅, 𝑠)), ∀𝑡 ≥ 𝑠 ≥ 0.

Proof.  Using Eqs. (3.1)–(3.3), a direct calculation shows that

d
d𝑡
 (Φ(⋅, 𝑡)) = 2

1
∑

𝑗=−1
Re∫ℝ𝑑

𝜙𝑗𝜕𝑡𝜙𝑗d𝐱 = 2
(

−𝑃Φ(𝑡) +𝑁Φ(𝑡) ⋅ 𝜇Φ(𝑡)
)

= 0, (3.4)

so that the total mass is conserved. Further, from Eqs. (3.1) and (3.4), we have

d
d𝑡
(Φ(⋅, 𝑡)) = 2

1
∑

𝑗=−1
Re∫ℝ𝑑

𝛿(Φ)
𝛿𝜙𝑗

𝜕𝑡𝜙𝑗d𝐱 = 2
1
∑

𝑗=−1
Re∫ℝ𝑑

𝐻𝑗 (Φ)𝜕𝑡𝜙𝑗d𝐱

= 2
1
∑

𝑗=−1
Re∫ℝ𝑑

(𝐻𝑗 (Φ) − 𝜇Φ(𝑡)𝜙𝑗 )𝜕𝑡𝜙𝑗d𝐱

= −2
1
∑

𝑗=−1
∫ℝ𝑑

(𝐻𝑗 (Φ) − 𝜇Φ(𝑡)𝜙𝑗 )(𝐻𝑗 (Φ) − 𝜇Φ(𝑡)𝜙𝑗 )d𝐱 ≤ 0,

which implies the energy-diminishing property. ∎
Similar to the PGF for spin-1 cases [12], it is possible to design a suitable full discretization scheme for Eq. (3.1) in general spin-1 
dipolar cases to obtain the mass-conservation and energy-diminishing property in the discretized level. However, in such a scheme, 
the nonlinear terms must be discretized in very special ways, and thus a fully nonlinear system has to be solved at each time step. 
This is a little tedious from a computational point of view.

3.2.  Semi-discretization in time

Let 𝑡𝑛 = 𝑛𝜏 for 𝑛 = 0, 1, 2,… with 𝜏 > 0 a given time step length. Denoting Φ𝑛 = (𝜙𝑛1, 𝜙
𝑛
0, 𝜙

𝑛
−1)

⊤(𝑛 = 1, 2,…) as the numerical approx-
imation of the solution Φ(⋅, 𝑡𝑛) of the PGF Eq. (3.1), we compute Φ𝑛+1 from Φ𝑛 via the following two-step procedure:

Step 1: Evolution. Starting at Φ(⋅, 𝑡𝑛) = Φ𝑛, over the time interval [𝑡𝑛, 𝑡𝑛+1], the chemical potential 𝜇Φ𝑛 = 𝜇Φ(𝑡𝑛) is explicitly given 
in Eq. (3.2). For efficiency and simplicity, we adopt the following backward-forward Euler scheme:

𝜙∗
1 − 𝜙

𝑛
1

𝜏
= 1

2
∇2𝜙∗

1 −
(

𝑉 + 𝜆𝑛𝜌𝑛 + 𝜆𝑠𝐹 𝑛𝑧 + 𝜆𝑑𝐷𝑛
𝑧
)

𝜙𝑛1 − (𝜆𝑠𝐹 𝑛− + 𝜆𝑑𝐷𝑛
−)𝜙

𝑛
0 + 𝜇Φ𝑛𝜙

𝑛
1, (3.5)

𝜙∗
0 − 𝜙

𝑛
0

𝜏
= 1

2
∇2𝜙∗

0 −
(

𝑉 + 𝜆𝑛𝜌𝑛
)

𝜙𝑛0 − (𝜆𝑠𝐹 𝑛+ + 𝜆𝑑𝐷𝑛
+)𝜙

𝑛
1 − (𝜆𝑠𝐹 𝑛− + 𝜆𝑑𝐷𝑛

−)𝜙
𝑛
−1 + 𝜇Φ𝑛𝜙

𝑛
0, (3.6)

𝜙∗
−1 − 𝜙

𝑛
−1

𝜏
= 1

2
∇2𝜙∗

−1 −
(

𝑉 + 𝜆𝑛𝜌𝑛 − 𝜆𝑠𝐹 𝑛𝑧 − 𝜆𝑑𝐷𝑛
𝑧
)

𝜙𝑛−1 − (𝜆𝑠𝐹 𝑛+ + 𝜆𝑑𝐷𝑛
+)𝜙

𝑛
0 + 𝜇Φ𝑛𝜙

𝑛
−1. (3.7)

Step 2: Projection. Choose projection constants 𝜎𝑛𝑗 (𝑗 = 1, 0,−1) to define
Φ𝑛+1 ∶= diag(𝜎𝑛1 , 𝜎

𝑛
0 , 𝜎

𝑛
−1)Φ

∗. (3.8)

Here the projection constants 𝜎𝑛𝑗 (𝑗 = −1, 0, 1) are chosen such that the mass constraint Eq. (1.11) is exactly satisfied at Φ𝑛+1, i.e., 
 (Φ𝑛+1) = ‖Φ(⋅, 𝑡𝑛+1)‖2 = 1. Combining Eq. (3.8), we obtain

1
∑

𝑗=−1
(𝜎𝑛𝑗 )

2
‖𝜙∗

𝑗 ‖
2 = 1. (3.9)

There are three unknowns and only one equation in the above nonlinear system, so the solution is still undetermined. In order to 
determine the projection constants 𝜎𝑛𝑗  uniquely, we need to find additional equations. Analogous to [10], based on the fact that the 
chemical potentials are the same, we propose to use the following equations as the normalization condition (see details in Appendix B):

𝜎𝑛1 = 𝜎𝑛0 = 𝜎𝑛−1. (3.10)
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Solving the nonlinear system Eqs. (3.9) and (3.10), we get explicitly the projection constants as

𝜎𝑛1 = 𝜎𝑛0 = 𝜎𝑛−1 =
(

‖𝜙∗
1‖

2 + ‖𝜙∗
0‖

2 + ‖𝜙∗
−1‖

2)−
1
2 . (3.11)

The practical stopping criterion
‖Φ𝑛+1 − Φ𝑛

‖

𝜏
≤ 𝜀tol, (3.12)

where the tolerance 𝜀tol is a small parameter. It is clear that Eqs. (3.5)–(3.7) together with the stopping criterion Eq. (3.12) correctly 
captures the Euler-Lagrange Eq. (1.14).

3.3.  Spatial discretization by Fourier spectral method

Due to the external trapping potential, the wave function Φ decays exponentially fast at the far field. Therefore, we can reasonably 
truncate the whole space ℝ𝑑 into a bounded rectangular domain Ω and impose periodic boundary conditions on the wave function. 
Then we can readily apply the Fourier pseudo-spectral method for spatial discretization in this section. We choose Ω = [−𝐿,𝐿]𝑑 with 
uniform mesh size ℎ = 2𝐿∕𝑀 , where 𝑀 is an even number. Define the following sets of indices and grids points

𝑑𝑀 =
{

(𝓁1,𝓁2,… ,𝓁𝑑 ) ∈ ℤ𝑑 |0 ≤ 𝓁𝑗 ≤𝑀 − 1, 𝑗 = 1,… , 𝑑
}

,

𝑑𝑀 =
{

(𝑘1, 𝑘2,… , 𝑘𝑑 ) ∈ ℤ𝑑 | −𝑀∕2 ≤ 𝑘𝑗 ≤𝑀∕2 − 1, 𝑗 = 1,… , 𝑑
}

,

 𝑑
𝑀 =

{

(𝑥1, 𝑥2,… , 𝑥𝑑 )|𝑥𝑗 = −𝐿 + 𝓁𝑗ℎ, (𝓁1,𝓁2,… ,𝓁𝑑 ) ∈ 𝑑𝑀
}

.

For the sake of simplicity, we take 3D Fourier spectral method as an example and introduce the Fourier basis functions as 

𝑊𝐤(𝐱) ∶=
∏

𝜈=𝑥,𝑦,𝑧
𝑒i𝑣

𝜈
𝑘𝜈

(𝜈+𝐿), 𝐤 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ∈ 3
𝑀 ,

with 𝑣𝜈𝑘𝜈 = 𝜋𝑘𝜈∕𝐿. The Fourier pseudo-spectral approximation of the wave function 𝜙𝑗 (𝑗 = 1, 0,−1) as well as its derivatives at 𝐱𝑚𝑛𝑙 ∈
 3
𝑀  are respectively given by

𝜙𝑗 (𝐱𝑚𝑛𝑙) ≈ 𝜙𝑗 (𝐱𝑚𝑛𝑙) ∶=
∑

𝐤∈3𝑀

(𝜙𝑗 )𝐤𝑊𝐤(𝐱𝑚𝑛𝑙), (𝑚, 𝑛, 𝑙) ∈ 3
𝑀 ,

𝜕𝜈𝜙𝑗 (𝐱𝑚𝑛𝑙) ≈ [[𝜕𝜈 ]]𝜙𝑗 (𝐱𝑚𝑛𝑙) ∶=
∑

𝐤∈3𝑀

(i 𝑣𝜈𝑘𝜈 )(̂𝜙𝑗 )𝐤𝑊𝐤(𝐱𝑚𝑛𝑙),

𝜕𝜂𝜈𝜙𝑗 (𝐱𝑚𝑛𝑙) ≈ [[𝜕𝜂𝜈 ]]𝜙𝑗 (𝐱𝑚𝑛𝑙) ∶= −
∑

𝐤∈3𝑀

(𝑣𝜂𝑘𝜂 )(𝑣
𝜈
𝑘𝜈
)(̂𝜙𝑗 )𝐤𝑊𝐤(𝐱𝑚𝑛𝑙), 𝜂, 𝜈 = 𝑥, 𝑦, 𝑧,

where the discrete Fourier coefficients (𝜙𝑗 )𝐤 are given by 

(𝜙𝑗 )𝐤 = 1
𝑀3

∑

(𝑚,𝑛,𝑙)∈3
𝑀

𝜙𝑗 (𝐱𝑚𝑛𝑙)𝑊 𝐤(𝐱𝑚𝑛𝑙).

Meanwhile, we also need operators [[∇]] ∶= ([[𝜕𝑥]], [[𝜕𝑦]], [[𝜕𝑧]])⊤ and [[Δ]] ∶= [[𝜕2𝑥]] + [[𝜕2𝑦 ]] + [[𝜕2𝑧 ]], which are applied to the approximation 
𝜙𝑗 of 𝜙𝑗 :

∇𝜙𝑗 (𝐱𝑚𝑛𝑙) ≈ [[∇]]𝜙𝑗 (𝐱𝑚𝑛𝑙), Δ𝜙𝑗 (𝐱𝑚𝑛𝑙) ≈ [[Δ]]𝜙𝑗 (𝐱𝑚𝑛𝑙), (𝑚, 𝑛, 𝑙) ∈ 3
𝑀 .

To simplify the presentation, we drop the notation “[[]]" in the above-mentioned operators.

3.4.  Fast computation of the effective dipolar field

The kernel truncation method (KTM) is a commonly-used algorithm to compute the convolution-type nonlocal potential [3]. Since 
the wave function decays exponentially fast at the far field, we assume that the spin component 𝐹𝜂(𝜂 = 𝑥, 𝑦, 𝑧) is compactly supported 
in 𝐑𝐿 ∶= [−𝐿,𝐿]𝑑 . For simplicity of implementation, we compute the ground states Φ and the DDI 𝜑𝜂 on the same domain and 
uniform mesh grid. The nonlocal potential can be computed as

𝜑𝜂(𝐱) = ∫ℝ𝑑
𝑈 (𝐱 − 𝐲)𝐹𝜂(𝐲)d𝐲 = ∫𝐑𝐿

𝑈 (𝐱 − 𝐲)𝐹𝜂(𝐲)d𝐲

= ∫𝐱+𝐑𝐿
𝑈 (𝐲)𝐹𝜂(𝐱 − 𝐲)d𝐲 = ∫𝐺

𝑈 (𝐲)𝐹𝜂(𝐱 − 𝐲)d𝐲, 𝐱 ∈ 𝐑𝐿, (3.13)

where 𝐺 is a ball centered at the origin with radius 𝐺 ∶= max𝐱,𝐲∈𝐑𝐿 |𝐱 − 𝐲| = 2
√

𝑑𝐿 being the diameter of 𝐑𝐿. To compute Eq. (3.13), 
one needs to approximate the spin component 𝐹𝜂(𝐱) on domain 𝐑ess ∶= 𝐑(2

√

𝑑+1)𝐿 because 𝐱 − 𝐲 ∈ 𝐑(2
√

𝑑+1)𝐿 for any 𝐱 ∈ 𝐑𝐿 and 
𝐲 ∈ 𝐺. It is natural to extend the function 𝐹𝜂(𝐱) to 𝐑ess by zero-padding and apply the Fourier spectral method therein. In fact, 
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by utilizing periodicity of Fourier series [24], we only need to zero-pad to domain 𝐑𝑆𝐿 with 𝑆 = ⌈

√

𝑑 + 1⌉ (rounding up of 
√

𝑑 + 1
to nearest integer), which significantly alleviates the memory/computational costs compared to the original fourfold zero-padding 
version [33].

On domain 𝐑𝑆𝐿, the spin component 𝐹𝜂(𝐱) is well resolved by the following finite Fourier series

𝐹𝜂(𝐱) ≈ (𝐹𝜂)𝑀 (𝐱) ∶=
∑

𝐤∈𝑑𝑆𝑀

𝐹𝜂(𝐤)𝑒
i 𝜋𝐤𝑆𝐿 ⋅𝐱 , 𝐱 ∈ 𝐑𝑆𝐿,

and the Fourier coefficients are well approximated as follows

𝐹𝜂(𝐤) =
1

(𝑆𝑀)𝑑
∑

𝐱𝐩∈ 𝑑𝑆𝑀

𝐹𝜂(𝐱𝐩)𝑒
−i 𝜋𝐤𝑆𝐿 ⋅𝐱𝐩 , 𝐤 ∈ 𝑑𝑆𝑀 .

Substituting the Fourier series approximation (𝐹𝜂)𝑀  for 𝐹𝜂 in Eq. (3.13), we obtain

𝜑𝜂(𝐱) ≈ ∫𝐺
𝑈 (𝐲)(𝐹𝜂)𝑀 (𝐱 − 𝐲)d𝐲 =

∑

𝐤∈𝑑𝑆𝑀

(

∫𝐺
𝑈 (𝐲)𝑒−i

𝜋𝐤
𝑆𝐿 ⋅𝐲d𝐲

)

𝐹𝜂 𝑒
i 𝜋𝐤𝑆𝐿 ⋅𝐱

∶=
∑

𝐤∈𝑑𝑆𝑀

𝑈𝐺(𝐤)𝐹𝜂 𝑒
i 𝜋𝐤𝑆𝐿 ⋅𝐱 , 𝐱 ∈ 𝐑𝐿, (3.14)

where 𝑈𝐺(𝐤), Fourier transform of the truncated kernel, is defined as

𝑈𝐺(𝐤) ∶= ∫𝐺
𝑈 (𝐲)𝑒−i

𝜋𝐤
𝑆𝐿 ⋅𝐲d𝐲.

When the density manifests strong anisotropic property, that is, the wave function is compactly supported in an anisotropic rectangle 
𝐑𝜸
𝐿 ∶= Π𝑑𝑗=1[−𝐿𝛾𝑗 , 𝐿𝛾𝑗 ]

𝑑 with 𝜸 = (𝛾1,… , 𝛾𝑑 ) ∈ ℝ𝑑 being the anisotropic vector, the practical optimal zero-padding factor along the 
𝑗th direction reads as 

𝑆𝑗 =
⌈

1 + 𝛾−1𝑗
√

1 + 𝛾22 +…+ 𝛾2𝑑

⌉

. (3.15)

As pointed out in [24,33,37], the above algorithm can be written as a discrete convolution of an effective 𝑑-dimensional tensor 
and spin component grid values. Taking the 3D case as an example, we derive the following discrete convolution reformulation

𝜑𝜂(𝑥𝑚, 𝑦𝑛, 𝑧𝑙) =
∑

(𝑚′ ,𝑛′ ,𝑙′)∈3𝑀

𝑇𝑚−𝑚′ ,𝑛−𝑛′ ,𝑙−𝑙′ (𝐹𝜂)𝑚′ ,𝑛′ ,𝑙′ ,

where the convolution tensor 𝑇𝑚,𝑛,𝑙 is given explicitly as

𝑇𝑚,𝑛,𝑙 =
1

(𝑆𝑀)3
∑

(𝑘𝑥 ,𝑘𝑦 ,𝑘𝑧)∈3𝑆𝑀

𝑈𝐺
(

𝑘𝑥, 𝑘𝑦, 𝑘𝑧
)

𝑒
2𝜋i
𝑆𝑀 (𝑘𝑥𝑚+𝑘𝑦𝑛+𝑘𝑧𝑙), (𝑚, 𝑛, 𝑙) ∈ 3

2𝑀 ,

and it can be computed by applying the inverse discrete Fourier transform of vector {𝑈𝐺(𝐤),𝐤 ∈ 3
𝑆𝑀} ⊂ ℂ(𝑆𝑀)3 . For the anisotropic 

case, a very similar convolution structure can be derived following the same procedure. The tensor generation depends on the total 
zero-padding factor 𝑆t = 𝑆1𝑆2𝑆3 and it requires (𝑆t𝑀3 log(𝑆t𝑀3)) float operations

It is worthwhile to point out that KTM applies readily once the Fourier transform of the truncated kernel is available analytically 
or numerically. For example, the effective 1D/2D convolution kernel that is derived from dimension reduction reads as follows

𝑈1𝑑 (𝑧) =

√

𝜋

2
√

2𝜀
𝑒
𝑧2

2𝜀2 erfc(
|𝑧|
√

2𝜀
), 𝑈2𝑑 (𝑟) =

1
𝜀(2𝜋)3∕2

𝑒
𝑟2

4𝜀2 𝐾0(
𝑟2

4𝜀2
), 𝑟 = |𝐱⟂|,

where erfc(𝑥) = 2
√

𝜋
∫ ∞
𝑥 𝑒−𝑡2d𝑡 is the complementary error function and 𝐾0(𝑥) is the modified Bessel function of the second-kind.

The Fourier transform of truncated kernel

(̂𝑈1𝑑 )𝐺(𝑘) = 2∫

𝐺

0
𝑈1𝑑 (𝑧)cos(𝑘𝑧) d𝑧, (̂𝑈2𝑑 )𝐺(𝑘) = 2𝜋 ∫

𝐺

0
𝑈2𝑑 (𝑟)𝐽0(𝑘𝑟)𝑟 d𝑟, 𝑘 ∈ ℝ,

where 𝐽0 is Bessel function of the first-kind with index 0, can be evaluated via adaptive Gauss-Kronrod quadrature. The above method 
is readily applied to nonlocal potential generated by such kernel accurately (up to machine precision) with optimal efficiency achieved 
with FFT.

4.  Numerical results

In this section, we apply the PGF-KTM method Eqs. (3.5)–(3.8) to compute the ground states of spin-1 dipolar BECs from 1D to 3D 
with different potentials. Two different kinds of interactions, i.e., anti-ferromagnetic and ferromagnetic interactions, are considered. 
We fix the total number of atoms in the condensate 𝑁 = 104 and list the mass 𝑚 and the s-wave scattering length with the total spin 
0 and 2 channels, i.e., 𝑎0, 𝑎2 as follows [19,32,36]:
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• Case I (Anti-ferromagnetic): 23Na with 𝑚 = 3.816 × 10−26[kg], 𝑎0 = 2.646[nm], 𝑎2 = 2.911[nm].
• Case II (Ferromagnetic): 87Rb with 𝑚 = 1.443 × 10−25[kg], 𝑎0 = 5.387[nm], 𝑎2 = 5.313[nm].

To compute the ground state, there are six commonly-used initial guesses for each component listed as follows

(𝑎)𝜙𝑎(𝐱) =
1

𝜋𝑑∕4
𝑒−

|𝐱|2
2 , (𝑏)𝜙𝑏(𝐱) = (𝑥 + i 𝑦)𝜙𝑎(𝐱), (𝑏̄)𝜙𝑏̄(𝐱) = 𝜙̄𝑏(𝐱),

(𝑐)𝜙𝑐 (𝐱) =
𝜙𝑎(𝐱) + 𝜙𝑏(𝐱)

‖

‖

𝜙𝑎(𝐱) + 𝜙𝑏(𝐱)‖‖
, (𝑐)𝜙𝑐(𝐱) = 𝜙𝑐 (𝐱), (𝑑)𝜙𝑑 (𝐱) =

𝜙TF𝑔 (𝐱)
‖

‖

‖

𝜙TF𝑔 (𝐱)‖‖
‖

,

where

𝜙TF𝑔 (𝐱) =
{√

(𝜇TF𝑔 − 𝑉 (𝐱))∕𝜆𝑛, 𝑉 (𝐱) < 𝜇TF𝑔 ,
0, otherwise,

with 𝜇TF𝑔 = 1
2

⎧

⎪

⎨

⎪

⎩

(3𝜆𝑛𝛾𝑥)2∕3, 𝑑 = 1,
(4𝜆𝑛𝛾𝑥𝛾𝑦)1∕2, 𝑑 = 2,
(15𝜆𝑛𝛾𝑥𝛾𝑦𝛾𝑧∕4𝜋)2∕5, 𝑑 = 3.

In computational practice, the initial datum are chosen as Φ0 = (𝜙0
1, 𝜙

0
0, 𝜙

0
−1)

⊤∕
√

3 where 𝜙0
1, 𝜙

0
0 and 𝜙0

−1 are chosen independently 
from the above six types. The numerical ground state is selected as the one with the lowest energy. In all computations, the time step 
is taken as 𝜏 = 0.1, the ground state is reached when the stopping criterion Eq. (3.12) is satisfied with 𝜀tol = 10−12 by default and the 
mesh size is taken as ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = 1∕16 uniformly unless otherwise specified.

4.1.  Accuracy confirmation

Here, we investigate the spatial accuracy of our numerical method for the 3D, 2D and 1D cases. Let Φ𝑔 = (𝜙𝑔1 , 𝜙
𝑔
0 , 𝜙

𝑔
−1)

⊤ be the 
numerical “exact” solution obtained with a very fine mesh ℎ = 1∕16, and Φℎ

𝑔  be the numerical solution obtained with mesh size ℎ. 
Denote the energy and chemical potential as 𝐸𝑔 ∶= (Φ𝑔) and 𝜇𝑔 ∶= 𝜇(Φ𝑔) respectively. We use the following relative 𝑙2 norm to 
measure the error of the ground state:

𝑒ℎ ∶= ‖

‖

‖

Φ𝑔 − Φℎ
𝑔
‖

‖

‖𝑙2
∕‖‖
‖

Φ𝑔
‖

‖

‖𝑙2
.

Example 1  (3D Case). We investigate the spatial accuracy when computing the 3D ground states with the corresponding physi-
cal trapping frequencies 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑧 = 2𝜋 × 200[Hz] and harmonic potential 𝑉 (𝐱) = 1

2 (𝑥
2 + 𝑦2 + 𝑧2) for both anti-ferromagnetic and 

ferromagnetic cases, and the detailed parameters are listed below:
• Case I (Anti-ferromagnetic): 23Na with parameters 𝜆𝑛 = 239.2, 𝜆𝑠 = 7.485, 𝜆𝑑 = 20.84.
• Case II (Ferromagnetic): 87Rb with parameters 𝜆𝑛 = 879.6, 𝜆𝑠 = −4.065, 𝜆𝑑 = 15.32.

The computational domain is chosen as Ω = [−8, 8]3. Table 1 lists the numerical errors of the ground states for Case I and Case 
II. The energy and chemical potential are computed as 𝐸𝑔 = 3.7810, 𝜇𝑔 = 5.0528 in Case I; 𝐸𝑔 = 6.0035, 𝜇𝑔 = 8.2367 in Case II.

From Table 1, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate 
in 3D.
Example 2  (2D Case). We investigate the spatial accuracy when computing the 2D ground states with the corresponding physi-
cal trapping frequencies 𝜔𝑧 = 2𝜋 × 400[Hz], 𝜔𝑥 = 𝜔𝑦 = 2𝜋 × 20[Hz], 𝜀 = 1

√

20
 and harmonic potential 𝑉 (𝐱) = 1

2 (𝑥
2 + 𝑦2) for both anti-

ferromagnetic and ferromagnetic cases, and the detailed parameters Eq. (2.12) are listed below:
• Case I (Anti-ferromagnetic): 23Na with parameters 𝜆𝑛 = 75.64, 𝜆𝑠 = 2.367, 𝜆𝑑 = 6.59.
• Case II (Ferromagnetic): 87Rb with parameters 𝜆𝑛 = 278.1, 𝜆𝑠 = −1.285, 𝜆𝑑 = 4.846.

The computational domain is chosen as Ω = [−16, 16]2. Table 2 lists the numerical errors of the ground states for Case I and Case 
II. The energy and chemical potential are computed as 𝐸𝑔 = 4.5350, 𝜇𝑔 = 6.6591 in Case I; 𝐸𝑔 = 8.4545, 𝜇𝑔 = 12.5916 in Case II.

From Table 2, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate 
in 2D.

Table 1 
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 1.

ℎ 2 1 1∕2 1∕4 1∕8

𝑒ℎ  8.5644E-02  6.3392E-03  8.5396E-05  3.7590E-09  7.8352E-13
 Case I |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 2.7659E-03  8.6502E-05  6.8430E-08  9.6539E-13  2.0679E-15
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 6.2835E-03  4.9762E-05  6.3772E-07  7.5296E-12  1.9822E-15
𝑒ℎ  9.2201E-02  6.9257E-03  7.4391E-05  2.4690E-08  3.8746E-13

 Case II |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 5.9260E-03  3.9021E-06  8.9972E-09  7.1027E-12  9.2129E-16
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 9.6259E-03  4.8910E-05  3.2785E-08  6.2590E-12  2.8749E-15
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Table 2 
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 2.

ℎ 2 1 1∕2 1∕4 1∕8

𝑒ℎ  3.8357E-02  2.5048E-03  1.5180E-05  5.4849E-10  9.2324E-14
 Case I |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 1.5239E-03  7.8268E-05  5.8376E-08  2.6208E-12  1.8255E-15
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 2.4872E-03  8.8263E-05  7.6729E-08  5.5294E-12  3.6254E-15
𝑒ℎ  9.7937E-02  1.6820E-03  2.9247E-05  2.5051E-09  2.3508E-14

 Case II |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 7.3638E-03  4.7629E-05  8.6209E-08  6.2096E-13  2.2054E-15
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 2.6753E-03  3.6764E-05  8.8759E-09  7.6729E-13  1.6283E-15

Table 3 
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 3.

ℎ 2 1 1∕2 1∕4 1∕8

𝑒ℎ  2.8220E-01  8.8722E-03  1.7702E-05  2.6490E-10  6.2864E-14
 Case I |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 4.2706E-03  9.3206E-05  6.9822E-07  3.4479E-12  1.0209E-15
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 2.0688E-03  1.7020E-04  2.0024E-07  8.9012E-13  3.8209E-15
𝑒ℎ  9.9287E-02  4.7821E-03  7.0982E-05  1.6760E-09  5.8202E-14

 Case II |

|

|

𝐸𝑔 − 𝐸(Φℎ
𝑔 )
|

|

|

 2.9931E-03  9.0226E-06  8.0124E-08  6.0281E-13  4.9011E-15
|

|

|

𝜇𝑔 − 𝜇(Φℎ
𝑔 )
|

|

|

 1.0926E-02  1.7201E-05  2.0271E-07  7.4331E-13  9.8217E-16

Example 3  (1D Case). We investigate the spatial accuracy when computing the 1D ground states with the corresponding 
physical trapping frequencies 𝜔𝑥 = 𝜔𝑦 = 2𝜋 × 400[Hz], 𝜔𝑧 = 2𝜋 × 8[Hz], 𝜀 = 1

√

50
 and harmonic potential 𝑉 (𝑥) = 𝑥2∕2 for both anti-

ferromagnetic and ferromagnetic cases, and the detailed parameters (2.12) are listed below:
• Case I (Anti-ferromagnetic): 23Na with parameters 𝜆𝑛 = 47.839, 𝜆𝑠 = 1.497, 𝜆𝑑 = 4.168.
• Case II (Ferromagnetic): 87Rb with parameters 𝜆𝑛 = 175.886, 𝜆𝑠 = −8.127, 𝜆𝑑 = 3.065.

The computational domain is chosen as Ω = [−16, 16]. Table 3 lists the numerical errors of the ground states for Case I and Case II. 
The energy and chemical potential are computed as 𝐸𝑔 = 20.6681, 𝜇𝑔 = 34.4236 in Case I; 𝐸𝑔 = 47.9598, 𝜇𝑔 = 79.9218 in Case II.

From Table 3, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate 
in 1D.

4.2.  Dimension reduction verification

We apply the efficient and accurate numerical method presented in the previous section to confirm numerically convergence and 
identify convergence rates of the dimension reduction in Section 2. Also, we investigate for both two cases, i.e., anti-ferromagnetic 
(Case I) and ferromagnetic (Case II), whose details are the same as Example 1. The presence of strongly anisotropic confining potential 
will produce anisotropic ground state, and we present isosurface plots of the density function for different 𝜀𝜈 which describes the 
confining strength in the 𝜈-direction (𝜈 = 𝑥, 𝑦, 𝑧) respectively in Fig. 1.

Firstly, we consider the dimension reduction from 3D to quasi-2D nonlocal GPEs in terms of ground state. In order to do so, we 
take the external potential for the 3D nonlocal GPEs (2.3)-(2.5) as

𝑉𝑧(𝑧) =
𝑧2

2
, 𝑉2𝑑 (𝑥, 𝑦) =

1
2
(𝑥2 + 𝑦2), 𝑉𝜀(𝑥, 𝑦, 𝑧) =

1
2
(𝑥2 + 𝑦2 + 𝑧2

𝜀4
). (4.1)

Denote Φ𝑔 ∶= Φ𝑔(𝑥, 𝑦, 𝑧) as the ground state of the 3D GPEs (2.3)-(2.5), which are computed 𝐑𝜀 = [−12, 12]2 × [−12𝜀, 12𝜀] with mesh 
sizes ℎ𝑥 = ℎ𝑦 = 1∕16, ℎ𝑧 = 𝜀∕16. Let Φ2𝑑

𝑔 ∶= Φ2𝑑
𝑔 (𝑥, 𝑦) be the ground state of quasi-2D nonlocal GPEs, which are computed on Ω =

[−12, 12]2 with ℎ𝑥 = ℎ𝑦 = 1∕16. Define 𝜒(𝑧) = [∫ℝ2 |Φ𝑔(𝑥, 𝑦, 𝑧)|2d𝑥d𝑦]1∕2 as the projections of Φ𝑔 over 𝑧-axis.
Table 4 lists errors of ‖Φ𝑔 − Φ2𝑑

𝑔 𝜔1𝑑 (𝑧)‖𝑙2  and ‖𝜒 − 𝜔1𝑑‖𝑙2 , which demonstrates convergence rates from 3D to quasi-2D nonlocal 
GPEs in terms of ground states for different 𝜀. From Table 4, we can draw the following conclusions: when the harmonic potential is 
strongly confined in 𝑧-direction, the 3D GPEs converges cubically to the quasi-2D GPEs in terms of 𝜀, which is exactly the same as 
that in [25] when 𝜀→ 0. Based on these observations, if one wants to consider the dynamics of electrons trapped in the plane through 
confinement, quasi-2D nonlocal GPEs is an good approximate 2D model.

Then, we apply our method to numerically identify convergence rates of the dimension reduction from 3D to quasi-1D nonlocal 
GPEs in terms of ground state. In order to do so, we take the external potential for the 3D nonlocal GPEs (2.3)-(2.5) as 

𝑉𝑧(𝑧) =
𝑧2

2
, 𝑉2𝑑 (𝑥, 𝑦) =

1
2
(𝑥2 + 𝑦2), 𝑉𝜀(𝑥, 𝑦, 𝑧) =

1
2
(𝑧2 +

𝑥2 + 𝑦2

𝜀4
). (4.2)

The ground state of the 3D GPEs (2.3)-(2.5) are computed numerically on a computational domain 𝐑𝜀 = [−12𝜀, 12𝜀]2 × [−12, 12] with 
mesh sizes ℎ𝑥 = ℎ𝑦 = 𝜀∕16, ℎ𝑧 = 1∕16. Let Φ1𝑑

𝑔 ∶= Φ1𝑑
𝑔 (𝑧) be the ground state of the quasi-1D GPEs, which are computed numerically 

on Ω = [−12, 12] with mesh size ℎ𝑧 = 1∕16.
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Fig. 1. Isosurface plots of |Φ𝑔(𝐱)|2 = 0.001 for different 𝜀𝜈 in Case II with fixed 𝜀𝑥 = 𝜀𝑦 = 1 (top row) and 𝜀𝑧 = 1∕
√

160, 𝜀𝑦 = 1 (bottom row).

Fig. 2. The densities of ground states in Case I (left) and Case II (right) for Example 4.

Fig. 3. Contour plots of densities in Case I (top row) and Case II (bottom row) for optical lattice potential in Example 5.
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Table 4 
Convergence from 3D to quasi-2D GPEs in terms of ground states: ‖Φ𝑔 − Φ2𝑑

𝑔 𝜔1𝑑 (𝑧)‖𝑙2
(upper) and ‖𝜒 − 𝜔1𝑑‖𝑙2  (lower).
𝜀 1

√

5
1

√

10
1

√

20
1

√

40
1

√

80
1

√

160

‖Φ𝑔 − Φ2𝑑
𝑔 𝜔1𝑑 (𝑧)‖𝑙2

Case I  1.141E-01  4.556E-02  1.781E-02  6.733E-03  2.527E-03  9.124E-04
rate −  2.65  2.71  2.81  2.83  2.94
Case II  1.532E-01  6.682E-02  2.771E-02  1.083E-02  4.207E-03  1.531E-03
rate −  2.39  2.54  2.71  2.73  2.92

‖𝜒 − 𝜔1𝑑‖𝑙2

Case I  9.021E-02  3.546E-02  1.352E-02  4.993E-03  1.817E-03  6.479E-04
rate −  2.69  2.78  2.87  2.92  2.98
Case II  1.211E-01  4.960E-02  1.981E-02  7.733E-03  2.906E-03  1.054E-03
rate −  2.58  2.65  2.71  2.82  2.93

Table 5 lists errors of ‖Φ𝑔 − Φ1𝑑
𝑔 𝜔2𝑑 (𝐱⟂)‖𝑙2 , which demonstrates convergence rates from 3D to quasi-1D nonlocal GPEs in terms of 

ground states for different 𝜀. From Table 5, we can draw the following conclusions: when the harmonic potential is strongly confined 

Fig. 4. Contour plots of densities for harmonic+honeycomb potential in Example 5 with 𝛽0 = 5 in Case I (1st row), Case II (2nd row) and 𝛽0 = 40
in Case I (3rd row), Case II (4th row).
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Table 5 
Convergence from 3D to quasi-1D GPEs in terms of ground states: ‖Φ𝑔 − Φ1𝑑

𝑔 𝜔2𝑑 (𝑧)‖𝑙2 .

𝜀 1
√

5
1

√

10
1

√

20
1

√

40
1

√

80
1

√

160

Case I  5.034E-03  2.760E-03  1.448E-03  7.385E-04  3.763E-04  1.891E-04
rate −  1.73  1.86  1.94  1.95  1.99
Case II  7.209E-03  3.923E-03  2.077E-03  1.086E-03  5.561E-04  2.795E-04
rate −  1.76  1.83  1.87  1.93  1.98

in the (𝑥, 𝑦)-plane, the 3D model converges to quasi-1D GPEs quadratically in terms of 𝜀 on ground states. Based on these observations, 
if one investigates the dynamics of electrons trapped in the 𝑧-axis, the quasi-1D GPEs is an good approximation model.

4.3.  Ground states in different dimensions

Here, we study the ground states with ferromagnetic/antiferromagnetic interaction and various external potentials in 1D/2D/3D. 
By default, the potential function 𝑉 (𝐱) is chosen as an optical lattice potential 

𝑉 (𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥2

2 + 𝜅 sin2( 𝜋𝑥4 ), 𝑑 = 1,
1
2 (𝑥

2 + 𝑦2) + 𝜅 [sin2( 𝜋𝑥4 ) + sin2( 𝜋𝑦4 )], 𝑑 = 2,
1
2 (𝑥

2 + 𝑦2 + 𝑧2) + 𝜅[sin2( 𝜋𝑥4 ) + sin2( 𝜋𝑦4 ) + sin2( 𝜋𝑧4 )], 𝑑 = 3,

(4.3)

where 𝜅 is the depth of the optical lattice, which is fixed as 𝜅 = 10 in our experiments.

Fig. 5. Isosurface plots and corresponding slice views for the wave functions of the ground state in Example 6. Case I: |𝜙1(𝑥, 𝑦, 𝑧)| = 0.01 (left), 
|𝜙0(𝑥, 𝑦, 𝑧)| ≡ 0 (middle) and |𝜙−1(𝑥, 𝑦, 𝑧)| = 0.01 (right) (1st row) with the slice view (3rd row). Case II: |𝜙1(𝑥, 𝑦, 𝑧)| = 0.01 (left), |𝜙0(𝑥, 𝑦, 𝑧)| = 0.01
(middle) and |𝜙−1(𝑥, 𝑦, 𝑧)| = 0.01 (right) (2nd row) with the slice view (4th row).
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Example 4  (1D Case). We study the 1D ground states with 𝜀 = 1
√

50
 for both anti-ferromagnetic (Case I) and ferromagnetic (Case 

II), whose corresponding parameter details are specified in Example 3.

In our computation, the computational domain is taken as Ω = [−16, 16]. Fig. 2 shows the density of the ground state solutions 
for two cases. The energy and chemical potential are computed as 𝐸𝑔 = 25.4681, 𝜇𝑔 = 39.1845 in Case I; 𝐸𝑔 = 52.8612, 𝜇𝑔 = 84.7055
in Case II.

Example 5  (2D Case). We study the 2D ground states with 𝜀 = 1
√

20
 and two different potentials, i.e, the optical lattice potential 

Eq. (4.3) and the harmonic+honeycomb potential [8] defined as:

𝑉 (𝐱) = 1
2
(𝑥2 + 𝑦2) + 𝛽0 [cos(𝐛𝟏 ⋅ 𝐱) + cos(𝐛𝟐 ⋅ 𝐱) + cos((𝐛𝟏 + 𝐛𝟐) ⋅ 𝐱)],

with 𝐛𝟏 = 𝜋
4 (
√

3, 1),𝐛𝟐 =
𝜋
4 (−

√

3, 1) and 𝛽0 a tunable constant, for both anti-ferromagnetic (Case I) and ferromagnetic (Case II), whose 
corresponding parameter details are specified in Example 2.

In our computation, the computational domain is taken as Ω = [−16, 16]2. Figs. 3-4 show the density of the ground state solutions 
for two cases. We compute the energy and chemical potential for the optical lattice potential as 𝐸𝑔 = 11.8976, 𝜇𝑔 = 14.9370 in Case 
I; 𝐸𝑔 = 16.8160, 𝜇𝑔 = 21.3889 in Case II, and for the Harmonic+honeycomb potential as 𝐸𝑔 = 1.4263, 𝜇𝑔 = 3.8406 (𝛽0 = 5), 𝐸𝑔 =
−39.7288, 𝜇𝑔 = −34.7968 (𝛽0 = 40) in Case I; 𝐸𝑔 = 6.1017, 𝜇𝑔 = 11.0848 (𝛽0 = 5), 𝐸𝑔 = −31.6668, 𝜇𝑔 = −24.0668 (𝛽0 = 40) in Case II.

Example 6  (3D Case). We study the 3D ground states for both anti-ferromagnetic (Case I) and ferromagnetic (Case II), whose 
corresponding parameter details are specified in Example 1.

In our computation, the computational domain is taken as Ω = [−8, 8]3. Fig. 5 shows the profiles of the ground state solutions for 
two cases. The energy and chemical potential are computed as 𝐸𝑔 = 13.1852, 𝜇𝑔 = 15.6923 in Case I; 𝐸𝑔 = 17.0860, 𝜇𝑔 = 20.5723 in
Case II.

5.  Conclusion

Starting from the 3D Schrödinger equations with DDI under a strongly anisotropic external potential, we performed a dimension 
reduction analysis and derived the mean-field GPEs for the quasi-1D and quasi-2D spin-1 dipolar BECs. The PGF algorithm is integrated 
with KTM, which is utilized for fast and accurate evaluation of dipolar potential, to compute the ground states. For better accuracy 
and efficiency, we discretized the PGF by treating the Lagrange multiplier term explicitly. Besides the mass constraint, we proposed 
the other two projection conditions so to determine all the three projection constants uniquely. Convergence results of the dimension 
reduction were verified in terms of the ground states for the 3D to quasi-2D and 3D to quasi-1D nonlocal GPEs. Extensive numerical 
results from 1D to 3D in various cases were reported to showcase the efficiency and accuracy. Methods proposed here can be easily 
extended to complicated spin-𝐹  or spin-orbit-coupled dipolar BECs.
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Appendix A.  Convolution identity

Theorem 1. Given convolution kernel 𝑈𝐧𝐦(𝐱) =
3
4𝜋

1
|𝐱|3

(

(𝐧 ⋅𝐦) − 3 (𝐱⋅𝐧)(𝐱⋅𝐦)
|𝐱|2

)

 with 𝐧,𝐦 ∈ ℝ3 being unit vectors, for any compact-supported 
smooth function 𝑓 (𝐱) ∈ 𝐶∞

𝑐 (ℝ3), we have
[

𝑈𝐧𝐦 ∗ 𝑓
]

(𝐱) = −(𝐧 ⋅𝐦)𝑓 (𝐱) − 3
[(

1
4𝜋|𝐱|

)

∗ 𝜕𝐧𝐦𝑓
]

(𝐱). (A.1)

Proof.  Let

𝑢(𝐱) = −3𝜕𝐧𝐦

(

1
4𝜋|𝐱|

)

. (A.2)

For any fixed 𝜀 > 0, let 𝐵𝜀 = {𝐱 ∈ ℝ3
||𝐱| < 𝜀} and 𝐵𝑐𝜀 = {𝐱 ∈ ℝ3

||𝐱| ≥ 𝜀}. It is straightforward to check that
𝑈𝐧𝐦(𝐱) = 𝑢(𝐱), 0 ≠ 𝐱 ∈ ℝ3. (A.3)

Using Gauss-Green theorem and noticing Eq. (A.3), we get

−1
3 ∫𝐵𝑐𝜀

𝑈𝐧𝐦(𝐱)𝑓 (𝐱)d𝐱 = −1
3 ∫𝐵𝑐𝜀

𝑢(𝐱)𝑓 (𝐱)d𝐱 = ∫𝐵𝑐𝜀
𝜕𝐧𝐦

(

1
4𝜋|𝐱|

)

𝑓 (𝐱)d𝐱

= ∫𝐵𝑐𝜀

[

𝜕𝐧

(

𝜕𝐦

(

1
4𝜋|𝐱|

)

𝑓 (𝐱)
)

− 𝜕𝐦

(

1
4𝜋|𝐱|

)

𝜕𝐧𝑓
]

d𝐱

= −∫𝜕𝐵𝜀
𝜕𝐦

(

1
4𝜋|𝐱|

)

𝑓 (𝐱) 𝐱 ⋅ 𝐧
|𝐱|

d𝑆 − ∫𝐵𝑐𝜀

[

𝜕𝐦

(

1
4𝜋|𝐱|

)

𝜕𝐧𝑓
]

d𝐱

= 𝐼𝜀1 − ∫𝐵𝑐𝜀

[

𝜕𝐦

(

1
4𝜋|𝐱|

𝜕𝐧𝑓
)

− 1
4𝜋|𝐱|

𝜕𝐦𝐧𝑓
]

d𝐱

= 𝐼𝜀1 + 𝐼𝜀2 + ∫𝐵𝑐𝜀

1
4𝜋|𝐱|

(

𝜕𝐦𝐧𝑓
)

d𝐱, (A.4)

where

𝐼𝜀1 ∶= −∫𝜕𝐵𝜀
𝜕𝐦

(

1
4𝜋|𝐱|

)

𝑓 (𝐱)𝐱 ⋅ 𝐧
|𝐱|

d𝑆, 𝐼𝜀2 ∶= ∫𝜕𝐵𝜀

1
4𝜋|𝐱|

(

𝜕𝐧𝑓
)𝐱 ⋅𝐦

|𝐱|
d𝑆. (A.5)

From Eq. (A.5), we get

𝐼𝜀1 = 1
4𝜋𝜀2 ∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

𝑓 (𝐱)d𝑆

= 1
4𝜋𝜀2 ∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

𝑓 (𝟎)d𝑆 + 1
4𝜋𝜀2 ∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

[𝑓 (𝐱) − 𝑓 (𝟎)]d𝑆. (A.6)

By symmetry, we obtain

∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

d𝑆 = ∫𝜕𝐵𝜀

n1m1x2 + n2m2y2 + n3m3z2

|𝐱|2
d𝑆

= ∫𝜕𝐵𝜀

1
3 (n1m1|𝐱|2 + n2m2|𝐱|2 + n3m3|𝐱|2)

|𝐱|2
d𝑆

= ∫𝜕𝐵𝜀

(𝐧,𝐦)|𝐱|2

3|𝐱|2
d𝑆 = 4𝜋𝜀2

(𝐧,𝐦)
3

, (A.7)

|

|

|

|

|

∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

[𝑓 (𝐱) − 𝑓 (𝟎)]d𝑆
|

|

|

|

|

=
|

|

|

|

|

∫𝜕𝐵𝜀

(𝐱 ⋅𝐦)(𝐱 ⋅ 𝐧)
|𝐱|2

[𝐱 ⋅ ∇𝑓 (𝜃𝐱)]d𝑆
|

|

|

|

|

≤ 𝜀‖∇𝑓‖𝐿∞(𝐵𝜀) ∫𝜕𝐵𝜀
d𝑆 = 4𝜋𝜀3‖∇𝑓‖𝐿∞(𝐵𝜀), (A.8)

where 1 ≤ 𝜃 ≤ 1, plugging Eqs. (A.7) and (A.8) into (A.6), we have

𝐼𝜀1 →
1
3
𝑓 (𝟎)(𝐧,𝐦), 𝛆 → 𝟎+. (A.9)

Similarly, for 𝜀→ 0+, we get
|

|

|

𝐼𝜀2
|

|

|

≤ ‖∇𝑓‖𝐿∞(𝐵𝜀) ∫𝜕𝐵𝜀

1
4𝜋𝜀

d𝑆 = 𝜀‖∇𝑓‖𝐿∞(𝐵𝜀) → 0. (A.10)

Combining Eqs. (A.9) and (A.10), taking 𝜀 → 0+ in Eq. (A.4), we obtain

∫ℝ3
𝑈𝐧𝐦(𝐱)𝑓 (𝐱)d𝐱 = −(𝐧,𝐦)𝑓 (𝟎) − 3∫ℝ3

(

1
4𝜋|𝐱|

)

𝜕𝐧𝐦𝑓 (𝐱)d𝐱. (A.11)
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Furthermore, defining 𝑓𝐲(𝐱) ∶= 𝑓 (𝐲 − 𝐱) , ∀𝐲 ∈ ℝ3 and plugging into Eq. (A.11), we have
[

𝑈𝐧𝐦 ∗ 𝑓
]

(𝐱) = −(𝐧 ⋅𝐦)𝑓 (𝐱) − 3
[(

1
4𝜋|𝐱|

)

∗ 𝜕𝐧𝐦𝑓
]

(𝐱). (A.12)

 ∎

Appendix B.  The projection coefficients

In order to find the other two projections or normalization equations used in the projection step, we first generalize the gradient 
flow with discrete normalization (GFDN) for computing the ground state of the spin 𝐹=1 dipolar BECs, from 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1, 𝑛 ≥ 1: 

𝜕𝑡Φ(𝐱, 𝑡) =
[ 1
2
∇2 − 𝑉 (𝐱) − 𝜆𝑛𝜌 − 𝜆𝑠F ⋅ f − 𝜆𝑑D ⋅ f

]

Φ, (B.1)

followed by a projection step as 
𝜙𝑗 (𝐱, 𝑡𝑛+1) ∶= 𝜙𝑗 (𝐱, 𝑡+𝑛+1) = 𝜎𝑛𝑗 𝜙𝑗 (𝐱, 𝑡

−
𝑛+1), 𝐱 ∈ Ω, 𝑗 = 1, 0,−1, (B.2)

where 𝜙𝑗 (𝐱, 𝑡±𝑛+1) = lim𝑡→𝑡±𝑛+1
𝜙𝑗 (𝐱, 𝑡) and 𝜎𝑛𝑗  are projection constants which are chosen such that ‖Φ(⋅, 𝑡𝑛+1)‖2 =

∑1
𝑗=−1 ‖𝜙𝑗 (⋅, 𝑡𝑛+1)‖

2 = 1.
The normalized gradient flow Eqs. (B.1)–(B.2) can be viewed as applying a time-splitting scheme to the PGF Eq. (3.1) and the 
projection step Eq. (B.2) is equivalent to solving the following nonlinear ordinary differential equations:

𝜕𝑡𝜙𝑗 (𝐱, 𝑡) = 𝜇Φ(𝑡)𝜙𝑗 , 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, 𝑛 ≥ 0.

The solution of the above ODEs can be expressed as

𝜙𝑗 (𝐱, 𝑡𝑛+1) = exp
(

∫

𝑡𝑛+1

𝑡𝑛
𝜇Φ(𝜏)d𝜏

)

𝜙𝑗 (𝐱, 𝑡𝑛), 𝑗 = 1, 0,−1.

This immediately suggests the projection parameters satisfy
𝜎𝑛1 = 𝜎𝑛0 = 𝜎𝑛−1.
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