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ARTICLE INFO ABSTRACT
Keywords: We perform a dimension reduction for spin-1 dipolar Bose-Einstein condensate (BEC), which is
Gross-Pitaevskii equations described by the mean-field Gross-Pitaevskii equations (GPEs) coupled with dipole-dipole interac-

Spin-1 dipolar BEC
Dimension reduction
Ground state

Projected gradient flow
Kernel truncation method

tion (DDI), under strongly anisotropic external confining potentials. The original three dimensions
(3D) problem is then reduced to quasi-2D and quasi-1D models for pancake- and cigar-shaped
trapping potentials respectively. To compute the ground state, we propose an efficient and ac-
curate algorithm by incorporating the kernel truncation method (KTM) for the dipolar potential
evaluation into the projected gradient flow (PGF) method. The long-range dipolar potential is
computed efficiently and accurately by KTM with optimal zero-padding factor, and the resulted
PGF-KTM algorithm achieves spectral accuracy in the ground states. We compute the ground
states in different space dimensions, and confirm the convergence and rates of dimension re-
duction from 3D to quasi-2D and from 3D to quasi-1D. Extensive numerical results of ground
states for BECs with ferromagnetic/antiferromagnetic interaction and various external potentials
in 1D/2D/3D are reported.

1. Introduction

Research in dilute cold atomic quantum gases remains very active, especially after the experimental realizations of Bose-Einstein
condensate (BEC) in alkali atomic gases in 1995 [1]. In recent years, BEC with internal degrees of freedom, the so-called spinor
BEG, has attracted much attention experimentally and theoretically [13]. Spinor BEC opens up a new paradigm where the order
parameter of condensates is described by a multi-component vector [26]. This can be possible by optically trapping cold atoms where
all hyperfine states are liberated, while magnetic trapping freezes its freedom. One of the salient features of gaseous BECs is the
magnetic dipole-dipole interaction, which is long-range, anisotropic, and exerts a tensor force. There is everlasting enthusiasm in
studying the ground state of spinor dipolar BECs theoretically since the observation of a dipolar BEC in a system of spin-polarized
32Cr atoms [19,22,27]. The dipolar interaction is expected to yield rich and novel phenomena when combined with spin degrees of
freedom, such as the Einstein-de Haas effect [21], ground-state spin textures and mass currents [22].

A spin-F (F € N) dipolar condensate is described by a generalized coupled GPE, which consists of 2F + 1 equations, each governing
one of the 2F + 1 hyperfine states within the mean-field approximation. The mathematical model for spin-1 BEC with magnetic
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$F\in \mathbb {N}$
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$2F+1$


\begin {align}{\rm i} \, \hbar \partial _t \psi _{1}(\bx ,t) &= H_0 \psi _{1} + (g_{ s} F_z + g_dD_z ) \psi _{1} + (g_{ s}F_{-} + g_dD_-)\psi _0, \label {eq:tgp1} \\ {\rm i} \, \hbar \partial _t \psi _{0}(\bx ,t) &= H_0 \psi _{0} + (g_{ s} F_{+}+g_dD_+) \psi _{1}+ (g_{ s} F_{-}+ g_dD_-)\psi _{-1}, \label {eq:tgp2} \\[0.4em] {\rm i} \, \hbar \partial _t \psi _{-1}(\bx ,t) &= H_0 \psi _{-1} + (g_{ s}F_{+} + g_dD_+)\psi _0-(g_{ s} F_z + g_dD_z ) \psi _{-1}. \label {eq:tgp3}\end {align}


${\rm i} =\sqrt {-1}$


$\bx =(x,y,z)^\top $


$t$


$\hbar $


$\Psi = (\psi _1,\psi _0,\psi _{-1})^\top $


$H_0 := -\frac {\hbar ^2 \nabla ^2}{2m} + V(\bx ) + g_{n} \rho \,$


$\rho =\sum _{j=-1}^{1}|\psi _j|^2$


\begin {equation}V(\bx )=\frac {1}{2} m (\omega _x^2 x^2 + \omega _y^2y^2+\omega _z^2z^2), \label {TrapHarmonic}\end {equation}


${\omega }_x$


${\omega }_y$


${\omega }_z$


$x-$


$y-$


$z-$


$m$


$g_{n} = \frac {4 \pi \hbar ^2}{m} \cdot \frac {a_0 + 2a_2}{3}$


$g_{s} = \frac {4 \pi \hbar ^2}{m} \cdot \frac {a_2 - a_0}{3}$


$a_{0}$


$a_{2}$


$s$


$g_n$


$g_s$


$g_d = \frac {\mu _0(g_F\mu _B)^2}{3}$


$\mu _0,\,g_F,\,\mu _B$


$g$


$\mathbf {f}=(f_x,f_y,f_z)^\top $


\begin {equation}f_x=\frac {1}{\sqrt {2}} \begin {pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end {pmatrix}, \quad f_y=\frac {{\rm i}}{\sqrt {2}} \begin {pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end {pmatrix}, \quad f_z= \begin {pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end {pmatrix},\end {equation}


${\mathbf F} := (F_x(\Psi ),F_y(\Psi ),F_z(\Psi ))^\top : =(\Psi ^{\mathsf {H}} f_x \Psi ,\Psi ^{\mathsf {H}} f_y \Psi ,\Psi ^{\mathsf {H}} f_z \Psi )^\top $


$\Psi ^{\mathsf {H}}$


$\Psi $


\begin {equation*}F_x= \frac {1}{\sqrt {2}}\left [ \bar {\psi }_1\psi _0+ \bar {\psi }_0\left (\psi _1+\psi _{-1}\right )+\bar {\psi }_{-1}\psi _0\right ],\nn \quad F_y=\frac {{\rm i}}{\sqrt {2}}\left [ -\bar {\psi }_1\psi _0+ \bar {\psi }_0\left (\psi _1-\psi _{-1}\right )+\bar {\psi }_{-1}\psi _0\right ],\end {equation*}


$F_z=|\psi _1|^2-|\psi _{-1}|^2$


${\mathbf D} = (D_x,D_y,D_z)$


\begin {equation}D_\nu (\bx )= \int _{{\mathbb {R}}^3} \frac {3}{4\pi }\frac {1}{|\bx -\bx '|^3} \left [F_\nu (\bx ')-3 \,e_\nu \,\mathbf {F(\bx ')\cdot e}\right ] {\rm d} \bx ', {\mathbf e} =\frac {\bx -\bx '}{|\bx -\bx '|},\nu =x,y,z. \label {dipolar}\end {equation}


$F_{\pm } = (F_x \pm {\rm i} F_y)/\sqrt {2}$


$D_{\pm } = (D_x \pm {\rm i} D_y)/\sqrt {2}$


\begin {equation}\tilde {\Psi }_j(\tilde \bx ,\tilde t )=N^{-\frac {1}{2}} b_0^{\frac {3}{2}} \Psi _j(\bx ,t), \quad j=1,0,-1, \label {dm11s}\end {equation}


$N$


$\sim $


\begin {align}\label {eq:dm} {\rm i} \, \p _t \Psi (\bx ,t)&=\left [ -\frac {1}{2}\btd ^2+V(\bx )+\ld _n\rho +\ld _s \textbf {F}\cdot \textbf {f}+\ld _d\textbf {D}\cdot \textbf {f}\right ]\Psi ,\\ \Psi (\bx ,0)&=\Psi ^{(0)}(\bx ), \quad \bx \in {\mathbb {R}}^3 \nn ,\end {align}


$\textbf {F}\cdot \textbf {f}=\sum _{\eta } F_\eta f_\eta $


$\textbf {D}\cdot \textbf {f}=\sum _{\nu } D_\nu f_\nu $


$\sum _{\eta }$


$\sum _{\nu }$


$\sum _{\eta \in \{x,y,z\}}$


$\sum _{\nu \in \{x,y,z\}}$


\begin {align*}V(\bx )=\frac {1}{2}(\gm _x^2x^2+\gm _y^2y^2+\gm _z^2z^2),\end {align*}


$\gamma _{\nu }=\frac {{\omega }_{\nu }}{{\omega }_m}, \,\nu = x,y,z$


$\lambda _{n}= \frac {4\pi N}{3} \frac {a_0+2a_2}{b_0}, \lambda _{s}=\frac {4\pi N}{3} \frac {a_2-a_0}{b_0},\lambda _{d}=\frac {\mu _0(g_F\mu _B)^2N}{3{\omega }_m b_0^3\hb }$


\begin {align}D_\nu &= \sum _{\eta } U_{\eta \nu } \ast F_\eta = -3\sum _{\eta } \frac {1}{4\pi |\bx |} \ast (\p _{\eta \nu } F_\eta )-F_\nu \nn \\ &= -3\sum _{\eta } \partial _{\eta \nu } \left (\frac {1}{4\pi |\bx |} \ast F_\eta \right )-F_\nu := -3\sum _{\eta } \partial _{\eta \nu } \varphi _\eta -F_\nu .\label {field_1}\end {align}


$U_{\eta \nu }$


\begin {align*}U_{\eta \nu }(\bx ) = \frac {3}{4\pi }\;\frac {1}{|\bx |^3}\left (\delta _{\eta \nu }-3\frac {x_\eta x_\nu }{|\bx |^2}\right ), \quad \eta , \nu =x,y,z,\end {align*}


$\delta _{\eta \nu }$


$\varphi _\eta $


$F_\eta $


\begin {equation}\label {Coulomb} \varphi _\eta (\bx ) = \left (\frac {1}{4\pi |\bx |}\ast F_\eta \right )(\bx ) = \frac {1}{4\pi }\int _{{\mathbb {R}}^3} \frac {1}{|\bx -\by |} F_\eta (\by ) {\rm d}\by .\end {equation}


$\mathcal {M}(\Psi (\cdot ,t)):=\int _{{\mathbb {R}}^3} \sum _{j=-1}^{1} j |\psi _j (\bx ,t )|^2 \;{\rm d}\bx $


\begin {equation}\mathcal {N}(\Psi (\cdot ,t))=\| \Psi (\cdot ,t) \|^2 :=\sum _{j=-1}^{1} \int _{{\mathbb {R}}^3} |\psi _j (\bx ,t )|^2 \;{\rm d}\bx \equiv \mathcal {N}(\Psi (\cdot ,0))=1, \quad t\geq 0, \label {norm}\end {equation}


\begin {equation}\mathcal {E}(\Psi (\cdot ,t)) := \int _{{\mathbb {R}}^3} \left [ \sum _{j=-1}^{1} \bar {\psi } _j\left ( - \frac { \nabla ^2}{2} + V \right ) \psi _j+ \frac {\lambda _{n}}{2} \rho ^2+\frac {\lambda _{ s}}{2}|{\bf F}|^2 \right ] \;{\rm d} \bx + V_{dd} \equiv \mathcal {E}(\Psi (\cdot ,0)), \quad t\geq 0, \label {eq:Energy1}\end {equation}


$|\textbf {F}|^2 = F_x^2+F_y^2+F_z^2$


$V_{dd}$


\begin {equation*}V_{dd}= \frac {\lambda _{d}}{2} \sum _{\eta } \int _{{\mathbb {R}}^3} F_\eta (\bx ) \left [ \sum _{\nu } \int _{{\mathbb {R}}^3} U_{\eta \nu }(\bx -\bx ')F_\nu (\bx ')\; {\rm d}\bx '\right ] {\rm d}\bx .\end {equation*}


$\Phi ^g=(\phi _1^g,\phi _0^g,\phi _{-1}^g)^\top $


$\mathcal {S}$


\begin {equation}\Phi ^g = \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1({\mathbb {R}}^3))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}. \label {gsDef}\end {equation}


$\mu =\mu ^g$


$\Phi =\Phi ^g$


\begin {align}\label {EL} \mu \Phi =\left [ -\frac {1}{2}\btd ^2+V(\bx )+\ld _n\rho +\ld _s \textbf {F}\cdot \textbf {f}+\ld _d\textbf {D}\cdot \textbf {f}\right ]\Phi :=\textbf {H}(\Phi ),\end {align}


$\textbf {H}(\Phi )=(H_1, H_0, H_{-1})^\top $


$\mu $


$\mu =\sum _{j=-1}^{1} \int _{{\mathbb {R}}^3} \bar {\phi }_j H_j(\Phi ) {\rm d}\bx $


$(\Phi ,\mu )$


$F_\eta $


$\p _{\eta \nu } F_\eta $


$\mathcal {O}(M\log M)$


$M$


$V_{\varepsilon }(\bx )$


$Case ~I ~(pancake-shaped).$


$z$


\begin {equation}V_{\varepsilon }(\bx )=V_{2d}(\bx _\perp )+\frac {1}{{\varepsilon }^2}V_z(\frac {z}{{\varepsilon }}). \label {eq:pot1}\end {equation}


$Case ~II ~(cigar-shaped).$


$\bx _\perp $


\begin {equation}V_{\varepsilon }(\bx )=V_{1d}(z)+\frac {1}{{\varepsilon }^2}V_\perp (\frac {\bx _\perp }{{\varepsilon }}), \label {eq:pot2}\end {equation}


$\bx = (\bx _\perp , z), \bx _\perp \in {\mathbb {R}}^2$


$0<\varepsilon \ll 1$


\begin {align}{\rm i} \, \pa {t} \psi _1(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _1+ (\ld _s-\ld _d)\left ( F_z\psi _1+F_{-}\psi _0 \right ) \nn \\ &-3\ld _d \su {\eta } \left [ \psi _1 \left ( \p _{z\eta } \varphi _{\eta } \right )rg + \frac {1}{\sqrt {2}} \psi _0 \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \psi _0 \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {eq3D1} \\ {\rm i} \, \pa {t} \psi _0(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _0+\left ( \ld _s-\ld _d \right )\left (F_+\psi _1+F_{-}\psi _{-1} \right ) \nn \\ &- 3\ld _d \su {\eta } \left [ \left ( \frac {1}{\sqrt {2}}\psi _1+\frac {1}{\sqrt {2}}\psi _{-1} \right ) \left ( \p _{x\eta } \varphi _{\eta } \right ) + \left ( \frac {{\rm i}}{\sqrt {2}}\psi _1-\frac {{\rm i}}{\sqrt {2}}\psi _{-1} \right ) \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {3D_2} \\ {\rm i} \, \pa {t} \psi _{-1}(\bx ,t)=&\left ( -\frac {\nabla ^2}{2} + V + \ld _n \rho \right ) \psi _{-1}+\left ( \ld _s-\ld _d \right )\left (-F_z\psi _{-1}+F_{+}\psi _0 \right ) \nn \\ &-3\ld _d \su {\eta } \left [ -\psi _{-1} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \psi _0 \left ( \p _{x\eta } \varphi _{\eta } \right ) + \frac {{\rm i}}{\sqrt {2}} \psi _0 \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ], \label {eq3D3} \\ \psi _j(\bx ,0)=&\psi _j^{(0)}(\bx ), \quad \bx \in {\mathbb {R}}^3, \quad j=1,0,-1. \nn \end {align}


${\varepsilon } \rightarrow 0^+$


$\Psi (\bx ,t)$


$z$


$H_z^{{\varepsilon }}:=-\frac {1}{2}\p _{zz}+\frac {1}{{\varepsilon }^2}V_z(\frac {z}{{\varepsilon }})$


${\omega }_{1d}(z)={\varepsilon }^{-\frac {1}{2}}\pi ^{-\frac {1}{4}} e^{-\frac {z^2}{2{\varepsilon }^2}}$


\begin {equation}\psi _{j}(\bx ,t) \approx \psi _{j}^{2d}(x,y,t){\omega }_{1d}(z) e^{-\frac {{\rm i} t}{2{\varepsilon }^2}}, \quad \bx \in {\mathbb {R}}^3, \quad t\geq 0, j=1,0,-1. \label {dr_2d_1}\end {equation}


$\Psi ^{2d}=(\psi _1^{2d},\psi _0^{2d},\psi _{-1}^{2d})^\top $


$F_\eta ^{2d} =(\Psi ^{2d})^{\mathsf {H}} F_\eta \Psi ^{2d}$


$F_{\pm }^{2d} = (F_x^{2d} \pm {\rm i} \, F_y^{2d})/\sqrt {2}$


$\rho _{2d}=\sum _{j=-1}^1 |\psi _j^{2d}|^2$


${\omega }_{1d}(z)$


$z$


$\pp {1}{2}$


$\int _\mathbb {R} {\omega }_{1d}^2(z) {\rm d}z=1$


$\int _\mathbb {R} {\omega }_{1d}^4(z) {\rm d}z=1/\sq {2\pi }{\varepsilon }$


\begin {equation}\su {\eta }\int ^{\infty }_{-\infty } \left [ \pp {1}{2}{\omega }_{1d}^{2} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \pp {0}{2}{\omega }_{1d}^{2} \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \pp {0}{2}{\omega }_{1d}^{2} \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ] {\rm d}z. \label {dr_2d_3}\end {equation}


$\frac {1}{4\pi |\bx |}$


$-\nabla ^2 U_{3d}(\bx )=\de (\bx )$


$U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2)$


$z$


$\p _{z\eta } \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2) \right )$


$\p _{\eta z} \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^2) \right )$


$z$


$\eta =x,y$


\begin {align}& -\frac {1}{\sq {2\pi }{\varepsilon }}\ff {z}{2}\pp {1}{2} -\ii \pp {1}{2}{\omega }_{1d}^{2} \na \left ( U_{3d}*(\ff {z}{2}{\omega }_{1d}^{2}) \right ) {\rm d}z \nn \\ & +\su {\eta \in \{x,y\}} \ii \pp {0}{2}{\omega }_{1d}^{2} \left [ \left ( \frac {1}{\sqrt {2}} \p _{x\eta }- \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \left ( U_{3d}*(\ff {\eta }{2}{\omega }_{1d}^{2}) \right ) \right ] {\rm d}z, \label {dr_2d_4}\end {align}


$\p _{z\eta }$


$\p _{\eta z}$


\begin {align}{\rm i} \, \p _{t}\pp {1}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {1}{2}+ \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {-}{2}\pp {0}{2} +\frac { \left ( \ld _{s}^{2d}+2\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {z}{2}\pp {1}{2} \nn \\ & +\frac {3}{2} \ld _{d}^{2d} \left [ \pp {1}{2} \na \varphi _{z}^{2d}-\su {\eta \in \{x,y\}}\pp {0}{2} \left ( \frac {1}{\sqrt {2}} \p _{x\eta }- \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ]. \label {2D1}\end {align}


\begin {align}{\rm i} \, \p _{t}\pp {0}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {0}{2}+\left (\ff {+}{2}\pp {1}{2}+ \ff {-}{2}\pp {-1}{2}\right ) \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right )}{\sq {2\pi }{\varepsilon }} \nn \\ & -\frac {3}{2} \ld _{d}^{2d} \su {\eta \in \{x,y\}} \left [ \pp {1}{2}\left ( \frac {1}{\sqrt {2}}\p _{x\eta } + \frac {{\rm i}}{\sqrt {2}}\p _{y\eta } \right ) \varphi _{\eta }^{2d} + \pp {-1}{2}\left ( \frac {1}{\sqrt {2}}\p _{x\eta } - \frac {{\rm i}}{\sqrt {2}}\p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ], \label {2D_2} \\ {\rm i} \, \p _{t}\pp {-1}{2}=&\left (-\frac {\btd _\perp ^2}{2}+V_{2d}+ \frac {\ld _{n}^{2d}}{\sq {2\pi }{\varepsilon }}\rho _{2d}\right ) \pp {-1}{2}+ \frac { \left ( \ld _{s}^{2d}-\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {+}{2}\pp {0}{2} -\frac { \left ( \ld _{s}^{2d}+2\ld _{d}^{2d} \right ) }{\sq {2\pi }{\varepsilon }} \ff {z}{2}\pp {-1}{2} \nn \\ & -\frac {3}{2} \ld _{d}^{2d} \left [ \pp {-1}{2} \na \varphi _{z}^{2d}+\su {\eta \in \{x,y\}}\pp {0}{2} \left ( \frac {1}{\sqrt {2}} \p _{x\eta }+ \frac {{\rm i}}{\sqrt {2}} \p _{y\eta } \right ) \varphi _{\eta }^{2d} \right ], \label {2D3}\end {align}


\begin {equation*}\varphi _{\eta }^{2d}=U_{2d}*F_{\eta }^{2d}, \quad U_{2d}(x,y)=\frac {2}{(2\pi )^{3/2}}\int _0^\infty \frac {e^{-\frac {{\rm s}^2}{2}}}{\sq {|\bx _\perp |^2+{\varepsilon }^2{\rm s}^2}} {\rm d}{\rm s}.\end {equation*}


\begin {align}\label {2dParm} \ld _n^{2d}= \frac {4\pi N(a_0+2a_2)}{3 b_{\perp }},\quad \ld _s^{2d}= \frac {4\pi N(a_2-a_0)}{3 b_{\perp }},\quad \ld _d^{2d}=\frac {\mu _0(g_F\mu _B)^2N m}{3 b_{\perp }\hb ^2},\end {align}


$b_{\perp }=\sqrt {\frac {\hb }{m{\omega }_\perp }}, {\varepsilon }=\sqrt {\frac {{\omega }_\perp }{{\omega }_z}}.$


$\psi _{j}^{(0)}$


$\psi _{j}^{(0)}(\bx ) \approx \pp {j}{2}(\bx _\perp ) {\omega }_{1d}(z)$


${\omega }_{1d}(z)$


$z$


$\mathbb {R}$


\begin {equation*}\psi _{j}^{2d}(\bx _\perp ,0)=\int _\mathbb {R} \psi _{j}^{(0)}(\bx _\perp ,z) {\omega }_{1d}(z) \,{\rm d}z, \quad \bx _\perp \in {\mathbb {R}}^2.\end {equation*}


\begin {align*}\mathcal {E}(\Psi ^{2d}) :=& \int _{{\mathbb R}^2} \left \{ \sum _{j=-1}^{1} \bar {\psi }_j^{2d} \left ( - \frac { \nabla _{\perp }^2}{2} + V_{2d} \right ) \psi _j^{2d}+ \frac {\lambda _{n}^{2d}}{\sqrt {2\pi }{\varepsilon }} \rho _{2d}^2+\frac {\lambda _{s}^{2d}-\ld _d^{2d}}{\sqrt {2\pi }{\varepsilon }}\left | {\bf F}^{2d} \right |^2 +\frac {3\ld _d^{2d}}{\sqrt {2\pi }{\varepsilon }} \left | F_z^{2d} \right |^2 \right . \\ &\left .+\frac {3}{2}\ld _d^{2d} \left [ \btd _{\perp }^2 \varphi _z^{2d} F_z^{2d}-\su {\eta \in \{x,y\}} \left ( \p _{x\eta } \varphi _{\eta }^{2d} F_x^{2d} +\p _{y\eta } \varphi _{\eta }^{2d} F_y^{2d} \right ) \right ] \right \} {\rm d} \bx _\perp .\end {align*}


$\Phi ^g$


\begin {equation*}\Phi ^g= \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1({\mathbb {R}}^2))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}.\end {equation*}


$\Psi (\bx _\perp ,z,t)$


$\bx _\perp $


$H_\perp ^{\varepsilon }:=-\frac {1}{2}\Dt _\perp +\frac {1}{{\varepsilon }^2}V_\perp (\frac {\bx _\perp }{{\varepsilon }})$


${\omega }_{2d}(\bx _\perp )={\varepsilon }^{-1}\pi ^{-\frac {1}{2}} e^{- \frac {| \bx _\perp |^2}{2{\varepsilon }^2} }$


\begin {equation}\psi _{j}(\bx ,t)\approx \psi _{j}^{1d}(z,t){\omega }_{2d}(\bx _\perp ) e^{-\frac {{\rm i} t}{{\varepsilon }^2}} , \quad \bx \in {\mathbb {R}}^3, \quad t\geq 0, \quad j=1,0,-1. \label {re1d0}\end {equation}


$\Psi ^{1d}=(\psi _1^{1d},\psi _0^{1d},\psi _{-1}^{1d})^\top $


$F_\eta ^{1d} =(\Psi ^{1d})^{\mathsf {H}} F_\eta \Psi ^{1d}$


$F_{\pm }^{1d} = (F_x^{1d} \pm {\rm i} \, F_y^{1d})/\sqrt {2}$


$\rho _{1d}=\sum _{j=-1}^1 |\psi _j^{1d}|^2$


${\omega }_{2d}(\bx _\perp )$


$x\,-\,y$


$z$


$\int _{{\mathbb {R}}^2} {\omega }_{2d}^2(x,y) {\rm d}x{\rm d}y=1$


$\int _{{\mathbb {R}}^2} {\omega }_{2d}^4(x,y) {\rm d}x{\rm d}y=1/2\pi {\varepsilon }^2$


\begin {equation}\su {\eta }\int _{{\mathbb {R}}^2} \left [ \pp {1}{1}{\omega }_{2d}^{2} \left ( \p _{z\eta } \varphi _{\eta } \right ) + \frac {1}{\sqrt {2}} \pp {0}{1}{\omega }_{2d}^{2} \left ( \p _{x\eta } \varphi _{\eta } \right ) - \frac {{\rm i}}{\sqrt {2}} \pp {0}{1}{\omega }_{2d}^{2} \left ( \p _{y\eta } \varphi _{\eta } \right ) \right ] {\rm d}x{\rm d}y. \label {dr_1d_2}\end {equation}


$U_{3d}$


${\omega }_{2d}$


$x$


$y$


$U_{3d}$


$\ff {\eta }{1}{\omega }_{2d}^2$


$x$


$y$


$U_{3d}*(\ff {\eta }{1}{\omega }_{2d}^2)$


$\p _{xy},\p _{xz},\p _{yz}$


$U_{3d}*(\ff {\eta }{1}{\omega }_{2d}^2)$


$x$


$y$


\begin {equation}-\frac {1}{4\pi {\varepsilon }^2} \pp {0}{1} \ff {-}{1}+ \int _{{\mathbb {R}}^2} {\omega }_{2d}^2 \left [ \pp {1}{1} \p _{zz} \left ( U_{3d}*(\ff {z}{1}{\omega }_{2d}^2) \right )- \frac {1}{2} \pp {0}{1} \p _{zz} \left ( U_{3d}*(\ff {-}{1}{\omega }_{2d}^2) \right ) \right ] {\rm d}x{\rm d}y, \label {dr_1d_4}\end {equation}


\begin {align}{\rm i} \,\p _{t}\pp {1}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {1}{1}+ \frac { \left ( \ld _{s}^{1d}-\ld _{d}^{1d} \right ) }{2\pi {\varepsilon }^2} \ff {z}{1}\pp {1}{1} + \frac { \left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right ) }{4\pi {\varepsilon }^2} \ff {-}{1}\pp {0}{1} \nn \\ & -\frac {3}{2\pi }\ld _{d}^{1d} \left ( \pp {1}{1} \p _{zz}\varphi _{z}^{1d}- \frac {1}{2}\pp {0}{1} \p _{zz}\varphi _{-}^{1d} \label {1D_1} \right ).\end {align}


\begin {align}{\rm i} \,\p _{t}\pp {0}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {0}{1}+ \frac {\left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right )}{4\pi {\varepsilon }^2} \left ( \ff {+}{1}\pp {1}{1}+\ff {-}{1}\pp {-1}{1} \right ) \nn \\ & +\frac {3}{4\pi } \ld _{d}^{1d} \left ( \pp {1}{1} \p _{zz}\varphi _{+}^{1d}+ \pp {-1}{1} \p _{zz}\varphi _{-}^{1d} \right ), \label {1D_2} \\ {\rm i} \,\p _{t}\pp {-1}{1}=&\left ( -\frac {1}{2}\p _{zz}+V_{1d}(z)+ \frac {\ld _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d} \right ) \pp {-1}{1}- \frac { \left ( \ld _{s}^{1d}-\ld _{d}^{1d} \right ) }{2\pi {\varepsilon }^2} \ff {z}{1}\pp {-1}{1} +\frac { \left ( 2\ld _{s}^{1d}+\ld _{d}^{1d} \right ) }{4\pi {\varepsilon }^2} \ff {+}{1}\pp {0}{1} \nn \\ & +\frac {3}{2\pi } \ld _{d}^{1d} \left ( \pp {-1}{1} \p _{zz}\varphi _{z}^{1d}+ \frac {1}{2}\pp {0}{1} \p _{zz}\varphi _{+}^{1d} \right ), \label {1D_3}\end {align}


\begin {equation*}\varphi _{\nu }^{1d}=U_{1d}*F_{\nu }^{1d}, \quad \varphi _{\pm }^{1d}=U_{1d}*F_{\pm }^{1d}, \quad U_{1d}(z)=\frac {1}{4 {\varepsilon }^2} \int _{0}^\infty \frac {e^{-\frac {{\rm u}}{2 {\varepsilon }^2}}}{\sqrt {z^2+{\rm u}}} {\rm d}{\rm u}.\end {equation*}


\begin {align}\label {1dParm} \ld _n^{1d}= \frac {4\pi N(a_0+2a_2)}{3 b_{z}}, \quad \ld _s^{1d}= \frac {4\pi N(a_2-a_0)}{3 b_{z}}, \quad \ld _d^{1d}=\frac {\mu _0(g_F\mu _B)^2N m}{3 b_{z}\hb ^2},\end {align}


$b_{z}=\sqrt {\frac {\hb }{m{\omega }_{z}}}, {\varepsilon }=\sqrt {\frac {{\omega }_z}{{\omega }_\perp }}.$


$\psi _{j}^{(0)}$


$\psi _{j}^{(0)}(\bx ) \approx \pp {j}{1}(z) {\omega }_{2d}(\bx _\perp )$


${\omega }_{2d}(\bx _\perp )$


$\bx _\perp $


${\mathbb {R}}^2$


\begin {equation*}\psi _{j}^{1d}(z,0)=\int _{{\mathbb {R}}^2} \psi _{j}^{(0)}(\bx _\perp ,z) {\omega }_{2d}(\bx _\perp ) \, {\rm d}\bx _\perp , \quad z\in \mathbb {R}.\end {equation*}


\begin {align*}\mathcal {E}(\Psi ^{1d}) :=& \int _{{\mathbb R}} \left \{ \sum _{j=-1}^{1} \bar {\psi }_j^{1d} \left ( - \frac { \p _{zz}}{2} + V_{1d} \right ) \psi _j^{1d}+ \frac {\lambda _{n}^{1d}}{2\pi {\varepsilon }^2} \rho _{1d}^2+\frac {\lambda _{s}^{1d}-\ld _d^{1d}}{2\pi {\varepsilon }^2}\left | {\bf F}^{1d} \right |^2 +\frac {3\ld _d^{1d}}{2\pi {\varepsilon }^2} \left | F_-^{1d} \right |^2 \right .\nn \\ &\left .-\frac {3}{2\pi }\ld _d^{1d} \left [ \p _{zz} \varphi _z^{1d} F_z^{1d}- \frac {1}{2} \su {\eta \in \{x,y\}} \p _{zz} \varphi _{\eta }^{1d} F_\eta ^{1d} \right ] \right \} {\rm d} z.\end {align*}


$\Phi ^g$


\begin {align*}\Phi ^g= \operatorname *{argmin}_{\Phi \in \mathcal {S}} \mathcal {E}(\Phi ), \mbox { where } \mathcal {S} := \{\Phi =(\phi _1,\phi _0,\phi _{-1})^\top \in (H_0^1(\mathbb {R}))^3 | \|\Phi \|^2 = 1, \mathcal {E}(\Phi ) < \infty \}.\end {align*}


$\Phi (\bx ,t)=(\phi _1(\bx ,t), \phi _0(\bx ,t),\phi _{-1}(\bx ,t))^\top $


\begin {equation}\label {PGF} \begin {array}{@{}ll} &\p _t \phi _{j}(\bx ,t) = -H_j(\Phi )+\mu _{\Phi }(t)\phi _j, \quad \bx \in {\mathbb {R}}^d, \quad t>0, \quad j=1,0,-1, \end {array}\end {equation}


$\Phi (\bx ,0)=\Phi ^{(0)}(\bx ) \in \mathcal {S}$


$\mu _{\Phi }(t)$


\begin {equation}\mu _{\Phi }(t)=\frac {P_{\Phi }(t)}{N_{\Phi }(t)}, \label {eq:lag1}\end {equation}


\begin {equation}N_{\Phi }(t) = \sum _{j=-1}^{1} \int _{{\mathbb {R}}^d} \bar {\phi }_j\phi _j {\rm d}\bx , \quad P_{\Phi }(t) = \sum _{j=-1}^{1} \int _{{\mathbb {R}}^d} \bar {\phi }_j H_j(\Phi ) {\rm d}\bx . \label {eq:lag2}\end {equation}


$\Phi (\bx , t=0)=\Phi ^{(0)}(\bx ) \in \mathcal {S}$


$\Phi (\cdot ,t)$


$t\geq 0$


\begin {equation}\frac {{\rm d}}{{\rm d} t} \mathcal {N}(\Phi (\cdot ,t))=2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov {\phi }_j\p _t\phi _j {\rm d} \bx = 2 \left ( -P_{\Phi }(t)+N_{\Phi }(t)\cdot \mu _{\Phi }(t) \right )=0, \label {eq:CNGF_mass}\end {equation}


\begin {align*}\frac {\rm d}{{\rm d} t} \mathcal {E}(\Phi (\cdot ,t))&= 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \frac {\dt \mathcal {E}(\Phi )}{\dt \phi _j} \p _t\phi _j {\rm d} \bx = 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov {H_j(\Phi )} \p _t\phi _j {\rm d} \bx \\ &= 2 \sum _{j=-1}^1 {\rm Re} \int _{{\mathbb {R}}^d} \ov { (H_j(\Phi )-\mu _{\Phi }(t) \phi _j)}\p _t \phi _j {\rm d} \bx \\ &= -2 \sum _{j=-1}^1 \int _{{\mathbb {R}}^d} \ov { (H_j(\Phi )-\mu _{\Phi }(t) \phi _j)}(H_j(\Phi )-\mu _{\Phi }(t)\phi _j) {\rm d} \bx \leq 0,\end {align*}


$t_n=n\tau $


$n =0, 1, 2, {\ldots }$


$\tau > 0$


$\Phi ^n=(\phi _1^n,\phi _0^n,\phi _{-1}^n)^\top (n =1, 2, {\ldots })$


$\Phi (\cdot ,t_n)$


$\Phi ^{n+1}$


$\Phi ^{n}$


$\Phi (\cdot ,t_n)=\Phi ^n$


$[t_n, t_{n+1}]$


$\mu _{\Phi ^n}=\mu _\Phi (t_n)$


\begin {align}\frac {\phi _{1}^* - \phi _{1}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _1^* \,-\left ( V + \lambda _{n} \rho ^n + \lambda _{s} F_z^n + \lambda _d D_z^n \right ) \phi _{1}^n - (\lambda _{s}F_{-}^n + \lambda _d D_{-}^n)\phi _0^n+ \mu _{\Phi ^n}\phi _1^n , \label {evo_1}\\ \frac {\phi _{0}^* - \phi _{0}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _0^* \,\,\,-\left ( V + \lambda _{n} \rho ^n \right ) \phi _{0}^n - (\lambda _{s} F_{+}^n + \lambda _d D_+^n) \phi _{1}^n - (\lambda _{s} F_{-}^n + \lambda _d D_{-}^n) \phi _{-1}^n+ \mu _{\Phi ^n}\phi _0^n, \label {evo_2}\\ \frac {\phi _{-1}^*- \phi _{-1}^n}{\tau }&= \frac {1}{2} \nabla ^2 \phi _{-1}^* -\left ( V + \lambda _{n} \rho ^n -\lambda _{s} F_z^n - \lambda _d D_z^n \right ) \phi _{-1}^n- (\lambda _{s}F_{+}^n + \lambda _d D_{+}^n)\phi _0^n + \mu _{\Phi ^n}\phi _{-1}^n. \label {evo_3}\end {align}


$\sg _j^n(j=1,0,-1)$


\begin {equation}\Phi ^{n+1}:=\text {diag}(\sg _1^n,\sg _0^n,\sg _{-1}^n) \Phi ^*. \label {proj}\end {equation}


$\sg _j^{n} (j=-1,0,1)$


$\Phi ^{n+1}$


$\mathcal {N}(\Phi ^{n+1})= \| \Phi (\cdot ,t_{n+1}) \|^2=1.$


\begin {equation}\sum _{j=-1}^{1}(\sg _j^{n})^2 \| \phi _j^* \|^2=1. \label {eq:cst2}\end {equation}


$\sg _j^{n}$


\begin {equation}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}. \label {eq:cst3}\end {equation}


\begin {equation}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}= \left ( \|\phi _1^*\|^2+ \|\phi _0^*\|^2+\|\phi _{-1}^*\|^2 \right )^{-\frac {1}{2}}.\end {equation}


\begin {equation}\fl {\| \Phi ^{n+1}-\Phi ^n \|}{\tau } \leq \varepsilon _{\text {tol}} \label {stopping},\end {equation}


$\varepsilon _{\text {tol}}$


$\Phi $


$\mathbb R^d$


$\Omega $


$\Omega =[-L,L]^d$


$h=2L/M$


$M$


\begin {align*}\mathcal {Q}_M^d&=\left \{ (\ell _1,\ell _2,\ldots ,\ell _d)\in \mathbb {Z}^d | 0 \leq \ell _j \leq M-1, j=1,\ldots ,d \right \},\\ \mathcal {I}_M^d&=\left \{ (k_1,k_2,\ldots ,k_d)\in \mathbb {Z}^d | -M/2\leq k_j \leq M/2-1, j=1,\ldots ,d \right \}, \\ \mathcal {T}_M^d&=\left \{ (x_1,x_2,\ldots ,x_d) | x_j=-L+\ell _j h, (\ell _1,\ell _2,\ldots ,\ell _d)\in \mathcal {Q}_M^d \right \}.\end {align*}


\begin {align*}W_{\bk }(\bx ):= \prod _{\nu =x,y,z} e^{{\rm i} v_{k_\nu }^\nu (\nu +L)}, \quad \bk =(k_x,k_y,k_z) \in \mathcal {I}_M^3,\end {align*}


$v_{k_\nu }^\nu = \pi k_\nu /L$


$\phi _j (j=1,0,-1)$


$\bx _{mnl} \in \mathcal {T}_M^3$


\begin {align*}\phi _j(\bx _{mnl})\approx \wtd {\phi _j}(\bx _{mnl})&:=\sum _{\bk \in \mathcal {I}_M^3} (\widehat {\phi _j})_{\bk } W_{\bk }(\bx _{mnl}), \quad (m,n,l) \in \mathcal {Q}_M^3,\\ \p _\nu \phi _j(\bx _{mnl}) \approx \dob {\p _\nu }\wtd {\phi _j}(\bx _{mnl})&:=\sum _{\bk \in \mathcal {I}_M^3} ({\rm i} \, v_{k_\nu }^\nu ) \widehat {(\wtd {\phi _j})}_{\bk } W_{\bk }(\bx _{mnl}), \\ \p _{\eta \nu } \phi _j(\bx _{mnl}) \approx \dob {\p _{\eta \nu }}\wtd {\phi _j}(\bx _{mnl})&:=-\sum _{\bk \in \mathcal {I}_M^3}(v_{k_\eta }^\eta )(v_{k_\nu }^\nu ) \widehat {(\wtd {\phi _j})}_{\bk } W_{\bk }(\bx _{mnl}), \quad \eta ,\nu =x,y,z,\end {align*}


$(\widehat {\phi _j})_{\bk }$


\begin {align*}(\widehat {\phi _j})_{\bk }=\frac {1}{M^3} \sum _{(m,n,l)\in \mathcal {Q}_M^3} \phi _j(\bx _{mnl}) \ov {W}_{\bk }(\bx _{mnl}).\end {align*}


$\dob {\btd }:=(\dob {\p _x},\dob {\p _y},\dob {\p _z})^\top $


$\dob {\Dt }:= \dob {\p _x^2}+\dob {\p _y^2}+\dob {\p _z^2}$


$\wtd {\phi _j}$


$\phi _j$


\begin {equation*}\btd \phi _j(\bx _{mnl}) \approx \dob {\btd } \wtd {\phi _j}(\bx _{mnl}), \quad \Dt \phi _j(\bx _{mnl}) \approx \dob {\Dt } \wtd {\phi _j}(\bx _{mnl}), \quad (m,n,l) \in \mathcal {Q}_M^3.\end {equation*}


$\dob { }$


$F_\eta (\eta =x,y,z)$


$\mathbf {R}_L:=[-L,L]^d$


$\Phi $


$\varphi _\eta $


\begin {align}\varphi _\eta (\bx ) &= \int _{{\mathbb {R}}^d} U(\bx -\by ) F_\eta (\by ) {\rm d}\by = \int _{\mathbf {R}_L} U(\bx -\by )F_\eta (\by ) {\rm d}\by \nn \\ &= \int _{\bx +\mathbf {R}_L} U(\by ) F_\eta (\bx -\by ){\rm d}\by =\int _{\mathcal {B}_G} U(\by )F_\eta (\bx -\by ) {\rm d}\by , \quad \bx \in \mathbf {R}_L, \label {ten}\end {align}


$\mathcal {B}_G$


$G:=\text {max}_{\bx ,\by \in \mathbf {R}_{L}} |\bx -\by |=2\sqrt {d}L$


$\mathbf {R}_{L}$


$F_\eta (\bx )$


$\mathbf {R}_{\text {ess}}:=\mathbf {R}_{(2\sqrt {d}+1)L}$


$\bx -\by \in \mathbf {R}_{(2\sqrt {d}+1)L}$


$\bx \in \mathbf {R}_L$


$\by \in \mathcal {B}_G$


$F_\eta (\bx )$


$\mathbf {R}_{\text {ess}}$


$\mathbf {R}_{SL}$


$S=\lceil \sqrt {d}+1\rceil $


$\sqrt {d}+1$


$\mathbf {R}_{SL}$


$F_\eta (\bx )$


\begin {equation*}F_\eta (\bx ) \approx (F_\eta )_M(\bx ):= \sum _{\bk \, \in \mathcal {I}_{SM}^d} \widehat {F_\eta }(\bk ) e^{{\rm i} \frac {\pi \bk }{SL} \cdot \bx }, \quad \bx \in \mathbf {R}_{SL},\end {equation*}


\begin {equation*}\widehat {F_\eta }(\bk )=\frac {1}{(SM)^d} \sum _{\bx _{{\bf p}} \in \mathcal {T}_{SM}^d } F_\eta (\bx _{{\bf p}}) e^{-{\rm {i}} \frac {\pi \bk }{SL} \cdot \bx _{{\bf p}} }, \quad \bk \in \mathcal {I}_{SM}^d.\end {equation*}


$(F_\eta )_M$


$F_\eta $


\begin {align}\varphi _\eta (\bx ) &\approx \int _{\mathcal {B}_G} U(\by )(F_\eta )_M(\bx -\by ) {\rm d}\by = \sum _{{\bf k} \in \mathcal {I}_{SM}^d} \left ( \int _{\mathcal {B}_G} U(\by ) e^{-{\rm i}\frac {\pi \bk }{SL}\cdot \by } {\rm d}\by \right ) \widehat {F_\eta } \,e^{{\rm i}\frac {\pi \bk }{SL}\cdot \bx } \nn \\ &:= \sum _{{\bf k} \,\in \mathcal {I}_{SM}^d} \widehat {U_G}(\bk ) \widehat {F_\eta } \,e^{{\rm i}\frac {\pi \bk }{SL}\cdot \bx },\quad \quad \bx \in \mathbf {R}_L,\end {align}


$\widehat {U_G}(\bk )$


\begin {equation*}\widehat {U_G}(\bk ):= \int _{\mathcal {B}_G} U(\by ) e^{-{\rm i}\frac {\pi \bk }{SL}\cdot \by } {\rm d}\by .\end {equation*}


$\mathbf {R}_L^{\boldsymbol {\vec {\gm }}}:=\Pi _{j=1}^d [-L\gm _j,L\gm _j]^d$


$\boldsymbol {\vec {\gm }}=(\gm _1,\ldots ,\gm _d)\in {\mathbb {R}}^d$


$j$


\begin {align}S_j= \left \lceil 1+\gm _j^{-1} \sqrt {1+\gm _2^2+\ldots +\gm _d^2} \right \rceil .\end {align}


$d$


\begin {equation*}\varphi _\eta (x_m, y_n, z_l) = \sum \limits _{(m',n',l')\in \mathcal {I}_M^3} T_{m-m',n-n', l-l'}(F_\eta )_{ m',n',l'},\end {equation*}


$T_{m,n,l}$


\begin {equation*}T_{m,n,l}=\frac {1}{(SM)^3} \sum _{(k_x,k_y,k_z)\in \mathcal {I}_{SM}^3} \widehat {U_G}\left ( k_x, k_y, k_z \right ) e^{\frac {2\pi {\rm i}}{SM}(k_x m+k_y n+k_z l)}, \quad (m,n,l) \in \mathcal {I}_{2M}^3,\end {equation*}


$\{ \widehat {U_G}(\bk ),\bk \in \mathcal {I}_{SM}^3 \} \subset \mathbb {C}^{(SM)^3}$


$S_{\rm t} = S_1 S_2 S_3$


$\mathcal {O}(S_{\rm t} M^3\log (S_{\rm t}M^3))$


\begin {equation*}U_{1d}(z) = \frac {\sqrt {\pi }}{2\sqrt {2} {\varepsilon }} e^\frac {z^2}{2{\varepsilon }^2} \text {erfc}(\frac {|z|}{\sqrt {2}{\varepsilon }}), \quad U_{2d}(r)= \frac {1}{{\varepsilon } (2\pi )^{3/2}}\,e^{\frac {r^2}{4{\varepsilon }^2}}K_0(\frac {r^2}{4{\varepsilon }^2}), \quad r=|\bx _\perp |,\end {equation*}


$\text {erfc}(x)=\frac {2}{\sqrt {\pi }} \int _x^\infty e^{-t^2} {\rm d}t$


$K_0(x)$


\begin {equation*}\widehat {(U_{1d})_G}(k)=2 \int _0^G U_{1d}(z)\text {cos}(k z)\, {\rm d}z, \quad \widehat {(U_{2d})_G}(k)=2\pi \int _0^G U_{2d}(r)J_0(k r)r \,{\rm d}r, \quad k \in \mathbb {R},\end {equation*}


$J_0$


$N=10^4$


$m$


$a_0$


$a_2$


$^{23}$


$m = 3.816 \times 10^{-26}[\text {kg}], ~a_0 =2.646[\text {nm}], ~a_2 = 2.911[\text {nm}]$


$^{87}$


$m = 1.443 \times 10^{-25}[\text {kg}], ~a_0 = 5.387[\text {nm}], ~a_2 = 5.313[\text {nm}]$


\begin {align*}&(a)\,\phi _a(\bx )=\frac {1}{\pi ^{d/4}} e^{-\frac {|\bx |^2}{2}},\quad \quad \quad ~ (b)\,\phi _b(\bx )=(x+{\rm i}\,y)\phi _a(\bx ),\quad (\bar {b})\,\phi _{\bar {b}}(\bx )=\bar {\phi }_b(\bx ),\\ &(c)\,\phi _c(\bx )=\frac {\phi _a(\bx )+\phi _b(\bx )}{\left \| \phi _a(\bx )+\phi _b(\bx ) \right \|}, \quad (\bar {c})\, \phi _{\bar {c}}(\bx )=\bar {\phi _c}(\bx ),\quad \quad \quad \quad \,(d)\,\phi _d(\bx )=\frac {\phi _g^{\text {TF}}(\bx )}{\left \| \phi _g^{\text {TF}}(\bx ) \right \|},\end {align*}


\begin {equation*}\phi _g^{\text {TF}}(\bx )= \left \{\begin {array}{@{}ll} \sqrt {(\mu _g^{\text {TF}}-V(\bx ))/\ld _n}, & V(\bx )<\mu _g^{\text {TF}}, \\ 0,& {\rm {otherwise}}, \end {array}\right . \quad {\rm {with}} \quad {\mu }_g^{\rm {TF}}=\frac {1}{2} \left \{\begin {array}{@{}ll} (3\ld _n\gm _x)^{2/3}, & d=1,\\ (4\ld _n\gm _x\gm _y)^{1/2}, & d=2, \\ (15\ld _n \gm _x\gm _y\gm _z/{4\pi })^{2/5},& d=3. \end {array}\right .\end {equation*}


$\Phi ^0=(\phi _1^0,\phi _0^0,\phi _{-1}^0)^\top /\sqrt {3}$


$\phi _1^0, \phi _0^0$


$\phi _{-1}^0$


$\tau =0.1$


$\varepsilon _{\text {tol}}=10^{-12}$


$h_x=h_y=h_z=1/16$


$\Phi _g=(\phi _1^g,\phi _0^g,\phi _{-1}^g)^\top $


$h=1/16$


$\Phi _g^h$


$h$


$E_g:=\mathcal {E}(\Phi _g)$


$\mu _g:=\mu (\Phi _g)$


$l^2$


\begin {equation*}e_h:=\left \| \Phi _g-\Phi _g^h\right \|_{l^2}/\left \| \Phi _g\right \|_{l^2}.\end {equation*}


${\omega }_x = {\omega }_y = {\omega }_z = 2\pi \times 200 [\text {Hz}]$


$V(\bx )=\frac {1}{2}(x^2+y^2+z^2)$


$^{23}$


$\ld _n=239.2, \ld _s=7.485, \ld _d=20.84$


$^{87}$


$\ld _n=879.6, \ld _s=-4.065, \ld _d=15.32$


$\Omega =[-8,8]^3$


$E_g=3.7810$


$\mu _g=5.0528$


$E_g=6.0035$


$\mu _g=8.2367$


${\omega }_z = 2\pi \times 400 [\text {Hz}], {\omega }_x = {\omega }_y =2\pi \times 20 [\text {Hz}]$


${\varepsilon }=\frac {1}{\sqrt {20}}$


$V(\bx )=\frac {1}{2}(x^2+y^2)$


$^{23}$


$\ld _{n} =75.64, \ld _{s} =2.367, \ld _{d} =6.59$


$^{87}$


$\ld _{n} = 278.1, \ld _{s} = -1.285, \ld _{d} = 4.846.$


$\Omega =[-16,16]^2$


$E_g=4.5350$


$\mu _g=6.6591$


$E_g=8.4545$


$\mu _g=12.5916$


${\omega }_x = {\omega }_y = 2\pi \times 400 [\text {Hz}], {\omega }_z =2\pi \times 8 [\text {Hz}]$


${\varepsilon }=\frac {1}{\sqrt {50}}$


$V(x)=x^2/2$


$^{23}$


$\ld _{n} =47.839, \ld _{s} =1.497, \ld _{d} =4.168$


$^{87}$


$\ld _{n} = 175.886, \ld _{s} =-8.127, \ld _{d} = 3.065$


$\Omega =[-16,16]$


$E_g=20.6681$


$\mu _g=34.4236$


$E_g=47.9598$


$\mu _g=79.9218$


$\varepsilon _\nu $


$\nu $


$\nu =x,y,z$


$|\Phi _g(\bx )|^2=0.001$


$\varepsilon _\nu $


$\vep _x=\vep _y=1$


$\vep _z=1/\sqrt {160},\,\vep _y=1$


\begin {equation}V_z(z)=\frac {z^2}{2}, \quad V_{2d}(x,y)=\frac {1}{2}(x^2+y^2), \quad V_{\varepsilon }(x,y,z)=\frac {1}{2}(x^2+y^2+\frac {z^2}{\vep ^4}).\end {equation}


$\Phi _g:=\Phi _g(x,y,z)$


$\mathbf {R}_{\varepsilon }=[-12,12]^2\times [-12{\varepsilon },12{\varepsilon }]$


$h_x=h_y=1/16, h_z={\varepsilon }/16$


$\Phi _g^{2d}:=\Phi _g^{2d}(x,y)$


${\Omega }=[-12,12]^2$


$h_x=h_y=1/16$


$\chi (z)=[ \int _{{\mathbb {R}}^2} |\Phi _g(x,y,z)|^2 {\rm d}x{\rm d}y]^{1/2}$


$\Phi _g$


$z$


$\| \Phi _g-\Phi _g^{2d} {\omega }_{1d}(z) \|_{l^2}$


$\| \chi -{\omega }_{1d} \|_{l^2}$


$\| \Phi _g-\Phi _g^{2d} {\omega }_{1d}(z) \|_{l^2}$


$\| \chi -{\omega }_{1d} \|_{l^2}$


$\vep $


$z$


$\vep $


$\varepsilon \rightarrow 0$


\begin {align}V_z(z)=\frac {z^2}{2}, \quad V_{2d}(x,y)=\frac {1}{2}(x^2+y^2), \quad V_{\varepsilon }(x,y,z)=\frac {1}{2}(z^2+\frac {x^2+y^2}{\vep ^4}).\end {align}


$\mathbf {R}_{\varepsilon }=[-12{\varepsilon },12{\varepsilon }]^2\times [-12,12]$


$h_x=h_y={\varepsilon }/16, h_z=1/16$


$\Phi _g^{1d}:=\Phi _g^{1d}(z)$


${\Omega }=[-12,12]$


$h_z=1/16$


$\| \Phi _g-\Phi _g^{1d} {\omega }_{2d}(z) \|_{l^2}$


$\| \Phi _g-\Phi _g^{1d} {\omega }_{2d}(\bx _\perp ) \|_{l^2}$


$\vep $


$(x,y)$


$\vep $


$z$


$V(\bx )$


\begin {align}\label {potential} V(\bx )&= \begin {cases} \frac {x^2}{2}+\kappa \,\sin ^2(\frac {\pi x}{4}), \,\,\quad d=1,\\ \frac {1}{2}(x^2+y^2)+\kappa \,[\sin ^2(\frac {\pi x}{4})+\sin ^2(\frac {\pi y}{4})], \,\quad d=2, \\ \frac {1}{2}(x^2+y^2+z^2)+\kappa [\sin ^2(\frac {\pi x}{4})+\sin ^2(\frac {\pi y}{4})+\sin ^2(\frac {\pi z}{4})],\quad d=3, \end {cases}\end {align}


$\kappa $


$\kappa =10$


${\varepsilon }=\frac {1}{\sqrt {50}}$


$\Omega =[-16,16]$


$E_g=25.4681$


$\mu _g=39.1845$


$E_g=52.8612$


$\mu _g=84.7055$


${\varepsilon }=\frac {1}{\sqrt {20}}$


\begin {equation*}V(\bx )=\frac {1}{2}(x^2+y^2)+\beta _0\,[\cos ({\bf b_1}\cdot \bx )+\cos ({\bf b_2}\cdot \bx )+\cos (({\bf b_1}+{\bf b_2})\cdot \bx )],\end {equation*}


${\bf b_1}=\frac {\pi }{4}(\sqrt {3},1), {\bf b_2}=\frac {\pi }{4}(-\sqrt {3},1)$


$\beta _0$


$\Omega =[-16,16]^2$


$\beta _0=5$


$\beta _0=40$


$E_g=11.8976$


$\mu _g=14.9370$


$E_g=16.8160$


$\mu _g=21.3889$


$E_g=1.4263$


$\mu _g=3.8406$


$\beta _0=5$


$E_g=-39.7288$


$\mu _g=-34.7968$


$\beta _0=40$


$E_g=6.1017$


$\mu _g=11.0848$


$\beta _0=5$


$E_g=-31.6668$


$\mu _g=-24.0668$


$\beta _0=40$


$\Omega =[-8,8]^3$


$|\phi _1(x,y,z)|=0.01$


$|\phi _0(x,y,z)|\equiv 0$


$|\phi _{-1}(x,y,z)|=0.01$


$|\phi _1(x,y,z)|=0.01$


$|\phi _0(x,y,z)|=0.01$


$|\phi _{-1}(x,y,z)|=0.01$


$E_g=13.1852$


$\mu _g=15.6923$


$E_g=17.0860$


$\mu _g=20.5723$


$F$


$U_{\bn \bm }(\bx )=\frac {3}{4\pi }\frac {1}{|\bx |^3} \left ( (\bn \cdot \bm )-3 \frac {(\bx \cdot \bn )(\bx \cdot \bm )}{|\bx |^2} \right )$


$\bn ,\bm \in \mathbb R^3$


$f(\bx ) \in C_c^\infty ({\mathbb {R}}^3)$


\begin {equation}\left [U_{\bn \bm } \ast f\right ](\bx )=-(\bn \cdot \bm )f(\bx )-3\left [ \left (\frac {1}{4\pi |\bx |} \right ) \ast \p _{\bn \bm } f \right ](\bx ).\end {equation}


\begin {equation}u(\bx )=-3 \p _{\bn \bm } \left ( \frac {1}{4\pi |\bx |} \right ).\end {equation}


${\varepsilon }>0$


$B_{{\varepsilon }}=\{\bx \in {\mathbb {R}}^3| |\bx |<{\varepsilon }\}$


$B_{{\varepsilon }}^c=\{\bx \in {\mathbb {R}}^3| |\bx |\geq {\varepsilon }\}$


\begin {equation}U_{\bn \bm }(\bx )=u(\bx ), \quad 0\neq \bx \in {\mathbb {R}}^3. \label {A3}\end {equation}


\begin {align}-\frac {1}{3} \int _{B_{{\varepsilon }}^c} U_{\bn \bm }(\bx )f(\bx ) {\rm d}\bx &=-\frac {1}{3} \int _{B_{{\varepsilon }}^c} u(\bx )f(\bx ) {\rm d}\bx =\int _{B_{{\varepsilon }}^c} \p _{\bn \bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) {\rm d}\bx \nn \\ &= \int _{B_{{\varepsilon }}^c} \left [ \p _\bn \left ( \p _\bm \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \right ) -\p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn } f \right ] {\rm d}\bx \nn \\ &= -\int _{\p B_{{\varepsilon }}} \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \frac {\bx \cdot \bn }{|\bx |} {\rm d}S- \int _{B_{{\varepsilon }}^c} \left [ \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn } f \right ] {\rm d}\bx \nn \\ &= I_1^{{\varepsilon }}- \int _{B_{{\varepsilon }}^c} \left [ \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \p _{\bn } f \right )- \frac {1}{4\pi |\bx |} \p _{\bm \bn } f \right ]{\rm d}\bx \nn \\ &= I_1^{{\varepsilon }}+I_2^{{\varepsilon }}+\int _{B_{{\varepsilon }}^c} \frac {1}{4\pi |\bx |} \left ( \p _{\bm \bn } f \right ){\rm d}\bx , \label {A4}\end {align}


\begin {equation}I_1^{{\varepsilon }}:=-\int _{\p B_{{\varepsilon }}} \p _{\bm } \left ( \frac {1}{4\pi |\bx |} \right ) f(\bx ) \frac {\bx \cdot \bn }{|\bx |} {\rm d}S, \quad I_2^{{\varepsilon }}:=\int _{\p B_{{\varepsilon }}} \frac {1}{4\pi |\bx |} \left ( \p _\bn f \right ) \frac {\bx \cdot \bm }{|\bx |} {\rm d}S. \label {A5}\end {equation}


\begin {align}I_1^{{\varepsilon }} &= \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} f(\bx ) {\rm d}S \nn \\ &= \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} f({\bf 0}) {\rm d}S+ \frac {1}{4\pi {\varepsilon }^2} \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [f(\bx )-f({\bf 0})] {\rm d}S. \label {A6}\end {align}


\begin {align}\int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm ) (\bx \cdot \bn )}{|\bx |^2} {\rm d}S &= \int _{\p B_{{\varepsilon }}} \frac {\rm n_1m_1x^2+n_2m_2y^2+n_3m_3z^2}{|\bx |^2}{\rm d}S \nn \\ &= \int _{\p B_{{\varepsilon }}} \frac {\frac {1}{3}(\rm n_1m_1|\bx |^2+n_2m_2|\bx |^2+n_3m_3|\bx |^2)} {|\bx |^2}{\rm d}S \nn \\ &= \int _{\p B_{{\varepsilon }}} \frac {(\bn ,\bm )|\bx |^2}{3|\bx |^2} {\rm d}S = {4\pi {\varepsilon }^2} \frac {(\bn ,\bm )}{3}, \label {A7}\end {align}


\begin {align}\left | \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [f(\bx )-f({\bf 0})] {\rm d}S \right |&= \left | \int _{\p B_{{\varepsilon }}} \frac {(\bx \cdot \bm )(\bx \cdot \bn )}{|\bx |^2} [\bx \cdot \btd f(\theta \bx )] {\rm d}S \right | \nn \\ &\leq {\varepsilon } \| \btd f \|_{L^\infty (B_{{\varepsilon }})} \int _{\p B_{{\varepsilon }}} {\rm d}S=4\pi {\varepsilon }^3 \| \btd f \|_{L^\infty (B_{{\varepsilon }})}, \label {A8}\end {align}


$1 \leq \theta \leq 1$


\begin {equation}I_1^{{\varepsilon }}\rightarrow \frac {1}{3} f(\bf 0)(\bn ,\bm ), \quad {\varepsilon }\rightarrow 0^+. \label {A9}\end {equation}


${\varepsilon }\rightarrow 0^+$


\begin {equation}\left | I_2^{{\varepsilon }} \right | \leq \| \btd f \|_{L^\infty (B_{{\varepsilon }})} \int _{\p B_{{\varepsilon }}} \frac {1}{4\pi {\varepsilon }}{\rm d}S= {\varepsilon } \| \btd f \|_{L^\infty (B_{{\varepsilon }})}\rightarrow 0. \label {A10}\end {equation}


${\varepsilon }\rightarrow 0^+$


\begin {equation}\int _{{\mathbb {R}}^3} U_{\bn \bm }(\bx )f(\bx ) {\rm d}\bx = -(\bn ,\bm ) f({\bf 0})-3\int _{{\mathbb {R}}^3} \left ( \frac {1}{4\pi |\bx |} \right ) \p _{\bn \bm } f(\bx ) {\rm d}\bx . \label {A11}\end {equation}


$f_\by (\bx ):=f(\by -\bx )$


$\forall \by \in {\mathbb {R}}^3$


\begin {equation}\left [U_{\bn \bm } \ast f\right ](\bx )=-(\bn \cdot \bm )f(\bx )-3\left [ \left (\frac {1}{4\pi |\bx |} \right ) \ast \p _{\bn \bm } f \right ](\bx ).\end {equation}


$F$


$t_{n}\leq t<t_{n+1}, n\geq 1$


\begin {align}\label {GFDN} \p _t \Phi (\bx ,t) =\left [ \frac {1}{2}\btd ^2- V(\bx )-\ld _n\rho -\ld _s \textbf {F}\cdot \textbf {f}-\ld _d\textbf {D}\cdot \textbf {f}\right ]\Phi ,\end {align}


\begin {align}\phi _j(\bx ,t_{n+1}):=\phi _j(\bx ,t_{n+1}^+) =\sg _j^n\phi _j(\bx ,t_{n+1}^-), \quad \bx \in \Omega , \quad j=1,0,-1, \label {GFDN_4}\end {align}


$\phi _j(\bx ,t_{n+1}^\pm )=\lim _{t\rightarrow t_{n+1}^\pm } \phi _j(\bx ,t)$


$\sg _j^n$


$\| \Phi (\cdot ,t_{n+1}) \|^2=\sum _{j=-1}^{1} \| \phi _j(\cdot ,t_{n+1}) \|^2=1.$


\begin {equation*}\p _t \phi _{j}(\bx ,t)=\mu _{\Phi }(t)\,\phi _j, \quad t_{n}\leq t\leq t_{n+1}, \quad n \geq 0.\end {equation*}


\begin {equation*}\phi _j(\bx ,t_{n+1})=\text {exp}\left ( \int _{t_{n}}^{t_{n+1}} \mu _{\Phi }(\tau ) {\rm d}\tau \right ) \phi _j(\bx ,t_{n}), \quad j=1,0,-1.\end {equation*}


\begin {equation*}\sg _1^{n}=\sg _0^{n}=\sg _{-1}^{n}.\end {equation*}
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dipolar-dipolar interaction field is the following nonlocal coupled Gross-Pitaevskii equations [20,32,36]:

ihoy(x,1) = Hyyy + (8, F, + 84D )w, + (g, F_ + g4 D_)y, (1.1)
ino,yo(x,1) = Hoyo + (g Fy + 84D )y, + (g F_ + g, D_)y_y, 1.2
ihow_(x,1) = Hyw_y + (§,Fy + 84D )wo — (8, F; + 84D )w_;. 1.3

Here i = v/—1 is the imaginary unit, x = (x,y,2)" is the Cartesian coordinate vector, ¢ is the time, # is the Planck constant, ¥ =
2y2

(w1, Wy, w_1)" is the time-dependent complex-valued wave function. The Hamiltonian operator Hy := _hz_Z +Vx) +g,p and p =

Z;z_l ly; |> represents the total density. The trapping potential

V(x) = %m(wf{xz + win + wizz), (1.4)

where o,, o, and o, are the trap frequencies in the x—, y—, and z—direction, respectively. Interaction between atoms of mass m is

47!712 . ap+2ay 4/rh2 . ”2—”0

characterized by the interaction strengths through the “density” channel, g, = , and the “spin” channel, g, = 3
where g and a, are the s-wave scattering length with the total spin 0 (anti- parallel spin collision) and 2 (parallel spin colhslon)
channels, respectively. The mean-field interaction g, is positive for repulsive interaction and negative for attractive interaction. The
spin-exchange interaction g is positive for anti-ferromagnetic interaction and negative for ferromagnetic interaction. The dipolar

; ; : Ho(grup)*
interaction parameter is g, = ~="5-—

Bohr magneton, respectively.
Introduce the spin-1 matrices f = (f,, f, v/ )7 as

with ug, gp, up being the magnetic permeability of vacuum, the hyperfine g factor and the

oo (0 -1 0 1 0 0
fi=—|1 0o 1} f,=%f1 o -1} r.=lo o of (1.5)

V2lo 1 o V2o 1 o 0 0 -l

and the spin vector F := (F (¥), F,(¥), F,(¥)T := (W1, ¥, Y7, W, WH 7, ¥)" (P is the conjugate transpose of ¥) of the condensate
is given explicitly as

1 - _ _ i _ _ _
Fo=—[pwo+ (v +v_)) +W_w|. F,= %[—lelo + (v —woy) +0iw)s

V2

and F, = |y;|? — [w_,|>. The effective dipolar field, denoted by D = (D, D,, D,), is defined below

- 3 1 ’ ' y o ox=x"

DV(X) = ‘/RS Em [FV(X ) —3€V F(X ) . e]dx ,e= m,v =X,),Z. (16)
Furthermore, we define the transverse magnetization and transverse dipolar field by F, = (F, +iF, )/\/5 and D, = (D, +iD,)/ \/5,
respectively.

Introduce the following parameters
f=w,t X=x/by, by=+h/mo,), ©,=mnin{o,,o, o},
and the wave function
. 1 3
¥ %D =NIRY(x,0, j=10-1, 1.7)

where N is the total number of particles in the condensate. Plugging Eq. (1.7) into equations Egs. (1.1)-(1.3) and removing all ~, we
obtain the dimensionless nonlocal GPEs

10,¥(x.1) = [—%VZ +VE) + 4,0+ AF-f+2,D- f]lP, (1.8)
¥x,0)=¥Y0x), xeR3,
and )

whereF-f=3 F,f,,D-f=3% D, f, (weuse Y, and ), to denote ¥ | respectively unless otherwise specified).

The external trapping potential is

ne{x,y.z} ve{x.y.z}

1
V) = S0 + 1y 122,
with y, = Z—” v =1x,Y,2z, and the strength of density channel, spin channel and dipole-dipole interaction (DDI) are scaled as 4, =

2
daN qot2ay o 4N ma g MERR)N yging the convolution identity in Appendix A, the effective dipolar field is rewritten as

3 b ST 3 g 0T T e300
=Z Z_4II*(6”“F”)_F
n
; (47r|X| ")'FV ::'3;‘)"“”"‘FV' (1.9)
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The DDI convolution kernel U,,, reads as

_ 3 1 XpXy _
U,,(x) = i W(Sr,v -3 ME >, nv=x1y,2z,

where §,, is the Kronecker symbol and ¢,, the Coulomb potential generated by spin density F,, is defined as follows

1 1 1
@,(x) = (lel * F,,)(X) =i /IR3 HF,,(Y)dY (1.10)

It is worth noting that, due to the presence of DDI, the magnetization (or the spin angular momentum) of Eq. (1.8), i.e., M(¥(-,1)) :=
fn@ Z;?l ilw;(x, 1)|? dx is not conserved [32]. Two important invariants are the mass

1
NEC0) = ¥l = Y /3 ;.0 dx = N(P(.0) =1, 120, (1.1D)
; R

j==

and the energy per particle

1
_ V2 A As
EW(, D) 1= /w LZ wj<—7 + V)w,. + 7,)2 + 7|F|2] dx + Vy, = E¥(,0), 120, (1.12)

=-1

where |F|* = F] + F} + F7 and the dipolar energy V,, is given explicitly

A
Via = 7” > /R3 F,(x) [Z /R3 U,,(x —x)F,(x) dx']dx.
n v

The ground state, denoted as ®¢ = (¢¢, g, ¢ 1)T’ is defined as minimizer of the energy functional over constraint manifold S, that
is,
@f = argmin £(®), where S := {® = (¢, ¢y ¢_))" € (Hy(R))[||@]*> =1, E(@) < o0}). (1.13)
=

In fact, there exist y = 8 and ® = ®¢ satisfying the following Euler-Lagrangian equation
Ho = [—%Vz + V) +A,p+ AF-f+1,D-f|® := H®), (1.14)

where H(®) = (H,, Hy, H_,)" and the chemical potential y is computed as y = Z,l-z_ | /R3 ) ; H;(®)dx. In addition, Eq. (1.14) is actually
a nonlinear eigenvalue problem for (®, 4) under the constraint Eq. (1.11), and therefore, the ground state is the eigenfunction with
the lowest energy.

Different numerical methods have been developed in the literature to compute the ground state of a single-component BEC.
Roughly speaking, they can be divided into the minimization methods based on GP energy and eigenvalue solvers based on Euler-
Lagrangian equation. For minimization approach, the ground state is regarded as the solution of a constrained minimization problem,
and gradient flow based methods and optimization algorithms are the two main popular approaches. The former includes gradient
flow with discrete normalization (GFDN) [5,7], projected gradient flow (PGF) [7], scalar auxiliary variable approach coupled with a
penalty term [38], and gradient flow with Lagrange multiplier (GFLM) [23]. The optimization approach includes directly minimizing
energy functional [11], Sobolev gradient method [14], Riemannian optimization method [15], preconditioned nonlinear conjugate
gradient method [2] and regularized Newton method [35] etc.

Due to presence of the external potential, all spin component F, are smooth and fast decaying, then the DDI computation boils down
to the evaluation of Coulomb potential which is generated by 9, F,. During the last decades, various accurate and fast algorithms,
starting from the convolution or Fourier integral form, have been proposed, including Nonuniform Fast Fourier transform method
[18], Gaussian-Sum based method [16], Kernel Truncation Method (KTM) [33] and anisotropic kernel truncation method [17]. All
such algorithms achieve spectral accuracy and share a FFT-like complexity O(M log M) with M being the total number of grid points,
and have been successfully applied to study various BECs [3,4,9,30,31].

So far as we know, there are few studies on mathematical and numerical study of the ground state for spin-1 dipolar BECs. To
compute the ground state numerically, the difficulties lie in the proper treatment of the mass constraint Eq. (1.11) and resolving the
hyperfine spatial structure induced by the anisotropic dipole-dipole interaction and spin effects, which correspondingly requires the
ground state solver to be accurate enough in space and capable to escape from local minima. The widely-used PGF-based methods
treat the mass constraint as a Lagrange multiplier, and have been successfully applied to spinor systems [6,10,12,34]. The PGF-based
method allows for flexible spaital-temporal discretizations and proves to be accurate, efficient and robust, therefore, it stands out
as a good candidate. As for the computation of dipole-dipole interaction, due to the kernel singularity, convolution non-locality and
density anisotropy, accurate and fast evaluation of DDI is quite challenging. Classical PDE-based method encounter “accuracy locking”
phenomenon due to the limited accuracy of boundary condition approximation [9]. Thus, we shall turn to integral-based solver, and,
among all feasible and efficient algorithms, KTM is the simplest one and has been widely adopted in the physics community [28,29].
This motivates us to extend PGF method by integrating KTM, which can be equipped with optimal zero-padding [24] for better
efficiency and stability, for the DDI evaluation, and we can reasonably expect implementation easiness and excellent performance in
terms of accuracy and efficiency when computing the ground state.

3
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The paper is organized as follows. In Section 2, one and two dimensional mean-field equations for cigar and pancake-shaped spin-1
dipolar Bose-Einstein condensates are derived via a dimension reduction procedure. In Section 3, we propose an efficient and accurate
numerical method for computing the ground state by integrating KTM into PGF. In Section 4, spatial accuracy and convergence rates
of the dimension reduction are verified, and detailed ground state results under different potentials from 1D to 3D are reported.
Finally, some conclusions are drawn in Section 5.

2. Dimension reduction

In many physical experiments with spin-1 dipolar BECs, the condensates are confined by a strong harmonic trap in one or two axis
directions, resulting in a pancake- or cigar-shaped BEC, respectively. Mathematically speaking, this corresponds to the anisotropic
potentials V,(x) of the following forms:

Case I (pancake — shaped). The potential is strongly confined in the vertical z-direction with

1
V.(x) = Vag(x) + = Vo(2). (2.1)
€ £
Case I1 (cigar — shaped). The potential is strongly confined in the horizontal x, -plane with
1 X
Vo) = Vi(2) + S Vi(=), (2.2)
& £

where x = (x,,2),x; € R? and 0 < £ < | is a small parameter describing the confining strength.
Plugging Egs. (1.9) into (1.8) and noticing (1.10), we can reformulate nonlocal Eq. (1.8) as the following coupled equations

. V2
0,y (x,1) =<—7 +V + /1,,/))1//1 + Ay = Ag)(Fowy + F_wy)

=344 2 w1 (0500, re + —=wo(04y0,) = — ‘I’o(ay,,(ﬂn)], (2.3)
n

1

| Vi Vi
2

i9,wy(x,1) =<—V7 +V+ /W)l//o + (As = Ag) (Fpyy + F_y_)

. V2
idy_ (x,n =(—7 +V+ Mﬂ)ll/q + (4 = Aq) (= Foy_y + Fowg)

1
=3k —v_i(0,,0,) + —
Zﬂ: i zn+n \/E

w;(x,0) :W;O)(x), xeR3, j=1,0,-1

Yo (‘)xrl(pn)

+ L‘/’O(dyﬂq”ﬂ)] » 2.5)

V2

In such cases, analogous to the dimension-reduction procedure presented in [8], the above Egs. (2.3)-(2.5) in 3D can be formally
reduced to two dimensions (2D) and one dimension (1D), respectively.

2.1. Quasi-2D spin-1 dipolar BEC

In Case I, when £ — 0%, evolution of the solution ¥(x,7) of (2.3)-(2.5) in the z-direction would essentially occur in the ground
72

1 1 _zZ
state mode of Hf := —%611 + }2 Vz(f), which is spanned by w,,(z) = € 2z~ 7e 2. We write the factorized wave function as
_ it
wi(x,1) ~ w}d(x,y,z)w,d(z)e 22, xeR3 1>0,j=1,0-1. (2.6)
Define W2/ = (y2 ’Wo 4 y2T, F2d (W2 F, 92, F2d = (F24 4+ F2d)/\/— 2, oy = Z,__1 |W2d|2 Plugging (2.13) into (2.3)~(2.5), here
we take (2.3) as an example for brev1ty After multlplymg both 51des by w,,4(z) and 1ntegrat1ng over the z direction, we can obtain a 2D
wave equation for v 2d The integration is straightforward for all but the convolution term because /R w} d(z)dz =1and fR w; d(z)dz =

1/4/2re, in the following we only present the integration of the convolution term

L 2,2 i 24 2
2/ [ 1 (020,) + \/5‘/’0 14 (0 @y) = %"’0 @y, (0,,0,) | dz. 2.7
Since the Coulomb kernel 4_H happens to be the Green’s function of the Laplace operator in 3D, we use the identity —V2Us,(x) = §(x).

As Usy * (F}'w?,) is even in z, 6ZW(U3{, * (Fnz"wfd)> and 0,72(U3d * (Fnz‘lw%d)> become odd in z with 5 = x, y, thus Eq. (2.7) becomes

1 2d, 2d 22 o2 2,2
- F oy - ‘/’1 o7, V1 (Usy * (F'0],))dz
—0o0

V2ze
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+ Z / 24 2 [(\/_ \/_ y,,>(U3d*(Fy,2dw%d)>:|dz, (2.8)

ne(x.y}
where the d_, and J,, term disappear because the integral of odd functions vanishes. After expanding the convolution in (2.8) and
changing the variables for simplification, we get the mean-field equation for the quasi-2D spin-1 dipolar BEC

V2 42 424 _ j2d 124 4024
iazvflzd =<__l+V2d+ =2y ‘I/12d+—( . E )FZdlllzd"r—( : 4 )FZdWZd

2 V2re Vore Vore !
3
+ 54 [Wdeiwﬁd—”ez;y < i \[ y,,> 2"]. 2.9)

Similarly, we have

v pel
0! =< +Vag + —==pa w3 + (F'wi? + F2y2)
(2

2 Vor
__ﬂzd < + ><p2d+wfd<L6 _d, )(phf], (2.10)
D ) e )

VZ 12d (/1211 _ AZd) (AZd +212d)
L d 3 d
10,1;/ ! <__l + Vg + ——py W27 s Fy2d _ 0 F2 2
€

2 V2x e 0 Vore

3 24|, 2d92 2d 24
_3, 152 2 4 , 2.11)
sir|vions 2 (e oo |

(A -4

2re

where
2 © _§
2d 2d
Q- = U2d * F29, U2d(x, y) =
n n Q2r)3/? Jy Ix, |2+ e2s2

The strength of density channel, spin channel and dipole-dipole interaction are scaled as

2 _ 4z N(ag + Zaz) 24 _ 4nN(ay — ag) 2 Ho(grup)* Nm

) > 2.12
" 3b, s 3b, 3b, h? ( )

with b, =,/ mZ e=,/ Zi Since the initial data 1//( satisfies W(O)(x) ].2‘1 (X, ), 4(z), multiplying by w,,(z) and integrating for z
over R, we get the initial data for the Egs. (2.9)-(2.11) as

y/jzd(XJ_,O) =/y//(,0)(xl,z)w1d(z)dz, X, € R2.
R

Associated to the quasi-2D Egs. (2.9)-(2.11), the energy is

1 2 2d 2d 2d 2d
\% A A4 — A 2 34 2
2dy . _ —2d| _ L 2d n 2 S d 2d d 2d
e )._/2 z‘ 7 < = +V2d)y/j + P2+ |F ( + F?
R =1 \2re V2re \2re

3 2d 2 2d p2d _ 2d r2d 2d 2d
+5 42 [v F2 = N (04,03 F2 + 0,02 F2 ) | fax,.
n€{x.y}

The ground state @3 is defined as

@¢ = argmin £(®), where S := (@ = (¢}, P, 1) € (HyR)P[|®> = 1, E@) < oo}
oes

2.2. Quasi-1D spin-1 dipolar BEC

In Case II, evolution of the solution ¥W(x,, z,t) of Egs. (2.3)-(2.5) in the x l-direction would essentially occur in the ground state

\XJ_I

1
~1z72¢” 22 . The wave function separates into

mode of HY := ——AL +3 Vl( ), which is spanned by w,,(x,) = €
it

wi(x, 1) & q/jld(z, Nang(x)e 2, xeR? >0, j=1,0-1. (2.13)

Define ¥4 = (y/1 ,y/o , 1d)T Fld (WHHF W, Fld = (Fl4 +1F]d)/\/_ Pa = Z,——l |q/ld|2 Plugging (2.6) into (2.3)-(2.5), here

we take (2.3) as an example for brevity. After multlplymg both 51des by w,,(x,) and 1ntegrat1ng over the x — y plane, we can

obtain an equation in z only. The integration is straightforward for all but the convolution term because /RZ w2 (6 y)dxdy =1 and
Jr2 co‘z‘ , (e pdxdy =1 /2x€2, in the following we only present the integration of the convolution term

1 i
Z /[R2 [Wlldwgdwzn(pn) + %V’Sdc"gd(axn%) - %Wédc"gd(ayn‘pn) dxdy. (2.14)
n
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We recall the symmetry of U, and w,, in x and y, and Us, is the Green’s function of the Poisson equation. It is worth noting that

F)%@3, is an even function respect to x and y, and so is Uz, * (F,“3,), which implies that the partial derivatives d,,,d,..d,. of
Us, * (Fnldm%d) are odd functions in x and y. Thus Eq. (2.14) becomes
1 2 [ 14 1,2 1 14 1d, 2
o E +/[Rz o2, [1,/1 0c2 (Usg # (F1@3,)) = S30..(Usg + (F! de))]dxdy, (2.15)

because the integral of odd functions vanishes. After expanding the convolution in Eq. (2.15) and changing the variables for simpli-
fication, we get the mean-field equation for a quasi-1D dipolar BEC

ld (ild _ Zld) (2,1” +lld)
oo ad _f _ 1 1d s d 1d, 1d s d 1d, 1d
iy, —< 0ZZ+VM(Z)+ 2p1d>u/1 e F %y, " + el F %y,
3 1
- = /1111 (Wldazz(pid -3 Sdazz(pl_d) (2.16)
Similarly, we obtain
ld (2/11d +/11d)
iow =( ~20.. + Va2 + 5 wd + ——— = (Fly ! + Fly )
2 4re
3
+ Ex}ﬂ(u/}dau% +yldo o), (2.17)
ld (/ﬂd _ Ald) (2/11d +Ald)
ca o 1d _ 1d s d 1d, 1d s d 1d, 1d
10,1//_1 —<—§du + I/ld(z) + p1d>lll_1 - TFZ l[/_l + TF+ l[/O
3 jd(, 14 i
+ 504 (u/_ .01+ 1 S¥10:.0)¢ ) (2.18)

where

_u
e25

1
W Ve

The strength of density channel, spin channel and dipole-dipole interaction are scaled as

e}

@l =Uyy «Fl' @\ =Uy*F" Uy =

i — 47N (a, +2a2) i = 4zN(a, — ay) Jd Ho(grug)* Nm

= , = , 2.19
" 3b, s 3b, d 3b,h? (2.19)

with b, = ./ % € = |/ ==. Since the initial data wj@ satisfies ‘I’J@ () ~ v} (2),4(x, ), multiplying by w,,(x, ) and integrating for x,
z L
over R2, we get the initial data for the (2.9)-(2.11) as
y/j'd(z, 0)= / wj(.o)(xl, Z)wyy(x)dx;, z€R.
R2

Associated to the quasi-1D (2.9)-(2.11), the energy is

1 1d 1d 1d 1d
0 A A=A 2 32 2
1dy . _ z —1d [ _~zz 1d n 2 s d 1d d 1d
e¥ ._/IR { Yi < 2 * Vld>y/j * 2re? Pra 2me? ‘F ‘ * 2 L= |

j=1

3 1d :1d 1d 1d
~5- 44 [an @lFM — 2 0.0 Fl| bz

rle(xﬁy}

The ground state @3 is defined as

@ = argmin £(®), where S 1= {® = (¢, ¢, ¢_1)" € (HY(R)[[|®]* = 1, E(®) < 0},
oes

3. Numerical algorithm
In this section, we are inspired by the work in [7] to propose the projected gradient flow (PGF) method as an efficient and accurate

numerical implementation for computing the ground states of spin-1 dipolar BECs. The basic idea is to evolve the vector wave function
by iterating a two-step procedure based on a first-order time splitting of the PGF.

3.1. Projected gradient flow

We first generalize the PGF to the spin-1 dipolar case for ®(x, ) = (¢; (X, 1), ¢po(X, ), p_; (x,1))T:

0 (x,1) = —H;(®) + po(d;, xERY, 1>0, j=10-1, (3.1)
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with the initial condition ®(x,0) = ®©(x) € S. Here, uq(?) is chosen such that the above PGF is mass (or normalization) conservative,
it can be computed as

P
mwﬁ% (3.2)
with
Ng(t) = Z/ G;¢;dx,  Po(t) = Z/ ¢, H;(®)dx. (3.3)
J== J==

It is easy to show that the PGF Eq. (3.1) is mass-conservative and energy-diminishing:

Proposition 3.1. For a given initial data ®(x,t = 0) = ®O(x) € S, if the solution ®(-,1) of the PGF Eq. (3.1) has at least one nonzero
components for all t > 0, then

N@¢,0) =1, E@C,0)) < ED(,s), Vi=s=0.
Proof. Using Egs. (3.1)-(3.3), a direct calculation shows that

%N’(CD( 1) =2 Z Re/ ¢/a¢ jdx = 2(=Py(t) + No(t) - o)) = (3.9

j=—1

so that the total mass is conserved. Further, from Egs. (3.1) and (3.4), we have

3E(@ —
—£(q>( 1) =2 2 / ;)a pdx =2 2 Re /d H;(®)9,¢;dx

Jj=-1

=2 Z Re/Rd (H(®) — pgy(1)b )0, p;dx

j=—1
=42/W@)M%M@)M%mw
~

which implies the energy-diminishing property. O

Similar to the PGF for spin-1 cases [12], it is possible to design a suitable full discretization scheme for Eq. (3.1) in general spin-1
dipolar cases to obtain the mass-conservation and energy-diminishing property in the discretized level. However, in such a scheme,
the nonlinear terms must be discretized in very special ways, and thus a fully nonlinear system has to be solved at each time step.
This is a little tedious from a computational point of view.

3.2. Semi-discretization in time

Lett, =nr forn=0,1,2,... with 7 > 0 a given time step length. Denoting ®" = (¢{, 0 P, )T(n=1,2,...) as the numerical approx-
imation of the solution ®(-,t,) of the PGF Eq. (3.1), we compute ®"*! from ®”" via the following two-step procedure:

Step 1: Evolution. Starting at ®(-,7,) = ®”, over the time interval [7,,7,,], the chemical potential uqg: = g (t,) is explicitly given
in Eq. (3.2). For efficiency and simplicity, we adopt the following backward-forward Euler scheme:

¢* o

——= Evzqs’; — (V4 40" + AF! + Ay D)@ — (A, F" + 4y D" )y + g b (3.5)
P90 L g2ge (1 b ) — GuFD + A DB — Gy 7 + 4y D ; 3.6
— =53V% — (V4 4,0") s — (A F! + Ay DD = (A F" + Ay D")¢" | + tign B, (3.6)
(bil _d)’il 1 2 4% n n n n n n n n
—— =3V, - (V + App" = A F! = 3y D2)@" | = (AFI + Ag D)t + pignd” . 3.7)

Step 2: Projection. Choose projection constants o‘/’.’(j =1,0,-1) to define
+1 . gi *
O = dlag(o{', 0'6', af])CD . (3.8)

Here the projection constants 6;'(j =—1,0,1) are chosen such that the mass constraint Eq. (1.11) is exactly satisfied at ®"*!, i.e.,
N (@™ = ||®(-,1,,)|I> = 1. Combining Eq. (3.8), we obtain

ZMWWﬂ (3.9)

j=-1
There are three unknowns and only one equation in the above nonlinear system, so the solution is still undetermined. In order to
determine the projection constants o} uniquely, we need to find additional equations. Analogous to [10], based on the fact that the
chemical potentials are the same, we propose to use the following equations as the normalization condition (see details in Appendix B):

0';' = 0'6' = o{l. (3.10)
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Solving the nonlinear system Egs. (3.9) and (3.10), we get explicitly the projection constants as

_1
ol =of =" = (1111 + 10517 + l1g7, 117) 2. (3.11)
The practical stopping criterion
q)n+l —on
I I Culs (3.12)
T

where the tolerance ¢, is a small parameter. It is clear that Egs. (3.5)-(3.7) together with the stopping criterion Eq. (3.12) correctly
captures the Euler-Lagrange Eq. (1.14).

3.3. Spatial discretization by Fourier spectral method

Due to the external trapping potential, the wave function ® decays exponentially fast at the far field. Therefore, we can reasonably
truncate the whole space R¢ into a bounded rectangular domain Q and impose periodic boundary conditions on the wave function.
Then we can readily apply the Fourier pseudo-spectral method for spatial discretization in this section. We choose Q = [-L, L] with
uniform mesh size h = 2L /M, where M is an even number. Define the following sets of indices and grids points

04, ={1.ty ... €0t <M -1,j=1,...d},
19 = {(ky. k. k) €Z - M/2<k; <M/2-1,j=1,....d},
T ={(x1. %0, o X)X = =L+ €1, (61,65, ...,64) € Q% }.
For the sake of simplicity, we take 3D Fourier spectral method as an example and introduce the Fourier basis functions as
W = [ " k=thok k) e 1y,
V=X,),Z
with vxv = nk, /L. The Fourier pseudo-spectral approximation of the wave function ¢;(j = 1,0, 1) as well as its derivatives at x,,, €
3 . .
T,; are respectively given by

B K) X By Kpt) 1= Y, (D Wi),  (mym, 1) € Q3

3
kEZM

0,0 ) 2~ 10,16, K) 1= D G0} 3 WacKy):

keI,
O o) % 10,18 ) = = X W W IS Ga): v = X7,
kelil

where the discrete Fourier coefficients (@; ) are given by

—~ 1 —
@ =775 D b )W k)
(m,n./)EQ?VI
Meanwhile, we also need operators [V] := ([9,].[[d, ] [.)" and [A] := [03] + l[aﬁ]] + [021, which are applied to the approximation
;Fj of ¢;:

Vb Rppu) ~ [VIG, Kppt). A (Kpp) ® [ALD; Kp).  (mm, 1) € Q.

To simplify the presentation, we drop the notation “[]" in the above-mentioned operators.
3.4. Fast computation of the effective dipolar field

The kernel truncation method (KTM) is a commonly-used algorithm to compute the convolution-type nonlocal potential [3]. Since
the wave function decays exponentially fast at the far field, we assume that the spin component F, (1 = x, , z) is compactly supported
in R; :=[-L, L]¢. For simplicity of implementation, we compute the ground states ® and the DDI @, on the same domain and
uniform mesh grid. The nonlocal potential can be computed as

o,(x) = / S Ux- Y)F,(y)dy = / Ux - y)F,(y)dy
R

Ry

=/R U(Y)F,,(X—Y)dY=/ Uy)F,x-y)dy, xeRy, (3.13)
x+Rp G

5

where B;; is a ball centered at the origin with radius G := max yeg, [X —y| = 2\/ZL being the diameter of R; . To compute Eq. (3.13),
one needs to approximate the spin component F,(x) on domain Re := R(2 VAL because x —y € R(2 Va+DL for any x € R; and

y € Bg. It is natural to extend the function F,(x) to R.s by zero-padding and apply the Fourier spectral method therein. In fact,

8
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by utilizing periodicity of Fourier series [24], we only need to zero-pad to domain Rg; with S = [\/E + 1] (rounding up of \/E +1
to nearest integer), which significantly alleviates the memory/computational costs compared to the original fourfold zero-padding
version [33].

On domain Ry, the spin component F,(x) is well resolved by the following finite Fourier series

ik
F) % (F)y®) = ) Fke'sr™, xeRg,

k elg "
and the Fourier coefficients are well approximated as follows
—~ 1 ik
Fk=—— 3 Fxe'sc™, kelf,.
XpET Sy

Substituting the Fourier series approximation (F,),, for F, in Eq. (3.13), we obtain

_jzk . —~ jzk ¢
co,,(X)%/ UW(F)y(x —y)dy = Z </ U(y)e st Ydy>FﬂeSL
Bg Bg

d
keZSM

~ —~ 7k
= Y Ug®F, 5™, xeRy, (3.14)

kerd
where l/];(k), Fourier transform of the truncated kernel, is defined as

~ . 7k
Upk) = / U(y)e 'sT Ydy.
Bg
When the density manifests strong anisotropic property, that is, the wave function is compactly supported in an anisotropic rectangle
R := H;?:l [-Ly;, Ly;]* with ¥ = (7,,....,7,) € R? being the anisotropic vector, the practical optimal zero-padding factor along the
jth direction reads as

- -1_/ 2 2
Sj_[1+yj l+y2+...+yd]. (3.15)

As pointed out in [24,33,37], the above algorithm can be written as a discrete convolution of an effective d-dimensional tensor
and spin component grid values. Taking the 3D case as an example, we derive the following discrete convolution reformulation

(pn(xm’ Yns ZI) = Z Tmfm’,nfn',lfl’(Fr])m’,n',[’ ’

(m’,n’,l’)el?w
where the convolution tensor T, ,, is given explicitly as

! —~ 258 (e mek k1) 3
Tont = m z . U(;(kx,ky,kz)eSM 4 , (mnl) e ZZ
(kky ok )ETS

M
and it can be computed by applying the inverse discrete Fourier transform of vector {ﬁ;(k), ke I; ul C CSM)_ For the anisotropic
case, a very similar convolution structure can be derived following the same procedure. The tensor generation depends on the total
zero-padding factor S, = 5,.5,5; and it requires O(S, M> log(S, M?)) float operations
It is worthwhile to point out that KTM applies readily once the Fourier transform of the truncated kernel is available analytically
or numerically. For example, the effective 1D/2D convolution kernel that is derived from dimension reduction reads as follows
722
e 22 erfc(
2¢e 2¢e

|z 1 2 2
L Up(r) = ——— es? Ko(L=), r=x,],
) 2(1) e(2m)3/? ¢ 0(452) r=l

Uy(2) =
2

where erfe(x) = \% /X°° e~ dr is the complementary error function and K, (x) is the modified Bessel function of the second-kind.
b

The Fourier transform of truncated kernel

G G
WU p)gk) = 2/ U, (2)cos(kz)dz, (Uyy)g(k) = 2717/ Uyy(r)Jo(kr)rdr, k eR,
0 0

where J;, is Bessel function of the first-kind with index 0, can be evaluated via adaptive Gauss-Kronrod quadrature. The above method
is readily applied to nonlocal potential generated by such kernel accurately (up to machine precision) with optimal efficiency achieved
with FFT.

4. Numerical results

In this section, we apply the PGF-KTM method Egs. (3.5)-(3.8) to compute the ground states of spin-1 dipolar BECs from 1D to 3D
with different potentials. Two different kinds of interactions, i.e., anti-ferromagnetic and ferromagnetic interactions, are considered.
We fix the total number of atoms in the condensate N = 10* and list the mass m and the s-wave scattering length with the total spin
0 and 2 channels, i.e., a;, a, as follows [19,32,36]:
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« Case I (Anti-ferromagnetic): 2Na with m = 3.816 x 10726[kg], a, = 2.646[nm], a, = 2.911[nm].
e Case II (Ferromagnetic): 8’Rb with m = 1.443 x 10~2[kg], a, = 5.387[nm], a, = 5.313[nm].

To compute the ground state, there are six commonly-used initial guesses for each component listed as follows

x12 _ _
(@) (%) = ﬁe‘? (B) bp(X) = (x +10)da0), (B bp(x) = By,
TF
+ _ x)
(© o) = LOTLE ) b 0 = G, () py(x) = ———
4000+ 8,00 et eo]|
where
[(uTF — TF Gur)*, d=1,
¢§F<x)={ Ut TV A VRS i = 3@y d=2,
0, otherwise, (U5A,7.ry7: /40, d =3.

In computational practice, the initial datum are chosen as ®° = (¢9,¢3, ¢° )T/ \/3 where ¢°, #) and ¢° | are chosen independently
from the above six types. The numerical ground state is selected as the one with the lowest energy. In all computations, the time step
is taken as 7 = 0.1, the ground state is reached when the stopping criterion Eq. (3.12) is satisfied with £, = 10~'? by default and the
mesh size is taken as h, = h,, = h, = 1/16 uniformly unless otherwise specified.

4.1. Accuracy confirmation

Here, we investigate the spatial accuracy of our numerical method for the 3D, 2D and 1D cases. Let ®, = (qbf , g, ¢t 1)T be the
numerical “exact” solution obtained with a very fine mesh 2 = 1/16, and @;’ be the numerical solution obtained with mesh size h.
Denote the energy and chemical potential as E, := £(®,) and yu, := u(®,) respectively. We use the following relative 12 norm to
measure the error of the ground state:

o h
en = [0 = 0/

Example 1 (3D Case). We investigate the spatial accuracy when computing the 3D ground states with the corresponding physi-
cal trapping frequencies w, = w, = w, = 2z X 200[Hz] and harmonic potential V' (x) = %(x2 + y? + z2) for both anti-ferromagnetic and
ferromagnetic cases, and the detailed parameters are listed below:

7

e Case I (Anti-ferromagnetic): 2’Na with parameters 4, = 239.2, 1, = 7.485, 1, = 20.84.
« Case II (Ferromagnetic): 8’Rb with parameters 4, = 879.6, 1, = —4.065, 1, = 15.32.

The computational domain is chosen as Q =[-8, 8]3. Table 1 lists the numerical errors of the ground states for Case I and Case
II. The energy and chemical potential are computed as E, = 3.7810, u, = 5.0528 in Case I; E, = 6.0035, u, = 8.2367 in Case IL

From Table 1, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate
in 3D.

Example 2 (2D Case). We investigate the spatial accuracy when computing the 2D ground states with the corresponding physi-
cal trapping frequencies w, = 27 x 400[Hz], , = 0, = 2z x 20[Hz], € = \/;23 and harmonic potential V' (x) = %(x2 + »?) for both anti-

ferromagnetic and ferromagnetic cases, and the detailed parameters Eq. (2.12) are listed below:

¢ Case I (Anti-ferromagnetic): 23Na with parameters 4, = 75.64, A, = 2.367, 4; = 6.59.
e Case II (Ferromagnetic): 3’Rb with parameters 4, = 278.1, 1, = —1.285, 1, = 4.846.

The computational domain is chosen as Q = [—16, 16]2. Table 2 lists the numerical errors of the ground states for Case I and Case
II. The energy and chemical potential are computed as E, = 4.5350, y, = 6.6591 in Case I; E, = 8.4545, u, = 12.5916 in Case II.

From Table 2, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate
in 2D.

Table 1
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 1.
h 2 1 1/2 1/4 1/8
ey 8.5644E-02 6.3392E-03 8.5396E-05 3.7590E-09 7.8352E-13

Case I ‘Eg - E(®§)| 2.7659E-03 8.6502E-05 6.8430E-08 9.6539E-13 2.0679E-15
|ug - y((IDZ)| 6.2835E-03 4.9762E-05 6.3772E-07 7.5296E-12 1.9822E-15

ey 9.2201E-02 6.9257E-03 7.4391E-05 2.4690E-08 3.8746E-13
Case 1L |Eg - E(®;)| 5.9260E-03 3.9021E-06 8.9972E-09 7.1027E-12 9.2129E-16
‘yg - ;4(®§)| 9.6259E-03 4.8910E-05 3.2785E-08 6.2590E-12 2.8749E-15

10
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Table 2
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 2.
h 2 1 172 1/4 1/8
ey, 3.8357E-02 2.5048E-03 1.5180E-05 5.4849E-10 9.2324E-14

Case I |Eg - E((D:)| 1.5239E-03 7.8268E-05 5.8376E-08 2.6208E-12 1.8255E-15
|;4}Z - u(®:)| 2.4872E-03 8.8263E-05 7.6729E-08 5.5294E-12 3.6254E-15

ey 9.7937E-02 1.6820E-03 2.9247E-05 2.5051E-09 2.3508E-14
Case II |Eg - E((IZ-Z)| 7.3638E-03 4.7629E-05 8.6209E-08 6.2096E-13 2.2054E-15
|ug - u(®:)| 2.6753E-03 3.6764E-05 8.8759E-09 7.6729E-13 1.6283E-15

Table 3
Numerical errors of the ground states for Case I (upper) and Case II (lower) in Example 3.
h 2 1 1/2 1/4 1/8
ey, 2.8220E-01 8.8722E-03 1.7702E-05 2.6490E-10 6.2864E-14

Case I ‘Eg - E(®2)| 4.2706E-03 9.3206E-05 6.9822E-07 3.4479E-12 1.0209E-15
|ug - ;t((IZ';')| 2.0688E-03 1.7020E-04 2.0024E-07 8.9012E-13 3.8209E-15

ey, 9.9287E-02 4.7821E-03 7.0982E-05 1.6760E-09 5.8202E-14
Case II |Eg - E((I):)| 2.9931E-03 9.0226E-06 8.0124E-08 6.0281E-13 4.9011E-15
‘yg - ”((D:;)| 1.0926E-02 1.7201E-05 2.0271E-07 7.4331E-13 9.8217E-16

Example 3 (1D Case). We investigate the spatial accuracy when computing the 1D ground states with the corresponding
physical trapping frequencies o, = , = 2z X 400[Hz], ®, = 27z x 8[Hz], ¢ = ﬁ and harmonic potential ¥ (x) = x?/2 for both anti-

ferromagnetic and ferromagnetic cases, and the detailed parameters (2.12) are listed below:

« Case I (Anti-ferromagnetic): 2’Na with parameters 4, = 47.839, A, = 1.497, A, = 4.168.
« Case II (Ferromagnetic): ’Rb with parameters 4, = 175.886, A, = —8.127, A, = 3.065.

The computational domain is chosen as Q = [—16, 16]. Table 3 lists the numerical errors of the ground states for Case I and Case II.
The energy and chemical potential are computed as E, = 20.6681, u, = 34.4236 in Case I; E, = 47.9598, u, = 79.9218 in Case II.

From Table 3, we can observe that our scheme is spectrally accurate for computing the ground state of a spin-1 dipolar condensate
in 1D.

4.2. Dimension reduction verification

We apply the efficient and accurate numerical method presented in the previous section to confirm numerically convergence and
identify convergence rates of the dimension reduction in Section 2. Also, we investigate for both two cases, i.e., anti-ferromagnetic
(CaseI) and ferromagnetic (Case II), whose details are the same as Example 1. The presence of strongly anisotropic confining potential
will produce anisotropic ground state, and we present isosurface plots of the density function for different e, which describes the
confining strength in the v-direction (v = x, y, z) respectively in Fig. 1.

Firstly, we consider the dimension reduction from 3D to quasi-2D nonlocal GPEs in terms of ground state. In order to do so, we
take the external potential for the 3D nonlocal GPEs (2.3)-(2.5) as

2 1 1 2
V. =2, Wty =2+, Vi =+ +5). (4.1)
2 2 2 4

Denote @, := ®,(x, y, z) as the ground state of the 3D GPEs (2.3)-(2.5), which are computed R, = [-12, 12]% x [—12¢, 12¢] with mesh
sizes h, = h, = 1/16,h_ = ¢/16. Let <D§d 1= (1)5" (x,y) be the ground state of quasi-2D nonlocal GPEs, which are computed on Q =
[-12,12]> with h, = h, = 1/16. Define y(z) = [ /i |®,(x, y, 2)|*dxdy]'/? as the projections of ®, over z-axis.

Table 4 lists errors of ||®, — cpgd 01422 and || ¥y — @42, which demonstrates convergence rates from 3D to quasi-2D nonlocal
GPEs in terms of ground states for different . From Table 4, we can draw the following conclusions: when the harmonic potential is
strongly confined in z-direction, the 3D GPEs converges cubically to the quasi-2D GPEs in terms of &, which is exactly the same as
that in [25] when &€ — 0. Based on these observations, if one wants to consider the dynamics of electrons trapped in the plane through
confinement, quasi-2D nonlocal GPEs is an good approximate 2D model.

Then, we apply our method to numerically identify convergence rates of the dimension reduction from 3D to quasi-1D nonlocal
GPEs in terms of ground state. In order to do so, we take the external potential for the 3D nonlocal GPEs (2.3)-(2.5) as

2,2
Ve=Z ey =i eh Veno=l@s T, (4.2)
(2
The ground state of the 3D GPEs (2.3)-(2.5) are computed numerically on a computational domain R, = [—12¢, 12¢]? x [-12, 12] with
mesh sizes h, = h, = ¢/16,h, = 1/16. Let <I>;d = @;d (z) be the ground state of the quasi-1D GPEs, which are computed numerically
on Q = [—12, 12] with mesh size 1, = 1/16.

11
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e, =1 e. =1/v/20 e, =1/4/160
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Fig. 1. Isosurface plots of |®, (x)]? = 0.001 for different ¢, in Case II with fixed ¢, = =¢,=1 (top row) and £, = 1/4/160, g,=1 (bottom row).
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Fig. 2. The densities of ground states in Case I (left) and Case II (right) for Example 4.
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Fig. 3. Contour plots of densities in Case I (top row) and Case II (bottom row) for optical lattice potential in Example 5.
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Table 4
Convergence from 3D to quasi-2D GPEs in terms of ground states: [|®, — @;d @142l
(upper) and ||y — w4l (lower).

1 1 1
€ —_ —_

-
é
3l
5
-

10, - ¥ w2l

Case I 1.141E-01 4.556E-02 1.781E-02 6.733E-03 2.527E-03 9.124E-04

rate - 2.65 2.71 2.81 2.83 2.94
Case II 1.532E-01 6.682E-02 2.771E-02 1.083E-02 4.207E-03 1.531E-03
rate - 2.39 2.54 2.71 2.73 2.92

L = wiqll2

Case I 9.021E-02 3.546E-02 1.352E-02 4.993E-03 1.817E-03 6.479E-04

rate - 2.69 2.78 2.87 2.92 2.98
Case II 1.211E-01 4.960E-02 1.981E-02 7.733E-03 2.906E-03 1.054E-03
rate - 2.58 2.65 2.71 2.82 2.93

Table 5 lists errors of [|®, — d)éd ®,,4(X) )2, which demonstrates convergence rates from 3D to quasi-1D nonlocal GPEs in terms of
ground states for different . From Table 5, we can draw the following conclusions: when the harmonic potential is strongly confined

12 |1 ]? 19 | ol |p_1[? %107

20

%107
15

-12
-12 x

|¢-1)?

%107

|- 1\2

%107
30

20

10

12 70
50
>
30
10
_12 0

Fig. 4. Contour plots of densities for harmonic +honeycomb potential in Example 5 with f, = 5 in Case I (1st row), Case II (2nd row) and g, = 40
in Case I (3rd row), Case II (4th row).
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Table 5
Convergence from 3D to quasi-1D GPEs in terms of ground states: ||®, — (D;”a)z,,(z)ll P

1 1 1 1 1 1

i V5 Vio Vo Vao Vo Viso
Casel  5.034E-03  2.760E-03  1.448E-03  7.385E-04  3.763E-04  1.891E-04
rate - 1.73 1.86 1.94 1.95 1.99

Case II 7.209E-03 3.923E-03 2.077E-03 1.086E-03 5.561E-04 2.795E-04
rate - 1.76 1.83 1.87 1.93 1.98

in the (x, y)-plane, the 3D model converges to quasi-1D GPEs quadratically in terms of ¢ on ground states. Based on these observations,
if one investigates the dynamics of electrons trapped in the z-axis, the quasi-1D GPEs is an good approximation model.

4.3. Ground states in different dimensions

Here, we study the ground states with ferromagnetic/antiferromagnetic interaction and various external potentials in 1D/2D/3D.
By default, the potential function V' (x) is chosen as an optical lattice potential
ﬁ +K sinz(ﬂ) d=1,
V(x)= (x +2) + « [sin® (—)+sm ( 2y, d=2, (4.3)
—(x +2 +2)+ K[sm2(—) +sin* () +sin’ ()], d =3,

where « is the depth of the optical lattice, which is fixed as x = 10 in our experiments.

8 8 8

8 - 8 - 8 —
o 8 0 8 0 ~—"7 8

¥y 88 "z ¥y 88 "z ¥y 88 "z

8L — 8l — 8L i
8 1 8 8 o — 8 8 TT— 0 0

Y 8 - x yo 8 -8 0 yo 8 -8
Fig. 5. Isosurface plots and corresponding slice views for the wave functions of the ground state in Example 6. Case I: |¢,(x, y, z)| = 0.01 (left),
[¢o(x. y,2)| = 0 (middle) and |¢_, (x, y,2)| = 0.01 (right) (1st row) with the slice view (3rd row). Case II: |, (x, y,z)| = 0.01 (left), |¢(x, . 2)| = 0.01
(middle) and |¢_,(x, y, z)| = 0.01 (right) (2nd row) with the slice view (4th row).
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Example 4 (1D Case). We study the 1D ground states with ¢ = \/;571 for both anti-ferromagnetic (Case I) and ferromagnetic (Case

II), whose corresponding parameter details are specified in Example 3.

In our computation, the computational domain is taken as Q = [—16, 16]. Fig. 2 shows the density of the ground state solutions
for two cases. The energy and chemical potential are computed as E, = 254681, u, = 39.1845 in Case I; E, = 52.8612, u, = 84.7055
in Case IL

Example 5 (2D Case). We study the 2D ground states with ¢ = \/;270 and two different potentials, i.e, the optical lattice potential
Eq. (4.3) and the harmonic +honeycomb potential [8] defined as:

V(x)= %(x2 + yz) + fy [cos(by - X) 4+ cos(b, - X) + cos((by + b,) - X)],

with by = f(\/g, 1),by = %(— \/5 1) and g, a tunable constant, for both anti-ferromagnetic (Case I) and ferromagnetic (Case II), whose
corresponding parameter details are specified in Example 2.

In our computation, the computational domain is taken as Q = [-16, 16]2. Figs. 3-4 show the density of the ground state solutions
for two cases. We compute the energy and chemical potential for the optical lattice potential as E, = 11.8976, u, = 14.9370 in Case
L E, = 16.8160, u, =21.3889 in Case II, and for the Harmonic +honeycomb potential as E, = 1.4263, u, = 3.8406 (f, =95), E, =
~39.7288, u, = —34.7968 (f, = 40) in Case I; E, = 6.1017, u, = 11.0848 (f, = 5), E, = —31.6668, s, = —24.0668 (§, = 40) in Case IL

Example 6 (3D Case). We study the 3D ground states for both anti-ferromagnetic (Case I) and ferromagnetic (Case II), whose
corresponding parameter details are specified in Example 1.

In our computation, the computational domain is taken as Q =[-8, 8]%. Fig. 5 shows the profiles of the ground state solutions for
two cases. The energy and chemical potential are computed as E, = 13.1852, u, = 15.6923 in Case I; E, = 17.0860, u, = 20.5723 in
Case II.

5. Conclusion

Starting from the 3D Schrodinger equations with DDI under a strongly anisotropic external potential, we performed a dimension
reduction analysis and derived the mean-field GPEs for the quasi-1D and quasi-2D spin-1 dipolar BECs. The PGF algorithm is integrated
with KTM, which is utilized for fast and accurate evaluation of dipolar potential, to compute the ground states. For better accuracy
and efficiency, we discretized the PGF by treating the Lagrange multiplier term explicitly. Besides the mass constraint, we proposed
the other two projection conditions so to determine all the three projection constants uniquely. Convergence results of the dimension
reduction were verified in terms of the ground states for the 3D to quasi-2D and 3D to quasi-1D nonlocal GPEs. Extensive numerical
results from 1D to 3D in various cases were reported to showcase the efficiency and accuracy. Methods proposed here can be easily
extended to complicated spin-F or spin-orbit-coupled dipolar BECs.
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Appendix A. Convolution identity

Journal of Computational Physics 551 (2026) 114671

Theorem 1. Given convolution kernel U,,,(x) = 43 % ((n m) — 3%) with n,m € R3 being unit vectors, for any compact-supported

x|
smooth function f(x) € C?(R3), we have

[Unm * f]®) = —(@-m)f(x) - 3[(%) s anmf] (x).
x|

Proof. Let

- L
u(x) = 30nm<47[|x| )

For any fixed € > 0, let B, = {x € R||x| < ¢} and B¢ = {x € R?||x| > €}. It is straightforward to check that

UpnX) = u(x), 0#xeR>

Using Gauss-Green theorem and noticing Eq. (A.3), we get

—% /Bz Unm(x)f(x)dx=—%/3£ u(x)f(x)dx:/Bfa <4 = |>f(x)dx
=/g[" (2 <4||>f“> (o |x|>”]d"
2_/635‘) <4n|x|>f( oS /Bg [a‘“<f|x|>')“f]dx
:’f'/Bc[ <4ﬂIXI ) i “"‘f]d"

=1f+1§+/v L(amnf)dx

B¢ 4r|x|
where

€ _ _ n £ . _ 1 X-m
he= /o 9 <4n| |>f( N Ix | L '_/035 4r|x| (%) x| ds.

From Eq. (A.5), we get
o= L / (LSLLVGEL VPP
0B,

4re? Ix|2
__1 (x-m)(x - n) 1 (x -m)(x - n) _
= ine? /0 s NP £0)dS + ane Jon, e [f(x) = f(0)]dS.

By symmetry, we obtain

/ (x -m)(x - n) ds = / n;m; x? + nymyy? + nym;z?
0B 0B

ds
x| Ix|2

i3 3

/ '(H1m| [x|? + nymy|x|? + nymy x| )
0B,

x|

2
:/ M MIXI" ¢ g2 @M
oB,  3Ix|? 3

x|

B,

/d QM) iy f(O)JdS‘ -
BE

/ M[X VxS
P) x|

< Ellvflle(Bé)A ds = 4”53||Vf||L°°(B£),
BF
where 1 < 0 < 1, plugging Egs. (A.7) and (A.8) into (A.6), we have
= L7O@m), e 0

Similarly, for e — 0%, we get

1
SNVAllzeca,) ./03 ?ds =¢€lIVfllges,) = 0.

€
IZ

4
Combining Egs. (A.9) and (A.10), taking e - 0% in Eq. (A.4), we obtain

/ Upm ()£ (X)d% = —(n, m) £ (0) — 3 / <;>a,,mf<x>dx.
R3 r3 \ 4r|x|
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Furthermore, defining fy(®) = fly-x),Vy € R3 and plugging into Eq. (A.11), we have

1

[Unm * f](x) = —(n-m)f(x)_g[(m

) * 6nmf] (x). (A.12)

O

Appendix B. The projection coefficients

In order to find the other two projections or normalization equations used in the projection step, we first generalize the gradient
flow with discrete normalization (GFDN) for computing the ground state of the spin F =1 dipolar BECs, from ¢, <t <t,,,n > 1:

0,0(x,1) = [%V2—V(x)—A,,p—ASF-f—Ade]tI), (B.1)
followed by a projection step as
(X 1,40) 1= ;%15 D =0lgi(x 1 ) Xx€Q, j=1,0-1, (B.2)

where ¢, (x,1*, ) = lim"”fﬂ ¢;(x,1) and ¢/ are projection constants which are chosen such that [|®(., L)l = Z;=_1 (o tgDII? = 1.
The normalized gradient flow Egs. (B.1)-(B.2) can be viewed as applying a time-splitting scheme to the PGF Eq. (3.1) and the
projection step Eq. (B.2) is equivalent to solving the following nonlinear ordinary differential equations:

ayd’j(xs 1) = uep®) ¢j, t, <t<t,, nx0.

The solution of the above ODEs can be expressed as

Tnt1
(X, 1,1) = €Xp / Ho (Dt )d,x,1,), j=1,0,-1.

rn
This immediately suggests the projection parameters satisfy

n_ _n_ _h
o) =0,=0",.
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