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The simulation of electrical discharges has been attracting a great deal of attention. In such simulations, the electric field
computation dominates the computational time. In this paper, we propose a fast tree algorithm that helps to reduce the time
complexity from O(N 2) (from using direct summation) to O(NN log N). The implementation details are discussed and the time
complexity is analyzed. A rigorous error estimation shows the relative error of the tree algorithm decays exponentially with the
number of truncation terms and can be controlled adaptively. Numerical examples are presented to validate the accuracy and

efficiency of the algorithm.

Index Terms—tree algorithm, electric field, electrical discharge, disc model, error estimation.

I. INTRODUCTION

HERE are various types of electrical discharges in na-
ture, e.g., lightning strikes [1], corona discharges around
electrodes in non-uniform electric fields [2]. Because of the
relevance of electrical discharge to everyday life and its
growing application in industry, the numerical simulation of
electrical discharges has been increasingly attracting attention.
The most widely adopted model for electrical discharge
simulations is the fluid model [3], [4]. This model consists
of the Poisson equation, which describes the electric field that
drives the electrical discharge, and the convection-diffusion
equations with source terms, which describe the charge-carrier
transport.

Because of its high computational load, the simulation of
electrical discharge under atmospheric pressure is, at present,
mainly limited to short gap discharges of a few centimeters in
length [4]. Thus, many simplified models have been proposed
in the hope of simulating longer discharges, e.g., 100 cm in
length. Among these models, the most promising one is the
so-called 1.5-dimensional model [5].

In the 1.5-dimensional model, the charges are assumed to be
distributed among discs of the same radius. On each disc the
charge density is uniform, and the charges only move along
the y-axis (see Fig. 1). The charge transport is described using
a one-dimensional model, while the electric field is considered
to be two-dimensional. Using this so-called disc method, the
electric field can be derived analytically. Assume there is a
disc of net charge density o(x), radius 7,4, thickness dz (see
Fig. 1). The electric field it generates at a point, y, along the
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Fig. 1. Diagram of a 1.5-dimensional model
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To consider the influence of the electrodes on the electric
field, all image charges, e.g., which are above the cloud and
below the ground in Fig. 1, should be taken into account. How-
ever, only image charges whose distances to the electrodes are
less than the discharge-gap length L are considered because
image charges that are far way contribute little to the electric
field. Integrating over the whole domain, we get
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Assuming there are IV source charges and N target points,
the computation of Eq. (2) has a time complexity of O(N?).
As a result, the electric field evaluation may occupy around
90% of the CPU time in a simulation [6], and fast algorithms
with better complexity are highly imperative.
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In fact, there has been several works on such fast evaluation
of potential and field, e.g., the Barnes—Hut fast tree algorithm
[7], and the famous fast multipole method [8], [9] for N-body
simulation. In this paper, we propose a tree algorithm for the
specific kernel arising from electrical discharge simulations,
employing the same ideas of far-field, near-field evaluation,
which dramatically helps to accelerate the field evaluation with
a highly controllable accuracy [7], [10].

II. THE TREE ALGORITHM

By integrating Eq. (2) using sufficient high-order Gaussian
quadrature, and setting gq; := 2JE LAz where w; is the
associated weight of the Gaussian quadrature and Az is the

length of the associated interval, Eq. (2) can be reduced to
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calculated recursively, i.e.,

Zj:mﬂ ¢;. The term e,, can be

em41 = €m + 2Qm+1~

Thus eg is computed first, followed by the successive calcu-
lation of ey, es..., e,,. This work has a linear time complexity.
Below we will omit the term e,,, for brevity, but the principle
of the tree algorithm remains unchanged.

As shown in Fig. 2, the total electric field, F, is split into
two parts, i.e., the far-field £y and the near-field E,, such that
E = FE; + E,. The fundamental idea of the tree algorithm
is that the far-field interaction, which is from the charges far
away from the target point, is approximated as if they are a
group, while the near-field from the neighboring charges is
evaluated directly.

far field

near field

Fig. 2. Diagram of the near-field and far-field interactions

Assume a cluster of charges {g;}_ located at {z;}}_,
are gathered around x., and |y — x| > 0, |y — rq| > 0. To
calculate the far-field E;(y), a crude approximation is
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with ®(z,y) := —2-L—. However, using Taylor expan-
o027
sion, we have
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where <I>(k) = 2-2; p € N; the residual R, is given by R, =

Zk:pﬂ n® (xc, y)(x — x.)¥. Therefore, we have
Ef(y) = Z (Z k|(I)(k) Te, Y ( Ty — xc)k>
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When p = 0, Eq. (6) reduces to the crude approximation
Eq. (4). To approximately calculate E(y), one only needs to
calculate the moments (Z?:o 4 G ;fc)k) and ®*) (z,, ),
for k=0, ...p.

We now derive a recurrence formula to calculate &) (z, 7).
It is straightforward that
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which implies that
ra® O (z,y) = @V (x,y)[(z —y)° +ri@ —y)]. O

Differentiating Eq. (9) for k-1 using the general Leibniz rule,
after some algebraic simplifications, we get
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Therefore, by using Egs. (7) to (10), for any given v,
®*) (x.,y) may be calculated recursively for k = 2,3, ...p.
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III. ERROR ESTIMATION

Now we present a rigorous error estimation for Eq. (6).
Without loss of generality, we only consider the case . = 0.
Other cases reduce to the x. = 0 case after a simple shift, i.e.
let x := 2z — x..

Define a complex function f(z) := 22y

V(E—y)2erl
which is analytic for |z| < \/m. By Cauchy’s integral
formula, for any z satisfying |z| :=r < R := |y|,
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containing the point z. We have

with z € C,
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Comparing f(z) and ®(z), we find that ®(z) = f(2)],=z, SO
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Using the fact | f(€)| is bounded for £ € T, i.e. |f(§)| < M,
we get
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Eq. (14) shows Eq. (6) converges as p increases if r» < R,
which is easy to be satisfied; to be more precise, the error
decays exponentially with respect to p. As an example, |R,|
is sufficiently small when p = 15 or 20 if % < 1.

IV. IMPLEMENTATION AND EFFICIENCY ANALYSIS

Equation (6) is used to approximate the far field when the
target and sources points are well separated. Now we illustrate
in Fig. 3 how to determine whether the target and source
charges are well separated. In Fig. 3, three intervals, all with
a diameter of 2r, are shown. The target point, yo, lies in cell
1, and its distances to centres of cell 2 and 3 are R; and R»
respectively. We say that cell 1 and cell 2 are direct neighbors
if éLl > %; while cell 1 and cell 3 are well separated if and
only if - < 3.
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Fig. 3. Diagram showing direct and well-separated neighbors

We now build a binary tree to successively approximate
the far field, an example of which can be seen in Fig. 4. For
simplicity, all the sources are assumed to be in [0,1] and the
target is assumed to be in [§, s=]. The target point and all the
charges are direct neighbors at the first two levels. In level 2,
the target and (3, 2], (2, 1] are well separated while all others
remain direct neighbors. The intervals are further subdivided,
which results in (2, 3] becoming the well separated neighbor.

This process is repeated until the bottom level is reached.
There are finally at most two direct neighbors of the interval
containing the target point, while the very interval and all
other intervals are well separated. The near field from the

interval containing the target point and the direct neighbors, is
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Fig. 4. Diagram of the binary tree structure

evaluated directly; while the far field from other well separated
intervals at different levels are approximated by Eq. (6).

Assuming c is the number of source charges in an interval
at the bottom level of the tree, then ¢ is O(1) and 2™ ~ N/c,
which implies m is O(log N).

Now we are ready to estimate the computational cost for
a single target point, ignoring the cost of setup. The work
for the far field part involves the evaluation of at most three
far field expansions of p terms at each level from 2 to m.
Therefore, the flop count arising from the evaluation of the far
field expansions is O(mp). The near field evaluation, which
is done at the bottom level, requires at most three intervals.
Since each bottom level interval contains only O(1) sources,
the flop count of the direct calculation is O(1). Hence the
cost in flops of an evaluation for one single target point is
O(mp) =~ O(plog N), which is typically much faster than the
O(N) flop count associated with direct summation.

At each level, the setup cost, which is mainly the formation
of the moments in Eq. (6), is at most O(pN), so the total
setup cost is at most O(mN) = O(N log N).

Overall, the computational cost of the algorithm is
O(Nlog N) for N targets.

V. VALIDATION AND EFFICIENCY

A. Variation of the error with the number of truncation terms

First, only the far-field was calculated to validate Eq. (6).
We randomly generated 10000 charges in [—0.5,0.5], which
is around x = 0, and set 4 = 0.1, The electric field at y = 1
(r/R = 0.5) was then calculated using different numbers of
truncation terms, denoted by p. Results in Tab. I show the
relative error decays exponentially with p, which coincides
with the error estimation in Eq. (14). When p increases by
five, the error decays by a factor of about 50-100.

TABLE I
ACCURACY WITH DIFFERENT NUMBERS OF TRUNCATION TERMS (p)

) 5 10 15 20
relative error | 9.43e-5 1.17e-6  6.40e-8  6.48e-10




B. Impact of the number of tree levels on efficiency

Next, the impact of the number of tree levels on the CPU
calculation time was tested. The algorithm was implemented
in C++, and the experiments here and below were performed
on a PC with an i7-6500U CPU and 8 GB RAM. With more
levels, the effect of more sources are calculated by Eq. (6),
which may accelerate the computation; however, more tree
levels are traversed, which may slow down the computation.
In our experiment, 2 X 105 charge sources, each with a random
amount of charge, were uniformly randomly distributed in
[0, 1], the target and source positions were the same. The field
generated by the neighboring charges were calculated directly
and others by Eq. (6) with p = 10.

It is shown in Tab. II that the depth of the tree or, in other
words, the number of particles in the bottom-level interval,
greatly influences the computational efficiency. Our test shows
that the best number of particles is about 48 for p = 10.

TABLE II
COMPUTATIONAL TIME WITH DIFFERENT DEPTHS(p = 10, N = 2 x 10%)

levels 9 10 11 12 13 14 15 16

# particles 781 390 195 97 48 24 12 6
time (ms) 2418 1450 1014 827 765 780 795 842

# particles means the estimated number of the particles in one interval at
the bottom level of the tree.

C. Efficiency with different number of particles and targets

After optimizing the number of particles in the bottom-level
interval, both the near-field and far-field were evaluated in
order to test the efficiency of the tree algorithm. Different
numbers of charge sources, each with a random amount of
charge, were randomly placed in [0, 1], the evaluation locations
were the same as the source positions. The tree levels were
determined such that the finest interval contained about 40
particles. The other configuration were the same as in the
above experiment and the experiments were repeated multiple
times. The results in Tab. III show that the time complexity
of the algorithm is roughly O(N log N), which is much faster
than direct summation even when N is small.

TABLE III
TIME-COST COMPARISONS FOR DIFFERENT NUMBERS OF CHARGES AND
TARGETS

ticl time by tree algorithm (ms) | time by direct summation (ms)
PArieles X | min average max min average
led 29 24 274 577 453 505.5
Se4 170 | 156 160.4 11840 11060 11372.8
10e4 385 | 353 362.8 48518 44058 45929.4
15e4 587 | 571 5774 104083 | 100843 | 101882.8
20e4 858 | 674 772.8 188105 | 180105 | 182944.8

In addition, two types of errors, maximal (left) and average
(right), were measured:

ptree _ pdir S ptree _ Edir|)

> 1B
Table IV shows the maximal and average errors are roughly

of the same order for different numbers of particles and targets,
and are very small, which infers that the algorithm is reliable.

max dir
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TABLE IV
ACCURACY FOR DIFFERENT NUMBERS OF CHARGES AND TARGETS
# of particles le4 Se4 10e4 15e4 20e4
maximal error | 2.8%-10 4.4le-10  2.44e-9 1.61e-9 2.75e-9
average error 6.16e-14  4.96e-14  4.90e-14  4.75e-14  5.25e-14

# of particles means the total number of particles.

VI. CONCLUSION

We present in this paper a fast tree algorithm of O(NN log N)
complexity to calculate the electric field arising from 1.5
dimensional electrical discharge simulations.

The tree algorithm is derived based on Taylor expansion.
A recurrence formula following the general Leibniz rule is
provided to calculate the expansion coefficients efficiently.

Error estimation shows that error decays exponentially as
the number of truncation terms increases, and detailed analy-
sis confirmed the O(N log N) time complexity with tunable
accuracy, which represents a dramatic improvement over direct
summation method. Numerical experiments were given to
validate the efficiency and accuracy.

Developing fast algorithms of linear time complexity fol-
lowing the ideas of fast multipole method will be our further
direction, especially in higher space dimensions.
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