
An efficient implementation of fourth-order

compact finite difference scheme for Poisson

equation with Dirichlet boundary conditions

Hanquan Wang∗ Yong Zhang† Xiu Ma∗ Jun Qiu∗ Yan Liang‡

Abstract

Fourth-order compact finite difference scheme has been proposed for
solving the Poisson equation with Dirichlet boundary conditions for some
time. An efficient implementation of such scheme is often desired for
practical usage. In this paper, based on fast discrete Sine transform, we
design such an efficient algorithm. To do this, Poisson equation is first dis-
cretized by fourth-order compact finite difference method. The subsequent
discretized system is not solved by the usual method–matrix inversion,
instead it is solved with the fast discrete Sine transform. Detailed nu-
merical algorithm of this fast solver for one-dimensional, two-dimensional
and three dimensional Poisson equation have been presented. Numerical
results in one dimension, two dimensions, three dimensions and four di-
mensions have shown that the applied compact finite difference scheme
has fourth order accuracy and can be efficiently implemented.

Keywords Poisson equation, fourth-order, compact finite difference scheme,
discrete Sine transform

1 Introduction

Efficient and accurate numerical methods for numerical approximations of par-
tial differential equations appearing in science and engineering have been a goal
of mathematicians, engineers, physicists, and other scientists for decades. In
the last fifty years, many numerical approaches, which include finite difference
method, finite element method, spectral method and finite volume method, have
dominated the numerical approximations of partial differential equations. How-
ever, the finite difference method remains as a fundamental technique in solving

∗School of Statistics and Mathematics, Yunnan University of Finance and Economics,
Kunming, Yunnan Province, P. R. China, 650221. Email address: hanquan.wang@gmail.com.
†Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Oskar-Morgenstern-

Platz, 1090 Vienna, Austria. Email address: yong.zhang@univie.ac.at.
‡School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan Province, P.

R. China, 650091.

1

partial differential equation appeared in diverse physical fields such as quantum
mechanics, electro-magnetics, and fluid mechanics.

Numerical schemes of second order explicit finite difference schemes are com-
monly used because their implementation is relatively simple. For example, a
typical explicit finite difference scheme to approximate the first derivative of
function u(x) at point xi is the centered scheme given by (ui+1 − ui−1)/(2h),
where h is the mesh size of a uniform partition of the definition domain of u(x).
The local truncation error of this approximation is O(h2). Better approxima-
tions can be obtained by increasing the order of the truncation error of the finite
difference scheme. This is commonly accomplished by including more points in
the stencil of the numerical schemes. As an example, consider an explicit cen-
tered finite difference formula with a five point stencil approximating the first
derivative u′i by

−ui+2 + 8ui+1 − 8ui−1 + ui−2
12h

, (1.1)

which has a local truncation error of O(h4). A disadvantage of this approach is
the need to include more equations for grid points near and at the boundaries.

An alternative is to not enlarge the stencil, but involve values of the deriva-
tive at some nodes where the function is already evaluated. For instance, con-
sider the finite difference approximation of the first derivative proposed in 1966
by Collatz [3], which approximates the derivative values at three grid points
with function values over the same three grid points:

1

4
u′i−1 + u′i +

1

4
u′i+1 =

3

4h
(ui+1 − ui−1). (1.2)

As it will be proven later, this new scheme has a local truncation error of O(h4).
However, if (1.1) is used over a discretized domain, four additional formulas

are needed at the two points on both ends where the stencil protrudes the
domain. On the contrary, scheme (1.2) only requires additional formulas at each
of the endpoints. Assuming that at least one boundary condition is known, only
one additional formula may be needed. Thus the proposed implicit scheme (1.2)
gives an advantage over the explicit one (1.1). Scheme (1.2) is usually called a
compact finite difference scheme [3, 9].

Compact finite difference methods have been known for almost fifty years. As
mentioned above, some particular formulas are reported by Collatz [3]. Their
implementation as finite difference schemes approximating partial differential
equations began in the early 1970s for some fluid mechanics problems [6, 14].
Since that time, several distinct classes of compact finite difference schemes have
been developed. The two most common are the centered schemes and the up-
wind ones. In 1992, a seminal paper with an in-depth analysis of centered com-
pact schemes showed that these compact schemes have spectral-like resolution
for short waves [9]. Upwind compact schemes were also developed for solving
nonlinear hyperbolic problems [4, 22]. In recent years, due to the appearance of
faster and more powerful computing possibilities as well as the development of
algorithms for fast matrix inversion, compact schemes are proving more advan-
tageous. For instance, compact schemes on several problems have been applied

2

into dealing with wall-bounded flows described by the Navier- Stokes equations,
in large-eddy simulation of supersonic boundary-layer flow, and also in the scat-
tering of electromagnetic waves [11, 13, 15] . Compact finite difference meth-
ods have been found in applications into solving convection-diffusion equation
[20], Burgers’ equation [8], wave equation [2], Euler equations [1], Schrödinger
equation [5, 7, 16, 18, 21], Gross-Pitaevskii equations [19, 17], and the Poisson
equation [12].

Although compact finite difference scheme can get higher order accuracy
using fewer cell points, they are implicit methods and usually one needs to do
matrix inversion when applied to solving partial differential equations. In this
paper, a fast implementation of fourth-order compact finite difference scheme for
Poisson equation with Dirichlet boundary conditions is proposed. We discretize
the Dirichlet boundary value problem of Poisson equation with the fourth-order
compact finite difference method, and solve the resulting discretized system with
fast discrete Sine transform, instead of matrix inversion. Poisson equation is one
of most important partial differential equations. It has widespread application
in electro-magnetics, mechanical engineering and theoretical physics. Design
of fast solver for numerically solving Poisson equation may become imperative
and necessary for compact finite difference method’s application. It may be
helpful for us to develop fast and efficient algorithm for many other kinds of
partial differential equations when discretizing them with compact finite differ-
ence schemes.

The paper is organized as follows: we first briefly introduce how to design
the compact finite difference scheme in Section 2. In Section 3, We next show
how to discretize Poisson equation with the fourth-order compact finite differ-
ence scheme and how to apply the fast discrete Sine transform to solve the
resulting discretized system. Detailed numerical algorithm for Poisson equation
in one dimension, two dimensions and three dimensions have been presented
as well. In Section 4, numerical results for Poisson equation in one dimension,
two dimensions, three dimensions and four dimensions discretized by the fourth-
order compact difference method are shown, respectively. In Section 5, some
conclusions are drawn and discussions are made.

2 Compact finite difference scheme

In this section, we briefly introduce how compact finite difference scheme can
be constructed. More information on how to construct them can be found in
[9].

Before we start to approximate the derivative of u(x) at grid points xi =
a + ih (0 < i < M) by the compact finite difference method, we assume that

ui := u(xi), u
′
i :=

(
du
dx

)
(xi), u

′′
i :=

(
d2u
dx2

)
(xi), u

′′′
i :=

(
d3u
dx3

)
(xi), u

′′′′
i :=(

d4u
dx4

)
(xi), where i and M are some integers. a and b are some constants and

h = b−a
M stands for the mesh size in space x-direction.

Traditionally, finite difference method approximates the derivative of func-

3

tion u(x) at xi through a linear combination of the value of function u(x) at
neighboring grid points around xi. For example, one can approximate u′i by
(ui+1−ui−1)/(2h), u′′i by (ui−1−2ui+ui+1)/h2, and u′′′′i by (−uj+2 +16uj+1−
30uj + 16uj−1 − uj−2)/(12h2). This is an explicit way to approximate the
derivative of function u(x) at xi through the function u(x) itself at neighboring
points.

However, compact finite difference method implicitly approximates the deriva-
tive of function u(x) at xi. In the following, we introduce the basic idea of how
to construct the compact finite difference method to approximate the first-order
derivative and the second-order derivative of u(x) at xi.

2.1 Approximation of the first-order derivative

The general centered compact finite difference method gives an approximation
of the first-order derivative through [9]

βu′i−2 + αu′i−1 + u′i + αu′i+1 + βu′i+2

= c
ui+3 − ui−3

6h
+ b

ui+2 − ui−2
4h

+ a
ui+1 − ui−1

2h
, (2.1)

where α, β, a, b, c are some constants to be determined. By Taylor’s expansion,
we find

u(xi ± h) = u(xi)± u′(xi)h+ u′′(xi)
h2

2!
± · · · ,

u(xi ± 2h) = u(xi)± u′(xi)2h+ u′′(xi)
(2h)2

2!
± · · · ,

u(xi ± 3h) = u(xi)± u′(xi)3h+ u′′(xi)
(3h)2

2!
± · · · , (2.2)

and

u′(xi ± h) = u′(xi)± u′′(xi)h+ u′′′(xi)
h2

2!
± · · · ,

u′(xi ± 2h) = u′(xi)± u′′(xi)2h+ u′′′(xi)
(2h)2

2!
± · · · . (2.3)

Plugging Eq. (2.2) and Eq. (2.3) into Eq. (2.1), and matching the coeffi-
cients of similar terms, i.e., O(1), (h2), O(h4), · · · , we can obtain equations for
those undetermined coefficients α, β, a, b, and c

a+ b+ c = 1 + 2α+ 2β, (2.4)

a+ 22b+ 32c = 2
3!

2!
(α+ 22β), (2.5)

a+ 24b+ 34c = 2
5!

4!
(α+ 24β), (2.6)

...

4

from which it follows: (1) when a, b, c, α, β satisfy Eq. (2.4), from Eq. (2.1),
one can get a finite difference scheme with second-order accuracy; (2) when
a, b, c, α, β satisfy both Eq. (2.4) and Eq. (2.5), from Eq. (2.1), one can get a
finite difference scheme with fourth-order accuracy; (3) when a, b, c, α, β satisfy
Eq. (2.4), Eq. (2.5), and Eq. (2.6) simultaneously, one can get a finite difference
scheme with sixth-order accuracy. Higher-order finite difference scheme for the
first order derivative can be constructed in a similar way.

Compact finite difference scheme can be simply derived by setting b = c = 0.
For example, if we choose

β = 0, a =
2

3
(α+ 2), b =

1

3
(4α− 1), c = 0, (2.7)

and set b = 0, then from Eq. (2.7) we have

α = 1/4, β = 0, a = 3/2, b = 0, c = 0. (2.8)

Plugging Eq. (2.8) into Eq. (2.1), we obtain a compact finite difference scheme
with fourth-order accuracy for u′i as follows:

1

4
u′i−1 + u′i +

1

4
u′i+1 =

3

4h
(ui+1 − ui−1). (2.9)

It is obvious to see that a, b, c, α, β in Eq. (2.8) satisfy both Eq. (2.4) and
Eq.(2.5), but they do not satisfy Eq.(2.6).

2.2 Approximation of the second-order derivative

The centered compact finite difference method obtains an approximation of the
second-order derivative from [9]

βu′′i−2 + αu′′i−1 + u′i + αu′′i+1 + βu′′i+2 =

c
ui+3 − 2ui + ui−3

9h2
+ b

ui+2 − 2ui + ui−2
4h2

+ a
ui+1 − 2ui + ui−1

h2
, (2.10)

where α, β, a, b, c are again some constants to be determined.
By Taylor’s expansion, we have

u′′(xi ± h) = u′′(xi)± u′′′(xi)h+ u′′′′(xi)
h2

2!
± · · · ,

u′′(xi ± 2h) = u′′(xi)± u′′′(xi)2h+ u′′′′(xi)
(2h)2

2!
± · · · . (2.11)

Plugging Eq. (2.3) and Eq. (2.11) into Eq. (2.10), we find

a+ b+ c = 1 + 2α+ 2β, (2.12)

a+ 22b+ 32c =
4!

2!
(α+ 22β), (2.13)

a+ 24b+ 34c =
6!

4!
(α+ 24β), (2.14)

...

5

from which it follows: (1) when a, b, c, α, β satisfy Eq. (2.12), from Eq. (2.10),
one can get a finite difference scheme with second-order accuracy; (2) when
a, b, c, α, β satisfy both Eq. (2.12) and Eq. (2.13), from Eq. (2.10), one can
get a finite difference scheme with fourth-order accuracy; (3) when a, b, c, α, β
satisfy Eq. (2.12), Eq. (2.13), and Eq. (2.14) simultaneously, one can get a
finite difference scheme with sixth-order accuracy.

Specifically, if one choose α = 1
10 , β = 0, a = 6

5 , b = 0, c = 0, they satisfy Eq.
(2.12) and Eq. (2.13), but they do not satisfy Eq. (2.14). Therefore we can get
the following compact finite difference scheme with fourth-order accuracy for u′′i
[9, 21] as follows :

1

10
u′′i−1 + u′′i +

1

10
u′′i+1 =

6

5
· ui+1 − 2ui + ui−1

h2
. (2.15)

Of course, we can construct more high-order compact finite difference schemes
from (2.12), (2.13) and (2.14), and refer to [9] for more details.

3 Approximation of Poisson equation by com-
pact finite difference scheme

In this section, we aim to show how to use the fourth order compact finite
difference scheme (2.15) to solve the Poisson equation with Dirichlet boundary
conditions in one dimension, two dimensions and three dimensions, respectively.
To reduce the computation cost, we construct a fast solver for the discretized
system based on fast discrete Sine transform.

3.1 Poisson equation in one dimension

We solve the following one-dimensional Poisson equation with Dirichlet bound-
ary conditions

−u′′(x) = f(x), a < x < b, (3.1)

u(a) = 0, u(b) = 0,

where a, b ∈ R, u(x) is the unknown function and f(x) is some given source
function.

As the usual finite difference method, we first discrete the interval [a, b]
uniformly with grid points being xi = a+ i h, h = (b− a)/M, i = 0, 1, 2, · · · ,M
where M is positive integer. Hereafter, we denote ui ≈ u(xi), u

′′

i ≈ u′′(xi), i =
0, · · · ,M and U = (u1, u2, · · · , uM−1)T , U ′′ = (u′′1 , u

′′
2 , · · · , u′′M−1)T , and F =

(f1, f2,· · · , fM−1)T ∈ RM−1.
From Eq. (2.15), we can rewrite the finite difference in a matrix formula as

follows:

AU ′′ = BU, (3.2)

6

where A,B ∈ RM−1×M−1 are given explicitely:

A =



10 1 0 · · · 0 0
1 10 1 · · · 0 0
0 1 10 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 10 1
0 0 0 · · · 1 10


, B =

12

h2



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2


.

Since B is a tridiagonal invertible matrix, Eq. (3.2) can be rewritten as

U = B−1AU ′′. (3.3)

In addition, we have −u′′(xi) = f(xi), i = 1, 2 · · · ,M − 1 from Eq. (3.1).
Then (3.3) is rewritten as

U = −B−1AF. (3.4)

Solving (3.4) by matrix inversion, we can get the approximated solution U .
Notice that in the above derivation, we have assumed that u′′0 = u′′M = 0. If
not, we may use the approximation such as u′′0 = −f(x0) and u′′M = −f(xM)
and can do similarly.

In the following, based on fast discrete Sine transform, we construct a fast
solver for the linear system (3.4) and bypass the matrix inversion computation.
It is well known that the discrete forward/backward Sine transform for U ∈
RM−1 and Û are given as follows:

uj =

M−1∑
k=1

ûk sin(
jkπ

M
), j = 1, 2, · · · ,M − 1, (3.5)

ûk =
2

M

M−1∑
j=1

uj sin(
ikπ

M
), k = 1, 2, · · · ,M − 1, (3.6)

from which, we can define Û = (û1, · · · , ûM−1)T as the discrete Sine transform
of U .

From (3.5), we can approximate ui+1, ui−1, u′′i , u′′i+1,u′′i−1 as follows:

ui+1 =

M−1∑
k=1

ûk sin(
(i+ 1)kπ

M
), ui−1 =

M−1∑
k=1

ûk sin(
(i− 1)kπ

M
),

u′′i =

M−1∑
k=1

û′′k sin(
ikπ

M
), u′′i+1 =

M−1∑
k=1

û′′k sin(
(i+ 1)kπ

M
),

u′′i−1 =

M−1∑
k=1

û′′k sin(
(i− 1)kπ

M
).

7

Plugging the above equations into Eq.(2.15), we have

M−1∑
k=1

û′′k

{
1

10
sin(

(i− 1)kπ

M
) + sin(

ikπ

M
) +

1

10
sin(

(i+ 1)kπ

M
)

}

=
6

5h2

M−1∑
k=1

ûk

{
sin(

(i− 1)kπ

M
) + sin(

(i+ 1)kπ

M
)− 2 sin(

ikπ

M
)

}
.

or in a simple form

M−1∑
k=1

û′′k

(
1

5
cos(

kπ

M
) + 1

)
sin(

ikπ

M
) =

6

5h2

M−1∑
k=1

ûk

(
2 cos(

kπ

M
)− 2

)
sin(

ikπ

M
).

Finally, we have

ûk = −û′′k

(
24 sin2(kπ2M)

h2

)−1(
cos(

kπ

M
) + 5

)
(3.7)

for k = 1, 2, · · · ,M − 1.
In addition, from Eq. (3.1), we obtain −u′′i = fi (i = 1, 2, · · · ,M − 1). By

the inverse Sine transform, we get to know −û′′k = f̂k (k = 1, 2, · · · ,M − 1).
In summary, we obtain:

Algorithm 1 Fast solver for the one-dimensional Poisson equation with Dirich-
let boundary conditions

1. Given M and grid points xi, compute F̂ from F via fast discrete Sine
transform.

2. Compute Û by (3.7) using F̂ , followed by the inverse discrete Sine trans-
form of Û to obtain U .

Before we jump to higher dimension problems, we would like to discuss first
the efficiency and its generlization here.

As for the efficiency, in the algorithm, one can apply the fast discrete Sine
transform, and they can help reduce the computational cost from O(M2) by
direct summation of (3.5)-(3.6) to O(M logM) arithmetical operations. In fact,
the fast discrete Sine transform is implemented via the Fast Fourier Transform
(FFT), and we refer the readers to [10] for more details.

Compared with direct matrix inversion of (3.4), the computational cost will
drop dramatically fromO(M3) toO(M logM). Although the tridiagonal system
in our case can be solved within O(M) operations, direct extension to higher
space dimensions will be tedious and quite details-involved, as to be shown in
the coming subsections. While the extension of Algorithm (1) to higher space
dimensions is quite straightforward by tensor product, and such advantages are
quite essential for efficient implementation.

8

We also would like to point out the Algorithm 1 applies to non-homogenous
source function f , i.e. f(a) 6= 0 or f(b) 6= 0. In fact, the Sine transform applies
successfully simply because the discrete Sine basis happen to be eigenvectors of
the tridiagonal matrix B. Once AF in (3.4) is known, by expanding the vectors
into the discrete Sine basis, we shall obtain exactly the same relation as (3.7).

Therefore we know that the proposed algorithm can be efficiently imple-
mented. In the next two subsections, we show that the above algorithm can
be extended to solve two-dimensional problem and three-dimensional problem
without much difficulty.

3.2 Poisson equation in two dimensions

In this subsection, we wish to apply the fourth-order compact finite difference
scheme (2.15) into solving the following two-dimensional Poisson equation with
Dirichlet boundary conditions

−∆u = f a < x < b, c < y < d, (3.8)

u(a, y) = 0, u(b, y) = 0,

u(x, c) = 0, u(x, d) = 0,

where ∆ = ∂2

∂x2 + ∂2

∂y2 , a, b, c, d ∈ R, u = u(x, y) are unknown and f = f(x, y) is
some given function.

In the numerical discretization, we first do the partition of the domain
[a, b] × [c, d], and we get the mesh-size in x-direction and y-direction, i.e.,
hx = b−a

M , hy = d−c
N , respectively. Grid points are defined as (xi, yj) where

xi = a + i hx, i = 0, 1, 2, · · · ,M , yj = c + j hy, j = 0, 1, 2, · · · , N . In addition,
uij are denoted as approximation of u(xi, yj). Similarly, uxxij and uyyij are de-
fined as the approximation of the second-order partial derivatives uxx(xi, yj)
and uyy(xi, yj), respectively.

Taking into consideration of the compact finite difference scheme of (2.15),
we can obtain the following approximations

uxxi−1,j + 10uxxij + uxxi+1,j =
12

h2x
(ui−1,j − 2uij + ui+1,j), (3.9)

uyyi−1,j + 10uyyij + uyyi+1,j =
12

h2y
(ui−1,j − 2uij + ui+1,j), (3.10)

i = 1, 2, · · · ,M − 1, j = 1, 2, · · · , N − 1.

By means of Kronecker product
⊗

, one can reformulate Eqs. (3.9) and
(3.10) into the following matrix form

Ax
⊗

I Uxx =
12

h2x
Bx
⊗

I U, (3.11)

I
⊗

Ay U
yy =

12

h2y
I
⊗

By U, (3.12)

9

where Ax, Bx ∈ RM−1×M−1, Ay, By ∈ RN−1×N−1 with Ax, Ay and Bx, By
taking the general form of Ã and B̃ respectively:

Ã =



10 1 0 · · · 0 0
1 10 1 · · · 0 0
0 1 10 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 10 1
0 0 0 · · · 1 10


, B̃ =



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2


,

Uxx =



uxx11
...

uxx1,N−1
uxx21

...
uxx2,N−1

...
uxxM−1,1

...
uxxM−1,N−1



, Uyy =



uyy11
...

uyy1,N−1
uyy21

...
uyy2,N−1

...
uyyM−1,1

...
uyyM−1,N−1



, U =



u11
...

u1,N−1
u21

...
u2,N−1

...
uM−1,1

...
uM−1,N−1



.

(3.13)
Furthermore, setting

A1 = Ax
⊗

I, A2 = I
⊗

Ay,

B1 = Bx
⊗

I, B2 = I
⊗

By,

Eqs. (3.11) and (3.12) can be written as

A1U
xx =

12

h2x
B1U, (3.14)

A2U
yy =

12

h2y
B2U, (3.15)

From which, it follows that

Uxx =
12

h2x
A−11 B1U, (3.16)

Uyy =
12

h2y
A−12 B2U. (3.17)

Here, we have assumed that u′′0j = u′′Mj = 0 for all 0 ≤ j ≤ N and u′′i0 = u′′iN = 0
for all 0 ≤ i ≤M .

Moreover, Eq. (3.8) at points (xi, yj) can be discretized as follows

−(Uxxij + Uyyij) = Fij , i = 1, · · · ,M − 1, j = 1, · · · , N − 1, (3.18)

10

or in matrix formulation
−(Uxx + Uyy) = F, (3.19)

where

F =
(
f11, f12, · · · f1,N−1, f21, · · · f2,N−1, · · · fM−1,1, · · · fM−1,N−1

)T
. (3.20)

Combining Eqs. (3.19), (3.16) and (3.17), we have

(
12

h2x
A−11 B1 +

12

h2y
A−12 B2)U = −F. (3.21)

Finally, in matrix form, we have

U = −C−1F, C =
12

h2x
A−11 B1 +

12

h2y
A−12 B2. (3.22)

we can summarize the whole numerical procedure as follows:

1. Given a, b, M,N and grid points (xi, yj) , i = 0, 1, · · · ,M, j = 0, 1, · · · , N ,
compute F in (3.20) by evaluation of f(xi, yj).

2. Compute A1, B1, A2, B2, the inverse matrices of A1, A2 and C defined in
Eq. (3.22).

3. Perform the matrix inversion of C and get U via Eq. (3.22).

If following the procedure above, one needs to do matrix inversion. It will
become more costly when M and N are increased. Iterative method might be a
choice for efficient matrix inversion and can be used to reduce the cost of matrix
inversion.

In the following, we solve the above discretization with two-dimensional
discrete Sine transform. We note that the discrete Sine transform for uij and
its inverse for ûkl in two dimensions are defined as

uij =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
ikπ

M
) sin(

jlπ

N
), (3.23)

ûkl =
2

M

2

N

M−1∑
i=1

N−1∑
j=1

uij sin(
ikπ

M
) sin(

jlπ

N
). (3.24)

In addition, we note that

uij =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
ikπ

M
) sin(

jlπ

N
), (3.25)

ui+1,j =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
(i+ 1)kπ

M
) sin(

jlπ

N
), (3.26)

ui−1,j =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
(i− 1)kπ

M
) sin(

jlπ

N
), (3.27)

11

and

uxxij =

M−1∑
k=1

N−1∑
l=1

ûxxkl sin(
ikπ

M
) sin(

jlπ

N
), (3.28)

uxxi−1,j =

M−1∑
k=1

N−1∑
l=1

ûxxkl sin(
(i− 1)kπ

M
) sin(

jlπ

N
), (3.29)

uxxi+1,j =

M−1∑
k=1

N−1∑
l=1

ûxxkl sin(
(i+ 1)kπ

M
) sin(

jlπ

N
). (3.30)

Plugging them into Eq. (3.9), we obtain

M−1∑
k=1

N−1∑
l=1

ûxxkl sin(
ikπ

M
) sin(

ilπ

N
)

(
1

5
cos(

kπ

M
) + 1

)

=
6

5h2x

M−1∑
k=1

N−1∑
l=1

ûkl sin(
jlπ

N
) sin(

ikπ

M
)

(
2 cos(

kπ

M
)− 2

)
, (3.31)

from which it follows:

ûxxkl = ûkl
− 24
h2
x

sin2(kπ2M)

cos(kπM) + 5
. (3.32)

Similarly, we know that

uij =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
ikπ

M
) sin(

jlπ

N
), (3.33)

ui,j+1 =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
ikπ

M
) sin(

(j + 1)lπ

N
), (3.34)

ui,j−1 =

M−1∑
k=1

N−1∑
l=1

ûkl sin(
ikπ

M
) sin(

(j − 1)lπ

N
), (3.35)

and

uyyij =

M−1∑
k=1

N−1∑
l=1

ûyykl sin(
ikπ

M
) sin(

jlπ

N
), (3.36)

uyyi,j−1 =

M−1∑
k=1

N−1∑
l=1

ûyykl sin(
ikπ

M
) sin(

(j − 1)lπ

N
), (3.37)

uyyi,j+1 =

M−1∑
k=1

N−1∑
l=1

ûyykl sin(
ikπ

M
) sin(

(j + 1)lπ

N
). (3.38)

Plugging them into Eq. (3.10) will give us

ûyykl = ûkl
− 24
h2
y

sin2(lπ2N)

cos(lπN) + 5
. (3.39)

12

In addition, the two-dimensional Poisson equation −∆u = ∂2u
∂x2 + ∂2u

∂y2 =

f(x, y) at point (xi, yj) can be discretized as −(uxxij + uyyij) = fij . By doing the
inverse Sine transform, we can get

−(ûxxkl + ûyykl) = f̂kl, k = 1, 2 · · · ,M − 1, l = 1, 2, · · · , N − 1. (3.40)

for all k, l.
Finally, we combine Eqs. (3.32), (3.39) and (3.40) together, we reach

−f̂kl = ûkl

(
− 24
h2
x

sin2(kπ2M)

cos(kπM) + 5
+
− 24
h2
y

sin2(lπ2N)

cos(lπN) + 5

)
, (3.41)

where f̂kl can be calculated from

f̂kl =
2

M

2

N

M−1∑
i=1

N−1∑
j=1

fij sin(
ikπ

M
) sin(

jlπ

N
) (3.42)

with fij = f(xi, yj) being known value.
Thus, from Eqs. (3.41) and (3.42) we obtain ûkl and by means of discrete

Sine transform one get the approximation of u(x, y) at grid points (xi, yj), i.e.,
uij for all i = 1, 2 · · · ,M − 1 and j = 1, 2, · · · , N − 1. We summarise the whole
procedure as follows:

Algorithm 2 Fast solver for two-dimensional Poisson equation with Dirichlet
boundary conditions

1. Given integers M N , and grid points (xi, yj), evaluate F and compute its

discrete sine transform F̂ .

2. Compute Û by Eq. (3.41) and perform the inverse discrete sine transform
to get U .

3.3 Poisson equation in three dimensions

In this subsection, we aim to apply the fourth-order compact finite difference
scheme (2.15) into solving three-dimensional Poisson equation with Dirichlet
boundary conditions

−4u = f(x, y, z) a < x < b, c < y < d, e < z < f, (3.43)

u(a, y, z) = 0, u(b, y, z) = 0 u(x, y, e) = 0,

u(x, c, z) = 0, u(x, d, z) = 0 u(x, y, f) = 0.

For numerical discretization in three dimension, we do partition on the defi-
nition domain [a, b]× [c, d]× [e, f] and get the mesh size in x−, y−, z− direction

13

respectively, i.e., hx = (b− a)/M, hy = (d− c)/N , hz = (f − e)/P (M,N,P are
some positive integers), grid points (xi, yj , zp) (xi = a + ihx (i = 0, 1, · · · ,M),
yj = c+ jhy (j = 0, 1, · · · , N), zp = e+ phz (p = 0, 1, · · · , P)). We denote uijp,
uxxijp, u

xx
ijp, u

yy
ijp, u

zz
ijp to be the approximation of functions u(x, y, z), uxx(x, y, z),

uyy(x, y, z), uzz(x, y, z) at grid points (xi, yj , zp), respectively.
By extending the compact finite difference scheme of (2.15) into three dimen-

sions, we can obtain the following approximations for the second-order partial
derivative uxxijk, uyyijk and uzzijk respectively,

uxxi−1,j,p + 10uxxijp + uxxi+1,j,p =
12

h2x
(ui−1,j,p − 2uijp + ui+1,j,p), (3.44)

uyyi,j−1,p + 10uyyijp + uyyi,j+1,p =
12

h2y
(ui,j−1,p − 2uijp + ui,j+1,p), (3.45)

uzzi,j,p−1 + 10uzzijp + uzzi,j,p+1 =
12

h2z
(ui,j,p−1 − 2uijp + ui,j,p+1), (3.46)

for all i = 1, 2, · · · ,M − 1, j = 1, 2, · · · , N − 1, p = 1, 2, · · · , P − 1.
In addition, by discretizing Eq. (3.43) at grid points (xi, yj , zp), we get

−(uxxijp + uyyijp + uzzijp) = fijp. (3.47)

Eqs. (3.44)-(3.47) could be rewritten into matrix formulation as what we have
done in two dimensions, from which, we might obtain the approximation of
uijp for all i = 1, 2, · · · ,M − 1, j = 1, 2, · · · , N − 1, p = 1, 2, · · · , P − 1. Doing
numerical computation in this way would be more costly especially when integers
M,N,P become larger. We do not write down the detailed matrix formulation,
as we do not wish to do matrix inversion.

Here we construct a fast solver for finding uijp for all i = 1, 2, · · · ,M−1, j =
1, 2, · · · , N − 1, p = 1, 2, · · · , P − 1 from Eqs. (3.44)-(3.47). We note that the
discrete Sine transform for uijk in three dimensions and its inverse are as follows:

uijp =

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

ûklq sin(
ikπ

M
) sin(

jlπ

N
) sin(

qpπ

P
), (3.48)

ûklq =
2

M

2

N

2

P

M−1∑
i=1

N−1∑
j=1

P−1∑
p=1

uijp sin(
ikπ

M
) sin(

jlπ

N
) sin(

qpπ

P
), (3.49)

Similarly we can define discrete Sine transform for uxxijk (or uyyijk or uzzijk or fijk)
in three dimensions and its inverse.

From Eq. (3.44), according to the three dimensional Sine transform, we can

14

rewrite it as

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

ûxxklq sin(
(i− 1)kπ

M
) sin(

jlπ

N
) sin(

qpπ

P
) +

+10

M∑
k=1

N−1∑
l=1

P−1∑
q=1

ûxxklq sin(
ikπ

M
) sin(

jlπ

N
) sin(

qpπ

P
) +

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

ûxxklq sin(
(i+ 1)kπ

M
) sin(

jlπ

N
) sin(

qpπ

P
) =

12

h2x

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

[
ûxxklq sin(

(i− 1)kπ

M
) sin(

jlπ

N
) sin(

qpπ

P
)

+
12

h2x

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

ûxxklq sin(
ikπ

M
) sin(

jlπ

N
) sin(

qpπ

P
)

+
12

h2x

M−1∑
k=1

N−1∑
l=1

P−1∑
q=1

ûxxklq sin(
(i+ 1)kπ

M
) sin(

jlπ

N
) sin(

qpπ

P
)

]
, (3.50)

from above, we get

ûxxklq = −ûklq
24 sin2(kπ2M)

h2
x

cos(kπM) + 5
. (3.51)

Similarly, from Eqs. (3.45) and (3.46), we can obtain, respectively,

ûyyklq = −ûklq

24 sin2(lπ2N)

h2
y

cos(lπN) + 5
, (3.52)

ûzzklq = −ûklq
24 sin2(qπ2P)

h2
z

cos(qπP) + 5
. (3.53)

In addition, doing three-dimensional Sine transform in Eq. (3.47), we can
get

−(ûxxklq + ûyyklq + ûzzklq) = f̂klq. (3.54)

Combining Eqs. (3.51) -(3.54), we can find that

−f̂klq = ûklq

(
− 24
h2
x

sin2(lπ
2M)

cos(kπM) + 5
+
− 24
h2
y

sin2(lπ2N)

cos(lπN) + 5
+
− 24
h2
z

sin2(qπ2P)

cos(qπP) + 5

)
, (3.55)

where f̂klq can be calculated from the inverse Sine transform in three dimensions

f̂klq =
2

M

2

N

2

P

M−1∑
i=1

N−1∑
j=1

P−1∑
p=1

fijp sin(
ikπ

M
) sin(

jlπ

N
) sin(

qpπ

P
), (3.56)

15

from which we can obtain uklq. Finally we can do three-dimensional Sine trans-
form of uklq and get the approximation uijk.

In summary, we get

Algorithm 3 Fast solver for three-dimensional Poisson equation with Dirichlet
boundary conditions

1. Given integers M , N , P , and grid points (xi, yj , zp), evaluate fijp and

compute the inverse Sine transform of fijp to get f̂klq.

2. From (3.55), we can obtain ûklq.

3. Compute the discrete sine transform of ûklq to have uijp.

We remark that the above algorithm for three-dimensional problem can be
extended to solve Poisson equation in d-dimensions (d ≥ 4).

4 Numerical results

We have constructed a fast solver for Poisson equation in one dimension, two
dimensions, three dimensions and four dimensions, respectively. In this section,
we apply the proposed numerical algorithms to solve Poisson equation with
Dirichlet boundary conditions and test their numerical accuracy. All the com-
putation is conducted on a laptop computer with Intel(R) Core(TM) i3 CPU.

4.1 One-dimensional result

In the first example, we consider the problem with zero Dirichlet boundary
conditions {

−u′′(x) = π2sin(πx), 0 < x < 2,
u(0) = 0, u(2) = 0.

The exact solution to this problem is uexact(x) = sin(πx). We solve the problem
with the numerical algorithm 1 presented in subsection 3.1. From Figure 1, we
find that both numerical solution and exact solution at grid points xi (i =
1, · · · , 64 − 1) agree very well. The maximum error is less than 4 × 10−7. In
addition, we have done numerical error analysis, which is shown in Table 1, by
increasing the number of grid points double. In this table, the error is defined

as the discrete L2 norm, i.e., error=
√∑M−1

i=1 |ui − uexact(xi)|2h.
We next aim to solve the problem with nonzero Dirichlet boundary condi-

tions {
−u′′(x) = 12e−x

2

(−x2 + 1/2), −8 < x < 8,
u(−8) = −8, u(8) = 8.

The exact solution to this problem is uexact(x) = 3e−x
2

+ x. In the numerical
computation, we denote U(x) = u(x)−x using change of variable. Applying nu-

16

(a)
0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

x

The solution plot

(b)
0 0.5 1 1.5 2

−4

−3

−2

−1

0

1

2

3

4

x 10
−7

x

u
−

u
e
x
a
c
t

Figure 1: (a) Approximated solution of u(x) at grid points; (b)error between
approximated solution and exact solution at grid points.

M 8 16 32 64
error 0.0016 9.9699e-5 6.2026e-6 3.8722e-7
rate - 16.0483 16.0737 16.0183

Table 1: Error analysis for the fourth-order compact finite difference scheme in
the first one-dimensional problem.

merical algorithm 1 presented in subsection 3.1, we solve the following problem
for U(x) {

−U ′′(x) = 12e−x
2

(−x2 + 1/2), −8 < x < 8,
U(−8) = 0, U(8) = 0.

and get the approximation of U(x) at grid points. Because of u(x) = U(x) + x,
it will give us the approximated solution of u(x) at grid points, which is shown
in Figure 2. Furthermore, Table 2 gives us the error analysis for this problem.

From both Table 1 and Table 2, we find that the error is decreasing 16-fold as
grid number M grows doubly, from which we can derive fourth-order accuracy
of the method.

M 32 64 128 256 512
error 0.0099 5.7298e-4 3.5205e-5 2.1911e-6 1.3681e-7
rate - 17.2784 16.2752 16.0674 16.0167

Table 2: Error analysis for the fourth-order compact finite difference scheme in
the second one-dimensional problem.

17

(a)
−5 0 5

−8

−6

−4

−2

0

2

4

6

8
The solution plot

x (b)
−5 0 5

−3

−2

−1

0

1

2

3

4

x 10
−5

x

u
−

u
e
x
a
c
t

Figure 2: (a) Approximated solution of u(x) at grid points; (b)error between
approximated solution and exact solution at grid points.

M = N 16 32 64 128
error 0.0012 7.4881e-5 4.6597e-6 2.9091e-7
rate - 16.0254 16.0699 16.0177

Table 3: Error analysis for the fourth-order compact finite difference scheme in
the first two-dimensional problem.

4.2 Two-dimensional result

We first consider the problem with zero Dirichlet boundary conditions{
−∆u = 2π2 sin(πx) sin(πy) 0 < x < 2, 0 < y < 4
u(x, y) = 0, (x, y) ∈ ∂D (D = [0, 2]× [0, 4])

The exact solution to the problem is uexact(x, y) = sin(πx) sin(πy). We solve
the problem with the numerical algorithm 2 presented in subsection 3.2. In
the numerical computation shown in Figure 3, we take M = N = 64 and
find that both numerical solution and exact solution at those points (xi, yj)
(i, j = 1, 2, · · · , 64−1) agree very well. The maximum error is less than 4×10−6.
In addition, we have done numerical error analysis as shown in Table 3. In the
table, the error is defined as the discrete L2 norm, i.e.,

error =

√√√√M−1∑
i=1

N−1∑
j=1

|uij − uexact(xi, yj)|2hxhy.

18

(a)
0

2

4

0

0.5

1

1.5

2
−1.5

−1

−0.5

0

0.5

1

1.5

y

The solution plot

x

(b)
0

2

4

0

0.5

1

1.5

2
−4

−2

0

2

4

x 10
−6

y

The error plot

x

Figure 3: (a) Approximated solution u(x, y) at grid points; (b)error between
approximated solution and exact solution at grid points (xi, yj).

M = N 32 64 128 256 512
error 0.0083 4.8115e-4 2.9566e-5 1.8401e-6 1.1489e-7
rate - 17.2503 16.2738 16.0676 16.0162

Table 4: Error analysis for the fourth-order compact finite difference scheme in
the second two-dimensional problem.

We next consider the problem with nonzero Dirichlet boundary conditions
−∆u = 12e−x

2−2y2(−x2 − 4y2 + 1.5), −8 < x < 8, −4 < y < 4,
u(x, y) = −12, x = −8, y = −4,
u(x, y) = −4, x = −8, y = 4,
u(x, y) = 4, x = 8, y = −4,
u(x, y) = 12, x = 8, y = 4.

The exact solution is uexact(x, y) = 3e−x
2−2y2 +x+ y. In the numerical compu-

tation, we define U(x, y) = u(x, y) − x − y, solve the problem for U(x, y) with
zero Dirichlet boundary conditions{

−∆U = 12e−x
2−2y2(−x2 − 4y2 + 1.5), −8 < x < 8, −4 < y < 4

U(x, y) = 0, (x, y) ∈ ∂D (D = [−8, 8]× [−4, 4]).

After we get the approximation of U(x, y) at grid points, because of u(x, y) =
U(x, y) +x+ y, we then can obtain the approximated solution of u(x, y) at grid
points. Figure 4 and Table 4 show us the approximated solution, error plot and
the error analysis, respectively.

From Table 3 and Table 4, we see that the error is decreasing 16-fold as grid
number M = N grows doubly, from which we can know that the method has
fourth-order accuracy.

19

(a)
−4

−2
0

2
4

−10

−5

0

5

10
−15

−10

−5

0

5

10

15

y

The solution plot

x

(b)
−4

−2
0

2
4

−10

−5

0

5

10
−2

−1

0

1

2

3

4

x 10
−5

y

The error plot

x

Figure 4: (a) Approximated solution u(x, y) at grid points; (b)error between
approximated solution and exact solution at grid points.

4.3 Three-dimensional result

We first solve the problem with zero Dirichlet boundary conditions{
−∆u = 3π2 sin(πx) sin(πy) sin(πz), 0 < x < 2, 0 < y < 4, 0 < z < 8,
u(x, y, z) = 0, (x, y, z) ∈ ∂D,

whereD = [0, 2]×[0, 4]×[0, 8]. The exact solution to this problem is uexact(x, y, z) =
sin(πx) sin(πy) sin(πz). We solve the problem with the numerical algorithm 3
presented in subsection 3.2. In the numerical computation, we take M = N =
Q = 64 and find that both numerical solution and exact solution at grid points
(0, yj , zp) (j, p = 1, 2, · · · , 64 − 1) agree very well, which is shown in Figure 5.
The maximum error is less than 4×10−6. We have done numerical error analysis

(a)
0

2
4

6
8

0

1

2

3

4
−0.1

−0.05

0

0.05

0.1

z

The solution plot

y

(b)
0

2
4

6
8

0

1

2

3

4
−4

−2

0

2

4

x 10
−6

z

The error plot

y

Figure 5: (a) Approximated solution u(0.5, y, z) at grid points ; (b) error be-
tween approximated solution and exact solution at grid points (0.5, yj , zp).

as shown in Table 5. In this table, the error is defined as the discrete L2 norm,

20

M = N = Q 32 64 128 256
error 0.0016 1.0020e-4 6.2357e-6 3.8931e-7
rate - 15.9681 16.0688 16.0173

Table 5: Error analysis for the fourth-order compact finite difference scheme in
the first three-dimensional problem.

M = N = Q 32 64 128 256
error 0.0071 4.1817e-4 2.5722e-5 1.6012e-006
rate - 16.9787 16.2573 16.0642

Table 6: Error analysis for the fourth-order compact finite difference scheme in
the second three-dimensional problem

i.e., error=
√∑M−1

i=1

∑N−1
j=1

∑Q−1
p=1 |uijp − uexact(xi, yj , zp)|2hxhyhz.

We next consider the problem with nonzero Dirichlet boundary conditions −∆u = 12e−x
2−2y2−3z2(−x2 − 4y2 − 9z2 + 3),

−8 < x < 8, −4 < y < 4, −4 < z < 4,
u(x, y, z) = x+ y + z, (x, y, z) ∈ ∂D.

where D = [−8, 8] × [−4, 4] × [−4, 4]. The exact solution to this problem is

uexact(x) = 3e−x
2−2y2−3z2 + x + y + z. In the numerical computation, we let

U(x, y, z) = u(x, y, z) − x − y − z , solve the problem for U(x, y, z) with zero
Dirichlet boundary conditions −∆U = 12e−x

2−2y2−3z2(−x2 − 4y2 − 9z2 + 3),
−8 < x < 8, −4 < y < 4, −4 < z < 4,

U(x, y, z) = 0, (x, y, z) ∈ ∂D.

and obtain the approximation of U(x, y, z) at grid points. Finally, using the
fact that u(x, y, z) = U(x, y, z) + x + y + z gives us the approximated solution
of u(x, y, z) at grid points. Figure 6 and Table 6 respectively show us the
approximated solution, error plot and the error analysis for this example.

From Table 5 and Table 6, we observe that the error is decreasing 16-fold as
grid number M = N = P grows doubly, from which fourth-order accuracy of
the method can be found.

4.4 Four-dimensional result

We first solve the four-dimensional Poisson equation with zero Dirichlet bound-
ary conditions −∆u = 3π2 sin(πx) sin(πy) sin(πz1) sin(πz2),

0 < x < 1, 0 < y < 2, 0 < z1 < 3, 0 <, z2 < 4,
u(x, y, z1, z2) = 0, (x, y, z1, z2) ∈ ∂D,

21

(a)
−4

−2
0

2
4

−4

−2

0

2

4
−10

−5

0

5

10

z

The solution plot

y

(b)
−4

−2
0

2
4

−4

−2

0

2

4
−1

0

1

2

3

4

5

x 10
−5

z

The error plot

y

Figure 6: (a) Approximated solution u(0, y, z) at grid points; (b)error bet ween
approximated solution and exact solution at grid points.

M = N = P = Q 8 16 32 64
error 0.0116 6.8524e-4 4.2175e-5 2.6256e-6
rate - 16.9284 16.2475 16.0630

Table 7: Error analysis for the fourth-order compact finite difference scheme in
the first four-dimensional problem.

where D = [0, 1] × [0, 2] × [0, 3] × [0, 4]. The exact solution to this problem is
uexact(x, y, z1, z2) = sin(πx) sin(πy) sin(πz1) sin(πz2). We extend the numerical
algorithm 3 presented in subsection 3.3 and solve the above problem. Numerical
error analysis is shown in Table 7. In the table, the error is defined as the discrete
L2 norm.

We next consider the problem with nonzero Dirichlet boundary conditions −∆u = 4e−x
2−2y2−3z21−4z

2
2 (−x2 − 4y2 − 9z21 − 16z22 + 5),

−8 < x < 8, −4 < y < 4, −4 < z1 < 4, −4 < z2 < 4,
u(x, y, z1, z2) = x+ y + z1 + z2, (x, y, z1, z2) ∈ ∂D.

where D = [−8, 8]×[−4, 4]×[−4, 4]×[−4, 4]. The exact solution to this problem

is uexact(x, y, z1, z2) = e−x
2−2y2−3z21−4z

2
2 + x + y + z1 + z2. In the numerical

computation, we let U(x, y, z1, z2) = u(x, y, z1, z2)− x− y − z1 − z2 , solve the
problem for U(x, y, z1, z2) with zero Dirichlet boundary conditions −∆U = 12e−x

2−2y2−3z21−4z
2
2 (−x2 − 4y2 − 9z21 − 16z22 + 5),

−8 < x < 8, −4 < y < 4, −4 < z1 < 4, −4 < z2 < 4
U(x, y, z1, z2) = 0, (x, y, z1, z2) ∈ ∂D,

and obtain the approximation of U(x, y, z1, z2) at grid points. Finally, using the
fact that u(x, y, z1, z2) = U(x, y, z1, z2)+x+y+z1+z2 gives us the approximated
solution of u(x, y, z1, z2) at grid points.

22

M = N = P = Q 16 32 64 128
error 0.0759 0.0024 1.4219e-4 8.8607e-06
rate - 31.6250 16.8788 16.0471

Table 8: Error analysis for the fourth-order compact finite difference scheme in
the second four-dimensional problem

From Table 7 and Table 8, we see that the error is decreasing 16-fold as grid
number M = N = P = Q grows doubly, from which fourth-order accuracy of
the method can be found.

5 Conclusions and discussions

Compact finite difference methods have become popular in the numerical dis-
cretization of partial differential equations in recent years. However, when solv-
ing higher-dimensional problems the cost of such method becomes larger. We
have designed an efficient implementation of fourth-order compact finite dif-
ference scheme for Poisson equation with Dirichlet boundary conditions. The
solver is based on fast discrete Sine transform and can be implemented efficiently
and easily, as many mathematical software such as Matlab provide the subrou-
tine for fast discrete Sine transform. Our numerical algorithm has been tested
and numerical results in one dimension, two dimensions, three dimensions and
four dimensions have shown that the proposed four-order compact finite differ-
ence scheme for Poisson equation have fourth-order accuracy. The numerical
algorithm can be directly extended to solve the d-dimensional (d ≥ 4) Poisson
equation. Although the numerical algorithm presented in the paper mainly for
Poisson equation with zero Dirichlet boundary conditions, we have shown that
the algorithm can be extended to solve Poisson equation with nonzero Dirichlet
boundary conditions, as long as Poisson equation with nonzero Dirichlet bound-
ary conditions can be properly changed into Poisson equation with zero Dirichlet
boundary conditions by using technique of change of variables. In addition, if
we are faced with Poisson equation with Neumann boundary conditions and still
wish to solve the problem with compact finite difference scheme, we may con-
struct a fast solver based on fast discrete Cosine transform. Many compact finite
difference schemes which discretize partial differential equations, such as Navier-
Stokes equations or Schrödinger equations, are faced with solving Poisson-like
equation, our fast solver may be extended to solve the corresponding discretized
system as well.

Acknowledgments

The research of H. Wang is supported in part by the Natural Science Foundation
of China under grant No. 11261065 and 91430103, and by Ministry of Educa-
tion Program for New Century Excellent Talents in Chinese Universities under

23

grant No. NCET-13-0995. The second author acknowledges support from the
Austrian Science Foundation (FWF) under grant No. F41 (project VICOM),
grant No. I830 (project LODIQUAS) and the Austrian Ministry of Science and
Research via its grant for the WPI.

References

[1] S. Abarbanel and A. Kumar, Compact high-order schemes for the Euler
equations, J. Sci. Comp., 1998, 3:275-288.

[2] M. Ciment and S. Leventhal, Higher order compact implicit schemes for
the wave equation, Math. Comp., 1975, 132(29):985-994.

[3] L. Collatz, The numerical treatment of differential equations, Springer-
Verlag, New York, 1966, pp. 538.

[4] B. Cockburn and C. Shu, Nonlinearly stable compact schemes for shock
calculations, SIAM J. Numer. Anal. , 1994, 31:607-627.

[5] M. Dehghan and A. Taleei, A compact split-step finite difference method
for solving the nonlinear Schrodinger equations with constant and variable
coefficients, Comp. Phys. Comm., 2010, 181:43-51.

[6] R. Hirsh, Higher order accurate difference solutions of fluid mechanics prob-
lems by a compact differencing technique, J. Comput. Phys., 1975, 19:90-
109.

[7] J. Kalita, P. Chhabra and S. Kumar, A semi-discrete higher order compact
scheme for the unsteady two-dimensional Shrödinger equation, J. Comput.
Appl. Math., 2006, 197:141-149.

[8] W. Liao, An implicit fourth-order compact finite difference scheme for one-
dimensional Burgers’ equation, App. Math. Comp., 2008, 206:755-764.

[9] S. Lele, Compact finite difference scheme with spectral-like resolution, J.
Comput. Phys., 1992, 103:16-42.

[10] J. Shen, T. Tang, Spectral and High-Order Methods with Applications,
Science Press, Beijing, 2006.

[11] S. Sherer, Scattering of sound from axisymetric sources by multiple circular
cylinders, J. Acoust. Soc. Amer., 2003, 115:488-496.

[12] W. Spotz and G. Carey, A high-order compact formulation for the 3D
Poisson equation, Num. Meth. Parti. Diff. Equ., 1996, 12: 235-243.

[13] W. Spotz and G. Carey, High-order compact scheme for the steady stream-
function vorticity equations, Int. J. Num. Meth. Eng., 1995, 38(20): 3497-
3512.

24

[14] A. Tolstykh, High accuracy non-centered compact difference schemes for
fluid dynamics applications, World Scientific, New Jersey, 1994.

[15] M. Visbal and D. Gaitonde, On the use of higher-order finite-difference
schemes on curvilinear and deforming meshes, J. Comput. Phys., 2002,
181:155-185.

[16] S. Xie, G. Li and S. Yi, Compact finite-difference schemes with high accu-
racy for one-dimensional nonlinear Schrödinger equation, Comput. Meth-
ods Appl. Mech. Engrg., 2009, 198:1052-1060.

[17] T. C. Wang, Optimal point-wise error estimate of a compact difference
scheme for the coupled Gross-Pitaevskii equations in one dimension, J. Sci.
Comput., 2014, 59:158-186.

[18] T. C. Wang , B. L. Guo and Q. B. Xu, Fourth-order compact and energy
conservative difference schemes for the nonlinear Schrödinger equation in
two dimensions, J. Comput. Phys., 2013,243: 382-399.

[19] T. C. Wang and X. F. Zhao, Optimal l∞ error estimates of finite difference
methods for the coupled Gross-Pitaevskii equation in high dimensions, Sci.
China Math., 2014, 57: 2189-2214.

[20] J. Zhang, An explicit fourth-order compact finite difference scheme for
three-dimensional convection-diffusion equation, Comm. Num. Meth. Eng.,
1998, 14:209-218.

[21] Y. Zhang, Optimal error estimates of compact finite difference discretiza-
tions for the Schrödinger-Poisson system, Commun. Comput. Phys., 2013,
13:1357-1388.

[22] X. Zhong, High-Order finite-difference schemes for numerical simulation of
hypersonic boundary-layer transition, J. Comput. Phys., 1998, 144:662-709.

25

