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Abstract. In this paper, an efficient time-splitting Fourier spectral method is pro-
posed to simulate the dynamics of spin-orbit coupled spin-1 Bose-Einstein conden-
sates (SOC spin-1 BECs). We split the Hamiltonian into a linear part, which consists
of the Laplace and SOC terms, and a nonlinear part that includes all the remaining
terms. The linear subproblem is integrated analytically in phase space by solving an
ordinary differential system of constant coefficient matrix. While, for the nonlinear
subproblem, it is proved the coefficient matrix is actually time-independent in phys-
ical space, therefore, the nonlinear subproblem can be integrated exactly. Based on
such two-step splitting, we construct high-order schemes to simulate the dynamics.
Our method is spectrally accurate in space and high order in time. It is efficient,
explicit, unconditionally stable and simple to implement. In addition, we derive
some dynamical properties for SOC spin-1 BECs. Extensive numerical results are
presented to confirm the accuracy and efficiency, illustrate the dynamical properties
at discrete level, and show interesting physics of SOC spin-1 BECs, such as the SOC
effects and different wave patterns.
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1 Introduction

Since its experimental realizations in 1995 [1, 14], the Bose-Einstein condensate (BEC)
has stimulated great excitement in the physical community and regains vast interests
in atomic and molecular physics as well as condensate matter physics. In particular,
the spin-orbit coupling (SOC), which was found that plays a crucial role in Majorana
fermions [34], spintronic devices [22], spin Hall effect [19] and topological insulators
[17], has been successfully induced in recent experiments in a neutral atomic BECs
by dressing two atomic spin states with a pair of lasers [25–27]. These experiments
triggered a strong activity in the area of spin-orbit-coupled cold atoms and a number
of exciting phenomena have been discovered. The spin-1 BECs with isotropic spin-orbit
coupling and rotation have been also studied [24, 39].

It is well known that, in the mean field regime, the spin-F (F ∈ N) BEC can be
well described by a system of 2F+1 coupled Gross-Pitaevskii equations (GPEs) when
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the temperature T is much smaller than the critical temperature Tc. Thus the spin-orbit
coupled spin-1 BEC can be described by the macroscopic complex-valued vector wave
function Ψ=Ψ(x,t)=(ψ1(x,t),ψ0(x,t),ψ−1(x,t))T satisfying the GPEs

ih̄∂tψ1(x,t)=

[
− h̄2

2m
∇2+V+β0ρ+β1Fz

]
ψ1+

β1√
2

F−ψ0−γL̃0ψ0,

ih̄∂tψ0(x,t)=

[
− h̄2

2m
+V+β0ρ

]
ψ0+

β1√
2
[F+ψ1+F−ψ−1]−γ(L̃0ψ−1+ L̃1ψ1),

ih̄∂tψ−1(x,t)=

[
− h̄2

2m
∇2+V+β0ρ−β1Fz

]
ψ−1+

β1√
2

F+ψ0−γL̃1ψ0,

ψℓ(x,0)=ψ0
ℓ (x), ℓ=1,0,−1,

(1.1)

where x = (x,y,z)⊤ ∈ R3 is the Cartesian coordinate vector, t is time, h̄ is the Planck
constant, m is the atomic mass. β0 =

4πh̄2

3m (a0+2a2) and β1 =
4πh̄2

3m (a2−a0) are constants
expressed in terms of the s-wave scattering lengths a0 and a2 for a scattering channel
of total hyperfine spin 0 (antiparallel spin collision) and spin 2 (parallel spin collision),
respectively. ρ= ρ1+ρ0+ρ−1 is the total density with ρℓ= |ψℓ|2 (ℓ= 1,0,−1) being the
density of each spin component. L̃0 = h̄(i∂x+∂y) and L̃1 = h̄(i∂x−∂y) are the spin-orbit
coupling operators, γ is the spin-orbit coupling strength. V(x) is a given real-valued
external trapping potential determined by the type of system under investigation. In
most BEC experiments, a harmonic potential is chosen to trap the condensates, i.e.,

V(x)=
1
2

(
ω2

xx2+ω2
yy2+ω2

z z2
)

, (1.2)

where ωv (v=x,y,z) are dimensionless constants representing the trapping frequencies
in v-direction. The wave function is normalized according to

∥Ψ∥2 :=
∫

R3

1

∑
ℓ=−1

|ψℓ(x,t)|2dx=N,

where N is the total number of particles in the condensate. The spin vector F=[Fx,Fy,Fz]⊤=

[ΨH fxΨ,ΨH fyΨ,ΨH fzΨ]⊤, where ΨH is the conjugate transpose of Ψ and

fx =
1√
2

0 1 0
1 0 1
0 1 0

, fy =
i√
2

0 −1 0
1 0 −1
0 1 0

, fz =

1 0 0
0 0 0
0 0 −1

. (1.3)

To be more detailed, we have

Fx =
1√
2
[ψ̄1ψ0+ψ̄0(ψ1+ψ−1)+ψ̄−1ψ0],

Fy =
i√
2
[−ψ̄1ψ0+ψ̄0(ψ1−ψ−1)+ψ̄−1ψ0],

Fz = |ψ1|2−|ψ−1|2,

with f̄ the conjugate of function f and F±=Fx±iFy.
By introducing t→ t/ωm with ωm =min{ωx,ωy,ωz}, x→xas with as =

√
h̄/(mωm),

ψℓ →
√

Nψℓ/a3/2
s (ℓ= 1,0,−1), and applying the dimension reduction strategy for a
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disk-shaped condensation (i.e., ωx ≈ωy and ωz ≫ωx) [10], the d-dimensional (d=2 or
d=3) dimensionless GPEs of (1.1) reads as

i∂tψ1(x,t)=
[
−1

2
∇2+V+c0ρ+c1Fz

]
ψ1+

c1√
2

F−ψ0−γL0ψ0,

i∂tψ0(x,t)=
[
−1

2
∇2+V+c0ρ

]
ψ0+

c1√
2
[F+ψ1+F−ψ−1]−γ(L0ψ−1+L1ψ1),

i∂tψ−1(x,t)=
[
−1

2
∇2+V+c0ρ−c1Fz

]
ψ−1+

c1√
2

F+ψ0−γL1ψ0,

ψℓ(x,0)=ψ0
ℓ (x), x∈Rd, ℓ=1,0,−1,

(1.4)

where c0=
Nβ0

a3
s h̄ωm

= 4πN(a0+2a2)
3as

, c1=
Nβ1

a3
s h̄ωm

= 4πN(a2−a0)
3as

, L0= i∂x+∂y, L1= i∂x−∂y, and

V(x)=
1
2

{
γ2

xx2+γ2
yy2, d=2,

γ2
xx2+γ2

yy2+γ2
zz2, d=3,

(1.5)

with γν =
ων
ωm

(ν= x,y,z).
Note that the CGPEs (1.4) can be written in the following compact form

i∂tΨ=HΨ :=
[
(−1

2
∆+V+c0ρ)I3+c1F · f −γS

]
Ψ, (1.6)

where H is the Hamiltonian with I3 the 3×3 identity matrix and

F · f =

 Fz
1√
2

F− 0
1√
2

F+ 0 1√
2

F−

0 1√
2

F+ −Fz

, S=

 0 L0 0
L1 0 L0
0 L1 0

.

There have been extensive mathematical and numerical studies on single com-
ponent BECs. Most of them are concerned about the existence and computations of
ground states as well as the properties of dynamics [5, 7–9]. For the spinor BECs with-
out SOC, the popular normalized gradient flow method [4, 11] and the time-splitting
method [10, 30, 31] have been successfully applied to simulate the ground states and
dynamics, respectively. In particular, efficient compact two-step time-splitting meth-
ods have been developed to simulate the dynamics of single component BECs [5, 6],
spin-1 BECs [28] and spin-2 BECs [29] without SOC. Meanwhile, Gawryluk et al. pro-
posed a unified two-step split operator method (SOM) [16] for computing dynamics
of spinor BECs without and with dipolar interactions, and of degenerate Fermi gases.
These methods take the Laplace and the remaining parts of the Hamiltonian as the first
and second splitting operators, respectively. For the spinor BECs with SOC, a project
gradient flow method was proposed to compute the ground states of the SOC spin-1
BEC [36]. And, a first-order standard Lie time-splitting Fourier spectral method, which
is composed of four subproblems at each time step, was developed to simulate both
the dynamics of SOC spin-1 BECs [20] and SOC spin-2 BECs [2].

It is worthwhile to point out that the proper way of splitting is interesting and im-
portant in terms of accuracy and efficiency. In this paper, we aim to carry out a compre-
hensive investigation of an efficient numerical method to simulate the dynamics of the
SOC spin-1 BEC. Numerically, the most challenges lie in how to split the Hamiltonian
into proper parts and solve the corresponding subproblems accurately and efficiently.
In particular, if the Hamiltonian can be split into two parts with each corresponding
subproblem being solved exactly and efficiently, it will be very convenient to construct
high-order schemes for the CGPEs (1.4), thus reduce the computational costs to a great
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extent. To this end, we propose a high-order time-splitting Fourier spectral method to
solve CGPEs (1.4). Actually, inspired by the splitting strategy proposed for the spin-1
BECs without SOC [28], we group the Laplace and SOC terms together as the linear
part and denote it by A as follows

A=(−1
2

∆)I3−γS ,

and leave the remaining part of the Hamiltonian as the nonlinear part, denoted by B,
as follows

B=(V+c0ρ)I3+c1F · f .

In this way, the corresponding subproblem can be efficiently and exactly solved in ei-
ther Fourier or physical space, regardless of the potential V(x). Our method is spec-
trally accurate in space and high order in time. It is efficient, explicit, unconditionally
stable and simple to implement. Meanwhile, the total computational cost is CNtot log(Ntot)
with Ntot being the total grid number.

The rest of the paper is organized as follows. In Section 2, some dynamical proper-
ties of the spin-orbit coupled spin-1 BEC are demonstrated. In Section 3, we propose
the efficient and exact time-splitting Fourier spectral method to numerically solve the
CGPEs (1.4), and based on this, construct high order schemes to simulate the dynamics
of SOC spin-1 BECs. In Section 4, extensive numerical results are presented to investi-
gate the convergence order, efficiency and to demonstrate the dynamical properties of
SOC spin-1 BECs. Finally, conclusions are drawn in Section 5.

2 Dynamical properties

In this section, we demonstrate dynamical laws of mass, energy, magnetization and
condensate width of the SOC spin-1 BEC (1.4). These dynamical laws are briefly pre-
sented and can be used as benchmarks for testing our numerical methods. From here
after, we denote ℜ( f ) the real part of the function f in this paper.

Mass and energy. Define the mass and energy of the spin-orbit coupled spin-1 BEC
(1.4) as

N (t)=N (Ψ(·,t)) :=
∫

Rd

1

∑
ℓ=−1

|ψℓ|2dx, (2.1)

and

E(t) := E(Ψ(·,t))=
∫

Rd

[ 1

∑
ℓ=−1

(
1
2
|∇ψℓ|2+V(x)|ψℓ|2

)
+

c0

2
ρ2 (2.2)

+
c1

2

(
|F+|2+|Fz|2

)
−γ(L0ψ0ψ̄1+L0ψ−1ψ̄0+L1ψ1ψ̄0+L1ψ0ψ̄−1)

]
dx.

It is easy to check that the SOC spin-1 BEC (1.4) has two important invariants [20]: the
mass (or normalization) of the wave function and the energy per particle, i.e.,

N (Ψ(·,t))=N (Ψ(·,0))=1, E(Ψ(·,t))=E(Ψ(·,0)). (2.3)

Magnetization. The magnetization of the spin-orbit coupled spin-1 BEC (1.4) reads
as

M=M(Ψ(·,t)) :=
1

∑
ℓ=−1

∫
Rd
ℓ|ψℓ(x,t)|2dx

=
∫

Rd

[
|ψ1(x,t)|2−|ψ−1(x,t)|2

]
dx.

(2.4)
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By direct calculations, we obtain

dM(t)
dt

=
d
dt

∫
Rd

[
|ψ1(x,t)|2−ψ−1(x,t)|2

]
dx

=2γℜ
∫

Rd

[
ψ̄−1(∂x+i∂y)ψ0−ψ1(∂x+i∂y)ψ̄0

]
dx.

(2.5)

Thus the magnetization is conserved (i.e., M(t)=M(0)) for γ=0, while this conserva-
tion cannot be guaranteed if γ ̸=0.

Condensate width. The condensate width of BEC at the direction of α is σα=
√

δα(t)
(t>0, α= x,y or r=

√
x2+y2) is defined by

δα(t)=
1

∑
ℓ=−1

δα,ℓ(t) (2.6)

with
δα,ℓ(t)=

∫
Rd

α2 |ψℓ(x,t)|2dx. (2.7)

In particular, when d=2, we have the following lemma for its dynamics.

Lemma 2.1. Suppose Ψ(x,t) be the solution of the (1.4) with the radially symmetric harmonic
trap (1.2), i.e., γx =γy :=γr, it holds

d2δr(t)
dt2 =

d2δx(t)
dt2 +

d2δy(t)
dt2

=−4γ2
r δ2

r (t)+4E (Ψ(·,0))+G(γ,Ψ(·,t))
(2.8)

with

G(γ,Ψ)=4γ2ℜ
∫

Rd

[
2|ψ0|2+|ψ1|2+|ψ−1|2

+ix
(
ψ1∂yψ̄1−ψ−1∂yψ̄−1

)
−iy(ψ1∂xψ̄1−ψ−1∂xψ̄−1)

]
dx,

where δr(t) :=δx(t)+δy(t), δ
(0)
r =δx(0)+δy(0) and δ̇

(1)
r = δ̇x(0)+δ̇y(0). Furthermore, if d=2,

γ=0 and the initial data Ψ0(x) is radially symmetric, we have for t≥0,

δx(t)=δy(t)=
1
2

δr(t)=
E(0)
2γ2

r
[1−cos(2γrt)]+δ

(0)
r cos(2γrt)+

δ
(1)
r

2γr
sin(2γrt). (2.9)

Thus, in this case the condensate widths σx(t) and σy(t) are periodic functions with frequency
doubling trapping frequency.

Proof. Noticing (2.6)-(2.7) and taking (1.4) into account, we have

dδα,1(t)
dt

=
∫

Rd
α2(∂tψ1ψ̄1+ψ1∂tψ̄1)dx

=−i
∫

Rd

[
α2(i∂tψ1)ψ̄1−α2(−i∂tψ̄1)ψ1

]
dx

=
∫

Rd

[
iα(ψ1∂αψ̄1−ψ̄1∂αψ1)+ic1α2(ψ̄2

0ψ1ψ−1−ψ2
0ψ̄1 ¯ψ−1)

−γα2ψ1(∂x+i∂y)ψ̄0−γα2ψ̄1(∂x−i∂y)ψ0

]
dx.

(2.10)
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Similarly, we obtain

dδα,0(t)
dt

=
∫

Rd

[
iα(ψ0∂αψ̄0−ψ̄0∂αψ0)+2ic1α2(ψ2

0ψ̄1 ¯ψ−1−ψ̄2
0ψ1ψ−1)

−γα2ψ0(∂x−i∂y)ψ̄1−γα2ψ̄0(∂x+i∂y)ψ̄−1

−γα2ψ̄0(∂x+i∂y)ψ1−γα2ψ̄0(∂x−i∂y)ψ−1

]
dx.

(2.11)

dδα,−1(t)
dt

=
∫

Rd

[
iα(ψ−1∂αψ̄−1−ψ̄−1∂αψ−1)+ic1α2(ψ̄2

0ψ1ψ−1−ψ2
0ψ̄1 ¯ψ−1)

−γα2ψ−1(∂x+i∂y)ψ̄0−γα2ψ̄−1(∂x−i∂y)ψ0

]
dx.

(2.12)

Combining (2.10)-(2.12), one obtains

dδα(t)
dt

=
∫

Rd

[ 1

∑
j=−1

iα(ψj∂αψ̄j−ψ̄j∂αψj)

+2γα

(
ψ1ψ̄0(∂x+i∂y)α+ψ0ψ̄1(∂x−i∂y)α

+ψ0ψ̄−1(∂x+i∂y)α+ψ̄0ψ−1(∂x−i∂y)α

)]
dx.

(2.13)

d2δα(t)
dt2 =

∫
Rd

[
d
dt

(
iα(ψ1∂αψ̄1−ψ̄1∂αψ1)

)
+

d
dt

(
iα(ψ0∂αψ̄0−ψ̄0∂αψ0)

)
+

d
dt

(
iα(ψ−1∂αψ̄−1−ψ̄−1∂αψ−1)

)
+

d
dt

(
2γα

(
ψ1ψ̄0(∂x+i∂y)α+ψ0ψ̄1(∂x−i∂y)α

+ψ0ψ̄−1(∂x+i∂y)α+ψ̄0ψ−1(∂x−i∂y)α
))]

dx

= I+ I I+ I I I+ IV.

(2.14)

Differentiating the above equation with respect to t, plugging (1.4) into each parts of
(2.14) and applying the integration by parts, we obtain

I :=
∫

Rd

[
iα(∂tψ1∂αψ̄1+ψ1∂αtψ̄1−∂tψ̄1∂αψ1−ψ̄1∂αtψ1)

]
dx

=
∫

Rd

[
2α

(
(i∂tψ1)∂αψ̄1+(−i∂tψ̄1)∂αψ1

)
+

(
ψ̄1(i∂tψ1)+ψ1(−i∂tψ̄1)

)]
dx

=−2γ2
r δα,1(t)+

∫
Rd

[
2|∂αψ1|2−2c0α|ψ1|2 ∂αρ−2c1α|ψ1|2 ∂αFz

−
√

2c1ℜ(F−ψ0ψ̄1)−2
√

2c1αℜ(ψ̄1ψ0∂αF−+F−ψ̄1∂αψ0)

−2γℜ
(
(L0ψ0)ψ̄1

)
−4γαℜ((L0ψ0)∂αψ̄1)

]
dx,

(2.15)
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I I :=−2γ2
r δα,0(t)+

∫
Rd

[
2|∂αψ0|2−2c0α|ψ0|2 ∂αρ

+2
√

2c1αℜ(F+ψ1∂αψ̄0+F−ψ−1∂αψ̄0)+c1 |F+1|2

−2γℜ((L0ψ−1)ψ̄0+(L1ψ1)ψ̄0)−4γαℜ
(
(L0ψ−1+L1ψ1)∂αψ0

)]
dx,

(2.16)

I I I :=−2γ2
r δα,−1(t)+

∫
Rd

[
2|∂αψ−1|2−2c0α|ψ−1|2 ∂αρ+2c1α|ψ−1|2 ∂αFz

−
√

2c1ℜ(F+ψ0ψ̄−1)−2
√

2c1αℜ(ψ̄−1ψ0∂αF++F+ψ̄−1∂αψ0)

−2γℜ
(
(L1ψ0)ψ̄−1

)
−4γαℜ((L1ψ0)∂αψ̄−1)

]
dx,

(2.17)

IV :=
d
dt

∫
Rd

[
2γα

(
ψ1ψ̄0(∂x+i∂y)α+ψ0ψ̄1(∂x−i∂y)α

+ψ0ψ̄−1(∂x+i∂y)α+ψ̄0ψ−1(∂x−i∂y)α

)]
dx

=4γℜ
∫

Rd
(i∂x−∂y)α

[
(ψ0∂αψ̄−1+ψ1∂αψ̄0)

+γ
(

α(L0ψ−1)ψ̄−1+α(L0ψ̄1)ψ1−(L0α)|ψ0|2−(L1α)ψ1ψ̄−1

)]
dx.

(2.18)

Summing (2.15)-(2.18), we obtain

d2δα(t)
dt2 =−2γ2

r δα(t)+
∫

Rd

[
2

1

∑
j=−1

∣∣∂αψj
∣∣2+c0ρ2+c1|Fz|2+c1|F+|2

−2γℜ
(
(L0ψ0)ψ̄1

)
−2γℜ((L0ψ−1)ψ̄0+(L1ψ1)ψ̄0)−2γℜ

(
(L1ψ0)ψ̄−1

)
+G(α,γ,Ψ)

]
dx,

(2.19)
with

G1(α,γ,Ψ)=−4γαℜ
[
(L0ψ0)∂αψ̄1+(L0ψ−1+L1ψ1)∂αψ0+(L1ψ0)∂αψ̄−1

]
+4γℜ

[
(i∂x−∂y)α

(
(ψ0∂αψ̄−1+ψ1∂αψ̄0)

+γ
(

α(L0ψ−1)ψ̄−1+α(L0ψ̄1)ψ1−(L0α)|ψ0|2−(L1α)ψ1ψ̄−1

))]
.

Hence, we have

d2δr(t)
dt2 =

d2δx(t)
dt2 +

d2δy(t)
dt2

=−4γ2
r δr(t)+

∫
Rd

[
2

1

∑
j=−1

(∣∣∇ψj
∣∣2+V(x)

∣∣ψj
∣∣2)

+2c0ρ2+2c1|Fz|2+2c1|F+|2−2γℜ
(
(L0ψ0)ψ̄1

)
−2γℜ((L0ψ−1)ψ̄0+(L1ψ1)ψ̄0)−2γℜ

(
(L1ψ0)ψ̄−1

)
+G1(x,γ,Ψ)+G1(y,γ,Ψ)

]
dx

=−4γ2
r δ2

r (t)+4E(Ψ(·,0))+G(γ,Ψ(·,t))

(2.20)
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with
G(γ,Ψ)=G1(x,γ,Ψ)+G1(y,γ,Ψ)

=4γ2ℜ
∫

Rd

[(
2|ψ0|2+|ψ1|2+|ψ−1|2

+ix
(
ψ1∂yψ̄1−ψ−1∂yψ̄−1

)
−iy(ψ1∂xψ̄1−ψ−1∂xψ̄−1)

)]
dx.

As a result, when γ=0, we have G(0,Ψ)=0. Thus the δr(t) given in (2.9) is the unique
solution of the second order ODE (2.20) with the initial data δr(0)=δ

(0)
r and δ̇r(0)= δ̇

(1)
r .

Furthermore, if Ψ0(x) is radial symmetric, the solution Ψ(x,t) is also radial sym-
metric since γx =γy, which implies that [5]

δx(t)=δy(t)=
1
2

δr(t).

The proof is completed.

3 Numerical method

In this section, we present a two step time-splitting method to solve the CGPEs (1.4) for
studying the dynamics of SOC spin-1 BEC.

Due to the trapping potential, the wave function decays to zero exponentially fast
at the far field. Thus in practical computation, we truncate the problem into a suf-
ficiency large bounded computational domain D with periodic boundary conditions.
To simplify the presentation, we will present the specific discrete scheme for the 2-
dimensional (2D) case. Generalized to the 3-dimensional (3D) case is straightforward
and the results remain valid without modifications. We choose the domain D:=[−L,L]2,
the spatial mesh size h=(2L)/N for N an even positive integer. The numerical results
show that L should be chosen larger when the atom interaction parameter c0, the SOC
strength parameter γ and the evolution time T increase. Define the Fourier, physical
index and grid points sets respectively as

IN =
{
(j,k)∈Z2

∣∣∣ 0≤ j≤N−1, 0≤ k≤N−1
}

,

TN =

{
(p,q)∈Z2

∣∣∣ − N
2
≤ p≤ N

2
−1, −N

2
≤q≤ N

2
−1
}

,

G =
{
(xj,yk) :=(−L+ jh,−L+kh), (j,k)∈TN

}
.

For a given time step τ>0, we define the time sequence as tn=nτ for n=0,1,.. .. Let Ψn
jk

be the numerical approximation of Ψ(xj,yk,tn) for (j,k)∈IN ,n>0. The wave function
is well approximated by Fourier spectral method. To be exact,

ϕℓ(x)≈ ϕ̃ℓ(x) := ∑
(p,q)∈TN

ϕ̂ℓ,pq eiµp(x+L)eiµq(y+L), ℓ=1,0,−1, (3.1)

where µp =2πp/(2L), µq =2πq/(2L). The Fourier coefficients

ϕ̂ℓ,pq =
1

(2L)2

∫
D

ϕℓ(x)e−iµp(x+L)e−iµq(y+L)dx

are well approximated by applying trapezoidal rule to the above integral as follows

ϕ̂ℓ,pq ≈
1

N2 ∑
(j,k)∈IN

ϕℓ,jk e−iµp(xj+L)e−iµq(yk+L),
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which can be accelerated by the discrete Fast Fourier Transform (FFT) within O(N2 logN2)
float operations. In the following, we shall focus on the numerical computation of the
linear and nonlinear subproblem in details.

3.1 Exact integrator of the linear subproblem

The first step of the time-splitting method is to solve the linear subproblem{
i∂tΨ(x,t)=A Ψ(x,t), tn ≤ t≤ tn+1,

Ψ(x,tn)=Ψn, x∈D,
(3.2)

where A is the Laplace-SOC operator given below

A=(−1
2

∆)I3−γ

(
0 L0 0
L1 0 L0
0 L1 0

)
.

Taking Fourier transform at both sides of (3.2), for any fixed Fourier mode (p,q)∈TN ,
we obtain the constant coefficient linear ODE system in the phase space below

i∂tΨ̂pq(t)=

 a
2 γb 0

γc a
2 γb

0 γc a
2

Ψ̂pq(t) := ÂΨ̂pq(t), tn ≤ t≤ tn+1, (3.3)

where Ψ̂pq(t) =
(
ψ̂1,pq(t),ψ̂0,pq(t),ψ̂−1,pq(t)

)⊤
, a = µ2

p+µ2
q, b = µp−iµq and c = µp+iµq.

Obviously, the solution to (3.3) reads as

Ψ̂pq(t)= e−i(t−tn)ÂΨ̂pq(tn) :=Wpq(t) Ψ̂pq(tn), tn ≤ t≤ tn+1. (3.4)

The matrix Wpq is reduced to identity matrix I3 for (p,q) = (0,0) since a = b = c = 0.
For nonzero Fourier modes, i.e., (p,q) ̸= (0,0), due to Â is a Hermitian matrix, i.e.,
(Â)H= Â, similar to the trick of diagonalizing the matrix [2, 20, 28], we can diagonalize
Â explicitly using a unitary matrix U (i.e., UUH=UHU= I3) to a real diagonal matrix,
such that Â=UΛUH. That is,

U=


b√
2a

b
2
√

a
b

2
√

a

0 −
√

2
2

√
2

2
− c√

2a
c

2
√

a
c

2
√

a

, Λ=

λ1 0 0
0 λ2 0
0 0 λ3


with λ1=

a
2 , λ2=

a
2 −γ

√
2a and λ3=

a
2 +γ

√
2a. Direct calculations yields

Wpq(t)= e−i(t−tn)Â =U

(
e−iλ1(t−tn) 0 0

0 e−iλ2(t−tn) 0
0 0 e−iλ3(t−tn)

)
UH

= e
−ia(t−tn)

2

[
A1+cos

(√
2aγ(t−tn)

)
A2−

i√
2a

sin
(√

2aγ(t−tn)
)

A3

]
,

(3.5)

with

A1=

 1
2 0 − b

2c
0 0 0

− c
2b 0 1

2

 A2=

 1
2 0 b

2c
0 1 0
c

2b 0 1
2

 A3=

0 b 0
c 0 b
0 c 0

.

Now, the solution to the linear subproblem (3.2) can be obtained.
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Lemma 3.1. Assume Ψ(x,t) is the solution of (3.2), then it holds

Ψ(x,t)= ∑
(p,q)∈TN

[
Wpq(t)Ψ̂pq(tn)

]
eiµp(x+L)eiµq(y+L), tn ≤ t≤ tn+1, (3.6)

where Wpq(t) are given by (3.5).

Proof. Taking (3.1) and (3.4)-(3.5) into account, Lemma 3.1 is proved.

Then we consider the conservation property of total mass at the discrete level. De-
fine the discrete l2-norm of Ψn(x)=

(
ψn

1 (x),ψ
n
0 (x),ψ

n
−1(x)

)T on the interval D=(−L,L)2

as

∥Ψn∥l2 =

√√√√(2L
N

)2 1

∑
ℓ=−1

∑
(j,k)∈IN

∣∣∣ψn
ℓ,jk

∣∣∣2, (3.7)

with ψn
ℓ,jk the approximation of ψℓ(xj,yk,tn)(ℓ=1,0,−1).

Lemma 3.2. The solution (3.6) to the fist subproblem of the time splitting method is uncondi-
tionally stable for the GPEs (3.2) in 2D space, that is,

∥Ψ(t)∥l2 =∥Ψn∥l2 , ∀ t∈ [tn,tn+1].

Proof. According to (3.4), we have ∀t∈ [tn,tn+1], Ψ̂pq(t)= e−i(t−tn)ÂΨ̂n
pq with (Â)H= Â.

Therefore (
Ψ̂pq(t)

)H
Ψ̂pq(t)=

(
Ψ̂n

pq

)H
Ψ̂n

pq, t∈ [tn,tn+1].

By using the identities

∑
(j,k)∈IN

ei2π(k1−l1)j/Mei2π(k2−l2)k/N =

{
0, k1−l1 ̸=mM or k2−l2 ̸=nN,
MN, k1−l1=mM & k2−l2=nN,

(3.8)

and

∑
(p,q)∈TN

ei2π(k1−l1)p/Mei2π(k2−l2)q/N =

{
0, k1−l1 ̸=mM or k2−l2 ̸=nN,
MN, k1−l1=mM & k2−l2=nN,

(3.9)

with m and n being integers, it yields

∥Ψ(t)∥2
l2

(2L)2 =
1

N2

1

∑
ℓ=−1

∑
(j,k)∈IN

∣∣ψℓ,jk(t)
∣∣2

=
1

N2

1

∑
ℓ=−1

∑
(j,k)∈IN

∣∣∣∣∣∣ ∑
(p,q)∈TN

eiµp(xj+L)eiµq(yk+L)ψ̂ℓ,pq(t)

∣∣∣∣∣∣
2

=
1

∑
ℓ=−1

∑
(p,q)∈TN

∣∣ψ̂ℓ,pq(t)
∣∣2

= ∑
(p,q)∈TN

(
Ψ̂pq(t)

)H
Ψ̂pq(t)= ∑

(p,q)∈TN

(
Ψ̂n

pq

)H
Ψ̂n

pq

=
1

∑
ℓ=−1

∑
(p,q)∈TN

∣∣∣(̂ψn)ℓ,pq

∣∣∣2= 1

∑
ℓ=−1

∑
(p,q)∈TN

∣∣∣∣∣∣ ∑
(j,k)∈IN

e−iµp(xj+L)e−iµq(yk+L)ψn
ℓ,jk

∣∣∣∣∣∣
2

=
1

N2

1

∑
ℓ=−1

∑
(j,k)∈IN

∣∣∣ψn
ℓ,jk

∣∣∣2= ∥Ψn∥2
l2

(2L)2 ,

(3.10)

which implies ∥Ψ(t)∥l2 =∥Ψn∥l2 , ∀ t∈ [tn,tn+1].
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3.2 Exact integrator of the nonlinear subproblem

The second step is to solve the nonlinear subproblem{
i∂tΨ(x,t)=B(Ψ) Ψ(x,t), tn ≤ t≤ tn+1,

Ψ(x,tn)=Ψn, x∈D,
(3.11)

where

B=(V+c0ρ)I3+c1

 Fz
1√
2

F− 0
1√
2

F+ 0 1√
2

F−

0 1√
2

F+ −Fz

 :=B1+c1B2.

Fortunately, the coefficient matrix B is actually time independent, i.e., B(t)≡B(tn),∀t∈
[tn,tn+1]. Noticing the facts that fν(ν= x,y,z) and B are all Hermitian matrices, i.e.,

fHν = fν, BH=B,

and they satisfy the commutating relations [ fx, fy] := fx fy− fy fx = i fz, [ fy, fz] = i fx and
[ fz, fx]= i fy, we obtain the following lemma.

Lemma 3.3. Assume Ψ(x,t) is the solution to (3.11), then the coefficient matrix B(Ψ) (3.11)
is independent of time t, that is

B(Ψ(t))≡B(Ψn), B2(Ψ(t))≡B2(Ψn), ∀ tn ≤ t≤ tn+1.

Proof. It is sufficient to prove ∂tρ=0 and ∂tFν =0 (ν= x,y,z). We have

∂tρ=∂t(ΨHΨ)=(∂tΨH)Ψ+ΨH∂tΨ= i
(

ΨHBH∂tΨ−ΨHB∂tΨ
)
=0,

and

∂tFν = ∂t(ΨH fνΨ)= iΨHB fνΨ−iΨH fνBΨ
= ic1ΨH[F·f, fν]Ψ = ic1ΨH[Fx fx+Fy fy+Fz fz, fν]Ψ

= ic1
(

FxΨH[ fx, fν]Ψ+FyΨH[ fy, fν]Ψ+FzΨH[ fz, fν]Ψ
)
=0, ν= x,y,z.

These imply that the total density ρ(Ψ(t))≡ρ(Ψn), the spin vector Fν(Ψ(t))≡Fν(Ψn) is
conserved, B(Ψ(t))≡B(Ψn) and B2(Ψ(t))≡B2(Ψn), ∀ tn ≤ t≤ tn+1.

It is clear that equation (3.11) becomes a linear ordinary differential system and the
exact solution is given explicitly in the following lemma.

Lemma 3.4. Assume that Ψ(x,t) is the solution to subproblem (3.11), then

Ψ(x,t)= e−i(t−tn)(V+c0ρn)

[
cos(c1(t−tn)|Fn|)Ψn− i

|Fn| sin(c1(t−tn)|Fn|)Bn
2 Ψn

]
, (3.12)

where matrix Bn
2 :=B2(Ψ(tn)).

Proof. Obviously, the exact solution of (3.11) reads as follows

Ψ(x,t)= e−i(t−tn)Bn
Ψn = e−i(t−tn)(V+c0ρn)e−ic1(t−tn)B2 Ψn. (3.13)

One finds that the eigenvalues of B2 are |Fn|,−|Fn| and 0. The associated eigenvectors
are vn

1 , vn
2 and vn

3 = |Fn|−12−
1
2 (−Fn

−,
√

2Fn
z ,Fn

+)
⊤. In fact, we can expand the wave func-

tion vector Ψn with respect to the above eigenvectors as Ψn = α1vn
1+α2vn

2+α3vn
3 . It is

easy to prove that α3= ⟨Ψn,vn
3⟩=0 by substituting the explicit formula of αn

3 as follows

α3 = ⟨Ψn,vn
3⟩= |Fn|−1(−ψn

1 Fn
+/

√
2+ψn

0 Fn
z +ψn

−1Fn
−/

√
2)

= |Fn|−1(−ψn
1 (ψ̄

n
1 ψn

0 +ψ̄n
0 ψn

−1)+ψn
0 (|ψn

1 |2−|ψn
−1|2)+ψn

−1(ψ
n
1 ψ̄n

0 +ψn
0 ψ̄n

−1)
)

= 0.
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Therefore, we have Ψn =α1vn
1+α2vn

2 . Since BH
2 =B2, we obtain

e−ic1(t−tn)B2 Ψn = (vn
1 ,vn

2 ,vn
3)

(
e−ic1(t−tn)|Fn| 0 0

0 eic1(t−tn)|Fn| 0
0 0 0

)((vn
1 )

H

(vn
2 )

H

(vn
3 )

H

)
(α1vn

1+α2vn
2)

= α1e−ic1(t−tn)|Fn|vn
1+α2eic1(t−tn)|Fn|vn

2

= cos(c1(t−tn)|Fn|)Ψn− i
|Fn| sin(c1(t−tn)|Fn|)Bn

2 Ψn.

This completes the proof.

Similarly, the solution to the nolinear subproblem (3.11) preserves the conservation
property of total mass on the discrete level.

Lemma 3.5. Suppose Ψ(x,t) is the solution to subproblem (3.11), then

∥Ψ(t)∥l2 =∥Ψn∥l2 , ∀ t ∈ [tn,tn+1].

Proof. Since Bn is a Hermitian matrix, therefore, its eigenvalues are all real. Then we
have

∥Ψ(t)∥2
l2 =∥e−i(t−tn)Bn

Ψn∥2
l2 =∥Ψn∥2

l2 , (3.14)

which completes the proof.

We remark that, using Lemma 3.2 and Lemma 3.5, we can see that our time-splitting
Fourier spectral method is unconditionally stable.

3.3 Algorithms for the time-splitting Fourier spectral method

In this subsection, we construct high-order time marching schemes to implement the
time-splitting Fourier spectral method. Denote Ψ(t)=e−i(t−tn)AΨn and Ψ(t)=e−i(t−tn)BΨn

the solutions of the subproblems (3.2) and (3.11), respectively. In principle, splitting ap-
proximations of higher order accuracy can be constructed as [35]

Ψn+1=

(
m

∏
j=1

e−iajτAe−ibjτB
)

Ψn, (3.15)

where the coefficients aj and bj (j=1,··· ,m) are chosen properly. The classical second-
order Strang splitting [5, 7] is m= 2, a1 = a2 = 1/2, b1 = 1, b2 = 0. And, one of the most
frequently used fourth-order symplectic time integrators is m=4, that is

a1= a3=
1

2−21/3 , a2=− 21/3

2−21/3 , a4=0,

b1=b4=
1

2(2−21/3)
, b2=b3=

1−21/3

2(2−21/3)
.

(3.16)

In practice, from time t= tn to t= tn+1, we combine the splitting steps via the stan-
dard Strang splitting and present detailed step-by-step algorithm proposed in Algo-
rithm 1. The algorithm for the Yoshida fourth-order scheme [8, 15, 35] can be similarly
proposed, here we skip it for brevity.

Remark 3.1 (Efficiency). For each time step, by the adopt of FFT in spatial, the compu-
tation costs of the second-order Strang splitting and the fourth-order Yoshida splitting
scheme are 8Ntot+3Ntot log(Ntot) and 16Ntot+6Ntot log(Ntot) respectively.
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Algorithm 1 Second-order splitting Fourier spectral method
1: Solve ODEs (3.11) by (3.12) for half time step τ/2 with initial data given at t= tn.

2: Solve ODEs (3.2) by (3.6) for one step τ starting with the data obtained from step 1.

3: Solve ODEs (3.11) by (3.12) for half time step τ/2 again with the initial data ob-
tained from step 2.

Remark 3.2 (Arbitrary high-order schemes). It is simple to construct arbitrary high-
order schemes based on (3.15) since both subproblems can be exactly integrated.

We point out that the only time discretization error of above second- and fourth-
order time-splitting scheme are the splitting errors, which are second and fourth order
in τ for any fixed mesh size h > 0, respectively. Also, the schemes are explicit and
unconditionally stable.

4 Numerical experiment

In this section, we first test the accuracy and efficiency of our numerical method for
computing the dynamics of SOC spin-1 BECs (1.4). Then, we study the dynamical
properties, including the energy, mass, magnetization and condensate widths. Finally,
we apply our method to investigate some interesting phenomena. All algorithms were
implemented in Matlab (2022a) and run on a 1.60GH Intel(R) Core(TM) i5-8265U CPU
with a 6 MB cache in Windows. From here after, we adopt the length, time, and energy
units as as =

√
h̄/(mωm), ts =1/ωm, and h̄ωm, respectively.

4.1 Accuracy and efficiency test

In this part, the numerical error is measured in following norm:

εm :=
∥ψm(t)−ψ

(h,τ)
m ∥l2

∥ψm(t)∥l2
, m=1,0,−1, (4.1)

where ψ
(h,τ)
m (t) is the numerical solution at time t obtained with mesh size h and time

step τ, ψm(t) is the “exact” solution. Hereafter, we denote the second-order time-
splitting Fourier spectral method based on the Strang splitting as TS2, and the fourth-
order time splitting method based on the Yoshida scheme as TS4.

To investigate the convergence, let ψm(t) represents the numerical solution by the
TS4 with very fine mesh size h= 1/64 and small time step τ = 10−4, and assume it to
be a sufficiently good representation of the exact solution at time t. Meanwhile, the
efficiency performance of our TS2 and TS4 can be tested by investigating the compu-
tational costs, in terms of computational time, as a function of the total grid number.

Example 4.1. In order to show the accuracy of TS2 and TS4, set d = 2, D= [−8,8]2,
V(x)= 1

2 (x2+y2), c0=100, c1=−2, γ=0.5. Choose Φ0(x) with ∥Φ0∥l2 =1, e.g.,

ψ0
1 =

0.3343√
π

ϕ(x), ψ0
0 =

0.8812√
π

ϕ(x), ψ0
−1=

0.3343√
π

ϕ(x), (4.2)

with ϕ(x) = e−(x2+y2)/2. Then compute the numerical errors by TS2 and TS4, respec-
tively, for

• Case i: τ=10−4 and h=1/2,1/4,1/8,1/16.
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Table 1: Spatial discretization errors at time t=0.4 in Example 4.1.

h 1/2 1/4 1/8 1/16
TS2

E1 2.14E-01 3.95E-03 4.23E-08 7.91E-10
E0 1.53E-01 2.94E-03 2.90E-08 4.84E-10
E−1 2.10E-01 3.83E-03 4.23E-08 7.87E-10

TS4
E1 2.14E-01 3.95E-03 5.99E-08 4.06E-12
E0 1.53E-01 2.94E-03 3.35E-08 3.88E-12
E−1 2.10E-01 3.83E-03 6.14E-08 3.67E-12

Table 2: Temporal discretization errors at time t=0.4 in Example 4.1.

τ 1/40 1/80 1/160 1/320 1/640
TS2

E1 4.94E-03 1.21E-03 3.03E-04 7.59E-05 1.89E-05
rate 2.01 2.00 2.00 2.00
E0 3.00E-03 7.43E-04 1.85E-04 4.63E-05 1.15E-05

rate 2.00 2.00 1.99 2.00
E−1 4.94E-03 1.21E-03 3.03E-04 7.59E-05 1.89E-05
rate 2.01 2.00 2.00 2.00

TS4
E1 6.22E-04 4.09E-05 2.59E-06 1.63E-07 1.02E-08

rate 3.92 3.97 3.99 3.99
E0 3.78E-04 2.56E-05 1.63E-06 1.03E-07 6.45E-09

rate 3.88 3.99 3.99 3.99
E−1 6.22E-04 4.09E-05 2.59E-06 1.63E-07 1.02E-08
rate 3.92 3.97 3.99 3.99

• Case ii: h=1/64 and τ=1/40,1/80,1/160,1/320,1/640.

Table 1-2 list the spatial errors and temporal errors of Example 4.1 at time t = 0.4
for the 2D CGPE, from which we can conclude that TS2/TS4 is second/fourth order
accurate in time and spectrally accurate in space. A higher order operator splitting
scheme is possible because both subproblems can be integrated exactly.

Example 4.2. To study the efficiency of TS2 and TS4, let d= 2, D= [−8,8]2, τ = 10−3,
V= 1

2 (x2+y2), c0=100, c1=2 and γ=1.2. The initial data is chosen as

ψ0
1 =ψ0

0 =ψ0
−1=

1√
6π

ϕ(x), (4.3)

with ϕ(x)= e−(x2+y2)/2. Then we observe the computational time at t= 1 by TS2 and
TS4 for N=64/128/256/512, respectively.

Table 3 and Figure 1 present the computational time from t=0 to t=1 with time step
τ = 10−3 by TS2 and TS4 under different total grid number Ntot := N2. It shows that
both the TS2 and TS4 are efficient and the CPU time scales roughly as CNtot log(Ntot),
which achieves almost the optimal efficiency.
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Table 3: The CPU times (units of ω−1
m ) of TS2 and TS4 in Example 4.2.

N2 TS2 TS4
642 1.53 3.52
1282 6.71 14.74
2562 29.52 66.33
5122 135.66 297.36

64
2

128
2

256
2

512
2

10
0

10
1

10
2

Figure 1: Log-log plot of timing results for TS2 and TS4 versus the total grid number Ntot in Example 4.2.

4.2 Dynamical laws verification

In this subsection, we study the dynamical properties, including the energy/mass/
magnetization conservation and evolution of condensate widths. Hereafter, we take
ϕ(x)= e−(x2+y2)/2, D= [−12,12]2, the mesh size h= 1/16, time step size τ = 10−3, and
two different types of interactions are considered:

• Case I. With ferromagnetic interaction, e.g., 87Rb confined in a cigar-shaped trap-
ping potential with parameters: m=1.443×10−25[kg], a0=5.387[nm], a2=5.313[nm],
ωx =ωy=2π×20[Hz] and ωz=2π×400[Hz]. This suggests to use dimensionless
quantities in (1.4) for our computations as: d=2, V(x)= 1

2 (x2+y2), c0 ≈0.0885N,
and c1≈−0.00041N, with N the total number of atoms in the condensate and the
dimensionless length unit as =2.4116×10−6[m] and time unit ts =0.007958[s].

• Case II. With antiferromagnetic interaction, e.g., 23Na confined in a cigar-shaped
trapping potential with parameters: m = 3.816×10−26[kg], a0 = 2.646[nm], a2 =
2.911[nm], ωx=ωy=2π×20[Hz] and ωz=2π×400[Hz]. This suggests to us to use
dimensionless quantities in (1.4) for our computations as: d=2, V(x)= 1

2 (x2+y2),
c0≈0.0241N, and c1≈0.00075N, with the dimensionless length unit as =4.6896×
10−6[m] and time unit ts =0.007958[s].

In this section, we fix N=103, and consider the following five types of initial data

(a) ψ0
1 =ψ0

0 =ψ0
−1=

1√
6π

ϕ(x), (4.4a)

(b) ψ0
1 =ψ0

−1=
1√
6π

ϕ(x), ψ0
0 =

i√
6π

ϕ(x), (4.4b)

(c) ψ0
1 =ψ0

0 =
1√
6π

ϕ(x), ψ0
−1=

1√
3π

ϕ(x), (4.4c)
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(d) ψ0
1 =ψ0

−1=ϕ(x), ψ0
0 =(x+iy)ϕ(x). (4.4d)

(e) ψ0
ℓ =ψ

g
ℓ (x), with Φg(x)=

(
ϕ

g
1(x),ϕ

g
0(x),ϕ

g
−1(x)

)T
the ground state of (1.4). (4.4e)

Actually, the three component functions ψ0
ℓ (x) (ℓ= 1,0,−1) of the type (a) initial data

are the same. The type (b) and type (c) initial data possess two equal component
functions ψ0

1(x) = ψ0
−1(x) and ψ0

1(x) = ψ0
0(x), respectively. The component function

ψ0
0(x) of the type (d) initial data has a vortex, whereas the type (e) initial data, i.e., the

ground state of the corresponding SOC spin-1 BEC model, always leads to a soliton-
type evolution. During the following examples, we take the SOC strength parameter
γ = 0, 1,3, which mean zero, medium and strong SOC strength, respectively. In fact,
both the ground sates of Case I and Case II with γ=1 have stripe patterns, while the
ground sates of Case I with γ=3 possess square-lattice patterns.

Example 4.3. (mass and energy). To observe the evolutions of total/component mass
and total energy, we simulate the dynamics of the SOC spin-1 BEC (1.4) for Case I
(ferromagnetic) and Case II (antiferromagnetic) with the SOC strength γ= 1 and the
type (a) initial data, respectively.
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Figure 2: The evolution of total mass N (t) and component masses Nℓ(t) (ℓ=1,0,−1) with γ=1 for Case
I (left) and Case II (right) in Example 4.3.

2 4 6 8 10
-5

0

5
10

-8

2 4 6 8 10
-4

-2

0

2

4
10

-7

Figure 3: The evolution of
E(t)
E0(t)

−1 (left) and En+1(t)−En(t) (right) with γ=1 for Case I and Case II in

Example 4.3.

Figure 2 shows the evolution of total mass and component masses for Case I (ferro-
magnetic) and Case II (antiferromagnetic) with the SOC strength γ=1 and the type (a)
initial data in Example 4.3, respectively. Figure 3 shows the evolution of total energy
for Case I and Case II in Example 4.3 by presenting E(t)

E0(t)
−1 (left) and En+1(t)−En(t)

(right). The numerical results illustrate that the total mass of the SOC spin-1 BEC is
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conserved while its component masses do not necessarily conserve. Meanwhile, the
total energy is approximately conserved with high accuracy at the discrete level, since
our method possesses second or fourth order accuracy in time direction. These results
are consistent with our previous theoretical analysis.

Example 4.4. (magnetization). To observe the evolutions of total magnetization, we
simulate the dynamics of the SOC spin-1 BEC (1.4) for Case I (ferromagnetic) and Case
II (antiferromagnetic) with the SOC strength γ = 0, 1 and initial data as type (a)-(c),
respectively.
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Figure 4: Dynamics of M(t) with γ=0 for Case I (left) and Case II (right) in Example 4.4.
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Figure 5: Dynamics of M(t) with γ=1 for Case I (left) and Case II (right) in Example 4.4.

Figures 4-5 present the evolution of total magnetization under different SOC strength
and initial data in Examples 4.4. The numerical results tell that when γ = 0, the to-
tal magnetizations conserve for both Case I and Case II, despite different initial data.
These results are consistent with our previous theoretical results. However, when γ ̸=0,
whether the total magnetization conserves depends on different initial data. Actu-
ally, one finds that the total magnetizations are conserved for the initial data such that
ψ0

1(x)=ψ0
−1(x). These observations are still open to be verified.

Example 4.5. (condensate width). To observe the evolutions of condensate widths, we
fix initial data as type (a), then simulate the dynamics of the SOC spin-1 BEC (1.4) for
Case I (ferromagnetic) and Case II (antiferromagnetic) with the SOC strength γ=0, 3,
respectively.

Figures 6- 7 show the evolution of the condensate widths with time when γ takes
different values in Example 4.5. The experimental results confirm the results of theo-
retical analysis: for both Case I (ferromagnetic) and Case II (antiferromagnetic), when
γ=0, the condensate width evolutions periodically with δx =δy =

1
2 δr, and when γ ̸=0,

the evolution does not show periodicity.
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Figure 6: Dynamics of the condensate widths with γ=0 (left) and γ=3 (right) in Case I of Example 4.5.
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Figure 7: Dynamics of the condensate widths with γ=0 (left) and γ=3 (right) in Case II of Example 4.5.

4.3 Evolution of wave functions

In this subsection, we study the dynamics of wave functions under different SOC
strength and initial data.

Example 4.6. To observe the evolutions of wave functions with different initial data,
we fix the SOC strength γ=3, then simulate the dynamics of the SOC spin-1 BEC (1.4)
for Case I (ferromagnetic) and Case II (antiferromagnetic) with the type (d) and (e)
initial data, respectively.

Figure 8: Contour plots of the density |ψ1|2, |ψ0|2 and |ψ−1|2 (from left column to right column) for Case
I with the type (e) initial data in Example 4.6.
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Figure 9: Contour plots of the density |ψ1|2, |ψ0|2 and |ψ−1|2 (from left column to right column) for Case
II with the type (e) initial data in Example 4.6.

Figure 10: Contour plots of the density |ψ1|2, |ψ0|2 and |ψ−1|2 (from left column to right column) for the
type (d) initial data (the upper row), and the wave functions of Case I (the middle row) and Case II (the
bottom row) at t=2 in Example 4.6.

Figures 8 and Figure 9 show the evolution of component density functions for Case
I (ferromagnetic) and Case II (antiferromagnetic) with the initial data chosen as the
corresponding ground sates, respectively. It is observed that both the square-lattice
pattern of the ground state solution for the ferromagnetic case and the stripe-pattern
of the ground state solution for the antiferromagnetic case are not changed during the
evolution. Moreover, the numerical results illustrate that the evolutions of SOC spin-1
BECs possess the solitary wave properties if the initial data is chosen as ground states.
Figure 10 presents the dynamics of the SOC spin-1 BEC (1.4) for Case I and Case II with
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an initial data where ψ0
0(x) has a vortex. It is observed that during the evolution, the

vortex of the initial data disappears and the condensate extends outwards with new
patterns of the wave functions being generated.

Example 4.7. To observe the evolutions of wave functions with different SOC strength,
we fix initial data as type (a), then simulate the dynamics of the SOC spin-1 BEC (1.4)
for Case I and Case II with the SOC strength γ=0, 1, 3, respectively.

Figure 11: Contour plots of the density |ψ1|2, |ψ0|2 and |ψ−1|2 (from left column to right column) at t=2
in Example 4.7 for Case I with γ=0, 1 and 3 (from upper row to bottom row), respectively.

Figures 11 and Figure 12 show the evolution of component density functions at t=2
for Case I (ferromagnetic) and Case II (antiferromagnetic) with different SOC strength.
It is observed that: (1) for both cases, the wave functions of the condensates are no
longer evolved as solitary waves, since the initial data are not taken as the stationary
state of the SOC spin-1 BEC (1.4). However, when γ= 0, the gaussian type pattern of
the type (a) initial data are not changed during the evolution, with the condensates ex-
tending outwards. (2) when γ ̸=0, for both cases the gaussian type pattern of the initial
data changes continuously and new patterns of the wave functions will be generated
during the evolution. (3) when the SOC strength γ turns larger, the condensate extends
outwards more quickly and the component wave functions possess more wavelets.

5 Conclusions

We proposed an efficient two-step time splitting Fourier spectral method to simulate
the dynamics of SOC spin-1 BECs. The Hamiltonian was split into the linear part, in-
cluding the Laplace and SOC terms, and the nonlinear part (the remaining terms). The
linear and nonlinear subproblems were integrated exactly and explicitly in phase space
and physical space, respectively. Based on such two-step splitting, we constructed the
second and fourth order schemes to simulate the dynamics, noticing that higher-order
schemes can also be easily constructed if necessary. Our method is spectrally accu-
rate in space and high order in time, and it is explicit and unconditionally stable. The
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Figure 12: Contour plots of the density |ψ1|2, |ψ0|2 and |ψ−1|2 (from left column to right column) at t=2
in Example 4.7 for Case II with γ=0, 1 and 3 (from upper row to bottom row), respectively.

dynamical laws of total mass, energy, magnetization and condensate widths were de-
rived and confirmed numerically. The accuracy and efficiency of our method were also
verified by extensive numerical results. Moreover, the method proposed can be read-
ily generalized to simulate spin-F BECs and other related models, such as the SOC
(droplet) dipolar BEC.
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