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Abstract

We present a robust and efficient numerical method to compute the dynamics of the rotating two-component
dipolar Bose-Einstein condensates (BEC). Using the rotating Lagrangian coordinates transform [13], we re-
formulate the original coupled Gross-Pitaevskii equations (CGPE) into new equations where the rotating
term vanishes and the potential becomes time-dependent. A time-splitting Fourier pseudospectral method
is proposed to numerically solve the new equations where the nonlocal Dipole-Dipole Interactions (DDI) are
computed by a newly-developed Gaussian-sum (GauSum) solver [23] which helps achieve spectral accuracy
in space within O(N logN) operations (N is the total number of grid points). The new method is spectrally
accurate in space and second order accurate in time - these accuracies are confirmed numerically. Dynam-
ical properties of some physical quantities, including the total mass, energy, center of mass and angular
momentum expectation, are presented and confirmed numerically. Interesting dynamical phenomena that
are peculiar to the rotating two-component dipolar BECs, such as dynamics of center of mass, quantized
vortex lattices dynamics and the collapse dynamics in 3D, are presented.

Keywords: two-component dipolar BEC, dynamics, Gaussian-sum method, rotating Lagrangian
coordinates, time splitting, Fourier spectral method, collapse dynamics

1. Introduction

The Bose-Einstein condensation (BEC) yields most interesting state-of-the-art experiments for relatively
large quantum systems and has been extensively studied since its first experimental realization in 1995 [3, 17,
21]. A subsequent achievement of quantum vortices in rotating BECs [1, 40, 25] broadens the attention to
explore vortex states and their dynamics associated with superfluidity. Initially, the experiments/simulations
were limited to the case of short-range interatomic interactions [43]. Recently, considerable attention has
been drawn to systems with long-range dipole-dipole interactions (DDIs) in ultracold physics [33]. For
heteronuclear molecules, DDIs come from their electric dipole moments [46]. In a state with a well-defined
angular momentum, molecules do not have a dipole moment. Nevertheless, dipolar moments can be induced
when molecules are polarized via an external electric field. For atoms, dipolar interactions arise from their
magnetic moments and become significant for large electronic spin. Recent experiments on dipolar BECs of
Cr atoms and others [6, 28, 39] demonstrated very well for such interactions and has spurred new impetus
in the study of dipolar BECs.
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Due to the presence of anisotropic DDI, vortices in rotating dipolar BECs exhibit novel properties and
richer phenomena [20, 35, 36, 57]. On the other hand, thanks to the development of trapping techniques,
binary condensates are also realised [29, 31, 34] and provide an ideal system for studying phase transitions
and coexistence of different phases [2, 27, 55]. Far from being a trivial extension of the single-component
BEC, the physics of a dipolar mixture may feature different and remarkable properties, such as the domain
walls, vortons and square vortex lattices [31, 34, 51].

Very recently, the vortices of rotating two-component dipolar BECs under different trapping poten-
tials have been investigated in several studies by physicists [26, 51, 55, 56, 59]. At temperatures T much
smaller than the critical temperature Tc, the properties of rotating two-component dipolar BECs are well
described by the macroscopic complex-valued wave function Ψ = (ψ1(x, t), ψ2(x, t))T calculated from the
three-dimensional (3D) Coupled Gross–Pitaevskii Equations (CGPE) with DDI term. Moreover, the 3D
CGPE can be reduced to an effective two-dimensional (2D) equation if the external potential is highly
anisotropic, i.e. much stronger in z−direction [18, 10]. In a unified way, the d−dimensional (d = 2 or 3)
dimensionless CGPE with DDI term reads as [56, 51, 52, 59, 9]:

i∂tψj(x, t) =

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑
k=1

(
βjk|ψk|2 + λjk Φk(x, t)

)]
ψj(x, t), (1.1)

Φj(x, t) = Udip ∗ |ψj |2, ψj(x, t = 0) = ψ0
j (x), j = 1, 2, x ∈ Rd, t ≥ 0. (1.2)

Here, Φj is defined as a convolution of the kernel Udip with the density |ψj |2 where ∗ denotes the convolution
operator, t denotes time, x = (x, y, z)T ∈ R3 and/or x = (x, y)T ∈ R2 is the Cartesian coordinate vector.
The constant βjk describes the strength of the short-range interactions in a condensate (positive/negative for
repulsive/attractive interaction), Lz = −i(x∂y − y∂x) = −i∂θ is the z-component of the angular momentum
and Ω represents the rotating frequency. Vj(x) (j = 1, 2) is a given real-valued external trapping potential
determined by the type of system under investigation. In most BEC experiments, a harmonic potential is
chosen to trap the condensates, i.e. for j = 1, 2

Vj(x) =
1

2

{
γ2
x,jx

2 + γ2
y,jy

2, d = 2,

γ2
x,jx

2 + γ2
y,jy

2 + γ2
z,jz

2, d = 3,
(1.3)

where γv,j (v = x, y, z) are dimensionless constants representing the trapping frequencies in v-direction.
Moreover, λij (i, j = 1, 2) is a constant characterizing the strength of DDI and Udip(x) is the long-range
DDI potential. In 3D, Udip(x) reads as

Udip(x) =
3

4π|x|3

[
1− 3(x · n)2

|x|2

]
= −δ(x)− 3 ∂nn

(
1

4π|x|

)
, x ∈ R3, (1.4)

with n = (n1, n2, n3)T , a given unit vector i.e. |n(t)| =
√
n2

1 + n2
2 + n2

3 = 1, representing the dipole axis (or
dipole moment), ∂n = n · ∇ and ∂nn = ∂n(∂n). While in 2D, it is defined as [7, 18]

Udip(x) = −3

2

(
∂n⊥n⊥ − n2

3∇2
⊥
)( 1

2π|x|

)
, x ∈ R2, (1.5)

where ∇⊥ = (∂x, ∂y)T , n⊥ = (n1, n2)T , ∂n⊥ = n⊥ · ∇⊥ and ∂n⊥n⊥ = ∂n⊥(∂n⊥). In fact, for smooth
densities, the DDI potential can be reformulated via the Coulomb potential whose convolution kernel is
Ucou(x) = 1

2d−1|x| . To be precise, the 3D DDI potential (1.4) is reformulated as follows

Φj(x) = −ρj − 3 ∂n∂n

(
1

4π|x|
∗ ρj

)
= −ρj − 3

1

4π|x|
∗ (∂n∂nρj), x ∈ R3, (1.6)

while the 2D DDI (1.5) is rewritten as

Φj(x) = −3

2

1

2π|x|
∗ [
(
∂n⊥n⊥ − n2

3∇2
⊥
)
ρj ], x ∈ R2. (1.7)
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The time dependent CGPE in (1.1)–(1.2) conserve two important quantities: the total mass (or normal-
ization) of the wave function

N (t) := ‖Ψ(x, t)‖2 = N1(t) +N2(t) ≡ ‖Ψ(x, 0)‖2 = 1, (1.8)

where Nj(t) is the mass of the jth component at time t ≥ 0, which reads as

Nj(t) :=

∫
Rd
|ψj(x, t)|2dx ≡ Nj(0), j = 1, 2, t ≥ 0, (1.9)

and the energy per particle

E(Ψ(x, t)) =

∫
Rd

[ 2∑
j=1

(
1

2
|∇ψj |2 + Vj(x)|ψj |2 +

βjj
2
|ψj |4 +

λjj
2

Φj |ψj |2 − Ωψ∗jLzψj

)
(1.10)

+
1

2
(β12 + β21)|ψ1|2|ψ2|2 +

1

4
(λ12 + λ21)(Φ1|ψ2|2 + Φ2|ψ1|2)

]
dx

≡ E(Ψ(x, 0)), t ≥ 0.

There have been extensive mathematical and numerical studies on the single-component dipolar BEC;
we refer the reader to [7, 9, 10, 14, 15, 19, 30, 53, 54]. For the rotating two-component BEC without
DDI, dynamics and stationary states have been studied in [58, 50] and [49, 48, 38], respectively. Recently,
there is growing interest from physicists for studying the properties of (non)-rotating two-component BEC
with DDI [2, 26, 27, 44, 51, 52, 55, 56, 59]. However, up to now, there are few numerical studies on the
rotating two-component BEC with DDI based on the CGPE (1.1)–(1.2). In this paper, we give an exhaustive
mathematical study of new efficient numerical methods of the rotating two-component dipolar BECs.

To compute the dynamics, the main difficulties lie in the nonlocal DDI evaluation and proper treatment
of the rotation term. As is shown before, the DDI can be computed via the Coulomb potential. On bounded
rectangular domains with Dirichlet boundary conditions, the Discrete Sine Transform (DST) method ap-
plies directly [9, 10]. However, the DST method requires a quite large computation domain in order to
achieve a satisfactory accuracy. In 2014, Jiang et al. [32] proposed a NonUniform Fast Fourier Transform
(NUFFT) solver by adopting the polar/spherical coordinates in the Fourier domain, we refer to [12, 14]
for extensions and applications in the context of Nolinear Schrödinger equation (NLSE). Recently, using an
accurate Gaussian-summation approximation of the convolution kernel, Zhang et al. [23] introduced an even
more efficient and accurate method, which we shall refer to as GauSum solver hereafter. Both NUFFT and
GauSum solver are fast algorithms with a complexity of O(N logN) where N is the total number of grid
points. Compared with the NUFFT solver, the GauSum solver is 3-5 times faster, thus it is the state-of-
the-art method for applications [5]. For the rotation term, Bao et al. [13] developed a rotating Lagrangian
coordinates transformation method to reformulate the rotating term into a time-dependent trapping poten-
tial, and this method allows for the implementation of high order time marching schemes [4, 16, 41]. Note
that in Eulerian coordinates, additional efforts have to be made for the rotational term. In the literature,
to discretise the rotational term, popular approaches either introduce ADI technique or use polar/spherical
coordinate. The former method introduces extra splitting error and is complicated to be extended to higher
order time marching schemes, while the later imposes artificial boundary at the origin point r = 0 and the
radial direction is discretised by lower order schemes, for example finite difference method (FDM) and finite
element method (FEM).

The main objectives of this paper are threefold.
Using the rotating Lagrangian coordinates transform [13], we reformulate the original CGPE into
new equations without rotating term. Then we develop a robust and efficient numerical method to
compute dynamics of the new equations by incorporating the GauSum solver [23], which is designed
to compute the nonlocal DDI, into an adapted version of the time-splitting Fourier pseudospectral
method. Detailed numerical results are presented that confirm the spectral accuracy in space and
second order temporal accuracy of the proposed method in 2D and 3D respectively. Develop the
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dynamical laws for the mass and energy, the angular momentum expectation and center of mass,
together with some proofs. An analytical solution with special initial data is also presented. Apply

our method to study the dynamics of center of mass, quantized vortex lattices and non-rotating
dipolar BECs in different setups. In particular, phase separation and collapse dynamics are observed
numerically for the 3D cases.

The rest of the paper is organized as follows: In Section 2, we present a brief review of the Gaussian-sum
method. In Section 3, we derive some dynamical laws for some physical quantities that are usually consid-
ered for the standard GPE. We then propose an efficient and robust time splitting Fourier pseudospectral
numerical method for simulating the dynamics. Detailed convergence tests are presented in Section 4 to
confirm the spatial and temporal convergence of our method, and some interesting numerical results are also
reported. Finally, conclusions are drawn in Section 5.

2. The DDI evaluation by Gaussian-sum method

Due to the confining potential V (x) in the CGPE (1.1)–(1.2), the density ρ(x) := |ψ(x)|2 is usually
smooth and decays exponentially fast. As is shown by (1.6) and (1.7), the DDI computation boils down to
Coulomb potential evaluation. Therefore, in this section, we shall only give a brief self-contained review of
the GauSum method [23] for Coulomb potential. All subscripts in the section are omitted for brevity.

For numerical calculations we have to truncate the whole space to a bounded domain with boundary
conditions(BC), e.g. a square box BL := [−L,L]d with homogeneous Dirichlet BC, then we rescale to a unit
box B1 by setting the density ρ to be zero outside B1. Using a smooth approximation of Ucou (see UGS in
(2.5)), the Coulomb potential is split into two integrals, i.e. the long-range regular integral I1(x) and the
short-range singular integral I2(x). To be precise,

Φ(x) ≈
∫
B1

Ucou(x− y) ρ(y)dy =

∫
B2

Ucou(y) ρ(x− y)dy (2.1)

=

∫
B2

UGS(y) ρ(x− y)dy +

∫
Bδ

(
Ucou(y)− UGS(y)

)
ρ(x− y)dy + Iδ (2.2)

:= I1(x) + I2(x) + Iδ, x ∈ B1. (2.3)

The remainder integral Iδ is given explicitly as

Iδ =

∫
B2\Bδ

(
Ucou(y)− UGS(y)

)
ρ(x− y)dy, (2.4)

where Bδ := {x
∣∣|x| ≤ δ} is a very small ball centered at the origin and

UGS(y) = UGS(|y|) :=

Q∑
q=0

wq e
−τ2

q |y|
2

, Q ∈ N+, (2.5)

where wq, τq are weights and nodes. Here, UGS is a very accurate approximation of Ucou in the interval [δ, 2],
i.e.

‖Ucou(r)− UGS(r)‖L∞([δ,2]) ≤ ε0, (2.6)

where ε0 is the approximation error in L∞ norm. For the remainder integral, we have |Iδ| ≤ Cε0 δ
d ‖ρ‖L∞ ,

thus Iδ is negligible for small ε0 and δ. Therefore, it suffices to approximate the Coulomb potential by
Φ(x) ≈ I1(x) + I2(x). We refer to [23] for more details.

To compute the regular integral I1, plugging UGS (2.5), we have

I1(x) =

Q∑
q=0

wq

∫
B2

e−τ
2
q |y|

2

ρ(x− y)dy, x ∈ B1. (2.7)
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The density ρ(x− y),x ∈ B1,y ∈ B2 is well approximated by Fourier series as follows

ρ(z) ≈
∑
k

ρ̂k

d∏
j=1

e
2πi kj

6 (z(j)+3), z = (z(1), . . . , z(d)) ∈ B3. (2.8)

For the Fourier coefficients ρ̂k, we have

ρ̂k =
1

|B3|

∫
B3

ρ(z)

d∏
j=1

e
−2πi kj

6 (z(j)+3)dz, (2.9)

where |B3| =
∏d
j=1(bj − aj) is the volume.

Careful calculations leads to

I1(x) =
∑
k

ρ̂k

(
Q∑
q=0

wqG
q
k

)
d∏
j=1

e
2πi kj
bj−aj

(x(j)−aj)
, (2.10)

where

Gqk =

d∏
j=1

∫ 2

−2

e−τ
2
q |y

(j)|2 e
−2πikj y

(j)

bj−aj dy(j), (2.11)

can be pre-computed once for all if the computation grid remains unchanged.
For the near-field correction integral I2, the density function ρx(y) := ρ(x − y) is approximated by a

low-order Taylor expansion within Bδ as follows

ρx(y) ≈ Px(y) = ρx(0) +

d∑
j=1

∂ρx(0)

∂yj
yj +

1

2

d∑
j,k=1

∂2ρx(0)

∂yj∂yk
yj yk +

1

6

d∑
j,k,`=1

∂3ρx(0)

∂yj∂yk∂y`
yj yk y`. (2.12)

We then integrate it in spherical/polar coordinates. The computation boils down to a multiplication of the
Laplacian ∆ρ since the contributions of the odd derivatives in (2.12) and off-diagonal components of the
Hessian vanish. Derivatives of ρ are computed via its Fourier series. For more details, we refer the reader
to [5, 23].

The GauSum method achieves a spectral accuracy and is as efficient as FFT algorithms withinO(N logN)
arithmetic operations [23]. The algorithm has been implemented for DDI [23] and applied in the studies of
fractional Schrödinger equations [5].

3. Properties of the dynamics and the numerical method

In this section, we first present conservation laws for some commonly used quantities analogous to the
rotating CGPE without DDI. Then, we extend the rotating Lagrangian coordinate transform proposed for
the GPE without DDI in [13]. In the rotating Lagrangian coordinates, the rotation term vanishes, instead
the potential becomes time-dependent. For the new equation, we shall propose a time-splitting Fourier
spectral method incorporated with the GauSum solver to compute the dynamics.

3.1. Properties of the dynamics

Here we study the dynamical properties of the mass, energy, angular momentum expectation and center
of mass. The dynamical laws can be used as benchmarks to test the numerical methods and are briefly
listed here. For details, one can prove in an analogous way to the one component [47, 13] or two-component
without DDI [9].
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Mass and energy. The CGPE (1.1)-(1.2) conserves the mass (1.9) and energy (1.10), i.e.

N1(t) = N1(t = 0), N2(t) = N2(t = 0), N (t) := (N1 +N2)(t) = N (t = 0), E(t) = E(t = 0). (3.1)

Angular momentum expectation. The angular momentum expectation for each component and the
total angular momentum are defined respectively as

〈Lz〉j(t) =

∫
Rd
ψ∗j (x, t)Lzψj(x, t) dx, j = 1, 2, 〈Lz〉(t) = 〈Lz〉1(t) + 〈Lz〉2(t), t ≥ 0. (3.2)

1.2. Lemma 3.1. If Vj(x) reads as the harmonic potential, we have for j = 1, 2 and kj = 3− j

d

dt
〈Lz〉j(t) = w−j

∫
Rd
xy|ψj |2dx +

∫
Rd
|ψj |2(y∂x − x∂y)

(
βjkj |ψkj |2 +

2∑
k=1

λjkΦk(x, t)
)
dx, (3.3)

Moreover, if additionally β12 = β21, we have

d

dt
〈Lz〉(t) =

2∑
j=1

w−j

∫
Rd
xy|ψj |2dx +

2∑
j,k=1

λjk

∫
Rd
|ψj |2(y∂x − x∂y)Φk(x, t)dx. (3.4)

Here w−j = γ2
x,j − γ2

y,j. This implies that the total angular momentum expectation 〈Lz〉(t) is conserved, i.e.

〈Lz〉(t) = 〈Lz〉(0), t ≥ 0, (3.5)

if γx,j = γy,j and one of the following condition holds: (i). λ11 = λ12 = λ21 = λ22 = 0. (ii). λ12 = λ21

and the dipole axises parallel to the z-axis, i.e. n1 = n2 = (0, 0, 1)T . Moreover, the angular momentum
expectation for each component is also conserved, i.e.

〈Lz〉j(t) = 〈Lz〉j(0), j = 1, 2, t ≥ 0, (3.6)

if additionally provided λ12 = λ21 = β12 = β21 = 0.

Proof 3.1. Let us take a close look at the DDI term in (3.4). Using the Plancherel’s formula, we have

〈ρj , (y∂x − x∂y)Φk〉 :=

∫
Rd
|ψj |2(−∂θΦk)dx =

1

(2π)d
〈ρ̂j ,−∂θΦk
∧

〉 (3.7)

=
1

(2π)d
〈ρ̂j ,−∂θξ Ûdipρ̂k〉 (3.8)

where the Fourier transform is defined as f̂(ξ) =
∫
Rd f(x)e−iξ·xdx,

Ûdip(ξ) =

{
−1 + 3(n·ξ)2

|ξ|2 , d = 3,
2[(n⊥·ξ)2−n2

3|ξ|
2]

2|ξ| , d = 2,
(3.9)

and θ, θξ are the azimuth angle in physical/Fourier space respectively. For n = (0, 0, 1)T , it is easy to see

that Ûdip(ξ) is cylindrical/polar symmetric in 3D and 2D respectively, and we have

〈ρj ,−∂θΦk〉 =
1

(2π)d
〈ρ̂j ,−∂θξ(Ûdipρ̂k)〉 =

1

(2π)d
〈Ûdipρ̂j ,−∂θξ ρ̂k〉 (3.10)

= 〈Φj ,−∂θρk〉 = 〈∂θΦj , ρk〉 (3.11)

= −〈ρk,−∂θΦj〉. (3.12)

The proof is then completed due to the above anti-symmetric property in the index (j, k).
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Center of mass. The total center of mass is defined as

xc(t) =

∫
Rd

x |Ψ(x, t)|2dx =: xc,1(t) + xc,2(t), t ≥ 0, (3.13)

where xc,j(t) is defined as the (scaled) center of mass of the jth component and reads as follows

xc,j(t) =

∫
Rd

x |ψj(x, t)|2dx, j = 1, 2, t ≥ 0. (3.14)

Lemma 3.2. If Vj(x) reads as the harmonic potential, we have for j = 1, 2 and kj = 3− j

ẍc,j − 2ΩJdẋc,j + (Λd,j + Ω2J2
d )xc,j =

∫
Rd

(
βj,kj |ψkj |2 + λj,kjΦkj

)
∇|ψj |2 dx, (3.15)

x0
c,j =

∫
Rd

x |ψ0
j (x)|2dx, ẋ0

c,j =

∫
Rd

Im(ψ̄0
j∇ψ0

j )dx + ΩJdx
0
c,j , (3.16)

where,

Jd =


(

0 1
−1 0

)
,

(
J2 0
0 0

)
,

Λd,j =


(
γ2
x,j 0
0 γ2

y,j

)
, d = 2,

(
Λj,2 0
0 γ2

z,j

)
, d = 3.

(3.17)

Moreover, if V1(x) = V2(x), β12 = β21 and λ12 = λ21, we have

ẍc − 2ΩJdẋc + (Λd,1 + Ω2J2
d )xc = 0, (3.18)

x0
c = x0

c,1 + x0
c,2, ẋ0

c = ẋ0
c,1 + ẋ0

c,2. (3.19)

An analytical solution for special initial data. An interesting application of the dynamic law (3.18)
for the total center of mass is that under some circumstances we can construct an analytical solution to the
CGPE. Precisely speaking, suppose the initial condition ψ0

j in (1.2) is chosen as

ψ0
j (x) = φsj(x− x0), x ∈ Rd, (3.20)

where x0 ∈ Rd is a given point and φsj (j = 1, 2) is a stationary state of the CGPE, i.e.

µsjφ
s
j =

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑
k=1

(
βjk|φsk|2 + λjkUdip ∗ |φsk|2

)]
φsj , (3.21)∫

Rd
|φsj |2 dx = 1, j = 1, 2. (3.22)

where µsj ∈ R (j = 1, 2) are the chemical potentials. With this initial value, and suppose V1(x) = V2(x), the
exact solution of the CGPE with harmonic potential can be constructed as

ψj(x, t) = φsj(x− xc(t))e
−iµsj teiw(x,t), x ∈ Rd, t ≥ 0, (3.23)

where w(x, t) is linear in x, i.e.

w(x, t) = c1(t) · x + c2(t), x ∈ Rd, t ≥ 0, (3.24)

with some functions c1(t), c2(t), and x(t) satisfying the ODE (3.18) with initial condition

x0
c = x0, ẋ0

c = −ΩJdx
0. (3.25)
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3.2. Numerical method

3.2.1. CGPE under rotating Lagrangian coordinates

In this section, we first introduce a rotating Lagrangian coordinate and then reformulate the CGPE
(1.1)–(1.2) in the new coordinate system. For any time t ≥ 0, let Ad(t) be an orthogonal rotational matrix
in Rd defined as [13, 41]

Ad(t) =

(
cos(Ωt) sin(Ωt)
− sin(Ωt) cos(Ωt)

)
, if d = 2, Ad(t) =

(
A2(t) 0
0 1

)
, if d = 3. (3.26)

It is easy to verify that A−1
d (t) = AT

d (t) for any t ≥ 0 and A(0) = I with I the identity matrix. For ∀ t ≥ 0,
the rotating Lagrangian coordinates x̃ is defined as

x̃ = A−1
d (t)x = AT

d (t)x ⇐⇒ x = Ad(t)x̃, x ∈ Rd, t ≥ 0. (3.27)

Denotes the wave function in the new coordinates as φj(x̃, t) :

φj(x̃, t) := ψj(x, t) = ψj (Ad(t)x̃, t) , j = 1, 2 x̃ ∈ Rd, t ≥ 0. (3.28)

By simple calculation, we have

i∂tφj(x̃, t) = i∂tψj(x, t) + i∇xψj(x, t) ·
(
Ȧd(t)x̃

)
= i∂tψj(x, t) + ΩLzψj(x, t),

∇x̃φj(x̃, t) = A−1
d (t)∇xψj(x, t), ∇2

x̃φj(x̃, t) = ∇2
xψj(x, t), x ∈ Rd, t ≥ 0.

Substituting the above derivatives into (1.1)-(1.2) leads to the following d-dimensional CGPE in the rotating
Lagrangian coordinates x̃, for j = 1, 2

i
∂φj(x̃, t)

∂t
=

[
−1

2
∇2 +Wj(x̃, t) +

2∑
k=1

(
βjk|φk|2 + λjkΦ̃k

)]
φj , x̃ ∈ Rd, t > 0, (3.29)

Φ̃k(x̃, t) = Ũdip ∗ |φk|2, φj(x̃, 0) := φ0
j (x̃) = ψ0

j (x), x̃ = x ∈ Rd. (3.30)

Here, Wj(x̃, t) = Vj(Ad(t)x̃) (j = 1, 2) and the DDI kernel Ũdip(x̃, t) reads as

Ũdip(x̃, t) =

 −δ(x̃)− 3 ∂m(t)m(t)

(
1

4π|x̃|

)
, d = 3,

− 3
2

(
∂m⊥(t)m⊥(t) −m2

3 ∇2
⊥
) (

1
2π|x̃|

)
, d = 2,

(3.31)

with m(t) ∈ R3 defined as m(t) = A−1
d (t)n =

(
m1(t),m2(t),m3(t)

)T
and m⊥(t) :=

(
m1(t),m2(t)

)T
.

In rotating Lagrangian coordinates, the energy associated with the CGPE (3.29)–(3.30) is defined as

Ẽ(t) =

2∑
j=1

∫
Rd

[
1

2
|∇φj |2 +Wj(x̃, t)|φj |2 +

2∑
k=1

(
βjk
2
|φk|2 +

λjk
2

Φk

)
|φj |2

]
dx̃

−
2∑
j=1

∫
Rd

∫ t

0

[
∂τWj(x̃, τ)dτ +

2∑
k=1

λjk
2

(∂τ Ũdip) ∗ |φk|2
]
|φj |2dx̃

=: Ẽkin(t) + Ẽpot(t) + Ẽshort(t) + Ẽdip(t) + Ẽextra(t), (3.32)

where

Ẽkin(t) =
1

2

∫
Rd

[
|∇φ1|2 + |∇φ2|2

]
dx̃, Ẽpot(t) =

∫
Rd

[
W1(x̃, t)|φ1|2 +W2(x̃, t)|φ2|2

]
dx̃,

Ẽshort(t) =
1

2

2∑
j,k=1

βjk

∫
Rd
|φj |2|φk|2dx̃, Ẽdip(t) =

1

2

2∑
j,k=1

λjk

∫
Rd

Φk|φj |2dx̃,

Ẽextra(t) = −
2∑
j=1

∫
Rd

∫ t

0

[
∂τWj(x̃, τ)dτ +

2∑
k=1

λjk
2

(∂τ Ũdip) ∗ |φk|2
]
|φj |2dx̃,
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and

∂tŨdip(x̃, t) = −3

 2 ∂ṁ(t)m(t)

(
1

4π|x̃|

)
, d = 3,

∂ṁ⊥(t)m⊥(t)

(
1

2π|x̃|

)
, d = 2.

(3.33)

Remark 3.1. If Vj(x) is a harmonic potential as defined in (1.3), then Wj(x̃, t) has the form

Wj(x̃, t) =
w+
j

4
(x̃2 + ỹ2) +

w−j
4

[
(x̃2 − ỹ2) cos(2Ωt) + 2x̃ỹ sin(2Ωt)

]
+

{
0 d = 2,
1
2γ

2
z,j z̃

2, d = 3,
(3.34)

where w+
j = γ2

x,j +γ2
y,j and w−j = γ2

x,j−γ2
y,j. Therefore, when the external potential is either a box-potential

or a harmonic potential which is radially symmetric in two dimensions (2D) or cylindrically symmetric in
three dimensions (3D), i.e. γx,j = γy,j := γr,j, the potential Wj(x̃, t) becomes time-independent.

Compared to (1.1)–(1.2), the rotating term now vanishes in the new CGPE (3.29)–(3.30). Instead, the
trapping potential and DDI kernel now become time-dependent. The absence of rotating term now allows
us to develop an efficient method to solve (3.29)–(3.30).

3.2.2. Time splitting Fourier pseudospectral method

Here we shall consider the new equation (3.29)–(3.30). Due to the trapping potential, the wave func-
tions decay exponentially. Therefore it suffices to truncate the problem into a sufficiently large bounded
computational domain D = [a, b] × [c, e] × [f, g] if d = 3, or D = [a, b] × [c, e] if d = 2. From t = tn to
t = tn+1 := tn + ∆t, the CGPE will be solved in two steps, i.e. for j = 1, 2 one first solves

i∂tφj(x̃, t) = −1

2
∇2φj(x̃, t), x̃ ∈ D, tn ≤ t ≤ tn+1, (3.35)

with periodic boundary conditions on the boundary ∂D for a time step of length ∆t, then solves

i
∂φj(x̃, t)

∂t
=

[
Wj(x̃, t) +

2∑
k=1

(
βjk|φk|2 + λjkΦ̃k

)]
φj x̃ ∈ D, tn ≤ t ≤ tn+1, (3.36)

Φ̃k(x̃, t) =
(
Ũdip ∗ ρ̃k

)
(x̃, t), k = 1, 2, x̃ ∈ D, tn ≤ t ≤ tn+1, (3.37)

for the same time step. Here, ρ̃k(x̃, t) = |φk(x̃, t)|2 if x̃ ∈ D and ρ̃k(x̃, t) = 0 otherewise. The linear
subproblem (3.35) will be discretised in space by the Fourier pseudospectral method and integrated in time
exactly in the phase space, while the nonlinear subproblem (3.36)-(3.37) preserves the density point-wisely,
i.e. |φj(x̃, t)|2 ≡ |φj(x̃, t = tn)|2 = |φnj (x̃)|2, and it can be integrated exactly as

φj(x, t) = exp

{
−i

[
Pj(x, t) +

2∑
k=1

(
βjk|φnk |2(t− tn) + λjk ϕk(x̃, t)

)]}
, (3.38)

ϕk(x̃, t) =

∫
Rd
K̃(x̃− ỹ, t) ρk(ỹ, tn)dỹ, x̃ ∈ D, tn ≤ t ≤ tn+1, (3.39)

where the time-dependent kernel K̃(x̃, t) has the form

K̃(x̃, t) =

∫ t

tn

Ũdip(x̃, τ)dτ =

{
−δ(x̃)(t− tn)− 3L̃3(t)( 1

4π|x̃| ), 3D DDI,

− 3
2 L̃2(t)( 1

2π|x̃| ), 2D DDI.
(3.40)

Here, the differential operators L̃3(t) =
∫ t
tn
∂m(τ)m(τ)dτ and L̃2(t) =

∫ t
tn
∂m⊥(τ)m⊥(τ) −m2

3∇2
⊥ dτ actually

can be integrated analytically and have explicit expressions, one can refer to section 4.1 in [13] for details.
The GauSum solver is then applied to evaluate the nonlocal potential ϕ(x̃, t) (3.39). In addition,

Pj(x̃, t) =

∫ t

tn

Wj(x̃, τ)dτ. (3.41)
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Remark 3.2. If Vj(x) (j = 1, 2) is a harmonic potential as defined in (1.3), i.e. Wj reads as (3.34), then
the integral in (3.41) can be evaluated analytically, i.e.∫ t

tn

Wj(x̃, τ)dτ =
w+
j (x̃2 + ỹ2)

4
(t− tn) +

w−j
8Ω

[
(x̃2 − ỹ2)

(
sin(2Ωt)− sin(2Ωtn)

)
(3.42)

−2x̃ỹ
(

cos(2Ωt)− cos(2Ωtn)
)]

+

{
0, d = 2,
1
2γ

2
z,j z̃

2(t− tn), d = 3.
(3.43)

For a general potential Vj(x), if the integral in (3.41) can not be found analytically, numerical quadratures
such as Trapezoidal rule or Simpson’s rule can be applied [11, 13].

To simplify the presentation, we will only present the scheme for the 3D case. As for the 2D case, one can
modify the algorithm straightforward. Let L, M , N be even positive integers, choose hx̃ = b−a

L , hỹ = d−c
M

and hz̃ = f−e
N as the spatial mesh sizes in x̃-, ỹ-, and z̃- directions, respectively. Define the index and grid

points sets as

TLMN = {(l, k,m) | 0 ≤ l ≤ L, 0 ≤ k ≤M, 0 ≤ m ≤ N} ,

T̃LMN =

{
(p, q, r) | − L

2
≤ p ≤ L

2
− 1, −M

2
≤ q ≤ M

2
− 1, −N

2
≤ r ≤ N

2
− 1

}
,

Gx̃ỹz̃ = {(x̃l, ỹk, z̃m) =: (l hx̃ + a, k hỹ + c, mhz̃ + e), (l, k,m) ∈ TLMN} .

Define the functions

Wpqr(x̃, ỹ, z̃) = eiµ
x̃
p(x̃−a) eiµ

ỹ
q (ỹ−c) eiµ

z̃
r(z̃−e), (p, q, r) ∈ T̃LMN ,

with

µx̃p =
2πp

b− a
, µỹq =

2πq

d− c
, µz̃r =

2πr

f − e
, (p, q, r) ∈ T̃LMN .

Let fnj,lkm ( j = 1, 2, fj = φj , ϕj or Pj) be the numerical approximation of fj(x̃l, ỹk, z̃m, tn) for (l, k,m) ∈
TLMN , n ≥ 0 and denote φnj as the solution vector at time t = tn with components

{
φnj,lkm, (l, k,m) ∈

TLMN

}
. Taking the initial data as φ0

j,lkm = φ0
j (x̃l, ỹk, z̃m) for (l, k,m) ∈ TLMN , a second-order Time

Splitting Fourier Pseudopectral (TSFP) method to solve the CGPE (3.29)–(3.30) reads as follows:

φ
(1)
j,lkm =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

N/2−1∑
r=−N/2

e−
i∆t
4 [(µx̃p)2+(µỹq )2+(µz̃r)2](̂φnj )

pqr
Wpqr(x̃l, ỹk, z̃m), (3.44)

φ
(2)
j,lkm = φ

(1)
j,lkm exp

{
−i

[
∆t

∑
s=1,2

(
βjs|φ(1)

s,lkm|
2 + λjsϕ

n+1
s,lkm

)
+ Pn+1

j,lkm

]}
, (3.45)

φn+1
j,lkm =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

N/2−1∑
r=−N/2

e−
i∆t
4 [(µx̃p)2+(µỹq )2+(µz̃r)2](̂φ

(2)
j )

pqr
Wpqr(x̃l, ỹk, z̃m). (3.46)

Here, (̂φnj )
pqr

and (̂φ
(2)
j )

pqr
are the discrete Fourier transform coefficients of the vectors φnj and φ

(2)
j ,

respectively. We refer this method as TS2-GauSum. This scheme is explicit, efficient, unconditional stable,
simple to implement and can be extended to high-order time-splitting schemes easily.

4. Numerical results

In this section, we first test the convergence of the TS2-GauSum method for computing the dynamics of
rotating two-component dipolar BEC. Then, we apply our method to investigate some interesting phenom-
ena, such as the dynamics of dipolar BEC with tunable (time-dependent) dipole axis, collapse properties of
a dipolar BEC.
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4.1. Test of convergence

Here, we first test the spatial and temporal convergence of our method in both 2D and 3D. To demonstrate
the results, we first define the following error function

eh,∆tΨ (t) =: ‖Ψ(x, tn)−Ψn
h,∆t(x)‖l2 =

√√√√ 2∑
j=1

‖ψj(x, tn)− ψnj,h,∆t(x)‖2l2 , (4.47)

where ‖·‖l2 denotes the discrete l2 norm, ψnj,h,∆t is the numerical approximation of ψj(x, tn) obtained by the
TS2-GauSum method (3.44)-(3.46) with time step ∆t and mesh size hv = h (v = x̃, ỹ in 2D and v = x̃, ỹ, z̃
in 3D). The dipole axis n and interaction parameters are chosen as

n = (1, 0, 0)T ,

(
β11 β12

β21 β22

)
= β

(
1 0.8

0.8 1.2

)
,

(
λ11 λ12

λ21 λ22

)
=

1

20

(
β11 β12

β21 β22

)
. (4.48)

Moreover, we take the computational domain D = [−12, 12]2 in 2D and [−8, 8]3 in 3D and the potential

V1(x) = |x|2
2 . The potential V2(x) and initial data ψ0

j (x) are chosen respectively as

V2(x) =

{
(x2 + y2)/2,

(x2 + 1.21y2 + z2)/2,
ψ0
j (x) =


4

√
2
π2 e

− (3−j)x2+jy2

2 , d = 2,

4

√
2
π3 e

− (3−j)x2+jy2+z2

2 , d = 3,
j = 1, 2. (4.49)

For comparisons, the “exact” solution Ψ is obtained numerically via the TS2-GauSum method on D with
very small mesh size h = h0 = 1

16 and time step ∆t = ∆t0 = 0.0001. Table 4.1 lists the spatial errors

eh,∆t0Ψ (t) and temporal errors eh0,∆t
Ψ (t) at time t = 0.4 for the 2D CGPE with Ω = 0.4 and different β, while

Tab. 4.2 lists those at time t = 0.1 for the 3D case with Ω = 0.2 and different β. From Tabs. 4.1-4.2, we
can conclude that the TS2-GauSum method is second order (and spectrally) accurate in time (and space).

Table 4.1: Spatial and temporal discretization errors at time t = 0.4 for the 2D CGPE with Ω = 0.4 and different β .

eh,∆t0Ψ h = 1 h/2 h/4 h/8

β = 2 1.0863E-01 2.9827E-03 2.8843E-07 1.0490E-11

β = 10 3.8018E-01 4.2192E-02 7.4791E-05 1.4662E-11

eh0,∆t
Ψ ∆t = 0.01 ∆t/2 ∆t/4 ∆t/8
β = 2 2.4167E-05 6.0376E-06 1.5075E-06 3.7504E-07

β = 10 2.2051E-04 5.5049E-05 1.3742E-05 3.4187E-06

Table 4.2: Spatial and temporal discretization errors at time t = 0.1 for the 3D CGPE with Ω = 0.2 and different β .

eh,∆t0Ψ h = 1 h/2 h/4 h/8

β = 2 1.51E-02 1.82E-04 1.92E-08 6.60E-13

β = 10 2.60E-02 9.25E-04 8.70E-07 7.25E-13

eh0,∆t
Ψ ∆t = 0.01 ∆t/2 ∆t/4 ∆t/8
β = 2 6.14E-06 1.53E-06 3.83E-07 9.52E-08

β = 10 7.62E-05 1.90E-05 4.75E-06 1.18E-06
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4.2. Dynamics of the center of mass

In this subsection, we study the dynamics of the (scaled) center of mass by directly simulating the
CGPE (3.29)-(3.30) via the TS2-GauSum method (3.44)–(3.46). To this end, we take d = 2, dipole axis
n = (1, 0, 0)T and initial data (1.2)

ψ0
1(x) = φ(x− x0), ψ0

2(x) = φ(x + x0), with φ(x) =
(x+ iy)√

2π
e−

x2+y2

2 , x0 = (1, 1)T . (4.50)

The computational domain, mesh size and time step are respectively taken as D = [−16, 16]2, hx̃ = hỹ = 1
8

and ∆t = 0.001. The trapping potentials are chosen as the harmonic ones (1.3) and the following 6 cases
are studied ( j = 1, 2, kj = 3− j)

• Case 1: Ω = 0.5, β11 = β22

2 = 50, λjj =
βjj
10 , βjkj =

2λjkj
5 = 2, γx,j = γy,j = 1.

• Case 2: Ω = 0.5, βjj = 10λjj = 50, βjkj =
2λjkj

5 = 2, γx,1 = γy,2 = 1.1, γy,1 = γx,2 = 1.

• Case 3: Ω = 0.5, βjj = 10λjj = 50, βjkj = 2λjkj = 2, γx,1 = γy,1 = 1, γx,2 = γy,2 = 1.2.

• Case 4-6: same parameters as in Case 1-3, except only change as Ω = 1, Ω = π and Ω = 1, respectively.

Figures 4.1-4.2 show the dynamics of the (scaled) center of mass xc,j(t) (j = 1, 2) and its trajectory in
the Cartesian coordinates for Case 1-6. From Figs. 4.1-4.2 and additional results not shown here for brevity,
we can conclude that: (i) When Ω < min{γx,j , γy,j}, then the (scaled) center of mass of the j-th component
xc,j always moves within a bounded domain (cf. Fig. 4.1). Otherwise, it may move helically outward (cf.
Fig. 4.2). (ii) If V1(x) = V2(x) with γx,j = γy,j , β12 = β21 and λ12 = λ21, the total center of mass xc
moves periodically with a period depending on both the rotating frequency and trapping frequency. In
addition, the dynamics of xc does not depend on the interaction parameters λij and βij (i, j = 1, 2), which
is consistent with (3.18)-(3.19). (iii) If β12 = β21 & λ12 = λ21 and each trapping potential is symmetric but
V1(x) 6= V2(x), the interaction between two components affects the motion of xc,j and hence xc. Actually,
the dynamical patterns of the (scaled) center of mass are similar with its single-component counterparts
[13], where the center of mass always moves periodically. Nevertheless, due to the interaction between each
component, the dynamics patterns are modified and xc,j moves now quasi-periodically (cf. Fig. 4.1 (c) and
4.2 (f)). (iv) If the trapping potentials are not symmetric, the dynamics of (scaled) center of mass becomes
more complicated. Interactions between the two components will affect significantly the dynamics pattern
of the center of mass.

4.3. Dynamics of quantized vortex lattices

In the following, we study the dynamics of quantized vortex lattices in the rotating two-component
dipolar BECs. To this end, we choose d = 2, β11 = β22 = 100, β12 = β21 = 70 and Ω = 0.9. The trapping
potentials are chosen as the harmonic ones (1.3) with γx,j = γy,j = 1, j = 1, 2. The initial datum (1.2)
are chosen as the stationary vortex lattice state computed by the classical gradient-flow method [8, 48] for
the chosen parameters without DDI, i.e. λ11 = λ22 = λ12 = λ21 = 0. The dynamics of vortex lattices are
studied for the following two cases:

• Case 1: perturb the trapping frequency in component one by setting γx,1 = γy,1 = 1.5.

• Case 2: turn on the dipolar interaction in component one by setting n = (1, 0, 0)T and λ11 = 10.

In our simulation, we take D = [−12, 12]2, hx̃ = hỹ = 1
8 and ∆t = 0.001. Figure 4.3 shows the contour

plots of the density function |ψj(x, t)|2 (j = 1, 2) at different times for Case 1 and 2, while Fig. 4.4 shows
the dynamics of the angular momentum expectation. From these two figures, we can see that: (i) The total
angular momentum expectation is conserved if β12 = β21, γx,j = γy,j and λij = 0 (i, j = 1, 2), which agrees
with (3.4). (ii) If there is no DDI and the trapping potentials are symmetric, the lattices rotate around the
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Figure 4.1: The dynamics of (scaled) center of mass and trajectory for 0 ≤ t ≤ 200 for Case 1-3 in Section 4.2: The first two
columns for component one and the last two for component two.

origin and keep a similar symmetry and pattern as the initial ones. Meanwhile, the lattices also undergo
a breather-like dynamics. (iii) The DDI affects the dynamics very much. Due to the anisotropic nature
of DDI, the lattices will rotate to some quite different patterns. The vortices will be redistributed during
dynamics. Unlike the single-component BEC, the redistribution here does not seem to be aligned with the
dipole axis because of the interaction between the two components. It will be interesting to investigate in
further studies how the patterns of vortex lattices re-form and change with respect to the interactions as
well as the dipole orientations.

4.4. Numerical results in 3D

In this subsection, we report the dynamics of non-rotating two-component dipolar BECs in different set-
ups. To this end, unless stated otherwise, the trapping potential and initial datum are chosen respectively
as

V1(x) = V2(x) =
|x|2

2
, ψ0

1(x) = ψ0
2(x) =

1√
2
φgs(x), (4.51)

where φgs(x) is the ground state of the single-component non-rotating dipolar BEC with parameters n =
(0, 0, 1)T , β = 103.58 and λ = 0.8β. Figure 4.5 shows the isosurface of the density for the initial datum
|ψ0
j (x)|2 = 0.01 (j = 1, 2). The computation domain is taken as D = [−8, 8]3 and the mesh sizes in spatial

and temporal direction are chosen as hx̃ = hỹ = hz̃ = h = 1
8 and ∆t = 0.001, respectively.

Example 4.1. Let β11 = β22 = β, λ11 = λ and consider the following three cases: for j = 1, 2, kj = 3− j

• Case 1: let βjkj = 100 and turn off the DDI in component two, i.e. λ22 = λjkj = 0. The dipole axis
in component one is kept unchanged, i.e. n = (0, 0, 1)T .

13



(d) −0.75 0 0.75
−0.75

0

0.75

x
c,1

y
c
,1

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,1

(t)

y
c,1

(t)

−0.75 0 0.75
−0.75

0

0.75

x
c,2

y
c
,2

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,2

(t)

y
c,2

(t)

(e) −0.75 0 0.75
−0.75

0

0.75

x
c,1

y
c
,1

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,1

(t)

y
c,1

(t)

−0.75 0 0.75
−0.75

0

0.75

x
c,2

y
c
,2

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,2

(t)

y
c,2

(t)

(f) −0.65 0.1 0.85
−0.8

−0.05

0.7

x
c,1

y
c
,1

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,1

(t)

y
c,1

(t)

−0.75 0 0.75
−0.75

0

0.75

x
c,2

y
c
,2

0 30 60
−1

−0.5

0

0.5

1

t
 

 

x
c,2

(t)

y
c,2

(t)

Figure 4.2: The dynamics of (scaled) center of mass and trajectory for 0 ≤ t ≤ 150 for Case 4-6 in Section 4.2: the first two
columns for component one and the last two for component two.

• Case 2 : change the dipole axis to n = (1, 0, 0)T and keep the other parameters the same as in Case 1.

• Case 3: perturb the interatomic interaction as well as the DDI strength, i.e. β12 = β21 = 50, λ22 = 0.8β

and λjkj = 0.8βjkj . The dipole axis is now time-dependent: n =
(

sin(t/2), 0, cos(t/2)
)T
.

Figures 4.6-4.8 depict the isosurface of the densities |ψj(x, t)|2 = 0.01 (j = 1, 2) at different times. From
these figures and additional results not shown here for brevity, we can see that: (i) The total energy and
mass are conserved well. (ii) Phase separation of the two components may come up during dynamics (cf.
Figs. 4.6-4.7). In fact, the BECs would undergo mixing and de-mixing formation cyclically [29, 36, 55]. (iii)
Similar as those shown in the single-component BEC [14], when the trapping potentials are isotropic, the
shapes of the density profile seem unchanged and keep the same symmetric structure with respect to the
dipole orientation if the dipole axis rotates slowly (cf. Fig. 4.8).

Example 4.2. Here we study the collapse dynamics of the dipolar BEC. To this end, we take initial data
as (4.51) with same interaction parameters and dipole axis n under trapping potential V1(x) = V2(x) =
x2+y2+25z2

2 . Figure 4.9 shows the isosurface of the densities for the initial datum |ψ0
j (x)|2 = 0.002 (j = 1, 2).

The computational domain and time step are chosen as D = [−8, 8] × [−8, 8] × [−4, 4] and ∆t = 0.0001,
respectively. We consider two cases of collapse dynamics: for i, j = 1, 2, kj = 3− j

• Case 1: let βij = β and change the DDI strength from λij = λ to λ11 = λjkj = 2λ22 = 10λ.

• Case 2: let λjj = λ, λjkj = 0 and change βij = β = 103.58 to βij = −600.
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Figure 4.3: Contour plots of the densities |ψ1(x, t)|2 and |ψ2(x, t)|2 for Case 1 (top two rows) and Case 2 (bottom) in Section
4.3.
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Figure 4.4: Dynamics of the angular momentum expectation for Case 1 (a) and 2 (b) in Section 4.3

Figures 4.10-4.11 depict the isosurface of the densities for |ψj(x, t)|2 = 0.002 (j = 1, 2) at different times,
while Fig. 4.12 shows the dynamics of energies. From these figures, we can see that: (i) The densities of
the dipolar BECs collapse at finite time during the dynamics, i.e. the finite time blow-up of the solution is
observed. This is especially clear for Case one where the contact short-range interaction are all repulsive.
This reveals clearly the partial-attractive/partial-repulsive property of the DDI. (ii) The total energy and
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a) b)

Figure 4.5: Isosurface of the initial densities ρ01(x) = |ψ0
1(x)|2 = 0.01 (a) and ρ02(x) = |ψ0

2(x)|2 = 0.01 (b) in Example 4.1.

Figure 4.6: Isosurface of the densities ρ1(x, t) = |ψ1(x, t)|2 = 0.01 (first row) and ρ2(x, t) = |ψ2(x, t)|2 = 0.01 (second row) at
different times in Example 4.1: Case I.

mass are conserved well before the blow-up time. They are not conserved near or after the blow-up time
since the solution can no longer be resolved with a fixed mesh size and time steps.

To sum up, Examples 4.1 and 4.2 show that the dynamics of the dipolar BECs are interesting and
quite complex. Different structure formations occur during dynamics and they depend heavily on the dipole
orientation and the ratio between the DDI and the contact interaction strength. Moreover, the global
existence and finite-time blow-up of the solution depend on the interaction parameters, which would be
worth an investigation on its own.

5. Conclusions

We propose a robust and accurate numerical scheme to compute the dynamics of rotating two-component
dipolar Bose-Einstein condensates (BEC). In rotating Lagrangian coordinates, the original coupled Gross-
Pitaevskii equations (CGPE) were reformulated into new equations where the rotating term vanishes. We
then developed a new time splitting Fourier pseudospectral method to numerically simulate the dynamics of
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Figure 4.7: Isosurface of the densities ρ1(x, t) = |ψ1(x, t)|2 = 0.01 (first row) and ρ2(x, t) = |ψ2(x, t)|2 = 0.01 (second row) at
different times in Example 4.1: Case II.

Figure 4.8: Isosurface of the densities ρ1(x, t) = |ψ1(x, t)|2 = 0.01 (first row) and ρ2(x, t) = |ψ2(x, t)|2 = 0.01 (second row) at
different times in Example 4.1: Case III.

the new equations. The nonlocal Dipole-Dipole Interactions (DDI) were evaluated with the Gaussian-sum
(GauSum) solver [23], which helps to achieve spectral accuracy within O(N logN) operations, where N is
total number of grid points. Our method is proven to be robust and efficient, and it has spectral accuracy
in space and second order accuracy in time. In addition, our numerical schemes can be easily adapted
and extended to tackle some more general systems, such as the spin-orbit coupled dipolar BECs [22] and
the spinor dipolar BECs [33]. Further, dynamical laws of total mass, energy, center of mass and angular
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a) b)

Figure 4.9: Isosurface of the initial densities ρ01(x) = |ψ0
1(x)|2 = 0.002 (a) and ρ02(x) = |ψ0

2(x)|2 = 0.002 (b) in Example 4.2.

Figure 4.10: Isosurface of the densities ρ1(x, t) = |ψ1(x, t)|2 = 0.002 (first row) and ρ2(x, t) = |ψ2(x, t)|2 = 0.002 (second row)
at different times for collapse of Case 1 in Example 4.2.

momentum expectation are also derived and confirmed numerically. We then applied the scheme to study
the dynamics of quantized vortex lattices, the collapse dynamics of 3D dipolar BECs and identified some
phenomena that are peculiar to the rotating two-component dipolar BECs.
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Figure 4.11: Isosurface of the densities ρ1(x, t) = |ψ1(x, t)|2 = 0.002 (first row) and ρ2(x, t) = |ψ2(x, t)|2 = 0.002 (second row)
at different times for collapse of Case 2 in Example 4.2.
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Ẽ sh ort(t )
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Figure 4.12: Collapse energies for Case 1 (a) and Case 2 (b) in Example 4.2.
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