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Abstract

A novel local and parallel multigrid method is proposed in this study for solving the
semilinear Neumann problem with nonlinear boundary condition. Instead of solving
the semilinear Neumann problem directly in the fine finite element space, we transform
it into a linear boundary value problem defined in each level of a multigrid sequence
and a small-scale semilinear Neumann problem defined in a low-dimensional cor-
rection subspace. Furthermore, the linear boundary value problem can be efficiently
solved using local and parallel methods. The proposed process derives an optimal error
estimate with linear computational complexity. Additionally, compared with existing
multigrid methods for semilinear Neumann problems that require bounded second
order derivatives of nonlinear terms, ours only needs bounded first order deriva-
tives. A rigorous theoretical analysis is proposed in this paper, which differs from the
maturely developed theories for equations with Dirichlet boundary conditions.
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1 Introduction

In [32], Xu and Zhou first proposed the local and parallel method to solve linear elliptic
boundary value problems. Through this method, large-scale equations can be decom-
posed into some small-scale subproblems. Thus, the simulation efficiency, especially
for large-scale partial differential equations in practical applications, can greatly ben-
efit from such a technique. As we know, the low-frequency components describe the
global appearances of a solution, whereas the high-frequency components describe
the local appearances. So generally, local and parallel method first uses a coarse mesh
to approximate the low-frequency components and then use a fine mesh to correct the
resulting residual via some local and parallel procedures. Meanwhile, this method is
naturally suitable for parallel computing based on the domain decomposition. Owing
to these advantages, local and parallel method has been widely used to solve various
mathematical models, for instance [2, 3, 9-12, 14, 15, 17, 20-22, 24-26, 29, 31-34,
37-40]. However, to date, local and parallel methods have been used to solve various
equations with Dirichlet boundary condition. Meanwhile, the local and parallel two-
grid method has a strict restriction on the mesh size ratio between the coarse mesh and
the fine mesh.

To overcome these problems, we propose a local and parallel method to solve the
semilinear Neumann problem with nonlinear boundary condition based on multigrid
discretization. First, we will provide rigorous error estimates for the approximate
solution of the semilinear Neumann problem based on some weak assumptions for
the nonlinear terms; then, we propose a new type of local and parallel method based
on the local and parallel technique alongside the multilevel correction technique [7,
16, 18, 28]. Instead of solving the semilinear Neumann problem directly in the fine
finite element space, we transform the problem into a linear boundary value problem
defined in each level of a multigrid sequence and a small-scale semilinear Neumann
problem defined in a low-dimensional correction subspace. The linear boundary value
problem can then be solved efficiently by the local and parallel method. Furthermore,
the dimension of the correction subspace is small and fixed, which is independent of
the fine space. This is the main difference between our algorithm and the local and
parallel two-grid methods. Thus, the computing time for the small-scale semilinear
Neumann problem can be negligible with mesh refinement. We can derive the optimal
error estimates with linear computational complexity for the proposed local and par-
allel multigrid method. Additionally, compared with the existing multigrid methods
for semilinear Neumann problems, which require bounded second order derivatives
of nonlinear terms [10, 14, 23, 33], our method only needs bounded first order deriva-
tives. Rigorous theoretical analysis is also proposed, which differs from the maturely
developed theories for equations having Dirichlet boundary conditions.

The remainder of this paper is organized as follows. In Section 2, some basic finite
element error estimates for the linear elliptic boundary value problem are presented.
In Section 3, we introduce the semilinear Neumann problem with a nonlinear bound-
ary condition to be solved and provide rigourous finite element error estimates. The
novel algorithm for the semilinear Neumann problem with a nonlinear boundary con-
dition and the theoretical analysis are discussed in Section 4. In Section 5, we present
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some numerical experiments to support our theory and illustrate the efficiency of our
algorithm. Finally, some concluding remarks are given in the last section.

2 Finite element method for linear elliptic boundary value problem

In this paper, £2 denotes abounded domaininR¢ (d > 1). We use the standard symbols
H*(£2) and H*(952) to denote the Sobolev spaces defined in §2 and the boundary 9£2.
The corresponding norms are denoted by || - ||5,2 and || - ||5, 552, respectively. In the rest
of this paper, the letter C denotes a mesh-independent constant. For the three nested
domains G C D C £2, weuse G CC D to denote dist(dD\0S2,9G\d§2) > 0, as
depicted in Fig. 1 (see also [32]).

In this section, for the following analysis, we study the linear elliptic boundary
value problem:

ey

Lu:=—-V-(AVu) 4+ ¢u = b, in $2,
(AVu) -n =g, onas2,

where the coefficient A is a symmetric positive definite matrix with suitable regularity
and ¢ is a nonnegative function bounded from below and above by positive constants.
The variational form of (1) can be described as follows: Find u € H'(£2) such that

a(u,v) = (b,v) + (g, v), Yve H(2),

where
a(u,v) = / (AVu - Vo + ¢uv)d2, (b,v) = / bvds$2, (g,v)= / guds.
2 2 082

Next, we introduce the finite element method to solve the linear elliptic boundary
value problem (1). Let us decompose the computing domain §2 into shape-regular
elements, denoted by the symbol 7,(£2). For a mesh element K € 7,(£2), the
associated diameter is denoted as hg. Besides, given any point x € £2, we denote
h(x) := hg where x € K, h(x) = max(g.xek){hk} when x is defined on skeleton,
and we also denote ho := maxycgp h(x). Based on 7;,(£2), the finite element space
V(2) c HY(£2) is defined as

VI(2)={veC(2) :vlk € Pr. VK € Th(2)}. )

Fig.1 GccDcCQ
Q

D

&
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For G C 2, V'(G) and 7;,(G) denote the restriction of V" (£2) and 7, (£2) to G.
Forany G C £2 mentioned in this paper, we assume that it aligns with the triangulation
T, ($2). Next, we also need to define the following two spaces:

HL(G) = {veHl(G):suppvcc G} 3)
and

Vi(G) = {ve V() : supp v CC G}. ()
Thus, for any v € HIL(G), v equals zero on the boundary dG\0d$2, and v may not

equal zero on the boundary dG N 952.
From [6, 8, 32, 34], the fractional norm property can be derived:

Lemma 1 For any subset G C S2, the following fractional norm property holds true

inf Jw—vlig<lwlhpcee. Ywe V(G )
VeV (G)

Proof Define V&(G) =VhG)n H&(G). For any w € VI (G), et v be the solution
of the following equation: Find v € Vfi(G) such that v|3gnge = w and

(Vv, V) = (Vw, Vo), Vo € VI(G).

Then, v — w is discrete harmonic. The desired result then follows from the following
estimate for discrete harmonic functions [35]:

lw—=vll1,6 S llw—="2ll/206 = lwlh,riceae-
o

Let us define a projection operator P, : H'(£2) — V"(£2) in the following way:
a(u — Pyu,vy) =0, Yu, € VI(R2). (©6)
Then, we can derive

lu— Puullie S inf  Jlu—wvpli e,
v, V()

and the following estimates also hold true:
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Lemma 2 The following estimates for the projection operator hold true

I — POTgle < peliglose. Yg € L2(352),

I — POT'blli g S reMbllo.e. Vb e L*(£2),
lu — Puullope S pe()llu — Pullie, Yue H'(2),
lu — Paullo,e S reMlu— Pullie., Yue H'(2),

where

pa(h) = sup in/f ITg —wally o @
geL2(0R2). ligllg po=1VnEV" (£2)

with the operator T : L>(382) — H'(82) being defined by
a(Tg,v) = (g.v), Yve H (), ®)

and
re (‘l) - sup 1nhf || T/l || ) ( )
bel (52)7”17”0,9—_1 v eV(L2) ,§2 9

with the operator T' : L>(2) — H'(82) being defined by
a(T’b,v) = (b,v), Yve H (2). (10)
In this study, we assume that the finite element space satisfies the following condi-
tions (see [32, 34]):
A.1. There exists y > 1 such that
hY, Sh(x), Vxe 2. (11)
A.2. For G C £2 and any v € V"(G), the following inverse estimate holds true

Ivlhe < Ik vllo,6- (12)

A3. For G C 2 and w € C®(£2) satisfying (suppw\(dG N 352)) CC G, then for
any w € Vh(G), there exists v € Vﬁ (G) such that

Ihg (ww — e < lwlh,c. (13)

Define

ao(u,v) = / (AVu - Vu)ds2. (14)
2

Then, we can derive the following lemmas:
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Lemma3 ([32,34]) Let D CC 20 C 2 and w € C>®(R2) satisfy (suppw\ (352 N
082)) CC §20. We can derive the following inequality:

ao(ww, ow) < 2a(w, o*w) + C [w|§ o, . Yw € H'(2). (15)

Lemma4 For f € L>(R2), g € L>(32) and D CC 29 C 2, if w € VI (82y) is the
solution of the following equation

a(w,v) = (f,v) + (g.v), Yv € Vi(&0), (16)
then there holds
lwlh,p < lwllo,2o + 11 ll0,20 + lgllo,02n552- a7
Proof Let p > 2y — 1 be an integer and §2; be a series of nested domains satisfying
D CC £2,CC Q2,1 CC--+CC £ CC $2.
Let us choose a domain D; such that D CC Dy CC $2,, and choose w € C®(2)

satisfying w € [0, 1], @ = 1 on D; and (suppw \ (082, N 0§2)) CC $2). Based on
A.3., there exists a function v € V}l (£2) such that

2
lo?w —vll1.e, < heyllwll,e,. (18)

Based on (18) and trace inequality, we can further derive

()] = |/vadsz|

S 1 flloe, llvlloe,

Sflloe, Ve,

S Ufllo.aothaylwlie, + llo*wli.e)

S fllo.2o e lwlitg, + llowll,e) (19)

and

|(g,v>|=|/ guds| = | gvds|
EYe) 32,382

< lgllo,ae,nae llvllo,ae,nae
< lgllo.agenaeliviie,
S llgllo.s2enae (hayllwlie, + llowlli.e). (20)

From (15), (16), (18), (19), and (20), there holds

2 2 2
lowlli o < a(w, 0™w) + wlij g,
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= a(w, o’w — ) + |w|§ o, + (f. v) + (. v)
< Chayllwllf o, + 1wl g, + CUlfllo.20 + lgllo.agonae) ey lwlie, + lowl o)
< Cheyllwli g, + Iwllg g, + 3C2 fllo.2 + llgllo.azenae)’ + 3hp, Iwllf o,

12 2,1 2
+3C°U fllo,20 + 1gllo,020n002)" + 3 llowll] o-

Thus,
1 2 2 2 2 2, 1,2 2
2llowll] o < Chayllwlly e, + Ilwlly 2, + C* U1 fllo.2 + llgllo.agenae)” + A lwllf o,

which implies

1
lwll,p=llowll,p <lowll,e < hg w2, +Iwlo,o+I1 fllo,2+gllo,s2n52-

(2D
Similarly, the following estimates can be proved in the same way as (21):
1
lwll,2; < hgllwle; , + lwllo,2, + 11 fllo, + lglo,aensee, j=1,2,---, p.
(22)
Using (21), (22), A.1, and A.2, we can obtain
ptl
lwlli,p < hg, llwli,e + llwlo,e + 11 fllo,2 + l1gllo,a2n052
ptl
Shg I wllo.2y + llwlo.e + 1 £llo.20 + llgllo.a2nas
S lwllo,2o + 11f 0,20 + 11810920052 -
Then, we complete the proof. O

3 Finite element method for semilinear Neumann problem
with nonlinear boundary condition

In this paper, we study the semilinear Neumann problem with nonlinear boundary
condition:

{ -V - (AVu) + ¢pu+ f(x,u) =b, in £2, 23)

(AVu) -n+g(x,u) =0, onds2,
where f(x,u) € C(£2 x R) denotes a nonlinear term with respect to « in the domain
£2,and g(x,u) € C(0§2 x R) denotes a nonlinear term with respect to u in the
boundary 0£2.
The variational form of (23) can be described as follows: Find u € H'(£2) such
that
a(u,v)+ (f(x,u),v) + (gx,u),v) = (b,v), Vve Hl(.Q). (24)

The discrete form of (24) can be described as follows: Find ii;, € V" (£2) such that

alitn, vp) + (f (e, iin), vp) + (g(x, i), vp) = (b, vp), Yo € V(2).  (25)
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To guarantee the well-posedness of the semilinear Neumann problems (24) and
(25), we should make some assumptions on the nonlinear terms f(x, u) and g(x, u):
There exist two mesh-independent constants C s and Cy, such that

0 0
Ofa—f(x,v)fcf and Ofa—g(x,v)fcg, Vx € 082, Vv € R. (26)
v : v

Theorem 1 If the condition (26) holds true, then (24) and (25) are uniquely solvable.
Besides, there exist the following error estimates:

lu —ipll,o S 6n(u), 27
lu —inlloe S (reh) + pe(M)llu —uplle, (28)
lu —inllope S (re) + pe(W)u —ipl e, (29)
where
Sp(u) = inf Jlu—vpll1,e. (30)
v eV (£2)

Proof Using Theorem 6.1 in [23], the semilinear Neumann problems (24) and (25)
are uniquely solvable under the condition (26). Next, we prove the error estimates.
Using Lemma 2, (24), (25), and (26), there holds

litn — Paull o
S a(ip — Puu, iy, — Ppu)
< alup — Pyu, up — Ppu) + (f (x, up) — f(x, Pyu), up — Ppu)
+(g(x, up) — g(x, Ppu), up — Pyu)
= (b, up — Ppu) — a(Puu, up — Pyu) — (f(x, Ppu), up — Puu)
—(g(x, Ppu), up — Ppu)
=a(u — Pyu,up — Ppu) + (f (x,u) — f(x, Ppu), up — Pyu)
+(g(x, u) — g(x, Pyu), up — Pyu)
= (f(x,u) — f(x, Pou), up — Ppu) + (g(x, u) — g(x, Ppu), up — Ppu)
< Cyllu — Puullo,@llit, — Prullo,2 + Cgllu — Ppullo,ae lith — Prullo,ae
S (lu — Prullo,e + llu — Prullose)llity — Prulli,e.

which yields

lin — Prulli,e S llu — Prullo,e + llu — Prulloae
S (re(h) + pe () llu — Paulliq. &1V

Based on (31) and triangle inequality, we can obtain the following estimates:

lu —ipll,e < llu— Ppull1,o + iy — Prulli,e
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S 6n(u) + (re(h) + pe (W) llu — Prull,e
S (L+ Cra(h) + Cpe (h)dy (w), (32)

which is just the first estimate (27).
Using Lemma 2, (31), and triangle inequality, we can obtain

lu—ipnllo,e < lu— Puullo,e + llup — Prullo,2
< llu — Ppullo.e + Cllap — Ppulli.e
S (re(h) + pe (W) |lu — Puullie
S (re(h) + pe (W) lu — 2,

and
lu —unllo.oe < llu — Ppullo,ae + lun — Prullo.se
< llu — Ppullo,az + Cllup — Prull1,0
S (re(h) + pe () lu — Pyulli g
S (re(h) + pe (M) lu — .2,
which are the desired estimates (28) and (29). Then, the proof is completed. O

4 Local and parallel multigrid method for semilinear Neumann
problem with nonlinear boundary condition

This section is devoted to introducing our novel local and parallel method based on
multigrid discretization for solving the semilinear Neumann problem with nonlinear
boundary condition. To design the algorithm, we need to construct a multilevel mesh
sequence. First, let us generate a coarse mesh 7. Then, we construct an initial mesh
Tp, satistying Ty C 7p,. Next, each mesh 7y, (k > 2) is obtained from 7, , through
one-time uniform refinement. Finally, we can obtain the following mesh sequence:

Th($2) C Ty (82) C oo C Ty (82) C -+ C Tp, (£2). (33)
Based on (33), we can construct a nested finite element space sequence such that

vE@ycvihi@yc.---cvir@)yc...c vin(). (34)

4.1 Local and parallel method for semilinear Neumann problem

In this subsection, we explain how to perform the novel local and parallel method in one
level of the finite element space sequence, which is the basic component of the local
and parallel multigrid method. Assume that we have obtained an approximate solution
Up, € V' (£2), then we design an algorithm to get a more accurate approximate
solution up, ., € Vhit1 ().
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Letus divide £2 into disjoint domains Dy, - - - , D,, satisfying U;flzl D ;= 2, DiN
D; = ), then let us enlarge and reduce D; to obtain £2; and G, respectively, and
all subdomains align with 7z (§2). Then, we can obtain some subdomains satisfying
G,ccDjcC;cSffiorj=1,---,m. Finally, letusset G, = .(2\(U.';':l G_j)
(see Fig.2).

In addition, we require that the decompositions satisfy

m+1 m—+1

¢
E Ivlle.2; < llvlle,e and E Ivlleag;noe S Ivlleag . Yve H(2), €=0,1.
i=1 j=1

(35)
Then, in Algorithm 1, we propose the novel local and parallel method in the finite
element space Vet (£2) (k> 1).

Algorithm 1 Local and parallel method for semilinear Neumann problem.
1. Solve the following linear boundary value problem in each subdomain §2 s j =1,2,---,m: Find

. b )
e/JlkH € VIJ‘Jrl (£2), such that for any vy, € V;"*l (£2;), there holds

ael, 1 Vi) = Gu Vg ) = (0 un)s Vi ) = (F Gty vy ) = @ty vy - (36)

"j — .] hk+] .
Set Uy = Uhy + st eV (£2)).
2. Solve the following linear boundary value problem in G, .1: Find ﬁfk':ll € Vit (Gp+1) such that

~m+1 ) _ ) C_1 . gt
Wy |BGjﬂéGm+1 =iy = 1, , m and for any Vit €V (G+1), there holds

m+1

ali vy y) = by vng ) = (806 ) i) = (F ) v ) (37)

3. Construct ﬁhk+| € Vit (£2) such that

ath:a;,kH inGj, j=1,.m+1 (38)
4. Define a correction subspace vH (@) = vH ($2)+span{iip, T } and solve the following small-scale
semilinear Neumann problem: Find Upyyy € VH-hi+1(2) such that for any vy ., € VH R (),

there holds

a1 VH ) F 800 tpy )y Vg )+ (F iy D5V ) = B v, ). (39)

Summarize the above four steps into

Uy = Correction(VH (2), Upys vhice (2)).

Next, Theorem 2 rigorously proves that up,,, € V+1(2) derived using
Algorithm 1 has a better accuracy than uj, € Vhe(£2).
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Fig.2 G; cCc Dj C 2

Theorem 2 Assume that up,, € VI (82) satisfies the following estimates:

lu —un e S en(u), (40)
lu —unllo,e S (re(H) + po(H))en, (u), 41)
lu —upllope S (re(H) 4+ po(H))ep, (1). (42)

Then, the new approximation uy,.,, € V41 (2) obtained by Algorithm 1 satisfies

lu —upp, 2 S gy (W), (43)
lu —up i llo.o S ro(H) + po(H))ep,, (w), (44)
lu —une,, llooe S (re(H) + po(H))ep,,, (u), (45)

where e () == (ro(H) + po (H))en, (u) + 8pyyy ().

Proof Based on Theorem 1 and (38), we can obtain

llu — Unjyy I,

5 inf ||M - UH,hk+1 ”1,9
VH gy €V ML)

< lu—ap, e

< ||M - Phk+1u||1,.Q + ”ﬂhk_H - Phk+1u||l,ﬂ

m
~] 2 ~m+1 2
S lu=Pulne+Y g, = Puuli g, +Hli " = Puulli g, - (46)

j=1

m+1"

To describe the proof more clearly, next the procedure is divided into three parts.

The first part is used to estimate 27:1 ||L~t{lk+1 — Py ull1,6;- The second part is used

to estimate || ﬁhmkﬂ — Py ull1,G,,., - Then, based on (46), the final conclusion is proved

in the third part.
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Part 1: Based on (6), (24), and (36), the following equation holds true for j =
1,2,---m:
a(ﬁ‘,’;k+1 — Py u,v)

= (f( ) = fO ). v) + (8 ) — g, up,),v), Vv € VIR (R2)).(47)

Using Lemma 4 for (47), there holds

~J
”uhk+1 - Pthrlulll,Gj

S ||11;]1k+l = Ppqullo.g; + I1f () — f(x, up)llo,g;
Hlig(x, u) — g(x, up)llo,02nse;

S Ny, = unllo.g; + lun, = Prygyullo,e; + 11 Ge,u) — f G un) o,
Hlig(x, u) — g(x, up)llo,02nse;

J
S e, Moy + lune = Prygyullo.2; + 1 (6, u) — f (6, un)llo,e;
Hlig(x, u) — g(x, up)llo,02nse;

J
S lep, o2y + lune = Pryyullo.2; + llu —unllo.g;
Hlu —upllo,o2nage; - (48)

Next, we adopt Aubin-Nitsche technique to estimate ||e,’l'k+1 llo,s2; involved in (48):
For any ¢ € L?(£2)), there exists w € H}.(£2;) such that

a(v,w) = (v,¥), Yve H-$2)). (49)

Based on the finite element method, there exists wikH € Vﬁk“ (£2)), wL € Vﬁ (£2))
such that

j h
Qi Wl ) = O W), Yon, € V@), (50)

aop, wl) =y, ¥),  Vou e VE8 (). (51)

The following two estimates are the standard finite element error estimates:

lw —w] e, $ re,GusD ¥ lo.g;. (52)

lw — wh e, < re, (¥, (53)
Taking vy, = e'}’;kﬂ in (50), we can obtain

G2

— J J
- a(ehk+l ’ whk+1)
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= (b, wy,,) = (@0, un), wy, ) = (F O, wn), wy, ) = @, wi )
= (g(x,u) = g, up), wy, )+ (FOe 1) = O un), wi )+ a(Phgyt — e, i)
= (g(x, u) — g(x, upn,), w,ka - wi,) + (f O, u) — flx, un), w£k+] - wi;)

g, u) = gx, uny), wiy) + (F (e, 1) = £, un), wihy) + a(Pig = e, wj, )
= (g(x, 1) = g(x, u), wy, | — wip) + (fOe, ) = FOx,un), wy, | —wiy)

+a(Ppy i — tpy, wgkﬂ - wl{,). 54

Set ¢ = e,{kﬂ in (54), there holds

J 2
”ehk+l ||o,gj
=(g(x,u) — g(x,up,), w{lkH — w{q) + (f(x,u) — fx,up,), wzkﬁ - w;{)
+a(Phk+lu - th, w/]lkJr] - w]H)
S llu—uplloaense; ||w£ - wi, llo.s2nae; + llu —upllo,e; ||w£ - wi, llo,2;
j k1 j J k+1 j
J J
+||Phk+1u — Upy ”],.Qj ”whk+1 - wH”],.Qj
J J
< (hw = w,, e, + o = w)lhe)
(1Phegate = el 2, + e = wnllo.anog, + e = igllo.c,)

< ray(Dllej,, o, (I Puc e = ny ., + =ty lo.aoosz, +lu = o2, )
which yields

||€;j,k+I lo.2; < re; (H)(I Pyt — w12, + llu — ung llo.oenae; + lu —upllo.2;)-
(55)
Combining (48) and (55), we can derive the following estimate:

lit, ., = PrrttllG; S re; () Phyyu — un llt2; + | Pry i — g llo,2;
+lu — unllo,o2noe; + llu — unllo,2;- (56)

Part 2: Using (6), (24), and (37), for any vy, € V;’k“ (Gm1), we can obtain
a(ﬂ;lnk—:,l = Ppyyyut; vigyy)
= (g(x,u) — g(x, up), V) + (f O, u) — F(X, up)s Vi) (57)

Let us use ag -) to denote the restriction of a(-, -) on G,,+1. Then, for any

h m+1 ("
v € V' (Guy1), we can derive

~m+1 2
”uhk+1 - Phk+| u ” 1,G 1
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< aGm+l(uhk 1 Pthrlu th 1 Phk+lu)

< aG}71+l (uhk_H Pthrlu uhk_H Phk+1bt U)
+(g(x,u) — g(x,up), v) + (f(x,u) — f(x,up), v)
1 . 1
N IIMZ:H Pryttll1,G it inf IIM'Z,I,i1 Pyt = Y l11,G iy
eV (Gmy)

et
Hllu — wn 10,2006t (IIMZ"k+] Phyo 1,6t

. +1
+ hkmlf ||u;l"k+l Ppyu — ‘/f||1,Gm+1)
YeV Tt (Gug)

= iy 10.Gpr (15 = P 010,61
. ~m+1
+ i = Pu = WloG ) (58)

h
VeV (G

Next, using Lemma 1 and trace theorem, (58) can be written as

~m+1 2
“uhk+1 Phk+1u||1,Gm+l
~m+1 ~m+1
Syt = Py ull,Gpo i) — Pugulli2,06,0000
k+1 k+1

~m+1
(Il = ung 10,0200G s, + llu — ||0,G,,1+])(Ilufk+l Ppy 11,6y

~m+1

+||qu+l P/’Lk+1u||1/2 dGm-H\d‘Q)

~m+1

S ||”hk+1 Pryr 1.6 (|Iuhk+l Pryull1/2,0G,41\02

+lu = ll0.0200G, 1 + 1t — i l10.6,11)

2

+lu — Un, ||0 9200G 1 + |lu— Upy ||0 Gt +||th+1 Phk+1u||1/2,86m+1\39. 59)

Set

~m+1

= ”uhk+l

P/’Lk+1u ” 1.Gimy1

m= IIth+1 Py ull172,0Gm\02 + 14— un 110.0200G4 + 1t — ung10,Gugr s

_ 2 2 ~m—+1 2
n=llu—unloonac,, +I14—unlloc,. ., + 1 = Prunttliec, oo

Thus, (59) means
x2 < Cmx +cn,

which indicates

- Cm ~+ v C?m? + 4cn
- 2

<m+/n. (60)
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Since

m

~m+1 2 < Z ~J _ 2

ety = PriconllY 5 o = 22 Wy = Prenattll] 6,
i=1

m
~j 2
S Y N, = Puullic), (61)

~
I

combining (60) and (61) leads to

~m+1 2
”uhk+l - Phk+1 u ” lanH»l

m
~j 2 2 2
S Mg, = Pl G, + lu = un I s0ro6,, + 11— unlg G, - (62)
j=1

Part 3: From (35), (56), and (62), we obtain

~ 2
Ntnisr = Prenulli
m
2 2 2 2
< 2 (& DI Py = un I @ + 1Py = un I o + e = un I g2
Jj=1
2 2 2
+llu — Upy, ||0,Qj) + [Ju — Upy ”0,8(208G,,,+1 + [Ju — ”hkl|0,Gm+1
2 2 2 2 2
§ VQ(H)”PthM — Upy, ||1_Q + ||Phk+1u - ”hk”o,g + [Ju — uhk”o,ag + lu — Upy ||og
2 2 2 2 2
Sro(E)u—up i o +ro(HE)u — Py ulli o + llu — Py ullg o

2 2
+lu — Up, ||0‘ag + flu — Upy ||(),Qa (63)
which indicates

lin .y — Prytllie S (re(H) + po(H)llu —up . +re(H)lu — Py ullie
+ro (hk+1)8hk+1 (l/t) (64)

Using (46) and (64), we can derive

lu —wp il e
S llu =t e
Sllu— Prgullie + re(H) + po(H)lu — up 1,2 + re (i 1)8n,,, (1)
< (re(H) + po(H))ep, (u) + 8py,y (1)

5 8hk+] (I/l),

@ Springer



Numerical Algorithms

where ep, (u) == (ro(H) + po(H))en, (u) + &p,,, (w). Then, we derive the first
desired result (43).
Let us define

Fo(H) = sup inf  Tf = vn g
FEL2().11flo,@=1VH .y €V KH(2)

and

po(H) = sup inff”l ”T/g — VH hit ”19 :
geL2(992),ligllo,a=1 VH hy .y €V TET(82)

Using Theorem 1 again, there holds

lu —upillo.e S Fo(H) + po(H))llu —up,, e
< (re(H)+ pe(H)lu —up e,

and
lu —unillooe S Fo(H) + po(H)lu —up, e
< (re(H) + pe(H)u —up 1.2
Then, we derive the desired results (44) and (45). The proof is completed. O

4.2 Local and parallel multigrid method for semilinear Neumann problem

In this subsection, a new type of local and parallel multigrid for the semilinear Neu-
mann problem (24) is designed based on Algorithm 1 and the multilevel mesh sequence
(33). For the multilevel mesh sequence (33), any two consecutive meshes 7y, (£2) and
Tn,_, (§2) are generated through a one-time unform refinement, such that the mesh
sizes satisfy hy = Cllhk,l, k > 2. Meanwhile, there holds

1
Sy (u) ~ Eahk—l(u)’ q > 1. (65)

Based on Algorithm 1, the local and parallel multigrid method for (24) is designed
in Algorithm 2.

Theorem 3 After implementing Algorithm 2, the final approximate solution up,, satis-

fies

lu —wn, 1,2 S 8n, (), (66)
lu —un,llo,e S (re(H) + po(H))dh, (1), (67)
lu —un,llose S (re(H) + po(H))oh, (). (68)
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Algorithm 2 Local and parallel multigrid method for semilinear Neumann problem.

1. Solve the semilinear Neumann problem (24) in the initial space: Find uj,, € VI (£2) such that

auny o) + (F(ouny), o) + (G upy )y vpy) = (b, vgy), Yop, € V().

2.Fork =1,---,n — 1, do the following loop:
(i) Solve the following linear boundary value problem in each subdomain £2;, j = 1,2,--- ,m:

. i h h
Find e;,kﬂ € Vrk+1 (£2;), such that for any Uy € Vrk'H (£2), there holds
a(@f,k+l ) = Bovp ) — (@O up) v ) — (F O upg), vy ) — aupg, vpg )
~J _ J hig1(0.
Set uth Upy -i-ehk+1 eV (£2;).
(ii) Solve the following linear boundary value problem in G, 1 : Find 12%(':11 € i+ (Gp+1) such that
1 -j . hit1
MZ:_I |3G_/ﬂ30m+1 = u;lk-u ,j=1,---,mand for any Vhyyy € ViR + (Gm+1), there holds
~m+1 _
(@t o) = B ) = (8 ). gy ) — (F Oty V)
(iii) Construct ﬁhk+1 € Vhk+1 (£2) such that
'th+1 :’Z{lkJrl inGj, j=1,---,m+1

(iv) Define a correction subspace VH*hk+1(S2) = vl + span{ﬁth} and solve the follow-
ing small-scale semilinear Neumann problem: Find uj, 4 € VH-hk1(Q) such that for any
VH by € VH-hit1(2), there holds

a(uthrl ’ UH,thr]) + (g(x, uhk+l)’ vH,h]H,l) + (f(x, Uppyy )s UH,h]H,l) = (b, UH,hk+1)-

End For.

The final approximation uy,,, is obtained in the finest space vhn ().

under the condition Cq(ro(H) + po(H)) < 1 for some constant C.

Proof Based on Theorem 1, the initial approximate solution uy,, satisfies

e = un, ”1.(2 S By (),
||M - uhl ||0’9 5 (rﬂ(hl) + pﬂ(hl))(shl(u)a
lu = un g p0 S i) + pa(h1))dn, ().

which means the initial condition of Theorem 2 can be met if we set &y, (1) := 8y, (u).
Thus, using Theorem 2, we can obtain

et W) S (re(H) + pa(H))en (u) + 8y (w), 1 <k=n—1. (69)
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Based on (65) and (69), we can derive

en, ) < (re(H) + po(H))en,_, (u) + 8, (1)
< (re(H) + pa(H))*en, () + (r(H) + po (H))8h, () + 8, (u)

< (reH) + po(H))" o4, ()
k=1

<SS (qUroH) + poH))" 61, ()

k=1
Sn,, ()

1 —q(pe(H) +re(H))

< O, (u). (70)

Using Theorem 2 and (70) leads to
lu —un, 2 S €n, () < Sn, (u),

which is just the desired result (66).
Further using Theorem 2, we can obtain

lu —up,llo,0 S (ro(H) + po(H)lu —up, 1,0 S (re(H) + po (H))8p, (1)
and
lu —up,llope S (ro(H) + po(H)|lu —up, 1,0 S (re(H) + po (H))8p, (1),

which are the desired results (67) and (68). Then, the proof is completed. O

4.3 Computational work of Algorithm 2

In this subsection, we estimate the computational work of Algorithm 2, finding that
requires nearly the same computational work as that of solving the corresponding
linear boundary value problem. Let us define

N} =dimV*(2;) and Ny =dimV"*(2) for k=1,---n, j=1,--- ,m+1.

Then, there holds
i L dn—t) nyi i Nk .
N, ~ (g) Ny and N; ~ (?) fork=1,---,n, j=1,--- ,m+1. (71)
Theorem 4 Assume solving the semilinear Neumann problem in the coarse spaces
VH(2) and V() requires work O(Mp) and O(Mpy,), and solving the linear

boundary value problem in V;”‘ (82;) requires work O(N,f), wherek =2,--- ,n, j =
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1, -+, m+1. Then, the computational work of each computing node involved in Algo-
rithm 2 requires O (Mp, + N, /m + My log N,,). Furthermore, Algorithm 2 requires
O(N, /m) when M, < N,/m, Mg < N, /m.

Proof Based on (71), the computational work of Algorithm 2 can be estimated by

n
Total work = O (M, + Z(Nk /m+ Mp))
k=2

= O(My, + Y _ Ni/m+ (n — 1)Mp)
k=2

n
1 _
= O(My, + Z(Z,)d(" Ny /m+ (n — )Mp)
k=2
= O(My, + Ny /m + My log N,). (72)

Furthermore, if My, < N,/m, Mg < N,/m, (72) can be controlled by O (N, /m).
Then, we complete the proof. O

5 Numerical examples

In this section, some numerical examples are presented to support our theoretical
conclusions and illustrate the solving efficiency of Algorithm 2. All the linear equations
involved in the numerical experiments are solved by conjugate gradient method.

5.1 Example 1

In the first example, we solve the following semilinear Neumann problem: Find u €
H(£2) such that

—Au+4+u+ f(x,u)=1, in £2,

{ Fxw) 73

Vu-n+gx,u) =0, onas2,

where 2 = (0, )2, f(x,u) = u’ and g(x, u) = u°.

In order to use Algorithm 2, £2 is divided into four disjoint subdomains: D =
(0.5,1.0) x (0.5,1.0), D, = (0.0,0.5) x (0.5, 1.0), D3 = (0.5, 1.0) x (0.0,0.5),
D4 = (0.0,0.5) x (0.0, 0.5). Next, we construct G; and £2; suchthat G; CC D; C
£2; C £2: 821 =(0.375,1.0) x (0.375, 1.0), £2, = (0.0, 0.625) x (0.375,1.0), 25 =
(0.375, 1.0) x (0.0, 0.625), 24 = (0.0, 0.625) x (0.0, 0.625), G; = (0.625, 1.0) x
(0.625, 1.0), Go = (0.0, 0.375) x (0.625,1.0), G3 = (0.625,1.0) x (0.0,0.375),
G4 = (0.0,0.375) x (0.0,0.375), and G5 = .Q\(U‘}:l(_?j).

We use linear finite element space in this example, and the multilevel mesh sequence
is produced through one-time uniform refinement with the refinement index of ¢ = 2.
The coarse 7y is the same as 7y, with mesh sizes H = h1 = 1/8 (see Fig.3).

The numerical results derived by Algorithm 2 are presented in Fig. 3. Besides, we
also use the direct finite element method to solve (75). The direct finite element method
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The initial mesh for Example 1 Convergence rates of local and parallel multigrid method

—— lu-ullg 50
o,
——lu-ully
—9— ””’“h”gi;z
o —— lu-utly
| =B u-u

= = = slope=-1

= = = slope=-1/2

10°

10* 10° 10
Number of mesh elements

Fig.3 The initial mesh (left) and error estimates (right) of Algorithm 2 for Example 1

means we solve semilinear Neumann problem (75) directly in the finest finite element
space. That is, we use the fixed point iteration for the semilinear Neumann problem
in the finest finite element space and the linear equation in each fixed point iteration
step are solved by the classical finite element method. The results are also presented in
Fig. 3. From Fig. 3, we can find that Algorithm 2 can produce an optimal approximate
solution as the direct finite element method.

5.2 Example 2

In the second example, we solve the following semilinear Neumann problem by
Algorithm 2: Find u € H'(£2) such that

-V - (AVu) + pu + f(x,u) =0, in £,

74
(AVu) -n+ g(x,u) =0, onds2, 74

where 2 = (0, 1)3,¢ = e(x'*%)(xr%)(”*%), f(x,u) =arctan(u), g(x, u) = |u|?/?
and
T+ =D = H -5 & - %)(m — %)
A= (x1 - %)(Xz - I+ —5> (-3 —3)
=Dz —3) -z -3 1+ 63— 12

Similar to the first example, §2 is also divided into several disjoint subdomains
Dy, -, Dg: D1 = (0.5, 1.0) x (0.5, 1.0) x (0.0, 0.5), D2 = (0.0, 0.5) x (0.5, 1.0) x
(0.0, 0.5), D3 = (0.5, 1.0) x (0.0,0.5) x (0.0,0.5), D4 = (0.0, 0.5) x (0.0,0.5) x
(0.0, 0.5), Ds = (0.5,1.0) x (0.5,1.0) x (0.5,1.0), Dg = (0.0, 0.5) x (0.5, 1.0) x
(0.5,1.0), D7 = (0.5, 1.0) x (0.0,0.5) x (0.5,1.0), Dg = (0.0, 0.5) x (0.0,0.5) x
(0.5, 1.0), For the enlarged and reduced subdomains G; CC D; C £2; C £2:
£21 = (0.375, 1.0) x (0.375, 1.0) x (0.0, 0.625), §2, = (0.0, 0.625) x (0.375, 1.0) x
(0.0, 0.625), £23 = (0.375, 1.0) x (0.0, 0.625) x (0.0, 0.625), £24 = (0.0, 0.625) x
(0.0, 0.625) x (0.0, 0.625), £25 = (0.375, 1.0) x (0.375, 1.0) x (0.375, 1.0), 26 =
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Fig.4 The initial mesh of
Algorithm 2 for Example 2

(0.0, 0.625) x (0.375,1.0) x (0.375,1.0), £27 = (0.375,1.0) x (0.0,0.625) x
(0.375, 1.0), £23 = (0.0, 0.625) x (0.0,0.625) x (0.375,1.0), G| = (0.625, 1.0) x
(0.625,1.0) x (0.0, 0.375), G2 = (0.0, 0.375) x (0.625, 1.0) x (0.0,0.375), G3 =
(0.625,1.0) x (0.0,0.375) x (0.0,0.375), G4 = (0.0,0.375) x (0.0,0.375) x
(0.0, 0.375), Gs = (0.625, 1.0) x (0.625,1.0) x (0.625, 1.0) G¢ = (0.0, 0.375) x
(0.625,1.0) x (0.625, 1.0), G7 = (0.625, 1.0) x (0.0, 0.375) x (0.625, 1.0), Gg =
(0.0, 0.375) x (0.0, 0.375) x (0.625,1.0), and Gg = Q\(Uf.:l(_?j).

We also use the linear finite element space in this example, and the multilevel mesh
sequence is produced through one-time uniform refinement with the refinement index
of ¢ = 2. The coarse Ty is the same as 7, with mesh sizes H = h; = 1/8 (see
Fig.4).

The numerical results of Algorithm 2 are presented in Fig. 5. Besides, we also use the
direct finite element method to solve (74), and the results are also presented in Fig. 5.
From Fig.5, we also can find that Algorithm 2 can produce an optimal approximate
solution as the direct finite element method.

Convergence rates of local and parallel multigrid method CPU Time of local and parallel multigrid method

B e L N I RS slope=1

dir Time of Algorithm 2
—O—llu-u,ll 9
< h 0o Time of direct FEM
~~~~~~ —_— \Iu—uhl\‘m
~~~~~~ —O—lu-u IS,
B N Ts —e— llu-u Il
NG T e
S~ —B—\Iu—uhl\“u

- = = slope=-2/3
= = = slope=-1/3

CPU Time

4 6 8 4 5

10 10 10 10 10 10° 10’
Number of mesh elements Number of mesh elements

Fig.5 Errors (left) and computational time (right) of Algorithm 2 for Example 2
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In addition, to illustrate the efficiency of Algorithm 2 intuitively, we also present
the computational time of Algorithm 2 and the direct finite element method in Fig. 5.
Figure 5 shows that Algorithm 2 has a linear computational complexity. Meanwhile,
Algorithm 2 has a higher solving efficiency than the direct finite element method.

5.3 Example 3

In the third example, we solve the following semilinear Neumann problem on the
L-shape domain: Find u € H 1(£2) such that

{—Au+u+f(x,u) =1, in 2, 75)

Vu-n+gx,u) =0, onas2,

where 2 = (0, 1)2/[1/2, 1)?, f(x,u) = u> and g(x, u) = u>.

In order to use Algorithm 2, £2 is divided into three disjoint subdomains: D; =
(0.0, 0.5) x (0.5,1.0), D, = (0.5,1.0) x (0.0,0.5), D3 = (0.0,0.5) x (0.0, 0.5).
Next, we construct G; and §2; such that G; CC D; C £2; C £2: 1 =
(0.0, 0.625) x (0.375, 1.0), £22 = (0.375, 1.0) x (0.0, 0.625), §23 = (0.0, 0.625) x
(0.0, 0.625), G; = (0.0,0.375) x (0.625,1.0), G2 = (0.625,1.0) x (0.0, 0.375),
G3 = (0.0,0.375) x (0.0,0.375), and G4 = 2\(U}_;G ).

We use linear finite element space in this example, and the multilevel mesh sequence
is produced through one-time uniform refinement with the refinement index of ¢ = 2.
The coarse 7y is the same as 7y, with mesh sizes H = h| = 1/8 (see Fig.6).

The numerical results derived by Algorithm 2 are presented in Fig. 6. Besides, we
also use the direct finite element method to solve (75). That is, we solve semilinear
Neumann problem (75) directly in the final finite element space. The results are also
presented in Fig. 6. From Fig. 6, we can find that Algorithm 2 can produce the same
accuracy as the direct finite element method.

The initial mesh for Example 3 Convergence rates of local and parallel multigrid method

= lu-ullg o0
dir
3 R —O—lu-u g,
~~~~~ T _.|._\Iu—uhH0vn
Sl = _y (14
g 0 T~.o 5 —Q—"“ ullog
N ~, -
10—1 ~~~~~ — lu- ”h”w
~ dir
=B llu-u I,
= = = slope=-0.75
= = = slope=-0.375

Errors

10 10* 10
Number of mesh elements

Fig.6 The initial mesh (left) and error estimates (right) of Algorithm 2 for Example 3
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5.4 Example 4

In the last example, we solve the following semilinear Neumann problem by
Algorithm 2: Find u € H'(£2) such that

—Au+u+ f(x,u) =0, in £2, 76)
Vu-n+g(x,u) =0, onas2,
3 u3/2, ifu>0, .
where 2 = (0, 1), f(x,u) = g(x,u) = The nonlinear terms of

—|u|3/2, ifu <0.
the semilinear elliptic equation (76) have bounded first order derivative but unbounded
second order derivative.

Similar to the first example, §2 is also divided into several disjoint subdomains
Dy, -+, Dg: D; = (0.5, 1.0) x (0.5, 1.0) x (0.0, 0.5), D2 = (0.0, 0.5) x (0.5, 1.0) x
(0.0, 0.5), D3 = (0.5, 1.0) x (0.0, 0.5) x (0.0,0.5), D4 = (0.0, 0.5) x (0.0,0.5) x
(0.0,0.5), Ds = (0.5, 1.0) x (0.5, 1.0) x (0.5, 1.0), Dg = (0.0, 0.5) x (0.5, 1.0) x
(0.5, 1.0), D7 = (0.5, 1.0) x (0.0,0.5) x (0.5, 1.0), Dg = (0.0, 0.5) x (0.0,0.5) x
(0.5, 1.0), For the enlarged and reduced subdomains G; CC D; C £2; C £2:
£21 = (0.375, 1.0) x (0.375, 1.0) x (0.0, 0.625), §2, = (0.0, 0.625) x (0.375, 1.0) x
(0.0, 0.625), £23 = (0.375, 1.0) x (0.0, 0.625) x (0.0, 0.625), 24 = (0.0, 0.625) x
(0.0, 0.625) x (0.0, 0.625), £25 = (0.375, 1.0) x (0.375, 1.0) x (0.375, 1.0), 26 =
(0.0, 0.625) x (0.375,1.0) x (0.375,1.0), £27 = (0.375,1.0) x (0.0,0.625) x
(0.375, 1.0), £23 = (0.0, 0.625) x (0.0,0.625) x (0.375,1.0), G| = (0.625,1.0) x
(0.625,1.0) x (0.0, 0.375), G2 = (0.0, 0.375) x (0.625,1.0) x (0.0,0.375), G3 =
(0.625,1.0) x (0.0,0.375) x (0.0,0.375), G4 = (0.0,0.375) x (0.0,0.375) x
(0.0, 0.375), Gs = (0.625, 1.0) x (0.625, 1.0) x (0.625, 1.0) Gg = (0.0, 0.375) x
(0.625,1.0) x (0.625, 1.0), G7 = (0.625, 1.0) x (0.0, 0.375) x (0.625, 1.0), Gg =
(0.0,0.375) x (0.0, 0.375) x (0.625,1.0), and Gg = 2\(U5_, G ).

We also use the linear finite element space in this example, and the multilevel mesh
sequence is produced through one-time uniform refinement with the refinement index
of g = 2. We use the same coarse mesh 7y and 7, as the first example.

The numerical results of Algorithm 2 are presented in Fig. 7. Besides, we also use the
direct finite element method to solve (76), and the results are also presented in Fig. 7.
From Fig.7, we also can find that Algorithm 2 can produce an optimal approximate
solution as the direct finite element method.

In addition, to illustrate the efficiency of Algorithm 2 intuitively, we also present
the computational time of Algorithm 2 and the direct finite element method in Fig. 7.
Figure 7 shows that Algorithm 2 has a linear computational complexity. Meanwhile,
Algorithm 2 has a higher solving efficiency than the direct finite element method.

6 Concluding remark

A new type of local and parallel method was designed to solve the semilinear Neumann
problem with nonlinear boundary condition based on the multigrid discretization.
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Convergence rates of local and parallel multigrid method CPU Time of local and parallel multigrid method
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Fig.7 Errors (left) and computational time (right) of Algorithm 2 for Example 4

Instead of solving the semilinear Neumann problem directly in the finest space, we
transformed it into some linear boundary value problems in a multilevel mesh sequence
and some small-scale semilinear Neumann problems in a low-dimensional correction
subspace. The linear boundary value problems were efficiently solved through local
and parallel technique. Meanwhile, the computational time for the small-scale semi-
linear Neumann problems can be negligible because the dimension of the correction
subspace is small and remains fixed. Additionally, compared with the existing multi-
grid method for semilinear Neumann problems that require the second order derivatives
of the nonlinear terms, our algorithm only requires the first order derivatives of the
nonlinear terms. Rigorous theoretical analysis and some numerical experiments are
presented to show the efficiency of the proposed algorithm.
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