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Abstract

In this paper, a novel multigrid method based on Newton iteration is proposed to solve
nonlinear eigenvalue problems. Instead of handling the eigenvalue A and eigenfunction u
separately, we treat the eigenpair (X, u) as one element in a product space R x Hol (€2). Then
in the presented multigrid method, only one discrete linear boundary value problem needs
to be solved for each level of the multigrid sequence. Because we avoid solving large-scale
nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The
optimal error estimate and linear computational complexity can be derived simultaneously.
In addition, we also provide an improved multigrid method coupled with a mixing scheme
to further guarantee the convergence and stability of the iteration scheme. More importantly,
we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue
problems, such theoretical analysis is missing from the existing literatures on the mixing
iteration scheme.
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1 Introduction

Solving large-scale nonlinear eigenvalue problems is a basic and challenging task in the
field of scientific and engineering computing. Various practical problems reduce to solve
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nonlinear eigenvalue problems. For example, the Schrodinger-Newton equation which has
been widely used to model the quantum state reduction [19], the Gross-Pitaevskii equation
which describes Bose-Einstein condensates [4], and the Kohn-Sham equation which is used
to describe the electronic structure in quantum chemistry [10, 11]. In this paper, we will study
a class of nonlinear eigenvalue models with convex energy functional. It is quite difficult to
solve such nonlinear eigenvalue problems whose computational work grows exponentially
as the problem size increases. Additionally, there are far fewer available numerical methods
for nonlinear eigenvalue problems than those for the boundary value problems.

In this study, we resort to the multigrid method to improve the solving efficiency for
nonlinear eigenvalue problems. The multigrid method was first proposed by Fedorenko [17]
in 1961. Later, Brandt [6] demonstrated the efficiency of the multigrid method, which was then
awidely examined subject in the computational mathematics field. Subsequently, Hackbusch,
Xu, and many others began to use the tool of functional analysis to analyze this algorithm
[18, 29, 31], which made the multigrid method experience rapid development. As we know,
the multigrid method is able to derive an approximate solution possessing the optimal error
estimates with the linear computational complexity. For eigenvalue problems, the study on
the multigrid method is relatively limited. Xu and Zhou [32] first designed a two-grid method
for the linear eigenvalue problem. This algorithm requires solving a small-scale eigenvalue
problem on a coarse mesh and a large-scale boundary value problem on a fine mesh. When
the mesh sizes of the coarse mesh (H) and fine mesh () have an appropriate proportional
relation (H = «/E), the optimal estimate for the approximate solution can be derived. Later,
Chen and Liu et al. [13] extended the two-grid method to solve nonlinear eigenvalue problems
using specially selected coarse and fine meshes. However, owing to the strict constrains on
the ratio (i.e., H = +/h), the two-grid method only performs on two mesh levels and cannot
be used in the multigrid sequence.

To solve the nonlinear eigenvalue problems via the multigrid technique, the Newton itera-
tion is adopted. In this paper, the eigenvalue A and eigenfunction u are treated as one element
in a product space R x HOl (£2). Then, the nonlinear eigenvalue equation can be viewed as
a special nonlinear equation defined in R x HO1 (£2). Next, based on the Newton iteration
technique, we simply solve a linear boundary value problem in each layer of the multigrid
sequence. Solving the large-scale nonlinear eigenvalue problem is avoided in our algorithm.
Besides, the involved linearized boundary value problems can be solved quickly by many
mature numerical algorithms, such as the classical multigrid method. Hence, the presented
algorithm can significantly improve the solving efficiency for nonlinear eigenvalue problems.
The well-posedness for these linearized boundary value problems and the convergence for
our entire algorithm have been rigorously analyzed in this paper.

For the above-mentioned multigrid method, we find that the Newton iteration scheme may
fail to converge for some complicated nonlinear eigenvalue models. In fact, this problem exists
widely during the self-consistent field iteration for nonlinear eigenvalue problems. To derive a
convergence result, the mixing scheme (or damping method) is introduced. The most widely
used mixing scheme is Anderson acceleration, which is used to improve the convergence
rate for fixed-point iterations. Anderson acceleration was first designed by D. G. Anderson in
1965 to solve the integral equation [2]. Subsequently, this technique was used to solve various
models, such as, the self-consistent field iteration in electronic structure computations [16],
flow problems [25, 27], molecular interaction [28], etc. Anderson acceleration adopts the
mixing scheme to make the fixed-point iterations converge for general equations. Despite its
widespread applications, the first mathematical convergence result for linear and nonlinear
problems did not appear until 2015 in [30]. For nonlinear eigenvalue problems, there is
still no strictly theoretical analysis. In general, the mixing scheme is used in fixed-point
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iterations to accelerate the convergence rate. Thus, we use the mixing scheme in the Newton
iteration scheme to design a more efficient multigrid method. By treating the nonlinear
eigenvalue problem as a special nonlinear equation, we just solve a series of linearized
boundary value problems derived from the Newton iteration scheme defined on a multigrid
space sequence. Next, we mix the approximate solution in each iteration step to generate
a more accurate approximation. More importantly, we can rigorously prove convergence
for the residuals of the nonlinear eigenvalue problem after a one-time iteration step. This
may provide some inspiration to prove the theoretical conclusions of the self-consistent field
iteration for nonlinear eigenvalue problems.

The remainder of this paper is organized as follows. In Sect. 2, some preliminaries about the
nonlinear eigenvalue problems and the corresponding finite element method are presented. In
Sect. 3, we use the Newton iteration to solve the nonlinear eigenvalue problems and provide
several useful error estimates. In Sect. 4, the multigrid method based on Newton iteration
is introduced. In Sect. 5, we adopt the mixing scheme to provide an improved multigrid
algorithm. Numerical experiments are presented in Sect. 6 to verify the theoretical results
derived in this paper. Some concluding remarks are presented in the last section.

2 Preliminaries of nonlinear eigenvalue problems

In this section, we first introduce some standard notations for Sobolev space W* 7 (2) and
the associated norm || - ||s, p,o on a bounded domain 2 € R? (d > 1). For p = 2, we denote
I lls2 =1l lls.2.0. H () = WS(Q) and H}(Q) = {v € H'(Q) : v|q = 0}. Hereafter,
we use <, 2, & to denote <, >, = with a mesh-independent coefficient for simplicity.

In this paper, we focus on the nonlinear eigenvalue problems arising from the following
variational problem:

I =inf{E(v),v € H] (sz),/ v2dQ =1}, 1)
Q
where the energy functional E is defined by
1 1 2
EWw) = =-a(v,v) + = F(w9)d<,
2 2 Ja
with
a(u,v) = / (AVu - Vo + Vuv)d2.
Q

To simplify the notation, let us define f(t) = F'(¢). Then, forallv € HOl (Q),E'(v) = Ay
holds with
Ay = —div(AV) + V + f(7). )

Next, applying the Lagrange multiplier method to (1) yields the following nonlinear eigen-
value problem:

Ayu = Au, in 2,
u=0, on 9€2, 3)
JquidQ =1,

where A comes from the Lagrange multiplier of the constraint ||« ||% =1.
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For future theoretical analysis, we assume that the following conditions hold true (see [10,
12]):

— A s a symmetric positive-definite matrix;

V e LP(R2) for some p > max(1, d/2);

F € C1([0, 00), R) N C2((0, 00), R) and F” > 0 on (0, 00);

30<m <2and C e Ry, s.t. Vi >0, |F'(t)] < C( +1t™);

— F”(1)t is locally bounded in [0, c0);

—3dl <r<2and0 <s <5—rsuchthatVa > 0,3C e Ry, s.t. VO <1t; <a, VH € R,

) — faDn —2f ()i — )] < CA + )| — 1"
30<g<landC eRy, st.Vt >0, |f/ ()] +|f"(Ot] < CA +19).

In the remainder of this section, we present two lemmas for the nonlinear eigenvalue
problem (3), and the detailed proof can be found in [10].

Lemma 1 There exist M € Ry and B > 0 such that for all v € HO1 (R2), there holds
0 < ((Ay = v, v) < M, @)
and
BlIVIIT < (E" ) = Mv,v) < Mvll], ®)
where E" (1) has the following form
(E"(wyw, v) = (Ayw, v) + 2(f' Wh)u*w, v). (©6)

Now, we introduce the finite element method for the nonlinear eigenvalue problem (3).
To use the finite element method, we define the variational form for (3) as follows: Find
(A,u) e R x Hol(Q) such that |ju]jo = 1 and

(AVu, V) + (Vu + fu)u, v) = A(u, v), Yv e HJ(RQ). @)

Next, we define the finite element space V}, on a triangulation 7j,. The finite element space
V), is composed of piecewise polynomials such that V), C H(} (2) and

lim inf w— vyl =0, Yw e HI(RQ). ®)
h—0v,eVy,

Based on the finite element space V), we can derive the finite element solution for (7) by
solving the discrete nonlinear eigenvalue problem as follows: Find (A, u) € R x Vj, such
that ||upllo = 1 and

(AVuy, Vop) + Vuy + f(uﬁ)uh, vp) = Ap(up, vp), Yup € V. ©)]

The standard error estimates for the finite element approximate eigenpair (Ap, 1) are
described in the following lemma.

Lemma 2 There exists hg > 0, such that for all 0 < h < hg, the following error estimates
hold true

lu —uplly < 8nu), (10)
and

= Al S Ml — I3+ llu = unll ors—am, (11)
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where

Sp(u) == inf lu —wal:. 12)
h

h

3 Newton iteration for nonlinear eigenvalue problems

To introduce Newton iteration for nonlinear eigenvalue problem (7), we first give some
symbols to simplify the description. Let us define

(FOL, u),v) = (AVu, Vo) + (Vu + f@?)u — ru,v), Vv € H}H (). (13)
The Fréchet derivation of F with respect to u at (1, u) is denoted by

(Fl, (0 wyw, v) = (AVw, Vo) + (V + f@?) — Dw, v) +2(f @?)u’w, v)
= (E"(ww, v) — M(w, v). (14)

Next, we denote the product space R x HO1 (2) by X. Let us define the norms in X as

I, w)llx = IA|+ lully and ||(X, w)llo = |A| + lullo, VA, u) € X. (15)
Let us define
1
(G, u), (, v)) = (F(A,u),v) + 5“(1 —/ u?dQ), V(u,v) € X. (16)
Q

Obviously, the nonlinear eigenvalue problem (7) is equivalent to the following nonlinear
equation defined in the product space X: Find (A, #) € X such that

(GG, uw), (m,v)) =0, VY(u,v) € X. a7

Similarly, to solve (17) using the finite element method, we also introduce a finite dimen-
sional space X, := R x V}, as the approximation for X. Then based on X}, the finite element
equation (9) is equivalent to the following nonlinear equation defined in the tensor product
space Xj,: Find (Ap,, up) € X, such that

(Gpsup), (1, vp)) =0, YV, vp) € Xp. (18)
The Fréchet derivation of G at (A, u) is denoted by:

<g/()"5 “)(% w)s (/Vlﬂ 'U)) = <-7:1/4()"v u)w, U) - J/(Ms U) - M(us U)), V(/J*’ U) € X. (19)

Next, we begin to introduce the Newton iteration for (18). Given an initial value
()L(O), u(o)) € Xj, the one step of the Newton iteration is defined as follows, which will
generate a more accurate approximate solution: Find (A1, u(") € X}, such that

(@A AW = 2O WD — Oy G vp)) = (G0, u ), (o))
Y, vp) € Xp. (20)
Based on the definitions (16) and (19), the linearized boundary value problem (20) can be

rewritten as follows: Find (A(", uY) € R x V} such that for any (i, vp) € R x Vj, there
holds

a( @, u®; u® vy + b ®; vy, AV = (FL GO, u@)u©, vy)
—(FOO u @) vy = 2O @@ vy, 21)
—/2 — @@, u®))2,

b u®, )
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where
a0, u @ u® o) = (F,09, 4V ), b uV, ) = —p@®, u®).

To guarantee the well-posedness of (20) and (21), an isomorphism property is proved in
Theorem 1:

Theorem 1 Let (A, u) be the exact solution of (17). When the mesh size h is sufficiently small,
we can derive the following isomorphism properties for the operator G':

(G u)(y, w), (1, v))

>l wlx. Y. w) e X, 22)
ooy 1 ) lx
and
/ )\" , , ,
sup TGP0 WD) oy v w) € X 23)
ek, 1 ) lx

For any (/):, u) € X such that || (/): — X, 1 — u)|| x is sufficiently small, we can also derive

(G Ly, w), (1, v))
(}L.U)EX;, ||(,LL, U)”X

Z Iy, wlx, Yy, w) € Xp. (24)

Proof Firstly, proving (22) is equivalent to prove that for any (z, f) € R x H~'(), the
following equation is uniquely solvable: Find (y, w) € R x H(} (£2) such that

{a(k, u; w,v) +b(u;v,y)=(f,v), Vv € HO1 (),

b(u; w, p) = pt, Vu e R @3

According to the Brezzi theory [7], we just need to prove the following two conclusions:
(1) The following equation

alh,u; w,v) = (f,v), Yvel, (26)

is uniquely solvable in Vj := {v € HO1 () :b(u;v,u) =0, Vu € R}.
(2) The following inf-sup condition holds true

inf b(u; v, ()

> kp, €2))
neR UEHOI(Q) lolli]el

for some constant k;, > 0.
Firstly, from (5), we can easily find that (26) is uniquely solvable. Next, since ||u|o = 1,
taking v = —pu leads to
. b(u; v, ) 1
inf  sup = =
WeR gy 0TIl ully

Zkb.

Then we derive the inf-sup condition (27). Thus, we can derive the well-posedness of (25)
based on Brezzi theory, which further yields (22).

Next, we begin to prove the second formula (23). Based on (5), let us define the projection
Py : H} (Q) — Vj by

a(, u; w,v — P) =0, VYw e Vy, Yv € Hy(Q). (28)
Using (5) and (28), we can derive
IPaollt S vl Yv € Hy (), (29)
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and
v — Pyvllo < hllv — Pyolly S hllvlli, Vv € Hy (). (30)

Combining (22), (28), (29) and (30) leads to
15 wllx < sup (G' 0 w)(y, w), (1, v))
(nw)eX (s v)1Ix
(G' (L, w)(y, w), (0, v — Pyv)) +(G' (A, u)(y, w), (1, Ppv))
 (Lwex (e, V)11
— ap a(h, u; w, v — Ppv) —y(u, v — Pyu) + (G, u)(y, w), (n, Ppv))
(v)eX (e, v)1Ix
. =y (u, v — Ppv) + (G (h, u)(y, w), (1, Pyv))
(nv)eX (e, v)IIx
yllullollv — Prvllo +(G'(h, u) (v, w), (n, Pyv))
(nv)eX (s V)1 x
yhilvlly + (GO, w)(y, w), (1, Pyv))
(uv)eX (e, V) x
(G' O, u)(y, w), (1, Ppv))

Shlly, w)llx +  sup . 31
(n,v)ex I (s v) Il x

A

A

Thus, when the mesh size & is small enough, we can obtain
(G’ w)(y, w), (1, Prv))
Iy, willx < sup
(1, v)eX Il (e, V)11 x
< (G, w)(y, w), (i, Ppv))
N
(1, v)eX (s Pro)llx
< (GO w)(y, w), (1, v))
~ sup
(1, v)EX), Il (e, v)Ix

; (32)

which is just the second formula (23). For the last formula (24), we first prove a Lipschitz
continuity for G’ based on the assumptions presented in Sect. 2, Holder inequality and the
imbedding theorem (see [1]):

(G G )y, w), (i, v)) — (GG D (v, w), (1, )
= ((f@® = f@)Hw,v) + (= Hw, v)
F2((f W — f @ w, v) — y @ — u, v) — w@ — u, w)
=2(f'(EHEW — Dw, v) + (A — Vw, v)
HA((fEHE + fEDE U —Dw, v) — y @ —u,v) — 1wl — u, w)
S(A+EDEw —Dw, v) + (O — Vw, v)
H(( +EDEW —Dw, v) — y @ —u, v) — u(@ —u, w)
S € loallu —@lloalwloalvlios + 1€ 103/ 1€ l0.6lu — @lo.slwlo.slvlo.s/G-2q)
+ = Mlwlollvlio + [y 1T — ullollvlio + 1.ll@ — ullollwllo

~ 2q ~
S NENlle —wlllwl vl + HENTIE N e — wllilwll v
+A = llwlollviio + Iyl —ullollvllo + Il — ullollwllo,
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where & = tu + (1 — 7)u with T € (0, 1).
Thus, we can derive
(G () (y. w), (. v)) — (G G D (y. w), (. v))
SH =2 u—=wlx Iy, wlxl (e, v)lix. (33)

Let ¢ be a sufficiently small constant and || (A —/):, u—1u)|x < e.Basedon (23) and (33),
for any (y, w) € X;, we have

ell (v, w)llx (s Vllx + (GO W (v, w), (1, v))

I wllx <
(4.v)EX), (s V)l x
(GG ) (v, w), (1, v))
Sellty, wllx +  sup Y .
(,v)exy, (e, v) 1l x

Then (24) can be derived using the same way as the proof process in (32). This completes
the proof. O

Next, in Theorem 2, we provide the estimate for the residual of the Newton iteration
scheme (20).

Theorem 2 Forany (A, u®) e X, W1, uD) e X, we can derive the following expansion
G010, 1), @,m) = (G602, u @), @, m) + (G 0O, u @D =2 u®D —u @), (0, 9)
+ RO, 1), D D), (@, m). V(o.n) € X, (34)
where the residual R((A(O), u Oy, DMy (o, n)) satisfies the following estimate
[R(AP,u@), 0D u®), (0. m)| S 1@ = 2D u@ —u D)5 e, m)llx.
Proof We prove this theorem through the Taylor expansion. Let us define
n(6) = (G(AP, uP) + t{ D, uD) = AP M), (. m). rel0.1]. 35
Obviously,
n(0) = (G, u®), (0, m) and n(1) = (GG, uD), (@ ). (36)

The first order derivative and the second order derivative of 1 (#) with respect to ¢ are listed
as follows:

70 = (G (O u®) + (D, u D) — 3O WOy D, u D) — 3O u @), (5, )
— (}‘L’[(()L(O)’ u(o)) + t{()\.(l), u(l)) _ ()L(O), u(o))})(u(l) _ u(o)), 7))
—()»(l) _ )»(0))(14(0) + t(u(l) _ u(o)), n) — O-(u(o) + t(u(l) _ M(O)), uD M(O))
= AV@D —uD) Vi) + (@ + @ @D = u @) @D —u®).)
7((}»(0) +t(k(l) _ A(O)))(u(l) _ M(O))’ 77)
+2(f’((u(0) + l‘(u(]) _ M(O)))z)(u(o) + l‘(u(]) _ u(o)))z(u(l) _ u(o)), 77)
0D 20y, O 4 @D — Oy iy — @ 4 r@® — @y D @y (37)

and

0 (6) = 20D 20y, O n) — oM — 4 © M O
+6(f/((u(0> + t(u(l) _ M(O)))Z)(M(O) + t(u(l) _ u(o)))(u(l) _ M(O))Z, ’7)
+4(f”((u(0> + t(u(l) _ u<0)))2)(u(0> + D = u(o)))S(u(l) — w2 ,7>_ (38)
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For the nonlinear terms involved in (38), we have the following estimates

[/ + 0@ = u@)?) @@ + 1@ — @) @D —u©@)?2 p)|
S+ @@+ 1@ = @) (1@ 4 1@® — u©@)) @D - u®)2, )|
’S ‘((u(o) + t(u(l) _ M(O)))(u(l) _ M(O))27 77)
+((u(0) + l(u(l> _ M(O)))ZQ(M(O) + t(u(l) _ u(O)))(u(l) _ u(o))27 77)‘
S +r@® —uyfloalu® — u @3 4lnllo.s
1@ + 1@ —u @) 20,3/ 1@ + @™ = u @) o6l — w15 6lnll0.6/3-29)
S 1@ +1@® —u o4l — u @ 4lnllo.s
2
1@ + 1@ — u D) 1@ + @D — u @)l 6lluD — u NG gl1nll0.6/3-24)
Sl + @ —u ) [ ® = u @l
2
Hu® 1@ = u @ + 0@ =) e =@
Sl —u @il (39)
and
3
|<f”((u(0) + ,(u(l) _ u(O)))Z)(u(O) + t(u(l) _ M(O))) (u(l) _ u(O))27 77)‘
SO+ @+ @D a2 @ + 1@ = u )@ —u@)? )
1 0)2
Sl = w3 mlh, (40)

where the Holder inequality and the imbedding theorem are used.
Based on (38), (39) and (40), we can derive

" < D =201 ® —u@olinlo + o lu® — a @13+ 1u® —u @13 m,
NGO =D O Oy 2 (o, )l x. (41)

Thus, using (41) and the following Taylor expansion:

1
n(1) = 1(0) +1'(0) +/O (01— 0)dt,

we can derive

G0, uMy, (o, m) = (GAD, u), (@, M) + (GO, u OV, uM)
— 9wy (@, )
+R((P, u @), GV uD), (o, 1))

with the residual
IR, u @), A uDy, (0, m) S 10O = 2D 0@ — D)5 0o, lix.

Then the proof is completed. O

4 Multigrid method for nonlinear eigenvalue problems based on
Newton iteration

In this section, a novel multigrid method is proposed for solving the nonlinear eigenvalue
problems based on the Newton iteration. To design the multigrid method, let us construct a
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nested sequence of finite element spaces based on a nested multigrid sequence in the first
step. The sequence of meshes is denoted by {7y, };_,. For any two consecutive meshes 7y,
and 7;,_, (k > 2), Ty, is produced through a one-time uniform refinement form 7j,_,. The
corresponding mesh sizes satisfy the following conditions:
1
hy ~ —hyp_1, k=2,---,n, 42)
B
where the refinement index § > 1. Meanwhile, the following approximate relationship holds
true:
1
Sy () ~ 55/1,(,,(14), k=2 ,n. (43)

Based on the multigrid sequence {7}, };_,, we denote the corresponding sequence of finite
element spaces by:

Vi, C Vi C -+ C Vi, C HY(R), (44)
and denote the sequence of tensor product finite element spaces by:

Xp C Xp, C--- C Xy, CX. (45)

4.1 One step of the multigrid method

To describe the multigrid method more clearly, we first introduce how to perform one step
of the Newton iteration.

For two consecutive finite element spaces Xy, and Xy, , assume that we have obtained
an approximate solution (A, 1) e X i » Algorithm 1 shows the procedure for obtaining a
new approximate solution (A+1, u/*+1) € Xy

Algorithm 1 One step of the multigrid method

1. Assume that we have obtained an approximate solution Wl yhiey e x hi-
2. Solve the linearized equation derived from Newton iteration in the finite element space
Xy, o Find (Mt yheiry € Xy, | such that for any (11, vp,,,) € Xny,,, there holds

(GOt uliey (el o, )
= —(GO,, u™), (11, vy, ) + (G O W) G UMy ey ope, ). (46)

The equation (46) can be solved by the mixed finite element method in the following form:
Find (Ahk“ ,uler) € R x Vi such that for any (i, vp,,,) € R x Vi, |, there holds

aQte, ul ulieet g ) bk v W) = (f;(xh;,uh:)uhk,vm) o
—(FQM, u™) v ) = Ak @ v,

bt i1, ) /2 2.

In order to simplify the notation, we use the following symbol to denote the above two solving
steps:

(Ahk“ , uh"“) = Newton_lteration()\h", ul Xnppr)-

Next, we can prove that the new approximate solution (A"*+1, u/k+1) € X, 41 derived
by Algorithm 1 has a better accuracy than (A%, u*) e X - The detailed conclusion is
presented in Theorem 3.
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Theorem 3 After implementing Algorithm 1, the new approximate solution (\+1 yf+1)
has the following error estimate

IO — APt — Pty e < 8 )+ T — A — w15

Proof We use (Ap,,,.un,,,) to denote the standard finite element solution of (9), that is
()“hk-H B uhk-H) satisfies

(AVing, 1, Vo) + Vit Vi) + F Wy, Dy Vi)
= Myt Wiy Vg )y Yneyy € Vi
or equivalently
(G Uhi)s (1 VR )Y =0, Y, o) € Xy - (47)
Combining (46) and (47) leads to
(G M ) Gy — A = u"), (s on, )
=(GOM u"), (., vp ) + (G A u) Gy — M un, — w0, (o)
= —(G s+ Unsr)s (1 Vi) + (G, w0, (1, vag, )
HG M ) Mgy — N upy, — w0, (s vngs)
= — RO "), opyy s gy G V) (48)

Combining (24), Theorem 2 and (48), we can derive
h h h iy 112
”(Ahk-#l — ATk 5 uhk_H —u k+1)||X 5 ”()“hk-H —A k; uhk+1 —u k)”X' (49)
Using the standard error estimates in Lemma 2 and (49), we can obtain
I — At — ey < 16— Anggyo = tp llx + 1y gy — At Uhpoy — k)|
< Oy () + 16— A — i 1%

Then we complete the proof. O

4.2 Multigrid method based on Newton iteration

In this subsection, we introduce the multigrid method to solve the nonlinear eigenvalue
problems. We use the following nested sequence of finite element spaces:

Vi, CViy C--- C Vi, C HJ (), (50)
and
Xp C Xp, C--- C Xy, CX. (28]

The multigrid method is presented in Algorithm 42. The new algorithm requires solving
the nonlinear eigenvalue problem directly in the initial space to obtain an initial value; then
performing Algorithm 1 in the subsequent spaces. The approximate solution derived from
the last space is used as the initial iterative value in the current space.

Algorithm 42 Multigrid method based on Newton iteration
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1. Solve the following nonlinear eigenvalue problem directly in the initial space V,,: Find
AWM uly € R x Wy, such that ||u™ ||g = 1 and

(AVU" Vo)) + (Vi o) + (F@)Du o)) = @ o), Yo, € V.
2. Fork =1, ---,n—1, obtain a new approximate solution (}\hk“ R uhk+') € Xpy,, through
(Wit gy = Newton,Iteration()uh", ul, Xno)s

End for.
3. Finally, we obtain the approximate solution (\, u"») € X -

The error estimate for the final approximate solution (A", u") € X, derived by Algo-
rithm 42 is presented in Theorem 4.

Theorem 4 After performing Algorithm 42, the final approximate solution (M, u"n) € X By
satisfies the following error estimate

= At —uPy | < 8, (). (52)

Proof We prove this theorem by the mathematical induction method. Since we solve the
nonlinear eigenvalue problem directly in the initial space, using Lemma 2 leads to

I =AM u — w1 x < 8y ().

Assume that (52) holds true for (\n-1, yfn-1) € X h,_; - According to Theorem 3, we can
derive
= 2w — ™) x
S 8, ) A+ 0= A=t — ey
< 8n, () + 85 (w)
< 8, ().

So (52) also holds true for (A, u'n) € X h,- Then the proof is completed. O

4.3 Work estimate of Algorithm 42

In this subsection, we end Sect. 4 by estimating the computational work of Algorithm 42
briefly. Let us use Ny to denote the dimensions of Vj,,. The dimensions of the sequence of
finite element spaces satisfy

Ny~ AN, k=1,2,-- ,n.

Then the computational work of Algorithm 42 is presented in Theorem 5, which shows that
Algorithm 42 has linear computational complexity.

Theorem 5 Assume that solving the nonlinear eigenvalue problem directly in the initial space
Vi, needs work O(My,), and solving the linearized boundary value problem (46) in Vj,
needs work O(Ny) fork = 2,3, --- | n. Then the total computational work of Algorithm 42
is O(N, + Mp,). Furthermore, the linear computational complexity O(N,) can be derived
provided My, < N,.
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Proof Let us use Wy to denote the computational work of V3, . Then the computational work
W of Algorithm 42 can be estimated by:

n n
W= Wi=0My +» N
k=1 k=2

n
=0Q BTN, + My)
k=2
= O(Nn + Mh1)~

Then we get the desired conclusion O(N,, + My, ), and when M}, < N,, the total computa-
tional work changes to O(N,,). m]

Remark 1 The linearized boundary value problem (46) can be solved efficiently by the multi-
grid method with linear computational complexity O(Ny) (see e.g., [5, 29]). Because the
dimension of the initial space V},, is small and independent of the final finite element space,
it is easy to get M, < N,. Thus, the linear computational complexity for Algorithm 42 can
be obtained.

5 Multigrid method for nonlinear eigenvalue problems based on
mixing scheme

In this section, an improved multigrid method is designed. The motivation is that when solving
the nonlinear equation (18) by Newton iteration, we may encounter the non-convergence issue
for some complicated models. This issue is the same as that of the classical self-consistent
field iteration for the nonlinear eigenvalue problems. In order to overcome this difficulty, the
mixing theme (damping method) is introduced to solve the nonlinear eigenvalue problems.
The most widely used mixing scheme is Anderson acceleration [2], which is used to improve
the convergence rate for fixed-point iterations. Although Anderson acceleration was widely
used for solving various models, the first mathematical convergence result for linear and
nonlinear problems did not appear until 2015 in [30]. For nonlinear eigenvalue problems,
there is still no strictly theoretical analysis. In general, the mixing scheme is used in fixed-
pointiterations to accelerate the convergence rate. In this section, we use the mixing scheme in
Newton iteration to design an improved multigrid method for nonlinear eigenvalue problems.
Most importantly, we can prove that the norm of the residual decreases in each step of the
Newton iteration. This may provide some inspiration to prove the theoretical conclusions for
the more general mixing scheme for nonlinear eigenvalue problems.

Assume that we have obtained an approximate solution (Ahk, ul ) € X, , we introduce a
novel iteration step in Algorithm 51 to obtain a better approximation (A"*+1, u/*+1) € X st
on the basis of Newton iteration and the mixing scheme.

Algorithm 51 One step of the mixing scheme

1. Given a parameter Oy1 € (0, 1) and an approximate solution (\"* | u"*) e Xpy-
2. Solve the linearized equation derived from Newton iteration in the finite element space
Xpyy o Find (Wt @ity € Xy, | such that for any (11, va,,,) € Xny,,, there holds

(G iy Gt @iy (o))

= —(GO, u™), (11, vy, )Y+ (G A W) G UMY e ope ). (53)
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The equation (53) can be solved by the mixed finite element method in the following form:
Find (A1 @1y € R x Vi Such that for any (i, vp,,,) € R x Vi, |, there holds

aQte ul @ v ) 4 btk o) = (L B uhyuhe
—(F O iy v, ) = Ak @l o),
—/2 = p(, uhk) 2.

bl i1 | W)
3. Set
Mty = (1= G 1) %, ) 4 Oy (R M),

Next, we can prove that the value of the residual [G (A wtr | yhirny ) (, Vjy,;)) | monoton-
ically decreases after performing Algorithm 51.

Theorem 6 Assume that we have obtained an approximate solution (A", u*), then, there
exists a sufficiently small O such that the new approximation (A""+ u"*+1) derived by
Algorithm 51 has the following convergence

Ok+1
HGMH Wbt o vy I < (1= ZDEIHGOM ), G vy D Y0 vy ) € Ky -

Proof From the following mixing scheme

Wt ey = (1= O ) %, 1) + Oy 001 ),

used in Algorithm 51, we can derive
()\hk+l — Ayl uhk) — 9k+1('):hk+1 — e e uhk). (54)
Combining (54) and the mean value theorem leads to

(GO M) opg, ) — (GO, ™), (o))
—(G' (W Py et — e e — iy v )

= (G M, @M (et — e et — ey v ))
—(G M WY QI — M M — (v )

= Oy (GG, @) QI — ale @it — ), o))

O 1 (G W ey (ke — p P eyt o, ), (55)

where (W, i) = (A1 4 (1 — )Mk, qul+t + (1 — a)u”) with o € (0, 1).
From (54), we know that when 641 — 0, there holds

(Ahk+1 i uhk+l) — (W gy,
and thus
Gy — O,
which also indicates

(GGl ey Gt — e it — iy, v, )

— (G (WM ey (Pt — 3 Gt — ey (g ))-
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Hence, we can choose a sufficiently small 61, such that
(G, ey (et — e @it — ) (v ))

—(G/ (Wt ey (Rt — e @it — ey (v, )|

IA

1 ~
S (G G ) Gt — e e — ), (o)

%|<g<w, W), (o))
Based on (55) and (56), we can derive

HGOM Uty vpg, ) — (G u™), . vn, )
—(G (I iy (e — e e — ey o))

Ok+1
< Tﬂ(@(xhh W), (1, vy
Besides, using (53) and (54), we can also derive

(GO UMy (s vpy ) — (GO, u™), (i, oy, )
—(G' (M iy (et — e gtieer ey o))

= (GOt w1y vpe, ) — (GO UMY, (i, o))
Ot (G W ey et — e gkt — ey - v, )|

= (Gt Mty (, vpg, ) — (GO, uM), (12, vy, )
FOer1 (GO, UMY, (1, Vi, )|

= (GOt w1y ey vpe, ) — (1= B DGR u™), (e, vp, )]

Combining (57) and (58) leads to
HGOMt My, oy, ) = (1= B (GO, ™), (s oy )|
< TGO W), G, o )
That is
NGO sty (o, )]
< (= LG, ), o )1

Then we complete the proof.

(56)

(57

(58)

[}

In order to give a practical algorithm, there are two remaining problems. The first one is
to choose an appropriate parameter 1. The second one is to compute the residual after

each iteration step.

For the first problem, we provide an adaptive strategy for choosing 641 in Algorithm 52,
which gradually reduces the value of 6. For the second problem, in order to compare the
following two values [(G(A 1+, /1), (u, vy, ))] and (G, ul*), (, vy, )| for any
(1, Vpyy) € Xy, > we define the residual for the nonlinear eigenvalue problem (3) directly

in the following way:

1
Resi O, uy = | A ol — 2yl + S ™13

@ Springer



42 Page 16 of 21 Journal of Scientific Computing (2023) 94:42

Then next, we use Resi (A%, u"*) to judge the error reduction.
The modified mixing scheme and the corresponding multigrid method are presented in
Algorithms 52 and 53, respectively.

Algorithm 52 One step of the modified mixing scheme

1. Assume that we have obtained an approximate solution (\* | u) € X hy-

2. SetOr41 = 1.

3. Solve the linearized equation derived from Newton iteration in the finite element space
Xy, Find (W1 ity e Xy, such that for any (j, v, ,) € Xpy,,, there holds

(Gt uhiey et Gy og, )) = — (GO WM, (e, o))
H(G Wy e o))

The above equation can be solved by the mixed finite element method in the following
form: Find et his1y € R x Vhesr Such that for any (u, vp,.,) € R x Vi, ., there
holds

aQMue ulks @i vy ) B v AR = (G ulutE vy )
—(F O ), gy ) = M@ o),
b(ulk; Wi ) = —u/2 — p(ulk w2,
4. Set

T UMy = (1= G ) %, ) 4 G 1 ),
5. If Resi (Aw+1 | yMr1y < Resi (M uh), stop. Else set Oyy1 = 6x41/2 and goto Step 4.

In order to simplify the notation, we use the following symbol to denote the above solving
steps:

()Lh"+l , uhk“) = Mixing_lteration(khk, ulk, Okt1> Xpyyr)-
Algorithm 53 Multigrid method based on mixing scheme

1. Solve the following nonlinear eigenvalue problem directly in the initial space Vy,, : Find
A uMy € R x Wy, such that ||u™ ||g = 1 and

(AVU", Vo) + (Vi o) + (F (@D o) = 2 @M ony), - Yog, € Vi,
2. Fork =1, ---,n—1, obtain a new approximate solution (Ah““ R uhk+1) € Xpyy, through
St ety = Mixing_Iteration(\"™, u™, 611, Xy, ,),

End for.
3. Finally, we obtain the approximate solution (A, u"n) e X,

6 Numerical results

In this section, we propose some numerical experiments to support our theoretical conclusions
and demonstrate the efficiency of the presented multigrid methods. For the linearized bound-
ary value problems derived by Newton iteration, we used the V-cycle multigrid method to
obtain the numerical solutions. The multigrid method includes two pre-smoothing steps and
two post-smoothing steps. The adopted smoother for the pre-smoothing and post-smoothing
steps is the distributive Gauss-Seidel (DGS) iteration [5].
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Fig.1 The initial mesh for
Example 1

6.1 Example 1

In the first example, we use Algorithm 42 to solve the Gross-Pitaevskii equation: Find (X, u)
such that

—Au+ Vu+¢lulPu =, inQ,
u=0, onaQ, (59)
Jqu?dQ =1,

where @ = [0, 113,V = x% + Zx% +4x§ and¢ = 1.

The quadratic finite element space was adopted in this example. The sequence of meshes
was produced through a one-time uniform refinement. Thus, the refinement index 8 between
two consecutive meshes equals 2. The initial mesh is depicted in Fig. 1.

Because the exact solution of (59) is unknown, we select an adequately accurate approxi-
mation on a sufficiently fine mesh as the exact solution (A = 34.819449). The error estimates
of the approximate solutions derived by Algorithm 42 are presented in Fig. 2. The results
show that Algorithm 42 is able to derive the approximate solutions with the optimal error
estimates. In order to intuitively illustrate the efficiency of Algorithm 42, the computational
time of Algorithm 42 is presented in Table 1. Besides, the computational time of the direct
finite element method (solve the nonlinear eigenvalue problem directly in the final finite
element space) is also presented. We can see that the linear computational complexity of
Algorithm 42 can be obtained with the refinement of mesh. In addition, Algorithm 42 has a
great advantage over the direct finite element method.

6.2 Example 2

In the second example, we use Algorithm 53 to solve the Gross-Pitaevskii equation (59) in
Q = [0, 11%, where W = x% + x% + x% + sin?(2mwx1) + sin? (2w x2) + sin*(27wx3) and
¢ = 100.

In this example, due to the strong nonlinearity, Algorithm 42 does not converge. Thus, we
used Algorithm 53 to solve the nonlinear eigenvalue problem and the convergent results are
obtained.
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Errors by multigrid method
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Fig.2 The errors of approximate solutions derived by Algorithm 42 for Example 1

Table 1 The CPU time of Algorithm 42 and the direct finite element method for Example 1

Mesh level Number of degrees of freedom Time of Algorithm 42 Time of direct FEM
1 729 0.1643 0.1643

2 4913 0.2642 1.1434

3 35,937 1.1011 12.2292

4 274,625 8.3957 151.3532

5 2,146,689 66.9435 3947.5318

6 16,974,593 540.2690 -

The quadratic finite element space was adopted in this example. The sequence of meshes
was produced through a one-time uniform refinement. Thus, the refinement index 8 between
two consecutive meshes equals 2. The initial mesh is depicted in Fig. 3.

Because the exact solution of (59) is unknown, we select an adequately accurate approxi-
mation on a sufficiently fine mesh as the exact solution (A = 205.112532). The error estimates
of the approximate solutions derived by Algorithm 53 are shown in Fig. 4. The results show
that Algorithm 53 is able to derive the approximate solutions with the optimal error esti-
mates. In order to intuitively illustrate the efficiency of Algorithm 53, the computational time
of Algorithm 53 and the direct finite element method are presented in Table 2. We can see
that the linear computational complexity can be obtained with the refinement of mesh. In
addition, Algorithm 53 has a great advantage over the direct finite element method.

In Table 3, we also present the value of 0 in each finite element space X, . The residuals
corresponding to different 6; are also presented. Based on the adaptive strategy, we can see
that the value of the residual monotonically decreases with the refinement of mesh, and the
results are consistent with Theorem 6.
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Fig.3 The initial mesh for
Example 2

Errors by multigrid method
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Fig.4 The errors of approximate solutions derived by Algorithm 53 for Example 2

Table2 The CPU time of Algorithm 53 and the direct finite element method for Example 2

Mesh level Number of degrees of freedom Time of Algorithm 53 Time of direct FEM
1 4913 2.1944 2.1944

2 35,937 3.0003 24.5324

3 274,625 10.7252 289.6608

4 2,146,689 80.1640 7560.2502

5 16,974,593 676.3930 -
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Table 3 The value of 6y in

Algorithm 53 for Example 2 Mesh level The value of 6 The value of Resi
1 0.5 17.8814
2 0.5 8.9953
3 0.5 4.4768
4 0.5 2.2358
5 0.5 1.1355

7 Concluding remarks

In this study, we designed a novel multigrid method to solve the nonlinear eigenvalue problem
on the basis of the Newton iteration. The novel scheme transforms the nonlinear eigenvalue
problem into a series of linearized boundary value problems defined in a sequence of product
finite element spaces. Because of avoiding solving large-scale nonlinear eigenvalue problems
directly, the overall solving efficiency is significantly improved. Besides, the optimal error
estimate and linear complexity can be derived simultaneously. In addition, an improved
multigrid method coupled with the mixing scheme is also introduced. The improved scheme
can make the iteration scheme converge for more complicated models. More importantly, a
convergence result is derived which is missing in the existing literature on the mixing scheme
for nonlinear eigenvalue problems.
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