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In the current paper, we introduce an error analysis method and a new procedure to accelerate the convergence
of finite element (FE) approximation of the Steklov eigenvalue problem. The error analysis consists of three
steps. First, we introduce an optimal residual type the a posteriori error estimator, and prove its efficiency and
reliability. Next, we present a residual type the a priori estimate in terms of derivatives of the eigenfunctions.
Finally, we prove accurate the a priori error estimates by combining the a priori residual estimate and the a

posteriori error estimates. The new procedure for accelerating the convergence comes from a postprocessing
technique, in which we solve an auxiliary source problem on argument spaces. The argument space can be
obtained similarly as in the two-space method by increasing the order of polynomials by one. We end the paper
by reporting the results of a couple of numerical tests, which allow us to assess the performance of the new error
analysis and the postprocessing method.

1. Introduction

The Steklov eigenvalue problems are the eigenvalue problems that
the eigenvalue is on the boundary condition. In this paper, we are con-
cerned with the second-order type, which goes as follows,

—Au=0, in Q,
1.1
@ =Au, on dQ.
on
Here, Q is a bounded domain with a Lipschitz boundary and » is the unit
outward normal on the boundary. Such a problem has an increasing
sequence of eigenvalues (see [3]):

0< Ay SAp< oo

Steklov first proposed this problem and studied the bounded domains
in the plane in [23]. Since then, the problem was also found in many
other physics fields, for instance, in the study of the surface wave [4],
in the study of the vibration modes of a structure in contact with an
incompressible fluid [5], mechanical oscillators in a viscous fluid [10,
201], in the antiplane shearing on a system of collinear faults [7], etc.

* Corresponding author.

Researchers have applied different numerical methods to deal with
this problem. Bramble and Osborn [6], Andreev and Todorov [2] stud-
ied the conforming finite element methods for the problem. Yang [28]
applied the nonconforming finite element method to the problem and
gave the lower bounds for the eigenvalue. Han and Guan [11], Han,
Guan and He [12], Huang and Lii [14] and Tang, Guan and Han [24]
studied the boundary element method for the problem. Xie [26] and
Han, Li, and Xie [13] proposed a multilevel correction method for the
problem and largely increased the computation efficiency. Weng, Zhai,
and Feng [25] introduced the two-grid method for the problem. In the
paper, the standard finite element method is applied to the Steklov
eigenvalue problem, and a new error analysis method is developed with
the help of the method in [15].

For the main content of the paper, we would like to introduce some
works on the topics of the a posterior error analysis of the Steklov eigen-
value problem and the post-processing method as well. Armentano and
Padra [1] analyzed the residual type of the a posteriori error estima-
tors for the linear FE approximations and proved the efficiency and
reliability. Yang and Bi [27] provided the new local a posteriori error
estimates and the local a priori error estimates in (|| - ||, o,) norm for
conforming elements eigenfunction. Russo and Alonso [22] provided
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a posteriori error estimates of the non-conforming Crouzeix—Raviart
FE approximations of the Steklov eigenvalue problem. For the post-
processing method, Lin and Lii [19], Lin and Lin [18], Lin, Huang and
Li [17] applied the Richardson extrapolation for the elliptic eigenvalue
problems. Chen and Lin [8] extended the Richardson extrapolation to
the Stokes eigenvalue problems. Especially, for the Steklov eigenvalue
problem, Li, Lin, and Zhang [16] used the Richardson extrapolation to
improve the accuracy of the approximation interpolation, the Rayleigh
quotient accelerating techniques, and an interpolation postprocessing
method to get the superconvergence results of the bilinear finite ele-
ment.

In this paper, we mainly focus on two things: new error analysis and
a new method for accelerating the convergence of FE approximations
of Steklov eigenvalue problems. We provide the new error analysis in
three steps. First, we introduce an optimal residual type a posteriori er-
ror estimator, and prove its efficiency and reliability. Next, we present a
residual type a priori estimate in terms of derivatives of the eigenfunc-
tions. Finally, we prove accurate a priori error estimates by combining
the a priori residual estimate and the a posteriori error estimate. The
new procedure for accelerating the convergence comes from a postpro-
cessing technique, in which we solve an auxiliary source problem on an
argument space. The argument space can be obtained similarly as in the
two-space method by increasing the order of the polynomial by one.

The rest of the paper is organized as follows. In Section 2, we in-
troduce the abstractly formulated eigenvalue problem along with the
main theorem, which provides the lower eigenvalue bounds. Some re-
sults from the previous section are applied to the Steklov eigenvalue
problem to obtain lower eigenvalue bounds, taking care to give ex-
plicit error estimates for the projection operator in Section 3. Section 4
presents some computation results to demonstrate the efficiency of our
proposed method for bounding eigenvalues. Finally, in Section 5, we
summarize the results of this paper and discuss issues with the current
algorithm.

2. Preliminaries and main results
2.1. The finite element methods

In this subsection, we introduce the FE methods for the problem
(1.1).

Mesh. Assume that Q, is a family of shape-regular partitions of the
domain Q which is the union of disjoint open element domains K such
that the nonempty intersection of a distinct pair of elements is a single
node or edge. hx denotes the diameter of K. As usual, h = maxgeq, and
hg = diam(K).

Edges. The set of edges (or faces) of the partition Q, is denoted by
0Q,. I';,, denotes the union of all the interior faces of Q,, and the set of
faces that are not located in the boundary 9%, i.e.,

r.=UJ U F

KeQ) FEIK\oQ

09, = (0K : K € Q,},

Jumps. For each element K € Q, and a function v € H*(Q,), we
denote the interior (exterior) trace on 0K by ”1+<(U2)‘ Furthermore, the
inner trace and outer trace of the boundary 0Q are defined as follows:
vt =v(x) and v~ = 0. So the jump [v] and average value {v} are naturally
introduced

1
{U}F,j = §(U|K, +U|1<j),

here F;; = 0K; N dK; is the common edge.

Spaces, norms and inner-products. Let (-,-)x and (-, -) denote the
usual scalar products in L*(K) and L2(F), and || - ||;2x) and || - [l ;2
the corresponding norms. We also use the following notations:

[U”Fu :U|1<, _U|st

(U, w)q = / u(x)w(x)dx,

Q

91

Computers and Mathematics with Applications 144 (2023) 90-99

ww, = Y wwyx= Y [ uEwxdx,
KeQ, KeQy, X
(U W)y i = Z (u,w)p = Z /u(x)w(x)ds,
FeoQ FeoQy,
(u,v-n)dgh = Z /u(x)(v(x)~n)ds,
KeQysh
(w,v-m)p 1= 2 u(x)(v(x) - n)ds,
Ferim F

where v - n is the vector inner product. In addition, H*(K) is the stan-
dard Sobolev space. The associated norm and seminorm are defined,
respectively, by

2
D ||v||i,S(,<)> .

||U||H3(Qh) = (

KeQy
and
1
) 2
lollsa, = X ok )
KeQ,
where || - || sk, is the Sobolev norm on K, and |v|ls g := ||Vu||2Lz(K).
For simplicity, we denote || - || : = - s, and V := HY(Q).

The finite element space is defined as follows

V,={reC@,) : vlx € P'(K), VK €Q,),

where 2"(K) denotes the set of polynomials of total degree r on the
element K.
For v € H*(Qy,), we define the following mesh-dependent norm

2
lollg, = 2,

FeoQy, F

[v)%ds.

FE approximation. We describe the FE approximation of the
Steklov model problem (1.1). First, we introduce the classical weak
formulation of (1.1): Find the eigenpair (4,u) € R X V satisfying
(Vu, Vo)g = Ku, v)sq,

YveV. (2.1)

Now we define the finite element approximation scheme corre-
sponding with (2.1): Find the eigenpair (4,,u,,) € R x V,, satisfying
(2.2

(Vuy, Vop)g, = A, Up)oqs Yo, €V

Projections and Interpolation. In our subsequent error analysis,
some appropriate interpolant and projection operators play important
roles. Here we recall their properties. First, we list the standard approx-
imation results of [1]: For any v € H*(Q), there exists an interpolant
operator II such that ITv € ¥, and

llo = Tloll 2, < CAIVoll 2 - (2.3)
_ 2 < 2 .
llv HU”LZ(F)—Ch”VU”LZ(F)’ 2.9

for any element K € Q,, where K is the union of all the elements shar-
ing a vertex with K and F is the union of all the elements sharing a
vertex with F.

For an arbitrary function v, € ¥}, and an arbitrary element K € Q,,
the image P,v, to K is a element of the invariant eigen-subspace £(A)
associated with the eigenvalue subset A that satisfies

(Pyvp, — vt =0, Yu € E(A). (2.5)

For any face F €T and given a function & € L(I'), the image P,¢ to a
face F of K is a element of &.(F) that satisfies

<P6§_§’M>F =0, VM E‘%(F) (2-6)
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Adjoint equations. To prove our error estimates in the approxima-
tion of the eigenvalue A and eigenfunction u, we need to introduce the
adjoint equations

-Ap=0,
o¢

— —1¢p=0,
on ¢

in Q,
2.7)
on 0.

with a regularity assumption
||¢||H2(Q) < C||9||L2(Q)~
2.2. Main results

Let 4;(i=1,2,..,0) and A denote the i-th eigenvalue and a subset
of the spectrum of the Steklov eigenvalue problem, respectively. £(A)
denotes the invariant space associated with the eigenvalues in A. For
example, £(4;) is the eigen-subspace of the individual eigenvalue 4, i.e.,
A={4}.

Let (4,.u;) be an approximation eigenpair with the normalization
lupll 129y = 1. We define the error of eigenfunction in u;, with respect
to £(A) by

Opup i=uy — Pyuy = — Py)uy,.

For example, if A is the set of individual eigenvalue 4, then O, describes
the error of the eigen-subspace £(A). In order to continue to discuss
our error analysis, we need the following assumption: There exists a
sufficiently small constant § € [0, 1) such that

-4
<9,

h
213 Pl 19Ul 20) < 6, llup = Pyupllj290) <6. (2.8)

Theorem 2.1 (Reliability). Let {4; ,u; ,} with ||lu, |l 240y = | be an eigen-
pair solution of (2.2) and {u, A} with ||ull 1250y = 1 be a solution of (1.1).
Assume that (2.8) holds. Then we have the following the a posterior error
estimates: for the error of eigenfunctions,

||DmQA“j,h||L2(Q)SCh2_m z Ry rUjp, A1) m=0,1.

KeQy

and for the error of the eigenvalues,

Ajp— A SCh? Z R rWjp A p)-
Ke,

where the estimator is defined by

_1
Rk rWjp.Aj ) =CRgW;p)+Ch 2Rpu;p, 4; p)

where Ry (u;p) = ||Auj’h||L2(K), and

1y 94
_ 5“[#]”[‘2(}‘), Fely,
RF(uj,h’/‘lj,h)_ d“/,h
” o Aj’huj,hlle(F), F €0Q.

According to the results of Theorem 2.1, we provide a natural re-
sult for discrete invariant subspaces in the following corollary. These
bounds of corollary are very useful when we approximate the eigen-
subspace of the multiple eigenvalue or eigenfunctions associated with
a small cluster of closed eigenvalues. &,(A,) denotes the discrete in-
variant subspace of the discrete eigenvalue subset of A,. We define a
natural measure of the distance between the space £ := £(A) and the
space &, 1= &,(A,) as follows:

dist(&é‘h)Lz(Q) = Esug) ||(I—PA)§||L2(Q),
CEE

12l 2 g, =1

dist(€,&)s = sup ||(I = Py)lls
ceé,

cSCh
el 2 gy =1

in the sense of the different norms.
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Corollary 2.1. Let &, be an approximation of £ and the conditions of The-
orem 2.1 hold. Then for the error between &, and &, we have the error
estimates:

dist(€, ) 2) SCh* Y\ Ry p (& Ap)s
KeQy

dist(€,&,)5 SCh Y Ry p(E Ap),
KeQy

where Ry p(£,.Ay) is the vector function whose j-th components are
Y Rirlpdip), j=1.2.....m,
KeQ,

and m is the multiplicity of the eigenvalue.

Theorem 2.2 (Efficiency). Let the eigenpair {uy, A} with |lu |l 2, =1
be the solution of (2.2) and the eigenpair {u, A} with ||ull ;2q) = | be the
solution of (1.1). Assume that (2.8) holds. Then, for the error of the eigen-
function, we have the following lower bound estimate:

Z hxRg r <CllQauplls-
Ken,

Now we turn to describe the a priori error estimates.

Theorem 2.3 (The a priori error estimate). Assume that the conditions of
Theorem 2.1 hold. Then, for the eigenfunction error, we have the following
a priori estimates:

”QAuh ||L2(Q) < Cthm{V+l,S) ”PA“h ”H»‘(Q)7
Qpuplls < ChmntrFLsI=L 1 Pxupl grs)-

For the eigenvalue error, we have

A= A< CR2™M 2By .

We end Section 2 by illustrating how to exploit the superconver-
gence property to post-process 4, and u, to get a better approximation
solution to the eigenvalue A defined as follows.

We introduce a better approximation (l\h,ﬁh) of (4,u), as the element
of R x I7h ((ZX= 17,, C V) presented by the following algorithm.

Algorithm 2.1 (H). Superconvergence algorithm

1. Find the eigenvalue problem (2.2) for (4;,u;) € R X V,.
2. Find the solution of the following source problem with Neumann
boundary condition ddi: =uy: Find i, € V,, such that

(Vi Vop)g, = (Uh:p)og: Yo, €V (2.9)

1
Sunsith)o”
4. Evaluate 4, = Ayuy,.

3. Compute ;l\h =

The fact that Eh provides a better approximation to the eigenvalue
A than 4, is discussed in the following result.

Theorem 2.4. Assume the conditions of Theorem 2.1 hold and A, comes
from Algorithm 2.1. Then, for the eigenvalue error, we have the following
superconvergence

i‘h ] < Ch2min(r+l,s]—1 ”PAuh”HA(Q)'
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3. Proofs of main theorems
3.1. The a posteriori error estimates

The main purpose of this subsection is to present the proof of the
reliability (Theorem 2.1) for eigenfunctions and the eigenvalues and
efficiency (Theorem 2.2) for the residual error estimator introduced in
Section 2. Our idea is to convert the a posteriori error representation
into an a posteriori error estimator which is used in adaptive algorithms.
In the following, we begin with the first step of the proof that states
the following intermediate result for the errors of the eigenvalue and
eigenfunction approximations.

Lemma 3.1. Assume that u,, is the solution of (2.2) and 6 € L%(Q). Then
we have the following identity:

a
(Up. ), =(~Auy. ¢ ~ ), + <% — Iyt~ H¢>
0Q

6uh] >
+ — |, +
< [ on Cint AZ;‘A ’

('9 Pi )Qh (uh,(p >a§z B.1)

where {¢;}?, are an orthogonal basis of eigenfunctions in L*(Q) associated
with elgenvalues {412,

Proof. Using the dual problem (2.7) and the integration by parts, we
have

P
(uh,O)Qh = (uy, _A¢)9h =— <uh, % >ag + (Vuy, V(ﬁ)gh
h
2
= — (. A + <%,¢> +(~Auy g,
09,

+(—Auy.d —Tig)g,
0Q,

= —Mup, oo + <aail:'¢>

+(—Auy, Tip)g,
=—Mup, Phaq + <0‘3L‘:l’¢>mh + (—Auy, ¢ —1lg)q,
<(3uh
on’

ouy,
= —Mup, PYoo + <a_’¢> + (—Aup, ¢ —T)g,
n Q)

H¢> + (Vuy, VH¢)9h
o),

ouy,
n’ e + Ap(up, Td) g
n oy,

by the integration of parts and the discrete problem (2.2). Next, we
consider the combination of the integrations on the boundary, i.e.,

(), (Gme) 0, =[50 -me)
on’ Q) dn Q) Cint
(Saemm)

0Q

(App, TPYaq — (Aup, Do = (Aptt, Tl — g + (4, — Dup, h)oq-

Inserting the above two identities into the first equation induces that

and

du
Uy 0)q, =(—Auy. o~ g, + <a—l:' — Ayl p— qu;>aQ

duh
+ ¢ —1¢ + (A = Dup, Do
Lint
For the above representation, we need to express the last term, i.e.
the solution of dual problem (2.7) can be expressed by 6 and the eigen-
functions ;.
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Assume that 4 & A, 1 € A and (A4,u) and (1, ¢) are the solutions of the
problem (1.1) and the dual problem (2.7), respectively. By using the
problem (1.1), the integration by parts, and the dual problem (2.7), we
have

(—Ad,u)g = —Kp.u)gq + M, ugq + (b, —Au)g = (A — D) (¢, u)gq.

On the other hand, using the dual problem (2.7) with 6 = uj, — Pyu, =
Quy,, we have

(A, u)g =(0,u)q = (u), — Pyup,u)g =0,

by the definition of the projection P,. From the above two equations,
1¢ A and A € A, we have

(¢, u)an =0.

i.e. the dual solution ¢ is orthogonal to an arbitrary eigenfunction of
subspace £(A) in the sense of inner product (:,-);q. Since {p;}2, are
an orthogonal basis of eigenfunctions in L? associated with eigenvalues
{Ai}2,> ¢ can be expressed by

¢= Z X @i,

WEN
where x; is the unknown coefficient. To obtain them, we need to discuss
the property of eigenfunction ¢; on the boundary. Since ¢; and ¢; are
the solutions to the problem (1.1) with the differential eigenvalues 4;

and 4;, we have that

29; 1
- /V(Pivfﬂj = 2
Q

(@ ® )00 =~ =
Pi>Pjlo = /1 an<P 7

0Q

4

- (pi@ j){)Q’
1

by Gauss formula, which implies that

(78 P doa =0.
It follows from ¢ = 3, 2, x;¢; that

1 99;
x; ={¢. ¢;)aq = (&, /1 on — oo
=— [ (Ap)p+ — / Vo, - V¢ (by Gauss formula)
= / / @;(A¢)  (by Agp; =0 and integration by parts)
= 1—(05, @i)oa — /1—(9,@)9 (by the dual problem)
So we have
_ ((/’,’79)9 ; o, (P,)Q
Y=g e o 27

igA 4;

Inserting the above expression into (4, — A)(u,,d),q completes the
proof. [

From Lemma 3.1, it is easy to see the first three terms are easy to
estimate by the approximation property and the stability of the dual
problem, while the last term will be tackled in the next lemma.

Lemma 3.2. Assume that u;, and ¢ are the solutions of (2.2) and (2.7) and
the projections P, and P, are defined in Section 2. Then

(up — Paup)|?

L@’
3.2)

A—
. < Ch? Ry (up, A
[(ups Dhoql < kWp, Ap)g, +£1rilg/)§ pp

Proof. It follows from the fact that ¢; is orthogonal to the subspace
E(A), Pyuy, and Pyu, € E(A) that
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0, 9)q 0. 9)q
(s Ploa =Y, /1_'/1 (@Yo = ), /1_1/1 (up = Py, 0;)o
ALEN i A& i
0=(—A)"Q \u AT O, @)
T\ Poun @)oo
LEA i

>%

< A3
<t (B ek

1

3
X < 2 (up — Pauhv(ﬂi)Sg)
LA

< Cmdx (3.3)

”DmQA”h)”LZ(Q)”uh - Pyuy, ”L2(()Q)a

1
AlA— 4]
where we use the facts that (VO uy,, V,)q = 4;{Opup, ¢; )50 and

Y (VOAu Vo)l

LEA

<IDQAu, I3, Z 1Vill32

Z A; m(QAuh @1)@9

LEN

= CIDQA 2, g

We are now ready to bound ||u;, —
following auxiliary problem

{

The following identity plays an important role in bounding |lu;, —
Pyull;2(50)- Using similar techniques as in Lemma 3.1, we have

Pyupll1290) in (3.3). Consider the

—A¢, =0, inQ,

3.4
—A$; =6, on oQ. 3.4

9

on

(ups 01 )aq = (Ups (up, A1 )oq
= (up, Ady)q, + (Vi Vobi)o, — (up. A1 )aa

1
on >6£2

ouy,

= (—Aup, ¢, —n¢1)9h - <%’¢1 - l_I<I31>
T,

duy,
- <E — Apttp, by — H¢l>og
= (A = Wup, @1 o

by using the Gauss formula in the second and the third lines, and fact
A¢; =0, and the discrete problem (2.2) in the third line. It follows
from the problem (3.4), integration by parts, the orthogonality of the
projection P, and 0, |,q = (u), — Pyup)|yq that

o,
on /o
By A ¢ A and 4; € A, we have, for u € E(A), (u, ¢ )y =0. For (u,,¢,),

we again use the same techniques as in Lemma 3.1 in order to conclude
that

int

1 1 A
(#1100 = <(ﬂn ;((ﬂiﬁl)og = 7’(@n¢1)o9-

(Up: #1)aq < max [ D™ (uy, —

Pyu .
max o Unll 120

W Prup)ll g2y lluy —

At the same time, taking 6, |, = (), —
of P,, we have

Pyup)ly0 and using the definition

(ups01)a = (upup = Pyupdoq = llup — Py "h”Lz(,,Q)

Combining all the intermediate steps implies that

ouy,
Nl = Pyl 5 ) < 1(=Butppy = H¢1)9”|+<an M, ¢1>F
int
w|( % _; ¢, - T
on hUn> P1 1 o
A=Ay
+£111ng i, 1D (uy, = Paup)ll 2y llup — Pyupll 1296
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We estimate the first term of the above inequality by the Cauchy-
Schwartz inequality and the approximation property (2.3) to get

|(=Auy, by = Tgp))g, | < [1Auyll 1200 - CH D1 1l 2

Next, we turn to bound the second and the third terms. It follows from
the approximation property (2.4) and again the Cauchy-Schwartz in-
equality that we have

()uh
21 =1,
Tint
duy,
on
By using the simple and miscellaneous calculation for the above threes
inequalities, we have

+

ouy, i ¢
on hln P

<C

-2
E) h“h

ou
13 11yl +C”—

3
h2d1ll g2 -
r Q)

int

- 2
lup, — Pyuyll? < Ch* Ry (up, Ap) + max | —— | D™ (u, —

Pyup)l)?

12(0Q) = L2(Q)

Substituting the above inequality into (3.3) completes the proof. []

Now we first present the residual of the approximation solution ac-
cording to the identity in Lemma 3.1. Then we bound the right-hand
sides in the error expression formulas in terms of the residuals and the
regularity assumption of the dual problem.

The residuals are the combination of the following three parts: the
residual of equation ||Auy|| 2, arising from the element domain, the
[ o ] describing the magnitude of the discontinuous of

L2(T )
the normal derivatives across the interior edges of the element and the
residual “ ’;Llf - /lhuh” of the boundary condition arising from the

jump

L2(0Q)
boundary of domain Q.

The proof of Theorem 2.1. For the residual in (3.1), we obtain similar
results by similar techniques in Lemma 3.2. Then we aim to bound
I D™ (up, — PAuh)”LZ(Q) = ||DmQ/\”h||L2(g)-

Taking 6 = (—A)"Ou,, and using the definition of P,, we have

(ups (=A)" Q)

Inserting the above equation and (3.2) into (3.1) and using the approx-
imation properties (2.3)—(2.4) and Cauchy-Schwartz inequality imply
the desired results for the eigenfunction.

Finally, we turn to the error estimate of the eigenvalue. The main
idea of error estimate is to express the eigenvalue error representation
formula similar to the eigenfunction.

To obtain a representation formula of eigenvalue error, we choose
0 =0 in the dual problem, which implies that (3.1) can be written as
follows:

(uhag)ﬂh —”D QAuh”LZ(Q)’ m=0,1.

duy,
0 =(—Auh,¢ - H(l))_Qh + <0— - }‘huh’d) - H¢>
n oQ

< [ ] o- n¢> + Gy = D, Bhogy

Fmr
On the other hand, we observe the fact that the Steklov eigenvalue
problem (1.1) is the same as the dual problem with 6 =0, i.e., Pyu, =¢
is the solution of the dual problem. Further, using the assumption (2.8),
we have

(Ups Daq = (up, Pyup)an = (up — Pyup, Pyuy)aq + (Pyuy, Pyuy)aq

—||Pa”h|| Pa"h” >1-34.

= Ml = L200Q) =

Lz(dﬂ)

Inserting this inequality into the identity above, we obtain the eigen-
value error representation formula
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ouy,
(1 =0)(4p = D) £ = (-Auy, ¢ — Mg, — < [ ] ,¢—H¢>
T,

‘on

duy, a b—Tig
—( — = Ayuy, p— .
on hZh 20

For the above inequality, using the approximation property (2.3)—(2.4)
and Cauchy-Schwartz inequality completes the proof of Theorem

2.1. O

int

The remainder of this subsection is devoted to the proof of effi-
ciency for the error estimators Rg (u; ;) and Rg(4; ;.u; ). The efficiency
ensures that the true error will be an upper bound for the resulting es-
timators up to a generic constant and some high-order terms.

The proof relies on the bubble functions which are developed in
[29]. In general, they are positive, smooth, real-valued, local compact
supports and bounded by 1 in the sense of the L®-norm. In order to
describe some properties of the bubble function, we introduce the de-
notations as follows.

Let by be the standard polynomial bubble function with support
in the element K which vanished on the edge of K. Similarly, for any
interior edge F, the polynomial bubble function is denoted by b, which
vanishes outside the closure of Kj; UKL, where Kj; and K} are the two
adjacent elements sharing the common edge or face F. Some properties
of the bubble function are collected in the following lemma which is
seen in Lemma 3.3 from [29].

Property 3.1. For all polynomial functions v € %" (K) and the bubble func-
tions by and by, we have

||bKU||L2(K) SC”U”LZ(](), (3.5)
1
”U”LZ(K) SC”I’,Z(U”LZ(K), (3.6)
”bKU”sK ShEIHU”LZ(}()- 3.7)
For all polynomial functions w € 9" (F), we have
||bFCU||L2(F) < Cllwlle(F), (3.8)
1
”(U”LZ(F) < C||b;a)||Lz(F), (3.9
1
”wa”Lz(K;uK;) < Chz-”a)”LZ(p), (3.10)
-1
”wa”S,K;UK; < ChF2 ||w||L2(F)' (3.11)

Lemma 3.3. Assume that (4; ,,u; ) is an eigenpair solution of (2.2) which
converges to eigenvalue 4;. Then we have the following local bound:

1

2
< D h§(||Auh||iz(K)> < Cdist(u; . E(A))) 5.0, -

KeQy

where u; be the minimizer of dist(v, kg, = Lneignv -ollsq,

Proof. For arbitrary element K, let v,|x = hiAulyh - by, then

hiRi(ujyh):hi”AuJ-vhlliz(K) SC/AuM - vpdx
K

by using (3.6). Since Au ;=0 is satisfied in a distributed sense, we then
have

Ri(uj’h)sC/(A(uj,h—uj))vhdx
K
:—C/V(uj’h—uj%VUhdx
K

by the integration of parts and the fact that vj|,x = 0. Using Cauchy-
Schwartz inequality, inverse inequality, and (3.5), we have
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2
Rk(uj,h) < C||V(uj,h - uj)“LZ(K) . ||VUh||L2(1<)
<CIV ;L= uPll 2k - Chg Nogll 2k
< Ch;(l ”V(”jj, - uj)” L2(K) " h%( ”Auj,h” L2(K)
Using the fact Rg (u; ) = [|Au; |l 12(x), we end up with

RK(uh) < ChK ||V("j,h - uj)”LZ(K)- O

Lemma 3.4. Let (4;,u; ) be an eigenpair solution of the problem (2.2)
which converges to A; of multiplicity R > 1. Then we have

1
2 2
ou;
J.h
RF(u,,,,,/lj,,,)=< 2 hx on )
Fely, L2(F)
5 1
ou; 2
j.h
+< 2 | = M >
FeoQ L2(F)

< dist(u; . E))s.0, +hll A5 = A1 505 1l 1200

Proof. For the interior faces and domain faces, taking uv| Fer,, =

ou; . .
hp [ 1;;" ] bp and vy|pesq = hr ((),)L.f - Ahuh) by respectively, and using
(3.9), we have

1
ou. , P 2 du;
< Z hp L ) <C Z / [ J’h] vpds,
FeT om |l 2 FET 4. on
and
) 1
ou; 2 ou:
Jj:h Jj.h
<2 hp 'y —Au; ) <C Z /<—6n _Aj,huj,h> Upds.
FeoQ L2(F) FeoQ

Using the fact that [g—:]
have

ou; ou;
2 J.h J
Ry ps A 1) SCFEEF / [W - E] - vpds

du
- =0 for any face F and —I|peaq = 4ju;, we

int F
ou;, Ou;
+C ) / <—j -y - ij,h”f'*"> unds
ezl on on
=C 2 ((A“j,h)vh + Vi, —up) - Vv,,)dx
Fel'y,

KFUKp
+C ) /(Ajuj — A attj )0pds,
FedQF

by using the Gauss formula and Au; =0 in the third line. We bound the
right-side hand of the term by term in the above equation. For the first
term, it follows from the above Lemma 3.3, Cauchy-Schwartz inequal-
ity, and (3.10) that

2

Feljy + -
KUK,

Auj p, - vpdx

-1
<C Z hK”Auj,h”Lz(K;YUK;)'hK ”Uh”LZ(K;iUK;)
Fel;,

<C Y lun=ujllskrox
Feljy

1 1
2 2
2 -2 2
<l X Mwn=ulZy ) (2 AI0AE k)
KeQ, Fely, L

Slujp—ujlls - Rp@;p, 4jp)-

-1
% ||Uh||L2<K;uK;)

For the second term, using (3.11) and again Cauchy-Schwartz inequal-
ity, we have
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2

Feljy + -
KpUKy,

V(u;p—u;)- Voudx

< ||“j,h - uj”S“Uh”S < C”uj,h - uj“S “Rpujp, 4 ).

For the last term, using (3.8), we have

Z /(Ajuj _Aj,hujAVh)UhdS
FebQF

ou;
j.h
<C Y WAy = Ayt all 2y on it
Feao 12(F)
(314”,
SChllAju; = A; 5u; 4l 2000) n AjpUjp .
L2(0Q)

Combining the all above intermediate steps completes the proof. []

The proof of Theorem 2.2

Proof. The efficiency in Theorem 2.2 follows immediately from
Lemma 3.3 and Lemma 3.4. [

3.2. A priori error estimate

In this subsection, we present the proof of the a posteriori-priori er-
ror results for the standard finite element method applied to eigenvalue
problems. For the FE approximation of the problem (1.1) by the dis-
crete problem (2.2), our priori error analysis depends on the following
Ritz projection R,, : H'(Q) — V},, defined by
(Vu,Vo)g =(VR,uu, Vu)q,

Yo EV,. (3.12)

The main implementation in the a priori error analysis of Theorem 2.3
is the following approximation proposition: the weighted a priori error
estimate of the Ritz projection.

Property 3.2 ([15]). Assume that the partition is uniform. If ve H*,1 <
s < p+ 1. Then we have

1A~ DU = Ryl 2y < CIR 2D 0| 2, 1<s<p+1,

where a =1,2,3.

The proof of Theorem 2.3:

Proof. To prove the result, we use ¥ to denote H> nkerA. Let T :
L*(Q) - V with % = A0 for any v € L*(Q). Set u = Tuy, in Ritz projec-
tion (3.12), we have

(VR, Ty, Vop)g, = (VTu,. Voy)g,

_/ oTu,

" vhds—/ATuh - vpdx
0Q Q

= Ap(ttp, Up)ogs

by the integration of parts and the definition of the operator 7. Using
the approximation problem and the above equation, we induce that

u = RyTuy,.

So we can express the interior part of the residual as follows

Aup, = AR, Tuy — ATu, = ARy, — I)Tuy,.

The rest of the proof is similar to the proof of [15, Theorem 4.2], and it
is omitted for brevity. []
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3.3. Postprocessing

In this subsection, employing the idea developed in [21], we ex-
tend the methods to the FE approximation of the Steklov eigenvalue
problem (1.1). We describe and prove a postprocessing algorithm that
presents a better approximation with a superconvergence for the post-
processed eigenvalues. The essence of our new method consists of the
following two steps: First, solve the finite element approximation of the
eigenvalue problem for a given finite element space V},. Next, solve the
uh

2
E—uh on an

argument space. We introduce an additional FE space ¥, such that

additional source problem with the Neumann condition

V,CV,={v:ve H'(Q).v|]x € P (K).VK €Q,} CV.
Considering the following finite element approximation of elliptic prob-
lem (source problem): Find u), € V}, such that

(Vi Vo)g, = (U V)og.  Y0u €V (3.13)

After doing the necessary work, now we describe a postprocessing
Algorithm 2.1, which will present a much better approximation )Th of
the eigenvalues. In order to prove the better approximation property
of ;1\,,, we introduce an auxiliary problem defined as follows: Find the
solution & € V such that

(Va, Volg, = (up, VYo, YVEV (3.14)

Then we can evaluate the real number

7o _ 1 (3.15)
(Up,oq

Lemma 3.5. (4,u) and (A,,u,) are two eigenpairs of problem (1.1) and
discrete problem (2.2), respectively. Assume that ||ull 125, = llupll 200) = 1-
Assume that u be the §oluﬁon of the source problem (3.14) with Neumann
boundary condition g—[‘: laq = Up. 4 is computed by (3.15). Then

7 _ 2
A= T < Cllu=upl?,

Proof. Consider the Neumann problem with Neumann boundary con-
dition g € L?(aQ): Find & € V such that

(VE,Vu)g =(g. V). VweEV. (3.16)

The solution ¢ of the above problem defines the operator S : L2(0Q) —
v,
Sg=¢.
So the solution to the Steklov eigenvalue problem (1.1) can be expressed
through the operator S : u = ASu. Indeed, consider the problem (3.16)
with g = Au. Therefore, the solutions of (3.16) and (3.14) are u = ASu
and u = Su,, respectively. By the definition (3.15) of 1, u = ASu and
el 200) = lunll 20y = 1, we have
A= TN = (u, Su)an — (up, Sup)gn

=2u, Su)aq — 2up, Su)ag — (4 — up, S —up))aq

1
= z(” —Up, = tp)aq — (U —up, SU—up))sq,

by the symmetry of the operator S in (-, -),o. We obtain that

4= 21 < A+ 220l 2ag)llu = unll} 0, O

Next, we estimate [|u — upll 12(90)- BY the Ritz projection and its ap-
proximation property, trace theorem and inverse inequality, we have
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Mesh after 13 iterations

Fig. 1. The initial mesh (left) and the one after 9 adaptive refinements for the first five eigenvalues (right) for the L-shaped domain.

llu = upll [2000) < llu— Ryull 1290y + I Ru — upll 1290

1
llu—Ryull?

1
<Cllu= Ry} e

_1
r@ )+Ch 2| Rpu — upll 2
N 1 1
<CR™™ )l oy + Ch2 (| Ry = ull + [l = upllo.0)
. 1
<SR | s -

The proof of Theorem 2.4

Proof. By the triangle inequality, we have

[A= 2yl 1A=+ 17 =2y

Lemma 3.3 has shown that the first term is bounded. So the only
second term needs to be estimated. The techniques are similar to those
in the estimate of the first term 4 — A. Using the definition of 4 and 1,,
and equations (3.13) and (3.14), we have

- 2;' = (up, ) gq = (Up, ) 9o = (Vii, Vi)g — (Vi Vity)g,

= (V@ —=uy), V@ - Vh))gh ,
by the orthogonal property (V(u —1u,), VE,,)Qh =0. Indeed, let v=v;, € 1%
in (3.13) and subtract (3.13) from (3.14), we obtain the orthogonality.
On the other hand, u), € V,, is the finite element approximation of the

problem (3.14). Using the standard finite element error estimate [9],
we have

V@ =Gl 120y < CR™™ @] s .-

The above equation and inequality then lead to

M-_l _ A;ll SCh2mm(r+l,5)”’1/7”H§(Q)’

ie.,

|4 = ap] < CAZ, RS 3

which together with Lemma 3.3 completes the superconvergence
proof. []

4. Numerical experiment

This section presents two numerical examples that would allow us
to assess the theoretical results proved above. First, we illustrate the be-
havior of an adaptive algorithm that is driven by the error estimator in
the L-shaped domain. Then the superconvergence of the postprocess-
ing algorithm is investigated on model problems. With those aims, we
implement in MATLAB code a first-order finite element on triangular
meshes.
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The posterior error estimator

the first 5 eigenfunctions | |
== slope=-1/2

Errors

.
10° 10 10°
Number of elements

Fig. 2. Mesh efficiency of the a posteriori error estimator of the first five
eigenfunctions for adaptive refinements with FEM (“Adaptive FEM”) on the
L-shaped domain.

4.1. Experiment 1: adaptive algorithm

The first example is the Steklov eigenvalue problem (1.1) on the
L-shaped domain Q = [-1, 112/([0, 11X [~1,0]). This problem is very pop-
ular in the numerical experiment because the regularity is broken on the
original point (reentrant corner). The initial mesh is a uniform struc-
tured mesh of 96 elements. In Figs. 1-3, we show the efficiency, that
is the observed accuracy of TOL versus the number of elements, of the
meshes obtained by using estimator, and global (uniform) refinement.
We see that estimator mesh refinement yields more economical meshes
than simple uniform refinement.

Fig. 1 shows the initial grid and the adaptively refined grids ob-
tained with adaptive procedures on the L-shaped domain by using the
estimator for the first five eigenvalues.

We show the efficiency of the a posteriori error estimator with that
achieved by the first five eigenfunctions in Fig. 2.

Fig. 3 illustrates the error curves for the obtained first five eigenval-
ues on the adaptively refined meshes with FEM schemes. We also see
that the estimated error reflects the predicted behavior with a line of
slope —1, which corresponds with the optimal convergence order.

4.2. Experiment 2: superconvergence of eigenvalue

The efficiency of the postprocessing techniques is illustrated in
problem (1.1). Assume that eigenfunctions are known and the eigen-
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Eigenvalue errors

Errors

" s
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Number of elements

Fig. 3. The errors for the first five eigenvalues using adaptive FEM on the L-
shaped domain.

Errors for the 1st eigenvalue
107 T T
Q-

(=" slope=3

Errors

1t L L
2 o 0

10
Size of element

Fig. 4. The convergence rate of the first eigenvalue for the postprocessing
method on the unit square domain.

functions of the example are enough smooth. Therefore, there are no
restrictions concerning regularity.
We consider the Steklov eigenvalue problem

—Au=0,

a—”—lu:O,
on

in Q,

on 0Q,

where Q = [0, 1]%. The exact eigenpair (4, u) of this problem is unknown,
we use the accurate enough approximation A = 0.2400790830800452
given by extrapolation method in [18]. In the example, the order of
polynomials is 1. In Fig. 4 we plot the true error for the first eigenvalue
against the size of the mesh. We also see that the estimated error re-
flects the predicted behavior with a line of slope 3 which corresponds
to the superconvergence rate.

Fig. 5 presents the superconvergence behavior of the first four eigen-
values using the FE method’s postprocessing procedure. Because of the
postprocessing techniques, it is ready to see that the convergence rate
has been considerably accelerated. A line of the slope is 3, which corre-
sponds with the superconvergence.

5. Conclusion

In this paper, a new error analysis technique is presented for the FE
approximation of the Steklov eigenvalue problem. The error estimates
of the eigenvalue are reliable and efficient as well as the energy error
estimates of the eigenfunctions. Our numerical experiment 1 has illus-
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Errors for Eigenvalues

A 4
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Errors

10 107 10
Size of Element

Fig. 5. The convergence rate of the first four eigenvalues for the postprocessing
method on the unit square domain.

trated the efficiency of the resulting error estimators which generate
the optimal grids. In addition, we propose a post-processing technique
that provides superconvergence for the eigenvalues. For other classes
of problems, such as the fourth-order Steklov eigenvalue problem, the
spectral superconvergence of finite element methods is under investiga-
tion.
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