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In the current paper, we introduce an error analysis method and a new procedure to accelerate the convergence 
of finite element (FE) approximation of the Steklov eigenvalue problem. The error analysis consists of three 
steps. First, we introduce an optimal residual type the a posteriori error estimator, and prove its efficiency and 
reliability. Next, we present a residual type the a priori estimate in terms of derivatives of the eigenfunctions. 
Finally, we prove accurate the a priori error estimates by combining the a priori residual estimate and the a 
posteriori error estimates. The new procedure for accelerating the convergence comes from a postprocessing 
technique, in which we solve an auxiliary source problem on argument spaces. The argument space can be 
obtained similarly as in the two-space method by increasing the order of polynomials by one. We end the paper 
by reporting the results of a couple of numerical tests, which allow us to assess the performance of the new error 
analysis and the postprocessing method.
1. Introduction

The Steklov eigenvalue problems are the eigenvalue problems that 
the eigenvalue is on the boundary condition. In this paper, we are con-
cerned with the second-order type, which goes as follows,

⎧⎪⎨⎪⎩
−Δ𝑢 = 0, in Ω,
𝜕𝑢

𝜕𝐧
= 𝜆𝑢, on 𝜕Ω.

(1.1)

Here, Ω is a bounded domain with a Lipschitz boundary and 𝑛 is the unit 
outward normal on the boundary. Such a problem has an increasing 
sequence of eigenvalues (see [3]):

0 < 𝜆1 ≤ 𝜆2 ≤⋯ .

Steklov first proposed this problem and studied the bounded domains 
in the plane in [23]. Since then, the problem was also found in many 
other physics fields, for instance, in the study of the surface wave [4], 
in the study of the vibration modes of a structure in contact with an 
incompressible fluid [5], mechanical oscillators in a viscous fluid [10,
20], in the antiplane shearing on a system of collinear faults [7], etc.
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Researchers have applied different numerical methods to deal with 
this problem. Bramble and Osborn [6], Andreev and Todorov [2] stud-
ied the conforming finite element methods for the problem. Yang [28]
applied the nonconforming finite element method to the problem and 
gave the lower bounds for the eigenvalue. Han and Guan [11], Han, 
Guan and He [12], Huang and Lü [14] and Tang, Guan and Han [24]
studied the boundary element method for the problem. Xie [26] and 
Han, Li, and Xie [13] proposed a multilevel correction method for the 
problem and largely increased the computation efficiency. Weng, Zhai, 
and Feng [25] introduced the two-grid method for the problem. In the 
paper, the standard finite element method is applied to the Steklov 
eigenvalue problem, and a new error analysis method is developed with 
the help of the method in [15].

For the main content of the paper, we would like to introduce some 
works on the topics of the a posterior error analysis of the Steklov eigen-
value problem and the post-processing method as well. Armentano and 
Padra [1] analyzed the residual type of the a posteriori error estima-
tors for the linear FE approximations and proved the efficiency and 
reliability. Yang and Bi [27] provided the new local a posteriori error 
estimates and the local a priori error estimates in (‖ ⋅ ‖1,Ω0

) norm for 
conforming elements eigenfunction. Russo and Alonso [22] provided 
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a posteriori error estimates of the non-conforming Crouzeix−Raviart 
FE approximations of the Steklov eigenvalue problem. For the post-
processing method, Lin and Lü [19], Lin and Lin [18], Lin, Huang and 
Li [17] applied the Richardson extrapolation for the elliptic eigenvalue 
problems. Chen and Lin [8] extended the Richardson extrapolation to 
the Stokes eigenvalue problems. Especially, for the Steklov eigenvalue 
problem, Li, Lin, and Zhang [16] used the Richardson extrapolation to 
improve the accuracy of the approximation interpolation, the Rayleigh 
quotient accelerating techniques, and an interpolation postprocessing 
method to get the superconvergence results of the bilinear finite ele-
ment.

In this paper, we mainly focus on two things: new error analysis and 
a new method for accelerating the convergence of FE approximations 
of Steklov eigenvalue problems. We provide the new error analysis in 
three steps. First, we introduce an optimal residual type a posteriori er-
ror estimator, and prove its efficiency and reliability. Next, we present a 
residual type a priori estimate in terms of derivatives of the eigenfunc-
tions. Finally, we prove accurate a priori error estimates by combining 
the a priori residual estimate and the a posteriori error estimate. The 
new procedure for accelerating the convergence comes from a postpro-
cessing technique, in which we solve an auxiliary source problem on an 
argument space. The argument space can be obtained similarly as in the 
two-space method by increasing the order of the polynomial by one.

The rest of the paper is organized as follows. In Section 2, we in-
troduce the abstractly formulated eigenvalue problem along with the 
main theorem, which provides the lower eigenvalue bounds. Some re-
sults from the previous section are applied to the Steklov eigenvalue 
problem to obtain lower eigenvalue bounds, taking care to give ex-
plicit error estimates for the projection operator in Section 3. Section 4
presents some computation results to demonstrate the efficiency of our 
proposed method for bounding eigenvalues. Finally, in Section 5, we 
summarize the results of this paper and discuss issues with the current 
algorithm.

2. Preliminaries and main results

2.1. The finite element methods

In this subsection, we introduce the FE methods for the problem 
(1.1).

Mesh. Assume that Ωℎ is a family of shape-regular partitions of the 
domain Ω which is the union of disjoint open element domains 𝐾 such 
that the nonempty intersection of a distinct pair of elements is a single 
node or edge. ℎ𝐾 denotes the diameter of 𝐾 . As usual, ℎ =max𝐾∈Ωℎ and 
ℎ𝐾 = diam(𝐾).

Edges. The set of edges (or faces) of the partition Ωℎ is denoted by 
𝜕Ωℎ. Γ𝑖𝑛𝑡 denotes the union of all the interior faces of Ωℎ , and the set of 
faces that are not located in the boundary 𝜕Ω, i.e.,

𝜕Ωℎ = {𝜕𝐾 ∶𝐾 ∈Ωℎ}, Γ𝑖𝑛𝑡 =
⋃
𝐾∈Ωℎ

⋃
𝐹∈𝜕𝐾⧵𝜕Ω

𝐹 .

Jumps. For each element 𝐾 ∈ Ωℎ and a function 𝑣 ∈ 𝐻𝑠(Ωℎ), we 
denote the interior (exterior) trace on 𝜕𝐾 by 𝑣+

𝐾
(𝑣−
𝐾

). Furthermore, the 
inner trace and outer trace of the boundary 𝜕Ω are defined as follows: 
𝑣+ = 𝑣(𝑥) and 𝑣− = 0. So the jump [𝑣] and average value {𝑣} are naturally 
introduced

[𝑣]|𝐹𝑖𝑗 = 𝑣|𝐾𝑖 − 𝑣|𝐾𝑗 , {𝑣}𝐹𝑖𝑗 =
1
2
(𝑣|𝐾𝑖 + 𝑣|𝐾𝑗 ),

here 𝐹𝑖𝑗 = 𝜕𝐾𝑖 ∩ 𝜕𝐾𝑗 is the common edge.
Spaces, norms and inner-products. Let (⋅, ⋅)𝐾 and ⟨⋅, ⋅⟩𝐹 denote the 

usual scalar products in 𝐿2(𝐾) and 𝐿2(𝐹 ), and ‖ ⋅ ‖𝐿2(𝐾) and ‖ ⋅ ‖𝐿2(𝐹 )
the corresponding norms. We also use the following notations:

(𝑢,𝑤)Ω ∶= ∫ 𝑢(𝐱)𝑤(𝐱)d𝐱,

Ω
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(𝑢,𝑤)Ωℎ ∶=
∑
𝐾∈Ωℎ

(𝑢,𝑤)𝐾 =
∑
𝐾∈Ωℎ

∫
𝐾

𝑢(𝐱)𝑤(𝐱)d𝐱,

⟨𝑢,𝑤⟩𝜕Ω ∶=
∑
𝐹∈𝜕Ω

⟨𝑢,𝑤⟩𝐹 =
∑
𝐹∈𝜕Ω

∫
𝐹

𝑢(𝐱)𝑤(𝐱)d𝑠,

⟨𝑢,𝐯 ⋅ 𝐧⟩𝜕Ωℎ ∶= ∑
𝐾∈Ωℎ

∫
𝜕𝐾

𝑢(𝐱)
(
𝐯(𝐱) ⋅ 𝐧

)
d𝑠,

⟨𝑢,𝐯 ⋅ 𝐧⟩Γ𝑖𝑛𝑡 ∶= ∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐹

𝑢(𝐱)
(
𝐯(𝐱) ⋅ 𝐧

)
d𝑠,

where 𝐯 ⋅ 𝐧 is the vector inner product. In addition, 𝐻𝑠(𝐾) is the stan-
dard Sobolev space. The associated norm and seminorm are defined, 
respectively, by

‖𝑣‖𝐻𝑠(Ωℎ) =
( ∑
𝐾∈Ωℎ

‖𝑣‖2
𝐻𝑠(𝐾)

) 1
2
,

and

‖𝑣‖𝑆,Ωℎ =( ∑
𝐾∈Ωℎ

‖𝑣‖2
𝑆,𝐾

) 1
2
,

where ‖ ⋅ ‖𝐻𝑠(𝐾) is the Sobolev norm on 𝐾 , and ‖𝑣‖𝑆,𝐾 ∶= ‖∇𝑣‖2
𝐿2(𝐾)

. 
For simplicity, we denote ‖ ⋅ ‖𝑆 ∶= ‖ ⋅ ‖𝑆,Ωℎ and 𝑉 ∶=𝐻1(Ω).

The finite element space is defined as follows

𝑉ℎ = {𝑣 ∈ 𝐶(Ωℎ) ∶ 𝑣|𝐾 ∈𝒫𝑟(𝐾), ∀𝐾 ∈Ωℎ},

where 𝒫𝑟(𝐾) denotes the set of polynomials of total degree 𝑟 on the 
element 𝐾 .

For 𝑣 ∈𝐻𝑠(Ωℎ), we define the following mesh-dependent norm

‖𝑣‖2
𝜕Ωℎ

=
∑

𝐹∈𝜕Ωℎ
∫
𝐹

[𝑣]2d𝑠.

FE approximation. We describe the FE approximation of the 
Steklov model problem (1.1). First, we introduce the classical weak 
formulation of (1.1): Find the eigenpair (𝜆, 𝑢) ∈ℝ × 𝑉 satisfying

(∇𝑢,∇𝑣)Ω = 𝜆⟨𝑢, 𝑣⟩𝜕Ω, ∀𝑣 ∈ 𝑉 . (2.1)

Now we define the finite element approximation scheme corre-
sponding with (2.1): Find the eigenpair (𝜆ℎ, 𝑢ℎ) ∈ℝ × 𝑉ℎ satisfying

(∇𝑢ℎ,∇𝑣ℎ)Ωℎ = 𝜆ℎ⟨𝑢ℎ, 𝑣ℎ⟩𝜕Ω, ∀𝑣ℎ ∈ 𝑉ℎ. (2.2)

Projections and Interpolation. In our subsequent error analysis, 
some appropriate interpolant and projection operators play important 
roles. Here we recall their properties. First, we list the standard approx-
imation results of [1]: For any 𝑣 ∈𝐻𝑠(Ω), there exists an interpolant 
operator Π such that Π𝑣 ∈ 𝑉ℎ and

‖𝑣−Π𝑣‖𝐿2(𝐾) ≤ 𝐶ℎ‖∇𝑣‖𝐿2(𝐾), (2.3)

‖𝑣−Π𝑣‖2
𝐿2(𝐹 ) ≤ 𝐶ℎ‖∇𝑣‖2𝐿2(𝐹 )

, (2.4)

for any element 𝐾 ∈Ωℎ, where 𝐾 is the union of all the elements shar-
ing a vertex with 𝐾 and 𝐹 is the union of all the elements sharing a 
vertex with 𝐹 .

For an arbitrary function 𝑣ℎ ∈ 𝑉ℎ, and an arbitrary element 𝐾 ∈Ωℎ, 
the image 𝑃Λ𝑣ℎ to 𝐾 is a element of the invariant eigen-subspace (Λ)
associated with the eigenvalue subset Λ that satisfies

(𝑃Λ𝑣ℎ − 𝑣ℎ, 𝑢)𝐾 = 0, ∀𝑢 ∈ (Λ). (2.5)

For any face 𝐹 ∈ Γ and given a function 𝜉 ∈ 𝐿2(Γ), the image 𝑃𝜕𝜉 to a 
face 𝐹 of 𝐾 is a element of 𝒫𝑟(𝐹 ) that satisfies

⟨𝑃𝜕 𝜉 − 𝜉, 𝜇⟩𝐹 = 0, ∀𝜇 ∈𝒫𝑟(𝐹 ). (2.6)
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Adjoint equations. To prove our error estimates in the approxima-
tion of the eigenvalue 𝜆 and eigenfunction 𝑢, we need to introduce the 
adjoint equations

⎧⎪⎨⎪⎩
−Δ𝜙 = 𝜃, in Ω,

𝜕𝜙

𝜕𝐧
− 𝜆𝜙 = 0, on 𝜕Ω.

(2.7)

with a regularity assumption

‖𝜙‖𝐻2(Ω) ≤ 𝐶‖𝜃‖𝐿2(Ω).

2.2. Main results

Let 𝜆𝑖 (𝑖 = 1, 2, ..., ∞) and Λ denote the 𝑖-th eigenvalue and a subset 
of the spectrum of the Steklov eigenvalue problem, respectively. (Λ)
denotes the invariant space associated with the eigenvalues in Λ. For 
example, (𝜆𝑖) is the eigen-subspace of the individual eigenvalue 𝜆, i.e., 
Λ = {𝜆𝑖}.

Let (𝜆ℎ, 𝑢ℎ) be an approximation eigenpair with the normalization ‖𝑢ℎ‖𝐿2(𝜕Ω) = 1. We define the error of eigenfunction in 𝑢ℎ with respect 
to (Λ) by

𝑄Λ𝑢ℎ ∶= 𝑢ℎ − 𝑃Λ𝑢ℎ = (𝐼 − 𝑃Λ)𝑢ℎ.

For example, if Λ is the set of individual eigenvalue 𝜆, then 𝑄Λ describes 
the error of the eigen-subspace (Λ). In order to continue to discuss 
our error analysis, we need the following assumption: There exists a 
sufficiently small constant 𝛿 ∈ [0, 1) such that

max
𝜆𝑖∉Λ

||||𝜆ℎ − 𝜆𝜆𝑖 − 𝜆
|||| ≤ 𝛿, ‖𝑄Λ𝑢ℎ‖𝐿2(Ω) ≤ 𝛿, ‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖𝐿2(𝜕Ω) ≤ 𝛿. (2.8)

Theorem 2.1 (Reliability). Let {𝜆𝑗,ℎ, 𝑢𝑗,ℎ} with ‖𝑢ℎ‖𝐿2(𝜕Ω) = 1 be an eigen-

pair solution of (2.2) and {𝑢, 𝜆} with ‖𝑢‖𝐿2(𝜕Ω) = 1 be a solution of (1.1). 
Assume that (2.8) holds. Then we have the following the a posterior error 
estimates: for the error of eigenfunctions,

‖𝐷𝑚𝑄Λ𝑢𝑗,ℎ‖𝐿2(Ω) ≤ 𝐶ℎ2−𝑚
∑
𝐾∈Ωℎ

𝐾,𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ) 𝑚 = 0,1.

and for the error of the eigenvalues,

𝜆𝑗,ℎ − 𝜆𝑗 ≤ 𝐶ℎ2
∑
𝐾∈Ωℎ

𝐾,𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ).

where the estimator is defined by

𝐾,𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ) = 𝐶𝑅𝐾 (𝑢𝑗,ℎ) +𝐶ℎ
− 1

2𝑅𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ)

where 𝑅𝐾 (𝑢𝑗,ℎ) = ‖Δ𝑢𝑗,ℎ‖𝐿2(𝐾), and

𝑅𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ) =

{ 1
2‖[ 𝜕𝑢𝑗,ℎ𝜕𝐧 ]‖𝐿2(𝐹 ), 𝐹 ∈ Γ𝑖𝑛𝑡‖ 𝜕𝑢𝑗,ℎ
𝜕𝐧 − 𝜆𝑗,ℎ𝑢𝑗,ℎ‖𝐿2(𝐹 ), 𝐹 ∈ 𝜕Ω.

According to the results of Theorem 2.1, we provide a natural re-
sult for discrete invariant subspaces in the following corollary. These 
bounds of corollary are very useful when we approximate the eigen-
subspace of the multiple eigenvalue or eigenfunctions associated with 
a small cluster of closed eigenvalues. ℎ(Λℎ) denotes the discrete in-
variant subspace of the discrete eigenvalue subset of Λℎ. We define a 
natural measure of the distance between the space  ∶= (Λ) and the 
space ℎ ∶= ℎ(Λℎ) as follows:

dist( ,ℎ)𝐿2(Ω) = sup
𝜉∈ℎ‖𝜉‖
𝐿2(Ω)=1

‖(𝐼 − 𝑃Λ)𝜉‖𝐿2(Ω),

dist( ,ℎ)𝑆 = sup
𝜉∈ℎ‖𝜉‖
𝐿2(Ω)=1

‖(𝐼 − 𝑃Λ)𝜉‖𝑆 ,
in the sense of the different norms.
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Corollary 2.1. Let ℎ be an approximation of  and the conditions of The-

orem 2.1 hold. Then for the error between ℎ and  , we have the error 
estimates:

dist( ,ℎ)𝐿2(Ω) ≤ 𝐶ℎ2
∑
𝐾∈Ωℎ

𝐾,𝐹 (ℎ,Λℎ),

dist( ,ℎ)𝑆 ≤ 𝐶ℎ ∑
𝐾∈Ωℎ

𝐾,𝐹 (ℎ,Λℎ),

where 𝐾,𝐹 (ℎ, Λℎ) is the vector function whose 𝑗-th components are∑
𝐾∈Ωℎ

𝐾,𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ), 𝑗 = 1,2,… ,𝑚,

and 𝑚 is the multiplicity of the eigenvalue.

Theorem 2.2 (Efficiency). Let the eigenpair {𝑢ℎ, 𝜆ℎ} with ‖𝑢ℎ‖𝐿2(𝜕Ω) = 1
be the solution of (2.2) and the eigenpair {𝑢, 𝜆} with ‖𝑢‖𝐿2(𝜕Ω) = 1 be the 
solution of (1.1). Assume that (2.8) holds. Then, for the error of the eigen-

function, we have the following lower bound estimate:∑
𝐾∈Ωℎ

ℎ𝐾𝐾,𝐹 ≤ 𝐶‖𝑄Λ𝑢ℎ‖𝑆 .
Now we turn to describe the a priori error estimates.

Theorem 2.3 (The a priori error estimate). Assume that the conditions of 
Theorem 2.1 hold. Then, for the eigenfunction error, we have the following 
a priori estimates:

‖𝑄Λ𝑢ℎ‖𝐿2(Ω) ≤ 𝐶ℎ2min{𝑟+1,𝑠}‖𝑃Λ𝑢ℎ‖𝐻𝑠(Ω),‖𝑄Λ𝑢ℎ‖𝑆 ≤ 𝐶ℎmin{𝑟+1,𝑠}−1‖𝑃Λ𝑢ℎ‖𝐻𝑠(Ω).

For the eigenvalue error, we have

𝜆ℎ − 𝜆 ≤ 𝐶ℎ2min{𝑟+1,𝑠}−2‖𝑃Λ𝑢ℎ‖𝐻𝑠(Ω).

We end Section 2 by illustrating how to exploit the superconver-
gence property to post-process 𝜆ℎ and 𝑢ℎ to get a better approximation 
solution to the eigenvalue 𝜆 defined as follows.

We introduce a better approximation (𝜆ℎ, ̂𝑢ℎ) of (𝜆, 𝑢), as the element 
of ℝ × 𝑉ℎ (𝑉ℎ ⊂ 𝑉ℎ ⊂ 𝑉 ) presented by the following algorithm.

Algorithm 2.1 (H). Superconvergence algorithm

1. Find the eigenvalue problem (2.2) for (𝜆ℎ, 𝑢ℎ) ∈ℝ × 𝑉ℎ.

2. Find the solution of the following source problem with Neumann 
boundary condition 𝜕�̃�ℎ

𝜕𝐧 = 𝑢ℎ: Find �̃�ℎ ∈ 𝑉ℎ such that

(∇�̃�ℎ,∇𝑣ℎ)Ωℎ = ⟨𝑢ℎ, 𝑣ℎ⟩𝜕Ω, ∀𝑣ℎ ∈ 𝑉ℎ. (2.9)

3. Compute 𝜆ℎ =
1⟨𝑢ℎ,�̃�ℎ⟩𝜕Ω .

4. Evaluate �̂�ℎ = 𝜆ℎ�̃�ℎ.

The fact that 𝜆ℎ provides a better approximation to the eigenvalue 
𝜆 than 𝜆ℎ is discussed in the following result.

Theorem 2.4. Assume the conditions of Theorem 2.1 hold and 𝜆ℎ comes 
from Algorithm 2.1. Then, for the eigenvalue error, we have the following 
superconvergence

𝜆ℎ − 𝜆 ≤ 𝐶ℎ2min{𝑟+1,𝑠}−1‖𝑃Λ𝑢ℎ‖𝐻𝑠(Ω).



C. Xiong, M. Xie, F. Luo et al. Computers and Mathematics with Applications 144 (2023) 90–99
3. Proofs of main theorems

3.1. The a posteriori error estimates

The main purpose of this subsection is to present the proof of the 
reliability (Theorem 2.1) for eigenfunctions and the eigenvalues and 
efficiency (Theorem 2.2) for the residual error estimator introduced in 
Section 2. Our idea is to convert the a posteriori error representation 
into an a posteriori error estimator which is used in adaptive algorithms. 
In the following, we begin with the first step of the proof that states 
the following intermediate result for the errors of the eigenvalue and 
eigenfunction approximations.

Lemma 3.1. Assume that 𝑢ℎ is the solution of (2.2) and 𝜃 ∈ 𝐿2(Ω). Then 
we have the following identity:

(𝑢ℎ, 𝜃)Ωℎ =(−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ +
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙−Π𝜙
⟩
𝜕Ω

+
⟨[

𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙−Π𝜙

⟩
Γ𝑖𝑛𝑡

+
∑
𝜆𝑖∉Λ

𝜆− 𝜆ℎ
𝜆− 𝜆𝑖

(𝜃,𝜑𝑖)Ωℎ ⟨𝑢ℎ,𝜑𝑖⟩𝜕Ω (3.1)

where {𝜑𝑖}∞𝑖=1 are an orthogonal basis of eigenfunctions in 𝐿2(Ω) associated 
with eigenvalues {𝜆𝑖}∞𝑖=1.

Proof. Using the dual problem (2.7) and the integration by parts, we 
have

(𝑢ℎ, 𝜃)Ωℎ = (𝑢ℎ,−Δ𝜙)Ωℎ = −
⟨
𝑢ℎ,

𝜕𝜙

𝜕𝐧

⟩
𝜕Ωℎ

+ (∇𝑢ℎ,∇𝜙)Ωℎ

= − ⟨𝑢ℎ, 𝜆𝜙⟩𝜕Ω +
⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙

⟩
𝜕Ωℎ

+ (−Δ𝑢ℎ,𝜙)Ωℎ

= −𝜆⟨𝑢ℎ,𝜙⟩𝜕Ω +
⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙

⟩
𝜕Ωℎ

+ (−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ

+ (−Δ𝑢ℎ,Π𝜙)Ωℎ

= −𝜆⟨𝑢ℎ,𝜙⟩𝜕Ω +
⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙

⟩
𝜕Ωℎ

+ (−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ

−
⟨
𝜕𝑢ℎ
𝜕𝐧

,Π𝜙
⟩
𝜕Ωℎ

+ (∇𝑢ℎ,∇Π𝜙)Ωℎ

= −𝜆⟨𝑢ℎ,𝜙⟩𝜕Ω +
⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙

⟩
𝜕Ωℎ

+ (−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ

−
⟨
𝜕𝑢ℎ
𝜕𝐧

,Π𝜙
⟩
𝜕Ωℎ

+ 𝜆ℎ⟨𝑢ℎ,Π𝜙⟩𝜕Ω
by the integration of parts and the discrete problem (2.2). Next, we 
consider the combination of the integrations on the boundary, i.e.,⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙

⟩
𝜕Ωℎ

−
⟨
𝜕𝑢ℎ
𝜕𝐧

,Π𝜙
⟩
𝜕Ωℎ

=
⟨[

𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙−Π𝜙

⟩
Γ𝑖𝑛𝑡

+
⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙−Π𝜙
⟩
𝜕Ω

and

⟨𝜆ℎ𝑢ℎ,Π𝜙⟩𝜕Ω − ⟨𝜆𝑢ℎ,𝜙⟩𝜕Ω = ⟨𝜆ℎ𝑢ℎ,Π𝜙− 𝜙⟩𝜕Ω + (𝜆ℎ − 𝜆)⟨𝑢ℎ,𝜙⟩𝜕Ω.
Inserting the above two identities into the first equation induces that

(𝑢ℎ, 𝜃)Ωℎ =(−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ +
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙−Π𝜙
⟩
𝜕Ω

+
⟨[

𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙−Π𝜙

⟩
Γ𝑖𝑛𝑡

+ (𝜆ℎ − 𝜆)⟨𝑢ℎ,𝜙⟩𝜕Ω.
For the above representation, we need to express the last term, i.e. 

the solution of dual problem (2.7) can be expressed by 𝜃 and the eigen-
functions 𝜓𝑖.
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Assume that �̌� ∉Λ, 𝜆 ∈Λ and (𝜆, 𝑢) and (�̌�, 𝜙) are the solutions of the 
problem (1.1) and the dual problem (2.7), respectively. By using the 
problem (1.1), the integration by parts, and the dual problem (2.7), we 
have

(−Δ𝜙, 𝑢)Ω = −�̌�⟨𝜙, 𝑢⟩𝜕Ω + 𝜆⟨𝜙, 𝑢⟩𝜕Ω + (𝜙,−Δ𝑢)Ω = (𝜆− �̌�)⟨𝜙, 𝑢⟩𝜕Ω.
On the other hand, using the dual problem (2.7) with 𝜃 = 𝑢ℎ − 𝑃Λ𝑢ℎ =
𝑄Λ𝑢ℎ, we have

(−Δ𝜙, 𝑢)Ω = (𝜃, 𝑢)Ω = (𝑢ℎ − 𝑃Λ𝑢ℎ, 𝑢)Ω = 0,

by the definition of the projection 𝑃Λ. From the above two equations, 
�̌� ∉Λ and 𝜆 ∈Λ, we have

⟨𝜙, 𝑢⟩𝜕Ω = 0.

i.e. the dual solution 𝜙 is orthogonal to an arbitrary eigenfunction of 
subspace (Λ) in the sense of inner product ⟨⋅, ⋅⟩𝜕Ω. Since {𝜑𝑖}∞𝑖=1 are 
an orthogonal basis of eigenfunctions in 𝐿2 associated with eigenvalues 
{𝜆𝑖}∞𝑖=1, 𝜙 can be expressed by

𝜙 =
∑
𝜆𝑖∉Λ

𝑥𝑖𝜑𝑖,

where 𝑥𝑖 is the unknown coefficient. To obtain them, we need to discuss 
the property of eigenfunction 𝜑𝑖 on the boundary. Since 𝜑𝑖 and 𝜑𝑗 are 
the solutions to the problem (1.1) with the differential eigenvalues 𝜆𝑖
and 𝜆𝑗 , we have that

⟨𝜑𝑖,𝜑𝑗⟩𝜕Ω = 1
𝜆𝑖 ∫
𝜕Ω

𝜕𝜑𝑖
𝜕𝐧

𝜑𝑗 =
1
𝜆𝑖 ∫

Ω

∇𝜑𝑖∇𝜑𝑗 =
𝜆𝑗

𝜆𝑖
⟨𝜑𝑖,𝜑𝑗⟩𝜕Ω,

by Gauss formula, which implies that

⟨𝜑𝑖,𝜑𝑗⟩𝜕Ω = 0.

It follows from 𝜙 =∑
𝜆𝑖∉Λ 𝑥𝑖𝜑𝑖 that

𝑥𝑖 = ⟨𝜙,𝜑𝑖⟩𝜕Ω = ⟨𝜙, 1
𝜆𝑖

𝜕𝜑𝑖
𝜕𝐧

⟩𝜕Ω
= 1
𝜆𝑖 ∫

Ω

(Δ𝜑𝑖)𝜙+ 1
𝜆𝑖 ∫

Ω

∇𝜑𝑖 ⋅∇𝜙 (by Gauss formula)

= 1
𝜆𝑖 ∫
𝜕Ω

𝜕𝜙

𝜕𝐧
𝜑𝑖 −

1
𝜆𝑖 ∫

Ω

𝜑𝑖(Δ𝜙) (by Δ𝜑𝑖 = 0 and integration by parts)

= 𝜆

𝜆𝑖
⟨𝜙,𝜑𝑖⟩𝜕Ω − 1

𝜆𝑖
(𝜃,𝜑𝑖)Ω. (by the dual problem)

So we have

𝑥𝑖 =
(𝜑𝑖, 𝜃)Ω
𝜆− 𝜆𝑖

, i.e., 𝜙 =
∑
𝑖∉Λ

(𝜃,𝜑𝑖)Ω
𝜆𝑖 − 𝜆

𝜑𝑖.

Inserting the above expression into (𝜆ℎ − 𝜆)⟨𝑢ℎ, 𝜙⟩𝜕Ω completes the 
proof. □

From Lemma 3.1, it is easy to see the first three terms are easy to 
estimate by the approximation property and the stability of the dual 
problem, while the last term will be tackled in the next lemma.

Lemma 3.2. Assume that 𝑢ℎ and 𝜙 are the solutions of (2.2) and (2.7) and 
the projections 𝑃Λ and 𝑃𝜕 are defined in Section 2. Then

|⟨𝑢ℎ,𝜙⟩𝜕Ω| ≤ 𝐶ℎ2𝑅𝐾 (𝑢ℎ, 𝜆ℎ)Ωℎ +max
𝜆𝑖∉Λ

||||𝜆− 𝜆ℎ𝜆− 𝜆𝑖

||||2 ‖𝐷𝑚(𝑢ℎ − 𝑃Λ𝑢ℎ)‖2𝐿2(Ω).

(3.2)

Proof. It follows from the fact that 𝜑𝑖 is orthogonal to the subspace 
(Λ), 𝑃𝜕 𝑢ℎ and 𝑃Λ𝑢ℎ ∈ (Λ) that
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⟨𝑢ℎ,𝜙⟩𝜕Ω =
∑
𝜆𝑖∉Λ

(𝜃,𝜑𝑖)Ω
𝜆− 𝜆𝑖

⟨𝑢ℎ,𝜑𝑖⟩𝜕Ω =
∑
𝜆𝑖∉Λ

(𝜃,𝜑𝑖)Ω
𝜆− 𝜆𝑖

⟨𝑢ℎ − 𝑃𝜕 𝑢ℎ,𝜑𝑖⟩𝜕Ω
𝜃=(−Δ)𝑚𝑄Λ𝑢ℎ
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐

∑
𝜆𝑖∉Λ

𝜆𝑚
𝑖
⟨𝑄Λ𝑢ℎ,𝜑𝑖⟩
𝜆− 𝜆𝑖

⟨𝑢ℎ − 𝑃𝜕 𝑢ℎ,𝜑𝑖⟩𝜕Ω
≤max
𝜆𝑖∉Λ

1|𝜆− 𝜆𝑖|
(∑
𝜆𝑖∉Λ

𝜆2𝑚𝑖 ⟨𝑄Λ𝑢ℎ,𝜑𝑖⟩2Ωℎ
) 1

2

×

(∑
𝜆𝑖∉Λ

⟨𝑢ℎ − 𝑃𝜕 𝑢ℎ,𝜑𝑖⟩2𝜕Ω
) 1

2

≤ 𝐶max
𝜆𝑖∉Λ

1|𝜆− 𝜆𝑖| ‖𝐷𝑚𝑄Λ𝑢ℎ)‖𝐿2(Ω)‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖𝐿2(𝜕Ω), (3.3)

where we use the facts that (∇𝑄Λ𝑢ℎ, ∇𝜑𝑖)Ω = 𝜆𝑖⟨𝑄Λ𝑢ℎ, 𝜑𝑖⟩𝜕Ω and∑
𝜆𝑖∉Λ

𝜆2𝑚𝑖 ⟨𝑄Λ𝑢ℎ,𝜑𝑖⟩2𝜕Ω =
∑
𝜆𝑖∉Λ

(∇𝑄Λ𝑢ℎ,∇𝜑𝑖)2Ω

≤ ‖𝐷𝑄Λ𝑢ℎ‖2𝐿2(Ω)

∑
𝜆𝑖∉Λ

‖∇𝜑𝑖‖2𝐿2(Ω)

= 𝐶‖𝐷𝑄Λ𝑢ℎ‖2𝐿2(Ω).

We are now ready to bound ‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖𝐿2(𝜕Ω) in (3.3). Consider the 
following auxiliary problem{

−Δ𝜙1 = 0, in Ω,
𝜕𝜙1
𝜕𝐧 − 𝜆𝜙1 = 𝜃1, on 𝜕Ω.

(3.4)

The following identity plays an important role in bounding ‖𝑢ℎ −
𝑃𝜕 𝑢‖𝐿2(𝜕Ω). Using similar techniques as in Lemma 3.1, we have

⟨𝑢ℎ, 𝜃1⟩𝜕Ω = ⟨𝑢ℎ, 𝜕𝜙1𝜕𝐧 ⟩𝜕Ω − ⟨𝑢ℎ, 𝜆𝜙1⟩𝜕Ω
= (𝑢ℎ,Δ𝜙1)Ωℎ + (∇𝑢ℎ,∇𝜙1)Ωℎ − ⟨𝑢ℎ, 𝜆𝜙1⟩𝜕Ω
= (−Δ𝑢ℎ,𝜙1 − Π𝜙1)Ωℎ −

⟨
𝜕𝑢ℎ
𝜕𝐧

, 𝜙1 − Π𝜙1
⟩

Γ𝑖𝑛𝑡

−
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙1 − Π𝜙1
⟩
𝜕Ω

− (𝜆ℎ − 𝜆)⟨𝑢ℎ,𝜙1⟩𝜕Ω,
by using the Gauss formula in the second and the third lines, and fact 
Δ𝜙1 = 0, and the discrete problem (2.2) in the third line. It follows 
from the problem (3.4), integration by parts, the orthogonality of the 
projection 𝑃𝜕 and 𝜃1|𝜕Ω = (𝑢ℎ − 𝑃𝜕 𝑢ℎ)|𝜕Ω that

⟨𝜑𝑖,𝜙1⟩𝜕Ω = 1
𝜆

⟨
𝜑𝑖,

𝜕𝜙1
𝜕𝐧

⟩
𝜕Ω

− 1
𝜆
⟨𝜑𝑖, 𝜃1⟩𝜕Ω =

𝜆𝑖
𝜆
⟨𝜑𝑖,𝜙1⟩𝜕Ω.

By 𝜆 ∉ Λ and 𝜆𝑖 ∈ Λ, we have, for 𝑢 ∈ (Λ), ⟨𝑢, 𝜙1⟩𝜕Ω = 0. For ⟨𝑢ℎ, 𝜙1⟩, 
we again use the same techniques as in Lemma 3.1 in order to conclude 
that

⟨𝑢ℎ,𝜙1⟩𝜕Ω ≤max
𝜆𝑖∉Λ

1|𝜆− 𝜆𝑖| ‖𝐷𝑚(𝑢ℎ − 𝑃Λ𝑢ℎ)‖𝐿2(Ω)‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖𝐿2(Ω).

At the same time, taking 𝜃1|𝜕Ω = (𝑢ℎ − 𝑃𝜕 𝑢ℎ)|𝜕Ω and using the definition 
of 𝑃𝜕 , we have

⟨𝑢ℎ, 𝜃1⟩𝜕Ω = ⟨𝑢ℎ, 𝑢ℎ − 𝑃𝜕 𝑢ℎ⟩𝜕Ω = ‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖2𝐿2(𝜕Ω).

Combining all the intermediate steps implies that

‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖2𝐿2(𝜕Ω) ≤ |(−Δ𝑢ℎ,𝜙1 − Π𝜙1)Ωℎ |+ |||||
⟨
𝜕𝑢ℎ
𝜕𝐧

,Π𝜙1 −𝜙1
⟩

Γ𝑖𝑛𝑡

|||||
+
|||||
⟨
𝜕𝑢ℎ
𝜕𝐧 − 𝜆ℎ𝑢ℎ,𝜙1 − Π𝜙1

⟩
𝜕Ω

|||||
+max
𝜆𝑖∉Λ

||||𝜆− 𝜆ℎ𝜆− 𝜆
|||| ‖𝐷𝑚(𝑢ℎ − 𝑃Λ𝑢ℎ)‖𝐿2(Ω)‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖𝐿2(𝜕Ω).
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 estimate the first term of the above inequality by the Cauchy-
wartz inequality and the approximation property (2.3) to get

Δ𝑢ℎ,𝜙1 − Π𝜙1)Ωℎ | ≤ ‖Δ𝑢ℎ‖𝐿2(Ω) ⋅𝐶ℎ
2‖𝜙1‖𝐻2(Ω).

xt, we turn to bound the second and the third terms. It follows from 
 approximation property (2.4) and again the Cauchy-Schwartz in-
ality that we have⟨[
𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙1 − Π𝜙1

⟩
Γ𝑖𝑛𝑡

|||||+
|||||
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙1 − Π𝜙1
⟩
𝜕Ω

|||||‖‖‖‖‖
[
𝜕𝑢ℎ
𝜕𝐧

]‖‖‖‖‖Γ𝑖𝑛𝑡 ℎ
3
2 ‖𝜙1‖𝐻2 +𝐶

‖‖‖‖ 𝜕𝑢ℎ𝜕𝐧 − 𝜆ℎ𝑢ℎ
‖‖‖‖𝐿2(𝜕Ω)

ℎ
3
2 ‖𝜙1‖𝐻2(Ω).

 using the simple and miscellaneous calculation for the above threes 
qualities, we have

− 𝑃𝜕 𝑢ℎ‖2𝐿2(𝜕Ω) ≤ 𝐶ℎ2𝑅𝐾 (𝑢ℎ, 𝜆ℎ) + max
𝜆𝑖∉Λ

||||𝜆− 𝜆ℎ𝜆− 𝜆𝑖

||||2 ‖𝐷𝑚(𝑢ℎ − 𝑃Λ𝑢ℎ)‖2𝐿2(Ω).

stituting the above inequality into (3.3) completes the proof. □

Now we first present the residual of the approximation solution ac-
ding to the identity in Lemma 3.1. Then we bound the right-hand 
es in the error expression formulas in terms of the residuals and the 
ularity assumption of the dual problem.
The residuals are the combination of the following three parts: the 
idual of equation ‖Δ𝑢ℎ‖𝐿2(Ω) arising from the element domain, the 

p 
‖‖‖‖[ 𝜕𝑢ℎ𝜕𝐧 ]‖‖‖‖𝐿2(Γ𝑖𝑛𝑡)

describing the magnitude of the discontinuous of 

 normal derivatives across the interior edges of the element and the 
idual ‖‖‖ 𝜕𝑢ℎ𝜕𝐧 − 𝜆ℎ𝑢ℎ

‖‖‖𝐿2(𝜕Ω)
of the boundary condition arising from the 

ndary of domain Ω.

e proof of Theorem 2.1. For the residual in (3.1), we obtain similar 
ults by similar techniques in Lemma 3.2. Then we aim to bound 
𝑚(𝑢ℎ − 𝑃Λ𝑢ℎ)‖𝐿2(Ω) = ‖𝐷𝑚𝑄Λ𝑢ℎ‖𝐿2(Ω).
Taking 𝜃 = (−Δ)𝑚𝑄Λ𝑢ℎ and using the definition of 𝑃Λ, we have

, 𝜃)Ωℎ =
(
𝑢ℎ, (−Δ)𝑚𝑄Λ𝑢ℎ

)
Ωℎ

= ‖𝐷𝑚𝑄Λ𝑢ℎ‖𝐿2(Ω), 𝑚 = 0,1.

erting the above equation and (3.2) into (3.1) and using the approx-
ation properties (2.3)–(2.4) and Cauchy-Schwartz inequality imply 
 desired results for the eigenfunction.
Finally, we turn to the error estimate of the eigenvalue. The main 
a of error estimate is to express the eigenvalue error representation 
mula similar to the eigenfunction.
To obtain a representation formula of eigenvalue error, we choose 
0 in the dual problem, which implies that (3.1) can be written as 

lows:

(−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ +
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙−Π𝜙
⟩
𝜕Ω

+
⟨[

𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙−Π𝜙

⟩
Γ𝑖𝑛𝑡

+ (𝜆ℎ − 𝜆)⟨𝑢ℎ,𝜙⟩𝜕Ω.
 the other hand, we observe the fact that the Steklov eigenvalue 
blem (1.1) is the same as the dual problem with 𝜃 = 0, i.e., 𝑃𝜕 𝑢ℎ = 𝜙
he solution of the dual problem. Further, using the assumption (2.8), 
 have

, 𝜙⟩𝜕Ω = ⟨𝑢ℎ,𝑃𝜕 𝑢ℎ⟩𝜕Ω = ⟨𝑢ℎ − 𝑃𝜕 𝑢ℎ,𝑃𝜕 𝑢ℎ⟩𝜕Ω + ⟨𝑃𝜕 𝑢ℎ,𝑃𝜕 𝑢ℎ⟩𝜕Ω
= ‖𝑃𝜕 𝑢ℎ‖2𝐿2(𝜕Ω) = 1 − ‖𝑢ℎ − 𝑃𝜕 𝑢ℎ‖2𝐿2(𝜕Ω) ≥ 1 − 𝛿.

erting this inequality into the identity above, we obtain the eigen-
ue error representation formula
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(1 − 𝛿)(𝜆ℎ − 𝜆) ≤− (−Δ𝑢ℎ,𝜙−Π𝜙)Ωℎ −
⟨[

𝜕𝑢ℎ
𝜕𝐧

]
, 𝜙−Π𝜙

⟩
Γ𝑖𝑛𝑡

−
⟨
𝜕𝑢ℎ
𝜕𝐧

− 𝜆ℎ𝑢ℎ,𝜙−Π𝜙
⟩
𝜕Ω
.

For the above inequality, using the approximation property (2.3)–(2.4)
and Cauchy–Schwartz inequality completes the proof of Theorem 
2.1. □

The remainder of this subsection is devoted to the proof of effi-
ciency for the error estimators 𝑅𝐾 (𝑢𝑗,ℎ) and 𝑅𝐹 (𝜆𝑗,ℎ, 𝑢𝑗,ℎ). The efficiency 
ensures that the true error will be an upper bound for the resulting es-
timators up to a generic constant and some high-order terms.

The proof relies on the bubble functions which are developed in 
[29]. In general, they are positive, smooth, real-valued, local compact 
supports and bounded by 1 in the sense of the 𝐿∞-norm. In order to 
describe some properties of the bubble function, we introduce the de-
notations as follows.

Let 𝑏𝐾 be the standard polynomial bubble function with support 
in the element 𝐾 which vanished on the edge of 𝐾 . Similarly, for any 
interior edge 𝐹 , the polynomial bubble function is denoted by 𝑏𝐹 which 
vanishes outside the closure of 𝐾+

𝐹
∪𝐾−

𝐹
, where 𝐾+

𝐹
and 𝐾−

𝐹
are the two 

adjacent elements sharing the common edge or face 𝐹 . Some properties 
of the bubble function are collected in the following lemma which is 
seen in Lemma 3.3 from [29].

Property 3.1. For all polynomial functions 𝑣 ∈𝒫𝑟(𝐾) and the bubble func-

tions 𝑏𝐾 and 𝑏𝐹 , we have

‖𝑏𝐾𝑣‖𝐿2(𝐾) ≤ 𝐶‖𝑣‖𝐿2(𝐾), (3.5)

‖𝑣‖𝐿2(𝐾) ≤ 𝐶‖𝑏 1
2
𝐾
𝑣‖𝐿2(𝐾), (3.6)

‖𝑏𝐾𝑣‖𝑆,𝐾 ≤ ℎ−1
𝐾
‖𝑣‖𝐿2(𝐾). (3.7)

For all polynomial functions 𝜔 ∈𝒫𝑟(𝐹 ), we have

‖𝑏𝐹𝜔‖𝐿2(𝐹 ) ≤ 𝐶‖𝜔‖𝐿2(𝐹 ), (3.8)

‖𝜔‖𝐿2(𝐹 ) ≤ 𝐶‖𝑏 1
2
𝐹
𝜔‖𝐿2(𝐹 ), (3.9)

‖𝑏𝐹𝜔‖𝐿2(𝐾+
𝐹
∪𝐾−

𝐹
) ≤ 𝐶ℎ

1
2
𝐹
‖𝜔‖𝐿2(𝐹 ), (3.10)

‖𝑏𝐹𝜔‖𝑆,𝐾+
𝐹
∪𝐾−

𝐹
≤ 𝐶ℎ− 1

2
𝐹

‖𝜔‖𝐿2(𝐹 ). (3.11)

Lemma 3.3. Assume that (𝜆𝑗,ℎ, 𝑢𝑗,ℎ) is an eigenpair solution of (2.2) which 
converges to eigenvalue 𝜆𝑗 . Then we have the following local bound:( ∑
𝐾∈Ωℎ

ℎ2
𝐾
‖Δ𝑢ℎ‖2𝐿2(𝐾)

) 1
2

≤ 𝐶dist(𝑢𝑗,ℎ,𝐸(𝜆𝑗 ))𝑆,Ωℎ ,

where 𝑢𝑗 be the minimizer of dist(𝑣, 𝑉 )𝐸,Ωℎ = min
𝜔∈𝑉

‖𝑣 −𝜔‖𝑆,Ωℎ .

Proof. For arbitrary element 𝐾 , let 𝑣ℎ|𝐾 = ℎ2
𝐾
Δ𝑢𝑗,ℎ ⋅ 𝑏𝐾 , then

ℎ2
𝐾
𝑅2
𝐾
(𝑢𝑗,ℎ) = ℎ2𝐾‖Δ𝑢𝑗,ℎ‖2𝐿2(𝐾) ≤ 𝐶 ∫

𝐾

Δ𝑢𝑗,ℎ ⋅ 𝑣ℎ𝑑𝑥

by using (3.6). Since Δ𝑢𝑗 = 0 is satisfied in a distributed sense, we then 
have

𝑅2
𝐾
(𝑢𝑗,ℎ) ≤ 𝐶 ∫

𝐾

(
Δ(𝑢𝑗,ℎ − 𝑢𝑗 )

)
𝑣ℎ𝑑𝑥

= −𝐶 ∫
𝐾

∇(𝑢𝑗,ℎ − 𝑢𝑗 ) ⋅∇𝑣ℎ𝑑𝑥

by the integration of parts and the fact that 𝑣ℎ|𝜕𝐾 = 0. Using Cauchy-
Schwartz inequality, inverse inequality, and (3.5), we have
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𝑅2
𝐾
(𝑢𝑗,ℎ) ≤ 𝐶‖∇(𝑢𝑗,ℎ − 𝑢𝑗 )‖𝐿2(𝐾) ⋅ ‖∇𝑣ℎ‖𝐿2(𝐾)

≤ 𝐶‖∇(𝑢𝑗,ℎ − 𝑢𝑗 )‖𝐿2(𝐾) ⋅𝐶ℎ
−1
𝐾
‖𝑣ℎ‖𝐿2(𝐾)

≤ 𝐶ℎ−1
𝐾
‖∇(𝑢𝑗,ℎ − 𝑢𝑗 )‖𝐿2(𝐾) ⋅ ℎ

2
𝐾
‖Δ𝑢𝑗,ℎ‖𝐿2(𝐾).

Using the fact 𝑅𝐾 (𝑢𝑗,ℎ) = ‖Δ𝑢𝑗,𝑘‖𝐿2(𝐾), we end up with

𝑅𝐾 (𝑢ℎ) ≤ 𝐶ℎ𝐾‖∇(𝑢𝑗,ℎ − 𝑢𝑗 )‖𝐿2(𝐾). □

Lemma 3.4. Let (𝜆𝑗,ℎ, 𝑢𝑗,ℎ) be an eigenpair solution of the problem (2.2)
which converges to 𝜆𝑗 of multiplicity 𝑅 ≥ 1. Then we have

𝑅𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ) =

( ∑
𝐹∈Γ𝑖𝑛𝑡

ℎ𝐾

‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧

‖‖‖‖‖
2

𝐿2(𝐹 )

) 1
2

+

( ∑
𝐹∈𝜕Ω

ℎ𝐾

‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧
− 𝜆𝑢𝑗,ℎ

‖‖‖‖‖
2

𝐿2(𝐹 )

) 1
2

≤ dist(𝑢𝑗,ℎ,𝐸(𝜆𝑗 ))𝑆,Ωℎ + ℎ‖𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ‖𝐿2(𝜕Ω).

Proof. For the interior faces and domain faces, taking 𝑣ℎ|𝐹∈Γ𝑖𝑛𝑡 =
ℎ𝐹

[
𝜕𝑢𝑗,ℎ

𝜕𝐧

]
𝑏𝐹 and 𝑣ℎ|𝐹∈𝜕Ω = ℎ𝐹

(
𝜕𝑢ℎ
𝜕𝐧 − 𝜆ℎ𝑢ℎ

)
𝑏𝐹 respectively, and using 

(3.9), we have( ∑
𝐹∈Γ𝑖𝑛𝑡

ℎ𝐹

‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧

‖‖‖‖‖
2

𝐿2(𝐹 )

) 1
2

≤ 𝐶 ∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐹

[
𝜕𝑢𝑗,ℎ

𝜕𝐧

]
𝑣ℎd𝑠,

and( ∑
𝐹∈𝜕Ω

ℎ𝐹

‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧
− 𝜆𝑢𝑗,ℎ

‖‖‖‖‖
2

𝐿2(𝐹 )

) 1
2

≤ 𝐶 ∑
𝐹∈𝜕Ω

∫
𝐹

(
𝜕𝑢𝑗,ℎ

𝜕𝐧
− 𝜆𝑗,ℎ𝑢𝑗,ℎ

)
𝑣ℎd𝑠.

Using the fact that 
[
𝜕𝑢

𝜕𝐧

] |||𝐹 = 0 for any face 𝐹 and 𝜕𝑢𝑗
𝜕𝐧 |𝐹∈𝜕Ω = 𝜆𝑗𝑢𝑗 , we 

have

𝑅2
𝐹
(𝑢𝑗,ℎ, 𝜆𝑗,ℎ) ≤ 𝐶

∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐹

[
𝜕𝑢𝑗,ℎ

𝜕𝐧
−
𝜕𝑢𝑗

𝜕𝐧

]
⋅ 𝑣ℎd𝑠

+𝐶
∑
𝐹∈𝜕Ω

∫
𝐹

(
𝜕𝑢𝑗,ℎ

𝜕𝐧
−
𝜕𝑢𝑗

𝜕𝐧
+ 𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ

)
𝑣ℎd𝑠

= 𝐶
∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐾+
𝐹
∪𝐾−

𝐹

(
(Δ𝑢𝑗,ℎ)𝑣ℎ +∇(𝑢𝑗,ℎ − 𝑢𝑗 ) ⋅∇𝑣ℎ

)
d𝐱

+𝐶
∑
𝐹∈𝜕Ω

∫
𝐹

(𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ)𝑣ℎd𝑠,

by using the Gauss formula and Δ𝑢𝑗 = 0 in the third line. We bound the 
right-side hand of the term by term in the above equation. For the first 
term, it follows from the above Lemma 3.3, Cauchy-Schwartz inequal-
ity, and (3.10) that∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐾+
𝐹
∪𝐾−

𝐹

Δ𝑢𝑗,ℎ ⋅ 𝑣ℎ𝑑𝑥

≤ 𝐶 ∑
𝐹∈Γ𝑖𝑛𝑡

ℎ𝐾‖Δ𝑢𝑗,ℎ‖𝐿2(𝐾+
𝐹
∪𝐾−

𝐹
) ⋅ ℎ

−1
𝐾
‖𝑣ℎ‖𝐿2(𝐾+

𝐹
∪𝐾−

𝐹
)

≤ 𝐶 ∑
𝐹∈Γ𝑖𝑛𝑡

‖𝑢𝑗,ℎ − 𝑢𝑗‖𝑆,𝐾+
𝐹
∪𝐾−

𝐹
⋅ ℎ−1
𝐾
‖𝑣ℎ‖𝐿2(𝐾+

𝐹
∪𝐾−

𝐹
)

≤ 𝐶
( ∑
𝐾∈Ωℎ

‖𝑢𝑗,ℎ − 𝑢𝑗‖2𝑆,𝐾
) 1

2

⋅

( ∑
𝐹∈Γ𝑖𝑛𝑡

ℎ−2
𝐾
‖𝑣ℎ‖2𝐿2(𝐾+

𝐹
∪𝐾−

𝐹
)

) 1
2

≤ ‖𝑢𝑗,ℎ − 𝑢𝑗‖𝑆 ⋅𝑅𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ).

For the second term, using (3.11) and again Cauchy-Schwartz inequal-
ity, we have
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∑
𝐹∈Γ𝑖𝑛𝑡

∫
𝐾+
𝐹
∪𝐾−

𝐹

∇(𝑢𝑗,ℎ − 𝑢𝑗 ) ⋅∇𝑣ℎd𝐱

≤ ‖𝑢𝑗,ℎ − 𝑢𝑗‖𝑆‖𝑣ℎ‖𝑆 ≤ 𝐶‖𝑢𝑗,ℎ − 𝑢𝑗‖𝑆 ⋅𝑅𝐹 (𝑢𝑗,ℎ, 𝜆𝑗,ℎ).

For the last term, using (3.8), we have∑
𝐹∈𝜕Ω

∫
𝐹

(𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ)𝑣ℎd𝑠

≤ 𝐶 ∑
𝐹∈𝜕Ω

‖𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ‖𝐿2(𝐹 )

‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧
− 𝜆𝑗,ℎ𝑢𝑗,ℎ

‖‖‖‖‖𝐿2(𝐹 )

≤ 𝐶ℎ‖𝜆𝑗𝑢𝑗 − 𝜆𝑗,ℎ𝑢𝑗,ℎ‖𝐿2(𝜕Ω) ⋅
‖‖‖‖‖
𝜕𝑢𝑗,ℎ

𝜕𝐧
− 𝜆𝑗,ℎ𝑢𝑗,ℎ

‖‖‖‖‖𝐿2(𝜕Ω)
.

Combining the all above intermediate steps completes the proof. □

The proof of Theorem 2.2

Proof. The efficiency in Theorem 2.2 follows immediately from 
Lemma 3.3 and Lemma 3.4. □

3.2. A priori error estimate

In this subsection, we present the proof of the a posteriori-priori er-
ror results for the standard finite element method applied to eigenvalue 
problems. For the FE approximation of the problem (1.1) by the dis-
crete problem (2.2), our priori error analysis depends on the following 
Ritz projection 𝑅ℎ ∶𝐻1(Ω) → 𝑉ℎ, defined by

(∇𝑢,∇𝑣)Ω = (∇𝑅ℎ𝑢,∇𝑣)Ω, ∀𝑣 ∈ 𝑉ℎ. (3.12)

The main implementation in the a priori error analysis of Theorem 2.3
is the following approximation proposition: the weighted a priori error 
estimate of the Ritz projection.

Property 3.2 ([15]). Assume that the partition is uniform. If 𝑣 ∈𝐻𝑠, 1 ≤
𝑠 ≤ 𝑝 + 1. Then we have

‖ℎ𝛼−1𝐷(𝐼 −𝑅ℎ)𝑣‖𝐿2(Ω) ≤ 𝐶‖ℎ𝛼+𝑠−2𝐷𝛼+𝑠−1𝑣‖𝐿2(Ω), 1 ≤ 𝑠 ≤ 𝑝+ 1,

where 𝛼 = 1, 2, 3.

The proof of Theorem 2.3:

Proof. To prove the result, we use 𝑉 to denote 𝐻2 ∩ ker Δ. Let 𝑇 ∶
𝐿2(Ω) → 𝑉 with 𝜕𝑇 𝑣

𝜕𝐧 = 𝜆ℎ𝑣 for any 𝑣 ∈𝐿2(Ω). Set 𝑢 = 𝑇 𝑢ℎ in Ritz projec-
tion (3.12), we have

(∇𝑅ℎ𝑇 𝑢ℎ,∇𝑣ℎ)Ωℎ = (∇𝑇 𝑢ℎ,∇𝑣ℎ)Ωℎ

= ∫
𝜕Ω

𝜕𝑇 𝑢ℎ
𝜕𝐧

𝑣ℎd𝑠− ∫
Ω

Δ𝑇 𝑢ℎ ⋅ 𝑣ℎd𝐱

= 𝜆ℎ⟨𝑢ℎ, 𝑣ℎ⟩𝜕Ω,
by the integration of parts and the definition of the operator 𝑇 . Using 
the approximation problem and the above equation, we induce that

𝑢ℎ =𝑅ℎ𝑇 𝑢ℎ.

So we can express the interior part of the residual as follows

Δ𝑢ℎ =Δ𝑅ℎ𝑇 𝑢ℎ −Δ𝑇 𝑢ℎ =Δ(𝑅ℎ − 𝐼)𝑇 𝑢ℎ.

The rest of the proof is similar to the proof of [15, Theorem 4.2], and it 
is omitted for brevity. □
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3.3. Postprocessing

In this subsection, employing the idea developed in [21], we ex-
tend the methods to the FE approximation of the Steklov eigenvalue 
problem (1.1). We describe and prove a postprocessing algorithm that 
presents a better approximation with a superconvergence for the post-
processed eigenvalues. The essence of our new method consists of the 
following two steps: First, solve the finite element approximation of the 
eigenvalue problem for a given finite element space 𝑉ℎ. Next, solve the 
additional source problem with the Neumann condition 𝜕�̃�ℎ

𝜕𝐧 = 𝑢ℎ on an 
argument space. We introduce an additional FE space 𝑉ℎ such that

𝑉ℎ ⊂ 𝑉ℎ = {𝑣 ∶ 𝑣 ∈𝐻1(Ω), 𝑣|𝐾 ∈𝒫𝑟+1(𝐾),∀𝐾 ∈Ωℎ} ⊂ 𝑉 .

Considering the following finite element approximation of elliptic prob-
lem (source problem): Find �̃�ℎ ∈ 𝑉ℎ such that

(∇�̃�ℎ,∇𝑣ℎ)Ωℎ = ⟨𝑢ℎ, 𝑣ℎ⟩𝜕Ω, ∀𝑣ℎ ∈ 𝑉ℎ. (3.13)

After doing the necessary work, now we describe a postprocessing 
Algorithm 2.1, which will present a much better approximation 𝜆ℎ of 
the eigenvalues. In order to prove the better approximation property 
of 𝜆ℎ, we introduce an auxiliary problem defined as follows: Find the 
solution �̃� ∈ 𝑉 such that

(∇�̃�,∇𝑣)Ωℎ = ⟨𝑢ℎ, 𝑣⟩𝜕Ω, ∀𝑣 ∈ 𝑉 (3.14)

Then we can evaluate the real number

𝜆 = 1⟨𝑢ℎ, �̃�⟩𝜕Ω . (3.15)

Lemma 3.5. (𝜆, 𝑢) and (𝜆ℎ, 𝑢ℎ) are two eigenpairs of problem (1.1) and 
discrete problem (2.2), respectively. Assume that ‖𝑢‖𝐿2(𝜕Ω) = ‖𝑢ℎ‖𝐿2(𝜕Ω) = 1. 
Assume that �̃� be the solution of the source problem (3.14) with Neumann 
boundary condition 𝜕�̃�

𝜕𝐧 |𝜕Ω = 𝑢ℎ. 𝜆 is computed by (3.15). Then

|𝜆− 𝜆| ≤ 𝐶‖𝑢− 𝑢ℎ‖2𝐿2(𝜕Ω).

Proof. Consider the Neumann problem with Neumann boundary con-
dition 𝑔 ∈𝐿2(𝜕Ω): Find 𝜉 ∈ 𝑉 such that

(∇𝜉,∇𝑣)Ω = ⟨𝑔, 𝑣⟩𝜕Ω, ∀𝑣 ∈ 𝑉 . (3.16)

The solution 𝜉 of the above problem defines the operator  ∶ 𝐿2(𝜕Ω) →
𝑉 ,

𝑔 = 𝜉.
So the solution to the Steklov eigenvalue problem (1.1) can be expressed 
through the operator  ∶ 𝑢 = 𝜆𝑢. Indeed, consider the problem (3.16)
with 𝑔 = 𝜆𝑢. Therefore, the solutions of (3.16) and (3.14) are 𝑢 = 𝜆𝑢
and �̃� = 𝑢ℎ, respectively. By the definition (3.15) of 𝜆, 𝑢 = 𝜆𝑢 and ‖𝑢‖𝐿2(𝜕Ω) = ‖𝑢ℎ‖𝐿2(𝜕Ω) = 1, we have

𝜆−1 − 𝜆−1 = ⟨𝑢,𝑢⟩𝜕Ω − ⟨𝑢ℎ,𝑢ℎ⟩𝜕Ω
= 2⟨𝑢,𝑢⟩𝜕Ω − 2⟨𝑢ℎ,𝑢⟩𝜕Ω − ⟨𝑢− 𝑢ℎ,(𝑢− 𝑢ℎ)⟩𝜕Ω
= 1
𝜆
⟨𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ⟩𝜕Ω − ⟨𝑢− 𝑢ℎ,(𝑢− 𝑢ℎ)⟩𝜕Ω,

by the symmetry of the operator  in ⟨⋅, ⋅⟩𝜕Ω. We obtain that

|𝜆− 𝜆| ≤ (𝜆+ 𝜆𝜆‖‖𝐿2(𝜕Ω))‖𝑢− 𝑢ℎ‖2𝐿2(𝜕Ω). □

Next, we estimate ‖𝑢 − 𝑢ℎ‖𝐿2(𝜕Ω). By the Ritz projection and its ap-
proximation property, trace theorem and inverse inequality, we have
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Fig. 1. The initial mesh (left) and the one after 9 adaptive refinements for the first five eigenvalues (right) for the 𝐿–shaped domain.
‖𝑢− 𝑢ℎ‖𝐿2(𝜕Ω) ≤ ‖𝑢−𝑅ℎ𝑢‖𝐿2(𝜕Ω) + ‖𝑅ℎ𝑢− 𝑢ℎ‖𝐿2(𝜕Ω)

≤ 𝐶‖𝑢−𝑅ℎ𝑢‖ 1
2
𝐿2(Ω)

‖𝑢−𝑅ℎ𝑢‖ 1
2
𝐻1(Ω)

+𝐶ℎ−
1
2 ‖𝑅ℎ𝑢− 𝑢ℎ‖𝐿2(Ω)

≤ 𝐶ℎ𝑚𝑖𝑛{𝑟+ 1
2 ,𝑠}‖𝑢‖𝐻𝑠(Ω) +𝐶ℎ

1
2 (‖𝑅ℎ𝑢− 𝑢‖+ ‖𝑢− 𝑢ℎ‖0,Ω)

≤ 𝐶ℎ𝑚𝑖𝑛{𝑟+ 1
2 ,𝑠}‖𝑢‖𝐻𝑠(Ω).

The proof of Theorem 2.4

Proof. By the triangle inequality, we have

|𝜆− 𝜆ℎ| ≤ |𝜆− 𝜆|+ |𝜆− 𝜆ℎ|.
Lemma 3.3 has shown that the first term is bounded. So the only 

second term needs to be estimated. The techniques are similar to those 
in the estimate of the first term 𝜆 − 𝜆. Using the definition of 𝜆 and 𝜆ℎ, 
and equations (3.13) and (3.14), we have

𝜆−1 − 𝜆−1
ℎ

= ⟨𝑢ℎ, �̃�⟩𝜕Ω − ⟨𝑢ℎ, �̃�ℎ⟩𝜕Ω = (∇�̃�,∇�̃�)Ω − (∇�̃�ℎ,∇�̃�ℎ)Ωℎ
= (∇(�̃�− �̃�ℎ),∇(�̃�− �̃�ℎ))Ωℎ ,

by the orthogonal property (∇(�̃�− �̃�ℎ), ∇�̃�ℎ)Ωℎ = 0. Indeed, let 𝑣 = 𝑣ℎ ∈ 𝑉
in (3.13) and subtract (3.13) from (3.14), we obtain the orthogonality. 
On the other hand, �̃�ℎ ∈ 𝑉ℎ is the finite element approximation of the 
problem (3.14). Using the standard finite element error estimate [9], 
we have

‖∇(�̃�− �̃�ℎ)‖𝐿2(Ω) ≤ 𝐶ℎmin{𝑟+1,𝑠}‖�̃�‖𝐻𝑠(Ω).

The above equation and inequality then lead to

|𝜆−1 − 𝜆−1
ℎ
| ≤ 𝐶ℎ2min{𝑟+1,𝑠}‖�̃�‖𝐻𝑠(Ω),

i.e.,

|𝜆− 𝜆ℎ| ≤ 𝐶𝜆𝜆ℎℎ2min{𝑟+1,𝑠}‖�̃�‖𝐻𝑠(Ω),

which together with Lemma 3.3 completes the superconvergence 
proof. □

4. Numerical experiment

This section presents two numerical examples that would allow us 
to assess the theoretical results proved above. First, we illustrate the be-
havior of an adaptive algorithm that is driven by the error estimator in 
the 𝐿-shaped domain. Then the superconvergence of the postprocess-
ing algorithm is investigated on model problems. With those aims, we 
implement in MATLAB code a first-order finite element on triangular 
meshes.
97
Fig. 2. Mesh efficiency of the a posteriori error estimator of the first five 
eigenfunctions for adaptive refinements with FEM (“Adaptive FEM”) on the 
𝐿–shaped domain.

4.1. Experiment 1: adaptive algorithm

The first example is the Steklov eigenvalue problem (1.1) on the 
𝐿-shaped domain Ω = [−1, 1]2∕([0, 1] ×[−1, 0]). This problem is very pop-
ular in the numerical experiment because the regularity is broken on the 
original point (reentrant corner). The initial mesh is a uniform struc-
tured mesh of 96 elements. In Figs. 1–3, we show the efficiency, that 
is the observed accuracy of TOL versus the number of elements, of the 
meshes obtained by using estimator, and global (uniform) refinement. 
We see that estimator mesh refinement yields more economical meshes 
than simple uniform refinement.

Fig. 1 shows the initial grid and the adaptively refined grids ob-
tained with adaptive procedures on the L–shaped domain by using the 
estimator for the first five eigenvalues.

We show the efficiency of the a posteriori error estimator with that 
achieved by the first five eigenfunctions in Fig. 2.

Fig. 3 illustrates the error curves for the obtained first five eigenval-
ues on the adaptively refined meshes with FEM schemes. We also see 
that the estimated error reflects the predicted behavior with a line of 
slope −1, which corresponds with the optimal convergence order.

4.2. Experiment 2: superconvergence of eigenvalue

The efficiency of the postprocessing techniques is illustrated in 
problem (1.1). Assume that eigenfunctions are known and the eigen-
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Fig. 3. The errors for the first five eigenvalues using adaptive FEM on the L-
shaped domain.

Fig. 4. The convergence rate of the first eigenvalue for the postprocessing 
method on the unit square domain.

functions of the example are enough smooth. Therefore, there are no 
restrictions concerning regularity.

We consider the Steklov eigenvalue problem

⎧⎪⎨⎪⎩
−Δ𝑢 = 0, in Ω,

𝜕𝑢

𝜕𝐧
− 𝜆𝑢 = 0, on 𝜕Ω,

where Ω = [0, 1]2. The exact eigenpair (𝜆, 𝑢) of this problem is unknown, 
we use the accurate enough approximation 𝜆 = 0.2400790830800452
given by extrapolation method in [18]. In the example, the order of 
polynomials is 1. In Fig. 4 we plot the true error for the first eigenvalue 
against the size of the mesh. We also see that the estimated error re-
flects the predicted behavior with a line of slope 3 which corresponds 
to the superconvergence rate.

Fig. 5 presents the superconvergence behavior of the first four eigen-
values using the FE method’s postprocessing procedure. Because of the 
postprocessing techniques, it is ready to see that the convergence rate 
has been considerably accelerated. A line of the slope is 3, which corre-
sponds with the superconvergence.

5. Conclusion

In this paper, a new error analysis technique is presented for the FE 
approximation of the Steklov eigenvalue problem. The error estimates 
of the eigenvalue are reliable and efficient as well as the energy error 
estimates of the eigenfunctions. Our numerical experiment 1 has illus-
98
Fig. 5. The convergence rate of the first four eigenvalues for the postprocessing 
method on the unit square domain.

trated the efficiency of the resulting error estimators which generate 
the optimal grids. In addition, we propose a post-processing technique 
that provides superconvergence for the eigenvalues. For other classes 
of problems, such as the fourth-order Steklov eigenvalue problem, the 
spectral superconvergence of finite element methods is under investiga-
tion.

Data availability

Data will be made available on request.
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