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Abstract
In this paper, we consider the numerical approximation of a biharmonic eigenvalue problem
by introducing a new family of the mixed method. This method is based on a formulation
where the fourth-order eigenproblem is recast as a system of four first-order equations. The
optimal convergence rates with 2k+2 (k ≥ 0 is the degree of the polynomials) of eigenvalue
approximation are theoretically derived and numerically verified. The optimal or sub-optimal
convergences of the other unknowns are theoretically proved. The new numerical schemes
based on the deduced problems can be of lower complicacy, and the framework is fit for
various fourth-order eigenvalue problems.

Keywords Biharmonic eigenvalue problem · Mixed method · First-order system · Finite
element method

Mathematics Subject Classification 35Q40 · 35Q55 · 65N30 · 65N25 · 65B99

1 Introduction

The biharmonic eigenvalue problem is one of the fundamental model problems in mathemat-
ics, physics, and elastic mechanics, and has wide applications in, e.g., modeling the vibration
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of thin plates [38], fluid-structure [9], inverse scattering theory [13] and electronic structure
[37]. We consider the following the biharmonic eigenvalue problem:

�2u = λu, in �, (1.1a)

u = ∂u

∂n
= 0, on ∂�, (1.1b)

where � ⊂ R
d (d = 1, 2, 3) is a polyhedral domain.

Many existing methods are based on the primal formulation (1.1), which only have the
approximations to eigenvalue λ and the eigenfunction u as two unknowns. Among these
methods include the conforming finite element (FE) [6, 16, 24, 26, 35], the C0IPG [11], the
classical non-conforming element [18, 36, 41], computation of guaranteed/asymptotic upper
and lower bounds [15, 22, 30, 31, 40], spectral-Galerkin method [2], and adaptive method
and its convergence analysis [18, 27]. In addition, [3] presents a high accuracy spectral
method based on the min/max principle for biharmonic eigenvalue problems on a spherical
domain. Recently, the discontinuous Galerkin (DG) method [39], two-grid method [28, 43],
multi-level/multigrid method [42], and C0 virtual element method [32] become the powerful
alternative for numerically solving the biharmonic eigenvalue problems.

Since the design and the implementation of C1 traditional FEMs for the biharmonic
eigenvalue problem is computationally quite intensive due to keeping C1-continuity across
the inter-element boundaries, several approaches likemixedDGmethods [39] andC0-interior
penalty methods [11] have been proposed but they are still computationally expensive. The
lower order mixed finite element method is an effective method to avoid the higher regularity
and is easier for programming and computing than the higher order element. A natural idea
is to design more effective mixed element schemes for the eigenvalue problem based on the
corresponding boundary value problem. As far as mixed methods are concerned, the fourth-
order biharmonic equation can be recast in mixed form as the Hellan-Herrmann-Johnson
(HHJ) type of equations of first-order (referred to as a problem with four unknown fields, cf
[8]).

q = ∇u, z = ∇q, in �,

w = ∇ · z, ∇ · w = λu, in �,

u = 0, q · n = 0, on ∂�,

(1.2)

Following our convention, (∇q)i� = ∂x�
(qi ) for 1 ≤ i, � ≤ d , where qi is the i th component

of q. Moreover, (∇ · z)i = ∑d
�=1 ∂x�

zi�, where the zi� is the i�-entry of z.
Several mixed element schemes for the biharmonic eigenvalue problems have been pro-

posed in [14, 33, 34]. They are based on introducing the variable z = �u and obtaining a
coupled system of Poisson problems. In [14, 23], the mixed finite element methods are first
proposed to solve the biharmonic eigenvalue problem. Following the mixed method analysis
of the source problem, error analysis of the mixed method for the biharmonic eigenvalue
problem are developed by using piecewise continuous approximations for both variables in
[14, 34]. [10] develops an isoparametric mixed method and present the estimate for taking
into account the combined effect of boundary approximation and numerical integration on
the approximation for general fourth-order elliptic eigenvalue problems. [33] presents the
lowest order mixed finite element method of the biharmonic eigenvalue problem, but it is
the piecewise linear and continuous finite element method, not piecewise constant finite ele-
ment. A new postprocessing technique and the superconvergence of mixed finite element
approximations of the eigenpairs and the biharmonic operator is proposed in [4]. [39] gives
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the mixed DG method, propose a residual-based a posteriori error estimator and prove the
convergence with the optimal order in L2 and DG-norm.

In this paper, our method is based on a stationary variational principle (the Reissner princi-
ple) which was introduced by Hellan, Herrmann, and Visser [25]. Its alternative explanation
is to transform the primal problems to order reduced formulations. Our method constructs a
system on low-regularity spaces by introducing auxiliary variables, and then discretize the
resulting system by the different finite element methods. In engineering applications, the first
derivatives∇u (the strain) and the second derivatives∇∇u (the moments) of u are frequently
more important than u itself. In fact, in the Reissner-Mindlin plate problem, we are interested
in transverse displacement, rotation, bending moment, and shear stress. This encourages us
to introduce the various-order derivatives of the primal variable as the auxiliary variables,
and then expand the problem to the low-order spaces. So the four order eigenvalue problem
(1.1) is modified by the first order system (1.2) by introducing three auxiliary variables. Our
method will approximate the eigenfunction u, the second derivatives of u, namely z, with
optimal order k + 1 and the eigenvalue with optimal order 2(k + 1) (k ≥ 0). As far as we
know, this paper is the first study on the approximation of biharmonic eigenvalue problems
by the piecewise constant and obtaining the convergence with optimal order. Furthermore,
from the numerical examples, our methods can present lower or upper bounds of eigenvalues
by using different finite element spaces.

The remaining paper is organized as follows. In the next section, we introduce the mixed
method of the eigenproblem and essential notations used throughout the paper. Section 3
provides the convergence analysis of eigenvalues, eigenfunctions, and the other auxiliary
functions based on the mixed first-order system with the optimal convergence order. In Sect.
4,we present numerical results to verify the theoretical results. Section 5 provides a discussion
on the different choices of other finite element spaces. Finally, some concluding remarks are
given in Sect. 6.

2 Mixed Element Method of the HHJ System

In order to discuss error analysis, we first recall the Dirichlet boundary value problem which
is recast as first-order system of HHJ type and finds (u f , q f , z f ,w f ) ∈ V × Q × Z × W ,
for any given “source” f ∈ L2(�), such that

∇u f = q f in � (2.1a)

∇q f = z f in � (2.1b)

∇ · z f = w f in � (2.1c)

∇ · w f = f in � (2.1d)

u f = q f · n = 0 on ∂�, (2.1e)

where V = L2(�), Q = (L2(�))d , W = H(div,�), Z = H(div,�). H(div,�)

denotes all d×d matrix-valued functions such that each row belongs to the space H(div,�).
Throughout, all functions are real-valued in this paper. We use the standard notations for
Sobolev spaces Hs(�) and their associated norms ‖ · ‖s and seminorms | · |s . The L2(�)

inner-product is denoted by (·, ·), that is (v,w) := ∫
�

vwd�, ∀v,w ∈ L2(�). Thus
‖ · ‖0 := √

(·, ·).

123



66 Page 4 of 23 Journal of Scientific Computing (2022) 93 :66

To facilitate our analysis, we introduce the following solution operators of the source
problem with the source f :

U : L2(�) → V , which is defined simply by U f = u f ,

Q : L2(�) → Q, which is defined simply by Q f = q f ,

Z : L2(�) → Z, which is defined simply by Z f = z f ,

W : L2(�) → W , which is defined simply byW f = w f .

By the classical elliptic regularity results, if the domain � is smooth [1] or the largest
interior angle of ∂� is less than 126.28◦ [12], and f ∈ L2(�), then u f ∈ H4(�). For
a convex polygonal domain, the weak solutions of the boundary value problem belong in
general to H3+s(�) for some s ∈ (0, 1]. The value of s depends on depends on the largest
interior angle of ∂�. The regularity results in the source problem (2.1) will lead to the
regularity of the eigenfunction u of (1.1).

2.1 The Source Problem

The mixed method based on HHJ type provides an approximation (Uh,Qh,Wh,Zh) to
(U,Q,W,Z). To understand this approximation, we first describe the mixed method of
source problem based on HHJ type and introduce known results we shall use later.

Now, let us demonstrate the mixed method based on the HHJ type. First we generate a
shape-regular decomposition for the computational domain� ⊂ R

d (d = 2, 3) into triangles
or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) and the diameter of a cell
K ∈ Th is denoted by hK . The mesh diameter h describes the maximum diameter of all cells
K ∈ Th . Based on the mesh Th , we construct the following finite element spaces denoted
by Vh ⊂ V , Qh ⊂ Q, Zh ⊂ Z and Wh ⊂ W . The family of finite-dimensional spaces
(Vh, Qh, Zh,Wh) is assumed to satisfy the following assumption:

lim
h→0

inf
vh∈Vh

‖v − vh‖0 = 0, ∀v ∈ V , lim
h→0

inf
ph∈Qh

‖ p − ph‖0 = 0, ∀ p ∈ Q,

lim
h→0

inf
sh∈Zh

‖s − sh‖0 = 0, ∀s ∈ Z, lim
h→0

inf
mh∈Wh

‖m − mh‖0 = 0, ∀m ∈ W .

The mixed method define an approximation (u f
h , q f

h , z fh ,w
f
h ) to (u f , q f , z f ,w f ) in the

following spaces, respectively

V k
h = {v ∈ V : v|K ∈ Pk(K ) for all K ∈ Th}, (2.2a)

Qk
h = { p ∈ Q : p|K ∈ (Pk(K ))d for all K ∈ Th}, (2.2b)

Zk
h = {s ∈ Z : each row of s belongs to W k

h}. (2.2c)

W k
h = {m ∈ W : m|K ∈ RTk(K ) for all K ∈ Th}, (2.2d)

The space of polynomials of degree less than or equal to k (≥ 0) is denoted by Pk(K ).
Furthermore, we let P−1(K ) := {0}. The space RTk(K ) = (Pk(K ))d + Pk(K )x is the
Raviart-Thomas space of index k. The subscript h denotes the mesh size which is defined
as the maximum of the diameters of all mesh elements. It should be noted that we omit the
superscript k of (2.2) where there is no confusion.

The mixed method defines the approximation solution u f
h , the approximation w

f
h , the

approximation z fh and the approximation w
f
h , as the functions in (Vh, Qh, Zh,Wh), respec-
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tively, satisfying

(q f
h , ph) + (u f

h ,∇ · ph) = 0, (2.3a)

(z fh , sh) + (q f
h ,∇ · sh) = 0, (2.3b)

−(w
f
h ,mh) + (∇ · z fh ,mh) = 0, (2.3c)

(∇ · w
f
h , vh) = ( f , vh), (2.3d)

for all (vh, ph, sh,mh) ∈ Vh × Qh × Zh × Wh . Note it is proved in [8] that the above
discrete system (2.3) is uniquely solvable. So given any f in L2(�), the unique solution
(u f

h , q f
h , z fh ,w

f
h ) of the above mixed discrete system (2.3) is used to define the discrete

versions of the operators U,Q,Z and W in (2.1), namely

Uh : L2(�) → Vh, which is defined simply by Uh f = u f
h ,

Qh : L2(�) → Qh, which is defined simply by Qh f = q f
h ,

Zh : L2(�) → Zh, which is defined simply by Zh f = z fh ,

Wh : L2(�) → Wh, which is defined simply byWh f = w
f
h .

which are the solution operators of the source problem with the source f . The following
error estimate is presented in [8].

Theorem 2.1 Assume that (u f , q f , z f ,w f ) ∈ V × Q × Z × W and (u f
h , q f

h , z fh ,w
f
h ) ∈

Vh × Qh × Zh × Wh are the (2.1) and (2.3), respectively. Then

‖u f − u f
h ‖L2(�) ≤ C(‖u f − �V

h u
f ‖L2(�) + h‖z f − �RT z f ‖L2(�)),

‖q f − q f
h ‖L2(�) ≤ C‖q f − �

Q
h q

f ‖L2(�) + C‖z f − �RT z f ‖L2(�),

‖z f − z fh ‖L2(�) ≤ C‖z f − �RT z f ‖L2(�) +
( ∑

K∈Th

Ch2 jk‖w f − �RTw f ‖2L2(�)

)1/2
,

‖w f − w
f
h ‖L2(�) ≤ C(‖w f − �RTw f ‖L2(�) + C‖∇ · (z f − �RT z f )‖L2(�),

where all projections are defined in Sect. 3.

The convergence of the eigenvalue problem approximation method is based on the con-
vergence of Uh to U in the operator norm. To apply this idea to the HHJ eigenvalue system,
we need the following approximation result of the source problem, which shows that the
spectrum of Uh approximates that of U.

Theorem 2.2 Suppose there is an s ≥ 1 such that any solution (U f ,Q f ,Z f ,W f ) of the
problem (2.1) satisfies

‖U f ‖s + ‖Q f ‖s + ‖Z f ‖s + ‖W f ‖s ≤ C‖ f ‖0, (2.4)

for all f ∈ V . Then

‖U − Uh‖0 ≤ Chmin{s,k+1}. (2.5)

Proof The convergence of the source problem in Theorem 3.7 in [8] implies

‖U f − Uh f ‖0 ≤ Chmin{s,k+1}(‖U f ‖s + ‖Q f ‖s + ‖Z f ‖s + ‖W f ‖s)
≤ Chmin{s,k+1}‖ f ‖0.

which completes the proof. �
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Remark 2.1 In fact, we assume Hs+3 elliptic regularity for the source problem (2.1) which
requires more than convexity; see [12] for results on polygons. Hence, we can assume (2.4)
hold. Again, we would like to emphasize that the convexity of the domain and Hs+3 elliptic
regularity are just technical assumptions for the purpose of our error analysis.

2.2 The Eigenvalue Problem

In order to present the mixedmethod, we introduce the weak form of HHJ eigenvalue system:
find (λ, u, q, z,w) ∈ R × V × Q × Z × W that satisfy

(q, p) + (u,∇ · p) = 0, (2.6a)

(z, s) + (q,∇ · s) = 0, (2.6b)

−(w,m) + (∇ · z,m) = 0, (2.6c)

(∇ · w, v) = λ(u, v), (2.6d)

for all (v, p, s,m) ∈ V × Q × Z × W .
Themixedfinite elementmethod for theweak form is as follows:find (λh, uh, qh, zh,wh) ∈

R × Vh × Qh × Zh × Wh that satisfies

(qh, ph) + (uh,∇ · ph) = 0, (2.7a)

(zh, sh) + (qh,∇ · sh) = 0, (2.7b)

−(wh,mh) + (∇ · zh,mh) = 0, (2.7c)

(∇ · wh, vh) = (λhuh, vh), (2.7d)

for all (vh, ph, sh,mh) ∈ Vh × Qh × Zh × Wh .
For matrix-valued functions, we use the notation

(z, s) :=
∑

K∈Th

(z, s)K , where (z, s)K :=
∫

K
z(x):s(x)dx,

which is the Frobenius inner product.
For vector-valued and scalar-valued functions we take a similar definition.

Lemma 2.1 The eigenvalue λh of the discrete system is positive.

Proof Taking vh = uh , ph = qh , sh = zh , mh = wh in (2.7), we have

λh(uh, uh) = (∇ · wh, uh) = −(qh,wh) (2.8)

= −(∇ · zh, qh) = (zh, zh) > 0. (2.9)

So we obtain that λh > 0. �

Lemma 2.2 The HHJ eigenvalue system (2.6) and discrete system (2.7) are Hermitian and
positive definite.

Proof For any ψ and f in L2(�), we have

λ(ψ,U f ) = (∇ · Wψ,Uu) (by v = U f )
= −(Q f ,Wψ) (by p = Wψ)

= −(Q f ,∇ · Zψ) (by Wψ = ∇ · Zψ)

= (Z f ,Zψ) (by s = Z f )
= λ(Uψ, f ).

123



Journal of Scientific Computing (2022) 93 :66 Page 7 of 23 66

(Zu,Zu) shows that the HHJ eigenvalue system is Hermitian and positive definite. Similarly,
for the local solution operator Uh , we have

λh(ψ,Uhu) = (∇ · Whψ,Uhu) (by vh = Uhu in (2.7d))

= −(Qhu,Whψ) (by ph = Whψ in (2.7a))

= −(Qhu,∇ · Zhψ) (by sh = Zhψ in (2.7c)
= (Zhu,Zhψ) (by sh = Zhu in (2.7b))
= λh(Uhψ, f ).

(Zhu,Zhu) shows that the HHJ eigenvalue system is Hermitian and positive definite. �


3 Error Estimates

This section provides a priori error results for the mixed method applied to the HHJ type
(first-order equations) of biharmonic eigenvalue problems. We prove that under favorable
regularity conditions, the eigenvalues of the first-order system converge at the rate O(h2k+2),
the eigenfunctions, the first derivatives ∇u and the second derivatives ∇∇u converge at the
rate O(hk+1) when we use polynomials of degree at most k ≥ 0 for all variables. We are
now ready to state our results.

In general, the error analysis starts to form the error equationswhich arewritten as follows:
⎧
⎪⎪⎨

⎪⎪⎩

(q − qh, ph) + (u − uh,∇ · ph) = 0,
(z − zh, sh) + (q − qh,∇ · sh) = 0,

−(w − wh,mh) + (∇ · (z − zh),mh) = 0,
(∇ · (w − wh), vh) − (λu, vh) + (λhuh, vh) = 0,

for all (vh, ph, sh,mh) ∈ Vh × Qh × Zh × Wh .
The projections play an important role in error analysis. So we also need to define some

projections. We let�RT : W ∩ L p(�) → Wh (for p > 2) be the Raviart-Thomas projection
of index k defined on each K ∈ Th by

(�RT σ − σ ,ψ)K = 0, ∀ψ ∈ (Pk−1(K ))d , (3.1a)

〈(�RT σ − σ ) · n, μ〉F = 0, ∀μ ∈ Pk(K ), for all faces F of K , (3.1b)

for given any σ ∈ W ∩ L p(�). Here we used the notation 〈μ, ν〉F = ∫
F μ(s)ν(s)ds.

Moreover, we let �RT denote the matrix version of �RT as it acts on matrix-valued
functions where �RT acts on each row. Let �Q

h be the L2-projection onto Qh . Finally, �
V
h

is the L2-projection onto Vh . Throughout this paper, we will assume that w belongs to the
domain of �RT and z belongs to the domain of �RT .

We will need a few properties of �RT . First, the commutative property is presented as
follows:

∇ · (�RT σ ) = �V
h ∇ · σ . (3.2)

The following approximation properties hold: for given any σ ∈ W ∩ L p(�),

‖σ − �RT σ‖0,K ≤ hs+1
K ‖σ‖s+1,K . (3.3)

for 0 ≤ s ≤ k and K ∈ Th .
By using the orthogonality of the projection �RT ,�RT ,�

Q
h and �V

h , the above error
equations can be modified by

(�
Q
h q − qh, ph) + (�V

h u − uh,∇ · ph) = (�
Q
h q − q, ph), (3.4a)
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(�RT z − zh, sh) + (�
Q
h q − qh,∇ · sh) = (�RT z − z, sh), (3.4b)

− (�RTw − wh,mh) + (∇ · (�RT z − zh),mh) = (�RTw − w,mh), (3.4c)

(∇ · (�RTw − wh), vh) − (λu, vh) + (λhuh, vh) = 0, (3.4d)

To evaluate the “distance” between eigenspaces, we recall some standard terminology.
For any V1 and V2 of V = L2(�), we define a suitable notion of “distance” or “gap” between
two spaces as follows:

d(x, V2) = inf
y∈V2

‖x − y‖L2(�), d(V1, V2) = sup
x∈V1

d(x, V2)

‖x‖L2(�)

.

In order to go on the error analysis, we introduce the resolve operators E(U) and Eh(Uh)

as follows:

E(U) = 1

2π i

∮

�

(z − U)−1dz,

Eh(Uh) = 1

2π i

∮

�

(z − Uh)
−1dz.

For simplicity, we use E and Eh to denote E(U) and Eh(Uh), respectively. We useR(E) and
R(Eh) to denote the ranges or eigenspaces of the operators E(U) and Eh(Uh), respectively.
We define Jhv = Eh�

V
h v, ∀v ∈ R(E).

The following Theorem collects and summaries a few convergence consequences includ-
ing non-pollution of the spectrum, completeness of the spectrum, non-pollution, and
completeness of the eigenspaces. These consequences, for the mixed method of biharmonic
eigenvalue problem based on HHJ type, are simple extensions of the analogous results for the
elliptic eigenvalue problem. Their proving arguments are standard and are already present in
the literature (see [5]). Since they are applied to our method context with few modifications,
we shall not present the proofs.

Theorem 3.1 We have the following statements hold:

(1) (Non-pollution of the spectrum). Let� be an open set containing the spectrum of problem
(1.1). Then for for sufficiently small h, � contains the spectrum of problem (2.7).

(2) (Completeness of the spectrum) For any eigenvalue λ of problem (1.1), there is an eigen-
value λh of problem (2.7) such that

lim
h→0

λh = λ.

(3) (Non-pollution and completeness of the eigenspaces) For eigenspacesR(E) andR(Eh)

of problem (1.1) and problem (2.7) respectively, we have

lim
h→0

d(R(E),R(Eh)) = 0.

(4) The operator Eh converges to E, i.e., limh→0 ‖Eh − E‖ = 0.

Remark 3.1 Some results of Theorem 3.1 can be more refined. We can provide the conver-
gence rate of this limit. As a matter of fact, ‖E − Eh‖ ≤ Chk+1 and d(R(E),R(Eh)) ≤
Chk+1 hold.

We list the properties of the operators Uh and Eh (see Lemma 4.3 in [20] )

• Jh is bijections,

C1‖v‖0 ≤ ‖Jhv‖0 ≤ C2‖v‖0, ∀v ∈ R(E), (3.5)
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• Eh is bijections,

C̃1‖v‖0 ≤ ‖Ehv‖0 ≤ C̃2‖v‖0, ∀v ∈ R(E). (3.6)

The two inequalities can be proved by using the same techniques as Lemma 4.3 in [20]. So
we omit it.

Define the similarity operators Ũ and Ũh by

Ũh = J−1
h UJh : R(E) → R(E),

Ũ = U|R(E) : R(E) → R(E).

Next, we present the result which plays an important role in the proof of the main result
(Theorem 3.2).

First, we need to consider the following dual problem:

�2ũ = χ, in �, (3.7a)

ũ = ∂ ũ

∂n
= 0, on ∂�, (3.7b)

or

∇ũ = q̃ (3.8a)

∇ q̃ = z̃ (3.8b)

∇ · z̃ = w̃ (3.8c)

∇ · w̃ = χ, (3.8d)

Lemma 3.1 Assume that (u f , q f , z f ,w f ) and (u f
h , q f

h , z fh ,w
f
h ) are the solutions of the

source problem (2.1) and the corresponding discrete problem (2.3), respectively. Then we
have

(�V
h u

f − u f
h , χ) =(z f − �RT z f , z̃ − �RT z̃)

+ (w f − �RTw f , q̃ − �
Q
h q̃)

− (q f − �
Q
h q

f , w̃ f − �RT w̃ f )

+ ( f − �V
h f , ũ − �V

h ũ).

(3.9)

The proof of Lemma 3.1 is put in Appendix.

Theorem 3.2 Suppose (λh, uh) ∈ R×Vh is an eigenpair of discrete system with ‖uh‖0 = 1,
and (λ, u) ∈ R× L2(�) is an eigenpair of HHJ eigenvalue system with ‖u‖0 = 1. Then we
have the following a priori error estimates:

‖u − uh‖0 ≤ Chmin{s,k+1}‖u‖s,
|λ − λh | ≤ Ch2min{s,k+1}‖u‖s .

Proof The arguments proving the convergence of the eigenfunctions are similar as [5] and
[19], and since they apply to the mixed method context of the first-order system based on
HHJ type with few modifications, we shall not repeat them.We only present the convergence
of the eigenvalues.

It follows from the Bauer-Fike theorem [7] that

|λ − λh | ≤ C‖Ũ − Ũh‖0.
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Here ‖Ũ − Ũh‖0 means the operator norm.
So we must bound ‖Ũ − Ũh‖0. In order to estimate it, we consider (Ũ − Ũh) f , where

f ∈ R(E).

C‖(Ũ − Ũh) f ‖0 ≤ ‖Uh(Ũ − Ũh) f ‖0 (by (3.5))

= ‖Eh�
V
h U f − EhUh�

V
h f ‖0 (by EhUh = Uh Eh)

= sup
νh∈R(Eh)

(Eh�
V
h U f − EhUh�

V
h f , νh)

‖νh‖0

= sup
ν∈R(E)

(Eh(�
V
h U f − Uh�

V
h f ), Ehν)

‖Ehνh‖0 (by Eh bijection)

= 1

C̃1
sup

ν∈R(E)

(�V
h U f − Uh�

V
h f , Ehν)

‖νh‖0 (by Eh bijection).

We express (�V
h U f − Uh�

V
h f , Ehν) by splitting it into four terms:

(�V
h U f − Uh�

V
h f , Ehν) = (�V

h u
f − Uh�

V
h f , Ehν)

= (�V
h u

f − u f
h , Ehν) + (u f

h − Uh�
V
h f , Ehν)

= (�V
h u

f − u f
h , Ehν − ν) + (�V

h u
f − u f

h , ν)

+(u f
h − Uh�

V
h f , Ehν − ν) + (u f

h − Uh�
V
h f , ν).

We bound the four terms of the above equations. By using the approximation result (Lemma
3.1 in [8]), for the first term, we have

|(�V
h u

f − u f
h , Ehν − ν)| ≤ Ch2min{s,r+1}(‖u‖s + ‖z‖s)‖ν‖0. (3.10)

For the third term, by using u f
h = Uh f , we have

|(u f
h − Uh f �

V
h u, Ehν − ν)| = |Uh( f − �V

h f ), Ehν − ν)|
≤ C‖ f − �V

h f ‖0‖Ehν − ν‖0
≤ Ch2min{s,r+1}‖u‖s‖ν‖0.

By using the adjoint of Uh , for the fourth term, we have

|(u f
h − Uh�

V
h f , ν)| = |Uh( f − �V

h f ), ν)| = |( f − �V
h f ,Uhν)|

= |( f − �V f , uν − �V uν)| ≤ Ch2min{s,r+1}‖u‖s‖ν‖0.
The remainder is denoted to estimate the second term (u f

h − Uh�
V
h f , ν). By using Lemma

3.1 with χ = ν, (�V
h u

f − u f
h , ν) can be expressed by the four terms, i.e.,

(�V
h u

f − u f
h , ν) = (z f − �RT z f , z̃ − �RT z̃) + (w f − �RTw f , q̃ − �RT q̃)

−(q f − �
Q
h q

f , w̃ f − �RT w̃ f ) + ( f − �RT f , ũ − �RT ũ).

So we bound these four terms, by the approximation properties, we have

|(�V
h u

f − u f
h , ν)| ≤ Ch2min{s,r+1}(‖z f ‖s‖ z̃ f ‖s + ‖w f ‖s‖q̃ f ‖s + ‖q f ‖s‖w̃‖s + ‖u f ‖s‖ũ‖s)

≤ Ch2min{s,k+1}(‖z f ‖s + ‖w f ‖s + ‖q f ‖s + ‖u f ‖s)‖ν‖0
≤ Ch2min{s,k+1}‖ f ‖0‖ν‖0.
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Combining all the intermediate steps, we have

‖(Ũ − Ũh) f ‖0 ≤ Ch2min{s,r+1}‖ f ‖0,
i.e.

‖Ũ − Ũh‖0 = sup
f ∈R(E)

‖(Ũ − Ũh) f ‖0
‖ f ‖0 ≤ Ch2min{s,r+1}.

�

We end this section by stating the other main theorem of this section, i.e., error estimates

of the auxiliary intermediary variables q, z, and w. The collection presents the a priori error
estimate consequences of these variables’ convergence. In the proof, we need the proposition
which is listed as follows.

Proposition 3.1 ([17]) If wh ∈ Wh and ∇ · wh ∈ V k−1
h , then wh ∈ Wh ∩ Qh.

Theorem 3.3 Assume that (λ j,h, u j,h, qh, z j,h,w j,h) ∈ R × Vh × Qh × Zh × Wh is a
solution of (2.7) which converges to eigenvalue (λ j , u j , q j , z j ,w j ).

Then we have the following estimates:

‖q j − q j,h‖L2(�) ≤ C ||z j − z j,h ||L2(�) + C ||q j − �
Q
h q j ||L2(�),

‖z j − z j,h‖L2(�) ≤ C ||z j − �RT z j ||L2(�) + C |λ j − λ j,h | + C ||u j − u j,h ||L2(�)

+ C
( ∑

K∈Th

h2lkk ||w j − �RTw j ||2L2(�)

) 1
2

‖w j − w j,h‖L2(�) ≤ C ||∇ · (�RT z j,h − z j,h)||L2(�)

+ ||w j − �RTw j,h ||L2(�) + C |λ j − λ j,h | + C ||u j − u j,h ||L2(K ),

where lk = 0 if k = 0 and lk = 1 if k ≥ 1.

Proof There exists a matrix-valued function J ∈ H(div,�) such that

∇ · J = �
Q
h q j − q j,h

with

||J ||H1(�) ≤ C ||�Q
h q j − q j,h ||L2(�).

||�Q
h q j − q j,h ||2L2(�)

= (�
Q
h q j − q j,h,∇ · J) = (�

Q
h q j − q j,h,∇ · �RT J) (by (3.1))

= −(z j − z j,h,�
RT J) ≤ ||z j − z j,h ||L2(�)||�RT J ||L2(�) (by (3.4b))

≤ ||z j − z j,h ||L2(�)(||�RT J − J ||L2(�) + ||J ||L2(�))

≤ ||z j − z j,h ||L2(�)(Ch||J ||H1(�) + ||J ||L2(�)) (by (3.3))

≤ C ||z j − z j,h ||L2(�)||J ||H1(�).

Combining the above two inequalities implies that

||�Q
h q j − q j,h ||L2(�) ≤ C ||z j − z j,h ||L2(�).

This proves the first result.
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Taking sh = �RT z j − z j,h and mh = �
Q
h p − ph in (3), we have

||�RT z j − z j,h ||2L2(�)
= (�RT z j − z j ,�

RT z j − z j,h) − (�
Q
h q j − �q j,h,∇ · (�RT z j − z j,h))

= (�RT z j − z j ,�
RT z j − z j,h) − (�RTw j − w j ,�

Q
h p − ph)

+(�RTw j − w j,h,�
Q
h p − ph)

= (�RT z j − z j ,�
RT z j − z j,h) − (�RTw − w,�

Q
h p − ph)

−(�V
h u j − u j .h,∇ · (�RT

h w j − w j,h)) + (�
Q
h q j − q j ,�

RT
h w j − w j,h)

= (�RT z j − z j ,�
RT z j − z j,h) − (�RTw j − w j ,�

Q
h p − ph)

+(�
Q
h q j − q j ,�

RT
h w j − w j,h)) − (λu j − λhu j,h,�

V
h u − uh)

by (3.4a) with ph = �RT z j − z j,h and (3.4d) with vh = �V
h u j − u j,h .

Lastly, we prove the last result. In order to prove it, we introduce the following source
problem with the source term f = λu: find (̃uh, q̃h, z̃h, w̃h) ∈ R × Vh × Qh × Zh × Wh

that satisfy

(̃qh, ph) + (̃uh,∇ · ph) = 0, (3.11a)

(̃zh, sh) + (̃qh,∇ · sh) = 0, (3.11b)

−(w̃h,mh) + (∇ · z̃h,mh) = 0, (3.11c)

(∇ · w̃h, vh) = (λu, vh), (3.11d)

Subtracting (3.11d) from (2.6d), we have

(∇ · (w j − w̃ j,h), vh)) = 0, ∀vh ∈ Vh .

By using the definition (3.1) of the projection �RT , we have

(∇ · (�RTw j − w̃ j,h), vh)) = 0, ∀vh ∈ Vh .

It follows from the above equation and ∇ · (�RTw j − w̃ j,h) ∈ Vh that

∇ · (�RTw j − w̃ j,h) = 0.

We obtain

�RTw j − w̃ j,h ∈ Wh ∩ Qh . (3.12)

by Proposition 3.1. Furthermore, by (3.12) of Theorem 3.5 in [8], we can similarly obtain
that

||�RTw j − w̃ j,h ||L2(K ) ≤ C ||∇ · (�RT z j − z j,h)||L2(K ) + C ||w j − �RTw j ||L2(K ).

(3.13)

Subtracting (3.11d) from (2.7d), we have

(∇ · (w j,h − w̃ j,h), vh)) = (λ j,hu j,h − λ j u j , vh), ∀vh ∈ Vh .

Taking vh = ∇ · (w j,h − w̃ j,h) in the above equation, we have

||∇ · (w j,h − w̃ j,h)||L2(�) ≤ C |λ j − λ j,h)| + C ||u j − u j,h ||L2(�). (3.14)

In order to obtain the last estimate we use (3.12) and have
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||�RTw j − w j,h ||2L2(K )
= (�RTw j − w j,h,�

RTw j,h − w̃ j,h) + (�RTw − wh, w̃ j,h − w j,h)

= (∇ · (�RT z j − z j,h),�
RTw j,h − w̃ j,h) + (�RTw − wh, w̃ j,h − w j,h)

by choosingmh = �RTw−w̃h . By Cauchy-Schwartz inequality, (3.13) and (3.14), we have

||�RTw j − w j,h ||2L2(K )
≤ C ||∇ · (�RT z j − z j,h)||L2(K ) + C ||w j − �RTw j ||L2(K )

+C |λ j − λ j,h | + C ||u j − u j,h ||L2(K ).

This proves the last result. �

The following corollary easily follows from the above theorem.

Corollary 3.1 Assume that (q, z,w) and (qh, zh,wh) are the solutions of (2.6) and P (2.7).
Then if k ≥ 1, we have

||q j − q j,h ||L2(�) ≤ Chk+1||z j ||Hk+1(�) ,

‖z j − z j,h‖L2(�) ≤ Chk+1||z j ||Hk+1(�) ,

‖w j − w j,h‖L2(�) ≤ Chk ||z j ||Hk+1(�) ,

if k = 0, we have

||q j − q j,h ||L2(�) ≤ Ch||z j ||H1(�),

‖z j − z j,h‖L2(�) ≤ Ch||z j ||H1(�).

4 Numerical Experiments

In this section, some numerical examples are presented to validate the result of our theoret-
ical analysis in the previous sections. First, we consider two smooth model eigenproblems
on a square and hexagon domain respectively. The spectral approximations using the mixed
method discretization are computed. Then, we consider a corner singularity model eigen-
problem on an L-shaped domain and we investigate the performance of our method with
uniform meshes. It should be noted that the errors in the text refer to relative errors. All the
computations have been performed by using the finite element package FreeFem++ [21].

4.1 Biharmonic Eigenvalue Problem on Unit Square

We first consider biharmonic eigenvalue problem based on the first-order system on unit
square � = (0, 1) × (0, 1). First, we obtain an initial mesh by subdividing the computing
domain � into shape-regular triangles. Figure 1 shows this initial mesh (h1 = 1/8). Other
nested meshes are produced by regular refinements.

Since the exact eigenvalue is unknown, we use an accurate enough approximation

λ1 = 1294.9339795917, λ2 = 5386.6565607533

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues to inves-
tigate the errors. Since the square domain is convex, the eigenfunctions are enough smooth,
i.e., u ∈ H3(�). So the convergence rates should be limited only by the degrees (k = 0, 1) of
the approximating polynomials. We solve first-order system (2.7) in each of these meshes by
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Fig. 1 The initial mesh for
Example 4.1

Fig. 2 The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on unit square for the initial
mesh in Fig. 1

using k = 0 and k = 1 finite element system, respectively. The results obtained are collected
below.

Figure 2 gives the corresponding numerical results for the first two eigenvalues.We see that
the approximate eigenvalues λh converge to the exact values at the optimal rate of O(h2k+2).
This is a verification of the theoretical consequence of Theorem 3.2. Table 1 shows the
approximate of the first two eigenvalues by solving the first-order system. Otherwise, from
Table 1, we can find the exact eigenvalue approximated by the numerical eigenvalue below.
This shows that what we get is effective lower bounds.

4.2 Biharmonic Eigenvalue Problem on Hexagon

In the second example, we consider that the domain � is a regular hexagonal region with a
side length of 1 and the center is the origin of coordinates. The initial mesh has been shown
in Fig. 3 (h1 = 1/4). We also use regular refinement to obtain nested meshes to construct
the corresponding finite element space.
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Table 1 Biharmonic eigenvalue problem on unit square

h k = 0 k = 1
λ1,h λ2,h λ1,h λ2,h

1/8 1279.8315553 5367.8139340 1294.7671242 5383.9713287

1/16 1290.7265788 5381.3561084 1294.9220096 5386.5412478

1/32 1293.5326319 5383.5828748 1294.9328449 5386.6502777

1/64 1294.6089833 5386.0567480 1294.9339167 5386.6559598

1/128 1294.8564677 5386.5086483 1294.9339760 5386.6565237

1/256 1294.9132879 5386.6149540 1294.9339793 5386.6565588

1/512 1294.9290543 5386.6476059

Trend ↗ ↗ ↗ ↗
Arrow denotes decrease or increase

Fig. 3 The initial mesh for
Example 4.2

Since the exact eigenvalue is unknown, we use an accurate enough approximation

λ1 = 163.597568158247, λ2 = 703.328903370623

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues to inves-
tigate the errors. Since the square domain is convex, the eigenfunctions are enough smooth,
i.e., u ∈ H3(�). So the convergence rates should be limited only by the degrees (k = 0, 1)
of the approximating polynomials. We solve the first-order system (2.7) in each of these
meshes by using k = 0 and k = 1 finite element system, respectively. The results obtained
are collected below.

Figure 4 gives the corresponding numerical results for the first two eigenvalues. From Fig.
4, we see that the approximate eigenvalues λh converge to the exact values at the optimal
rate of O(h2k+2). Table 2 shows the eigenvalue approximations of the first 2 eigenvalues by
solving the first-order system. From Table 2, we can also find the numerical approximations
are lower bounds of the exact eigenvalues.

4.3 Biharmonic Eigenvalue Problem on L-Shape Domain

In the last example, we consider the HHJ eigenvalue system defined on the L-shape domain
� = [−1/2, 1/2]2/(0, 1/2) × (−1/2, 0). The re-entrant corner on � causes the singularity
of the eigenfunctions. Consequently, the convergence order for the first and second eigen-
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Fig. 4 The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on regular hexagon for the
initial mesh in Fig. 3

Table 2 Biharmonic eigenvalue problem on regular hexagon

h k = 0 k = 1
λ1,h λ2,h λ1,h λ2,h

1/4 160.9458396 692.9333602 163.3798197 703.1951012

1/8 162.6812267 701.2997887 163.5776036 703.2744127

1/16 163.3016611 702.4711335 163.5959258 703.3238815

1/32 163.5226051 703.0807014 163.5974516 703.3284793

1/64 163.5776298 703.2620556 163.5975589 703.3288689

1/128 163.5926992 703.3143307 163.5975675 703.3289008

1/256 163.5963661 703.3253328

Trend ↗ ↗ ↗ ↗
Arrow denotes decrease or increase

value approximation is not optimal. However, as a numerical example, we also show the
effectiveness of our method. Figure 5 shows the initial mesh.

Since the exact eigenvalue is unknown, we use the accurate enough approximation

λ1 = 6700.09875796623, λ2 = 11054.4911180150

given by the extrapolation method (see, e.g. [29]) as the first two exact eigenvalues to inves-
tigate the errors. Here we also solve HHJ eigenvalue system (2.7) by using k = 0 and k = 1
finite element system, respectively.

Figure 6 gives the corresponding numerical results for the first two eigenvalues. From
Fig. 6, we can obtain the optimal error estimates that meets Theorem 3.2. Table 3 shows the
eigenvalue approximations of the first 2 eigenvalues by solving the first-order system. From
Table 3, we can find the numerical approximations are indeed lower bounds of the exact
eigenvalues.

Remark 4.1 From the above three numerical examples,we can indeedfind that the eigenvalues
obtained by solving the HHJ eigenvalue system are effective lower bounds. However, at
present, we are unable to prove this conclusion.
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Fig. 5 The initial mesh for
Example 4.3

Fig. 6 The errors of the first two eigenvalues with k = 0 (left) and k = 1 (right) on L-shape domain for the
initial mesh in Fig. 5

Table 3 Biharmonic eigenvalue problem on L-shape domain

h k = 0 k = 1
λ1,h λ2,h λ1,h λ2,h

1/8 5636.5006655 10334.1889032 6442.0857195 11044.1485401

1/16 6496.5069009 10982.6026156 6645.2214258 11052.3034939

1/32 6611.7862029 11035.4824786 6676.1086781 11053.8882698

1/64 6662.0614415 11049.3382099 6690.6691688 11054.3274377

1/128 6684.6224134 11053.0660625 6697.5268563 11054.4528623

1/256 6694.6542454 11054.1154644

Trend ↗ ↗ ↗ ↗
Arrow denotes decrease or increase
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5 Other Effective Finite Element Spaces

Sections 3 and 4 show that our method approximations eigenvalue λ and eigenfunction u and
q with optimal order and w in a sub-optimal way. In this section, we present the other two
groups of spaces in which computing eigenvalues is also very effective, and the upper bound
of eigenvalues can be obtained.

5.1 Abstract Finite Element Spaces

These spaces are interesting because the source problem (2.1) is uniquely solvable. The
uniquely solvable consequence is easily proved, which is similar to Theorem 2.2 in [8]. So far
we focused on the case when the same spaces are employed to approximate the components
of the second derivative and the third derivative, the eigenfunction and its derivative are
approximated by the same polynomials. Before describing the new spaces we introduce the
following concept which the new spaces need to satisfy.

Definition 5.1 The FE space pair Qh × Zh is a stable pair for the vector-valued Poisson
problem if there exists a constant C such that for any q ∈ Qh there exists z ∈ Zh such that

∇ · z = q,

with

‖z‖H(div,�) ≤ C‖q‖L2(�).

Similarly, Vh ×Wh is a stable pair for Poisson’s problem if it is a row of a stable pair for the
vector-valued Poisson problem.

From the above definition and discussion, we observe that Qh nearly determines the scale
of the global system. Then we fix Qh as a set of k-degree polynomials. To hold a stable
discrete space pair, we only vary the space of Zh and enlarge it. So Zh is changed to the
polynomial space with degree k + 1, i.e.,

Case 1:

Vh = {v ∈ V : v|K ∈ Pk(K ) for all K ∈ Th}, (5.1a)

Qh = { p ∈ Q : p|K ∈ (Pk(K ))d for all K ∈ Th}, (5.1b)

Zh = {s ∈ Z : s ∈ (C0(�))d×d , s|K ∈ (Pk+1(K ))d×d for all K ∈ Th}, (5.1c)

Wh = {m ∈ W : m|K ∈ RTk(K ) for all K ∈ Th}. (5.1d)

It is easy to verify that Qh × Zh and Vh ×Wh are stable pairs. Indeed, Qh × Zh can be used
for solving vector-valued Poisson’s problem and is called the Brezzi-Marini-Douglas spaces.
Vh ×Wh can be used for solving scalar Poisson’s problem and is called the Raviart-Thomas
spaces.

Based on case 1, we can appropriately reduce the size of the global system. So we can
adjust the size of the two spaces Qh and Vh , that is, space Qh is adjusted to a k-degree
polynomial space, then space Vh is naturally a k − 1 degree polynomial space. We obtain the
spaces of Vh , Wh , and Zh as follows,

Case 2:

Vh = {v ∈ V : v|K ∈ Pk(K ) for all K ∈ Th}, (5.2a)
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Fig. 7 The initial mesh for
Example 5.2

Qh = { p ∈ Q : p|K ∈ (Pk+1(K ))d for all K ∈ Th}, (5.2b)

Zh = {s ∈ Z : s ∈ (C0(�))d×d , s|K ∈ (Pk+2(K ))d×d for all K ∈ Th}, (5.2c)

Wh = {m ∈ W : m|K ∈ (Pk+1(K ))d for all K ∈ Th}. (5.2d)

It is easy to verify that Qh × Zh and Vh × Wh are stable pairs. Indeed, Qh × Zh can be
used for solving vector-valued Poisson’s problem and is called the Brezzi-Marini-Douglas
spaces. Vh × Wh can be used for solving scalar Poisson’s problem and is called the Brezzi-
Marini-Douglas spaces.

We can now follow similar techniques in [8] to obtain results analogous to the identity
(3.9) in Lemma 3.1 in both these cases. On the other hand, rigorous proofs of the result are
developed for these cases involving the matrix-valued BDM projection (d copies of BDM
projection: one for each row) onto the space Zh , instead of the projection, �RT . It follows
then that we get the convergence rates for the eigenvalue. In fact, (3.9) will hold for these new
spaces and therefore we will get the error estimates for eigenvalue as well. Finally, one can
also prove optimal error estimates for the other variables. The numerical results for different
cases are shown in the following figures and tables.

5.2 Two Specific FE Spaces for the Biharmonic Eigenvalue Problem

We also consider biharmonic eigenvalue problem based on the first-order system on unit
square� = (0, 1)× (0, 1). First, we decompose the computing domain� into shape-regular
triangles. Figure 7 shows this initial meshes (h1 = 1/4). Other nested meshes are produced
by regular refinements.

We solve the first-order system (2.7) by using first FE group (5.1) and second FE group
(5.2) with k = 1, respectively. The corresponding numerical results are shown in Fig. 8 which
also exhibits the optimal convergence rate. Table 4 shows the eigenvalue approximations of
the first 2 eigenvalues by solving the first-order system. From Table 4, we can find the
numerical eigenvalues approximate the exact eigenvalues below. This shows that what we
get is effective upper bounds.
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Fig. 8 The errors of the first two eigenvalues by 1st FE group (5.1) (left) and 2nd FE group (5.2) (right) on
unit square with k = 1

Table 4 Biharmonic eigenvalue problem on unit square

h 1st FE group (5.1) with k = 1 2nd FE group (5.2) with k = 1
λ1,h λ2,h λ1,h λ2,h

1/4 1302.2386966 5480.0091932 1342.3203813 5785.8620433

1/8 1295.3541917 5393.5495941 1296.8731606 5409.4537648

1/16 1294.9642912 5387.1536319 1295.0478874 5387.9185701

1/32 1294.9359196 5386.6908683 1294.9409933 5386.7316576

1/64 1294.9341227 5386.6590695 1294.9344093 5386.6613214

1/128 1294.9339884 5386.6567126 1294.9340033 5386.6568345

Trend ↘ ↘ ↘ ↘
Arrow denotes decrease or increase

Remark 5.1 From the above numerical example, we can find that the eigenvalues obtained
by solving the HHJ eigenvalue system are effective upper bounds. However, at present, we
are unable to prove this conclusion.

6 Conclusion

In this paper, a new type of mixed method is designed to solve the fourth-order biharmonic
eigenvalue problemsbasedon themixedfirst-order system.Thehigher-order eigenvalue prob-
lem is transformed into a mixed first-order system containing four first-order equations. We
have proved the optimal error estimates. Three numerical experiments validate the optimality
and show that this the method is efficient for many different domains. For good measure, we
also find that this method can effectively obtain the lower bounds of eigenvalues.
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Appendix: The proof of Lemma 3.1

In order to get the best possible estimates, we assume the following elliptic regularity result:

‖u f ‖4 ≤ C‖ f ‖0 (A.1)

Then we have error equations as follows

(q f − q f
h , ph) + (u f − u f

h ,∇ · ph) = 0, , (A.2a)

(z f − z fh , sh) + (q f − q f
h ,∇ · sh) = 0, , (A.2b)

−(w f − w
f
h ,mh) + (∇ · (z f − z fh ),mh) = 0, (A.2c)

(∇ · (w f − w
f
h ), vh) = 0, (A.2d)

for all (vh, ph, sh,mh) ∈ Vh × Qh × Zh × Wh .
Now we begin to prove Lemma 3.1.

Proof Using the dual equations (A.2) of the source problem (2.1), we have

(�V
h u − uh, χ) = (�V

h u − uh,∇ · w̃) (by dual equation (3.8d))

= (�V
h u − uh,∇ · �RT w̃) (by (3.1a))

= −(q f − q f
h ,�RT w̃) (by error equation(A.2a))

= −(q f − q f
h ,�RT w̃ − w̃) − (q f − q f

h , w̃ − �
Q
h w̃) − (q f − q f

h ,�
Q
h w̃).

We express the last term (q f − q f
h ,�

Q
h w̃). By the dual equation (3.8c), we have

(q f − q f
h ,�

Q
h w̃) = (q f − q f

h ,�
Q
h ∇ · z̃) ( by dual equation (3.8c))

= −(q f − q f
h ,∇ · �RT z̃) (by the commutative property �

Q
h )

= (z f − z fh ,�RT z̃ − z̃) + (z f − z fh , z̃). (by error equation (A.2b))

Furthermore, using the integration by parts, we have

(z f − z fh , z̃) = (z f − z fh ,∇ q̃) = (∇ · (z f − z fh ), q̃) (by q̃|∂� = 0)

= (∇ · (z f − z fh ), q̃ − �
Q
h q̃) + (∇ · (z f − z fh ),�

Q
h q̃)

= (w f , q̃ − �
Q
h q̃) + (w f − w

f
h ,�

Q
h q̃) (by error equation (A.2b) and (2.1c))

= (w f − �RTw f , q̃ − �
Q
h q̃) + (w f − �RTw f ,�

Q
h q̃) + (�RTw f − w

f
h ,�

Q
h q̃).
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Next, we express the second term and the third term

(w f − �
Q
h w f ,�RT q̃) = (w f − �RTw f ,�

Q
h q̃

f − q̃) + (w f − �RTw f ,∇ũ)

= (w f − �RTw f ,�
Q
h q̃ − q̃) + (∇ · w f − ∇ · �RTw f , ũ)

= (w f − �RTw f ,�
Q
h q̃ − q̃) + ( f − �V

h ∇ · w f , ũ)

= (w f − �RTw f ,�
Q
h q̃ − q̃) + ( f − �V

h f , ũ − �V
h ũ).

The last term vanishes. In fact, it follows fromw
f
h −�RTw f ∈ Qh ∩Wh and∇ ·(�RTw f −

w
f
h ) = 0 that

(�RTw f − w
f
h ,�

Q
h q̃) = (�RTw f − w

f
h , q̃ f ) = (�RTw f − w

f
h ,∇ũ)

= (∇ · (�RTw f − w
f
h ), ũ) = 0

by the integration by parts, ũ|∂� = 0 and (A.2d). Combining the all above steps implies the
desired result. �
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