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1. Introduction

Solving large-scale eigenvalue problem is one of the fundamental problems in modern science and engineering field. It
is always a very difficult task to solve high dimensional eigenvalue problems especially for multiple eigenvalue problems,
which come from practical physical and chemical sciences [1-3]. Different from the case of the boundary value problems,
there are no many efficient numerical methods for solving eigenvalue problems with optimal complexity. The aim of this
paper is to design a new type of adaptive multigrid method for multiple eigenvalue problems, by combining the multigrid
method and adaptive finite element method.

Since the adaptive finite element method (AFEM) was proposed by Babuska and his collaborators in [4], it has
been widely used to solve partial differential equations with singularities. The convergence and optimal complexity
of AFEM have been much studied in recent years. For linear partial differential equations, especially, for the Poisson
equation and its variants, the theory is well-developed. For instance, Dorfler [5] introduced Dorfler’'s marking and proved
strict energy error reduction for the Laplace problem provided the initial mesh is fine enough. Following their work,
Dérfler and Wilderotter [6], Morin, nochetto and Siebert [7], Binev, dehmen and Devore [8], Mekchay and Nochetto [9],

* This work is supported in part by the General projects of science and technology plan of Beijing Municipal Education Commission (Grant No.
KM202110005011) and the National Science Foundation of China (Grant Nos. 11801021, 11971047, 72103210).
* Corresponding author.
E-mail addresses: xufei@lsec.cc.ac.cn (F. Xu), mtxie@tju.edu.cn (M. Xie), gmhuang@bjut.edu.cn (Q. Huang), yuemeiling@Isec.cc.ac.cn (M. Yue),
mahongkun1212@163.com (H. Ma).

https://doi.org/10.1016/j.cam.2022.114450
0377-0427/© 2022 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.cam.2022.114450
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2022.114450&domain=pdf
mailto:xufei@lsec.cc.ac.cn
mailto:mtxie@tju.edu.cn
mailto:qmhuang@bjut.edu.cn
mailto:yuemeiling@lsec.cc.ac.cn
mailto:mahongkun1212@163.com
https://doi.org/10.1016/j.cam.2022.114450

F. Xu, M. Xie, Q. Huang et al. Journal of Computational and Applied Mathematics 415 (2022) 114450

Stevenson [10] and Cascon et al. [11] have further studied the adaptive convergence of the standard finite element
methods. Stevenson [10] and Cascon et al. [11] also analyzed the complexity of the adaptive method. For eigenvalue
problem, Carstensen et al. [12,13] considered AFEM for simple eigenvalue problems and eigenvalue clusters. Moreover,
the error reduction and optimal complexity analysis of AFEM can be found in [14] based on the connections between
boundary value problem and eigenvalue problem. In [15,16], some methods are introduced to derive the a priori (without
any computational effort) estimates of the eigenvalues of large matrices approximated by several Galerkin techniques
based on the GLT theory and on the notion of symbol [17]. In [18,19], the techniques are provided for showing how close
the eigenvalues of the finite dimensional approximations are with respect to the eigenvalues of the continuous problem.
For more results about eigenvalue problems, please refer to [8-10,20-26] and the references cited therein.

In this paper, we will propose and analyze a new type of adaptive multigrid method to solve the multiple eigenvalue
problems based on the adaptive mesh refinement, multigrid method and the recent work on the multilevel correction
method [27-33]. Different from the classical approach which solves the large-scale eigenvalue problem in the new finite
element space after each mesh refinement, with our approach we only need to solve several linear boundary value
problems on the current refined mesh and then correct the approximate solution by solving a low dimensional eigenvalue
problem in a specially designed correction space. During the adaptively refining process, the size of the low dimensional
eigenvalue problems will be fixed. Further, the involved boundary value problems are solved by the adaptive multigrid
method, which was initially proposed by Brandt in [34]. For more results about the adaptive multigrid method, please
refer to [35-38] and the references cited therein. Since the main computation of the proposed algorithm is solving the
linear boundary value problems on the adaptively refined partitions, the cost of the new adaptive multigrid method will
not be more expensive than the adaptive multigrid method for the associated boundary value problems. In addition, we
prove the convergence and optimal complexity of the new algorithm by adopting the techniques in [11,14].

In this study, we will research the following elliptic eigenvalue problem: Find (X, u) such that

-V - (AVu)+¢u = Au, in £, (1)
u = 0, on 052,

where A4 is a symmetric and positive definite matrix with elements belong to W', ¢ € L is a nonnegative function,
£ Cc R (d =2, 3)is a bounded domain with Lipschitz boundary 32.

An outline of this paper is as follows. In Section 2, we will introduce some notations and recall some preliminaries of
the standard AFEM for the boundary value problems. In Section 3, we construct the adaptive multigrid method for multiple
eigenvalue problems. The corresponding convergence and complexity analysis are presented in Section 4. Finally, some
numerical examples are presented in the last section to illustrate the efficiency of the proposed algorithm.

2. Preliminaries of standard AFEM for boundary value problem

In this section, we should review some basic results of AFEM [5,7,9,11] for linear boundary value problem, which will
be a basis of the following analysis for multiple eigenvalue problems. In this study, we use the standard notation for
Sobolev spaces W*P(£2) and their associated norms || - [|s p, and seminorms | - [ , o (see, e.g., [39]). For p = 2, we denote
H¥(£2) = WS2(£2) and H)(2) = {v € H'(2) : vy = 0}. For simplicity, we use V to denote H}(£2) in the rest of the

paper.
In this section, we consider the following elliptic boundary value problem:

Lug ==V -(AVu))+ou, = f, in2, £=i,...,i+q—1, 2)
u, = 0, onadf.

Remark 2.1. In fact, (2) is a linear system composed of g boundary value problems. The reason why we study (2) in this
section is that we will encounter the equation as (2) in our analysis for multiple eigenvalue problem. Here, i and q denote
positive integers which will be introduced in the next section.

The weak form of (2) is defined as follows: Find u, € V such that
a(ug, ve) = b(fe, v¢), YveeV, €=i,...,i+q—1, (3)

where
a(ug, ve) = / (AVUe - Ve + ¢Uzve)d9, b(fe, ve) = / feveds$2.
17 17

From the properties of .A and ¢, the bilinear form a(-, -) is bounded over V
la(w, v)| < lwlleellvllee, Yw,veV,

and satisfies
Callwlh,e = lwllee < Gllwlh,e,

where the energy norm || - ||o. is defined by ||w]s.e = va(w, w).
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Now, we begin to define the finite element approximation of the boundary value problem (2). First we decompose
the computing domain 2 to generate a conforming triangulation 7;. The diameter of a cell K € 7 is denoted by hx and
the mesh size h describes the maximum diameter of all cells K € 7. Based on the partition 7,, we can construct a finite
element space denoted by V;, C V which is composed of piecewise polynomials.

The standard finite element method for (3) is to solve the following discrete elliptic boundary value problems: Find
up¢ € Vy such that

a(upe, vne) = b(fe, vne), Yone € Vi €=1i,...,i+q—1 (4)
For the purpose of analysis, we define the Galerkin projection P, : V — V} by
a(u — Pyu, vp) =0, Yy € Vy. (5)

Then we have
IPrttlla,e < llullae, YueV. (6)
In this paper, we use &, to denote the set of interior faces of [ Th. Based on the conclusions of AFEM for boundary value
problems (see, e.g. [5,7,9,11]), we define the element residual Ry (us ) and the jump residual ]e(uh ¢) as follows:
Ri(une) = fo — Lune = fo + V- (AVupe) — @upe, inK € T, (7)
Je(Une) = —AVu,T’e vT — AV, - vT = [AVUpe] - ve, ON e € &, (8)

where e is the common side of elements K+ and K~ with the unit outward normals v* and v, respectively, and v, = v™.
For K € Ty, we define the local error indicator 7,(up ¢, K) and the oscillation 6§’c§(uh,5, K) by

Tnne, K) = Mg I ReCunllg s+ Y hellelun.o)lIg o

ec&p,eCok

05Ch(un e, K) = g1 = PORk(un )3+ Y hell(l — Pele(un )13 -
ec&p,eCaK

where I denotes the identity operator, Px and P, denote the L2-projection operators to polynomials of some degree on K
and e, respectively.
Given a subset w C £2, we define the error estimator %,(up ¢, ) and the oscillation 6scy(up ¢, ) by

~2 ~2 ~.2 ~.2
Mune ©)= Y Trune,K) and OSCh(une, )= Y 65 (une, K).
KeTh,KCw KeTh,KCw

Now we recall the reliability and efficiency of the abovementioned residual type a posteriori error estimator in the
following lemma (see, e.g., [9,11,40]).

Lemma 2.1. There exist some constants a, Ez and 53, which depend on the shape-regularity of Tp, such that the following
reliability and efficiency hold

llue —th||a9 < Clnh(uhz,Th) (9)
Con(une; Th) < llue — unell? o + C363C (Une; Th)- (10)

The standard AFEM can be written as a loop of the following form
Solve — Estimate — Mark — Refine.

More precisely, to get 7y, , from 7y, we first solve the discrete equation on 7y, to get the approximate solution and then
calculate the a posteriori error estimator on each mesh element. Next we mark elements to be subdivided according to
the values of the a posteriori error estimator and refine these elements in such a way that the triangulation is still shape
regular and conforming.

For simplicity, we use ), to represent » ,~%" " in the rest of this paper, and the index ¢ may be different at different
places. For any finite element function U, = (uh is s Unirg—1) € (Vi)?, we denote

Uh,K Znh upe, K) and osch (Up, K) = Zosch up¢, K).

i+q-1

For any U = (u;, ..., Ui+g—1) € (V)4, we denote
WUl = lluell2 o).
¢

In order to simplify the description of the AFEM, we first introduce some modules for the boundary value problem:
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D = BVP_SOLVE({f[}’[;‘Tl, Vi): Solve the boundary value problem (4) in the finite element space V,, and return the
discrete solution @ € (Vj)I.

e & = MGBVP_SOLVE( {fg}'jj_l, &g, Vi,): Solve the boundary value problem (4) by the adaptive multigrid method with
the initial value @ € (V)7 in the finite element space V,, and return the iteration solution @ € (V})%.

{7(Un; K)Yker;, = BVP_ESTIMATE(Uy, 75): Compute the local a posteriori error indicator 7,(Uy; K) on each mesh
element K € 7p.

e My = BVP_MARK(O, {ijs(Un; K)}keT;,, Tn): Construct a subset My, by Dorfler's marking strategy presented in [5],
i.e., construct a minimal subset M}, from 7, by selecting some elements in 7, such that

Mh(Un; Mp) = 673(Un; Tr)

and mark all the elements in My,
® (Thy1» Vi) = REFINE(Mp,, Tp,): Output a conforming refinement 7,
My, are refined and construct the finite element space Vy,_ ;.

w1 according to My, where all elements of

The basic loop of the classical AFEM for the elliptic boundary value problem (3) is presented in Algorithm 2.1.

Algorithm 2.1 (Adaptive Finite Element Method).

1. Given a parameter 0 < # < 1 and an initial mesh 7p,. Set k := 1.

2. Uy, = BVP_SOLVE({fo};t4™", Vi, );

3. {7 (Un; K)}ers, = BVP_ESTIMATE(Up, , T, );

4. My, = BVP_MARK(0, {7, (Up,; K)}KeThk» T )s

5. (Theers Vs ) = REFINE(My, T, )i

6. Set k := k+ 1 and go to step 2.

Now, we recall the well-known convergence result of the AFEM for the elliptic boundary value problem (see [11,14,40]).

The following lemma is an extension of corresponding result for the case of ¢ = 1 in [11] by some primary operations
and it will be used in our analysis.

Lemma 2.2 ([11, Theorem 4.1]). Let {Uy, }ken be a sequence of finite element solutions produced by Algorithm 2.1. Then, there
exist two constants ¥ > 0 and & € (0, 1) depending only on the shape regularity of meshes and the marking parameter 9,
such that any two consecutive iterations satisfy

U = Unr 120 + 7, Unrs Ty < E2IU = Un Iz & + P77, (U Tie))- (11)
3. Adaptive multigrid method for multiple eigenvalue problems

In this section, we design a novel adaptive multigrid method for solving the multiple eigenvalue problems based on
the multilevel correction scheme and adaptive multigrid method.

3.1. Finite element method for eigenvalue problems

First, we recall some basic theoretical results of the finite element method for the eigenvalue problems in this
subsection.

The corresponding variational form for the eigenvalue problem (1) can be described as follows: Find (A, u) € R x V
such that b(u, u) = 1 and

a(u, v) = Ab(u, v), YveV. (12)
As we know, eigenvalue problem (12) has an eigenvalue sequence (see [41,42]):
O<A <A< <<, limlp =00
k— o0

and the corresponding eigenfunctions
U, Uy ooy Uy ovesy
where b(u;, u;) = §; and A; are repeated according to their geometric multiplicity in the sequence {A;}.
The following property about the eigenvalue and eigenfunction approximation is useful (see [41,43]).
Lemma 3.1. Let (A, u) be an eigenpair of (12). For any w € V \ {0}, there holds the following expansion
a(w, w) alw—u,w—u) b(w —u, w—u)

— = —A . (13)
b(w, w) b(w, w) b(w, w)
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The standard finite element scheme for eigenvalue problem (12) is described as follows: Find (A, iiy) € R x Vj, such

that b(up, up) = 1 and

a(ip, vp) = Apb(in, vp),  Yop € Vy. (14)
From [41-43], the discrete eigenvalue problem (14) has an eigenvalue sequence

0<Aint <hnz < <hpk<-<hnn,
and the corresponding eigenfunctions

Up,1, Up2,s « oo Upks -+ - Up Ny

where b(up;, Upj) = 8;j, 1 <1i,j < Ny and N, denotes the dimension of V.
Let M(A;) denote the eigenfunction space corresponding to the eigenvalue A; which is defined by

M(X;) = {w € V : w is an eigenfunction of (12) corresponding to A; and b(w, w) = 1}.

_ For generality, let g be the multiplicity of the desired eigenvalue. It means A; = --- = Aj;4-1. We use (Ani, Up i)y« -y
(Ah,i+q—1, Un,i+q—1) to denote the eigenpair approximations for the eigenvalues A; = - - - = Aj;4—1 and their corresponding
eigenfunction space M(};). Let

Mp(Xi) = span{ig i, . . ., Upitq—1}- (15)
For two subspaces X and Y of V, we denote
OKX,Y)= sup infllw—vlae, PX.Y)= sup infllw—v]oq.
weX, Jlwllo=1v€ weX, wlo=1veY

Then we define the gaps between M(X;) and Mu(A;) in || - |lq. as

O(M(A), My(2i)) = max{O(M(Ai), Mu(A:)), @(Mp(2i), M(A:))} (16)
andin | - [lo.e as
D (M(A;), Ma(Ai)) = max{@(M(A;), Mu(21)), D(Mn(Ai), M(1))}. (17)

For @(X, Y) defined above, we have (see, e.g., Theorem 6.1 of [41]) the following lemma.

Lemma 3.2. Ifdim X =dimY < oo, then &(X,Y) < &Y, X)[1 — O(Y, X)]"".
Let T : [?(£2) — V be the operator defined by

a(Tw, v) = b(w,v), YveV, (18)
and T, : [%(£2) — Vj, be the operator defined by
a(Tyw, vp) = b(w, vn), Yup € Vp. (19)

Let I" be a circle in the complex plane centered at A;” ! and not enclosing any other eigenvalues of T. Define the spectral
projection associated with T and A; as follows (see [41,43])

1
E=E\)=— / (z—T) 'dz. (20)
2mi r
For h sufficiently small, except X,jll cees )_Lh_,i] g1 there is no other eigenvalue of T, contained in I". So we can define the
spectral projection associated with Ty, and Apj, .. ., Anitq—1 as
1
B =Bk = 5 [ =Tl 1)
2ri Jr

For the eigenpair approximation by the finite element method, the following two lemmas (see [41,43]) give key
estimates.

Lemma 3.3. Let A; = --- = Ayyq-1 be any eigenvalues of (12) with multiplicity q and up ¢ with ||lupello.e = 1 be the
eigenfunction corresponding to Ap ¢ (€ =1, ...,i4 q — 1). Then, there holds

lu — Epullo,e < na(h)llu — Epttllq 2, It — Epttllgo < Su(Xi), Yu € M(X;),

lltne — Etpello,e < na(Mlltine — Etthella,2, Nltne — Ettnella,e < Sn(Ai),

Ao — hi S 8p(A),

where

Su(Ai) = sup inf |lw — vpllee, n4(h)= sup inf ||Tf — vplla.e.
weM(2;) YhEVh Fel2(2),Iflo,o=1"<Vh

5
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Lemma 3.4. For any u € M(A;), we have
lu — Entlle

< =1+ 0O(v(h)), (22)
”u - Phu”a,(z
where v(h) is defined as follows

v(h)=  sup inf ||Tf — vhlla,2
feV.llflla, =1

and v(h) - 0as h — 0.

We will also use the following two lemmas in our analysis (see [14]).

Lemma 3.5 ([14, Corollary 2.10]). For any u € M(A;), there holds
1 — Cna(h)du(hi) < IEnttllg o < 1, (23)

where C is a constant not depending on mesh size.
Lemma 3.6 ([14, Corollary 2.11]). For any uj, u, € M(A;) with b(uj, ug) = 8¢ (j, £ =1, ...,i+q — 1), we have

b(Epuj, Enute) = 8¢ + O(na(h)Sn(1s)). (24)
3.2, Adaptive multigrid method

In this subsection, we propose an adaptive multigrid method based on the combination of the multilevel correction
method, multigrid method and adaptive mesh refinement.

According to the element residual R (us ¢) and the jump residual je(uh ¢) of the boundary value problem (2), we define
the element residual and the jump residual of the eigenvalue problem (12) as follows:

Ri(Un,e) = Anglne — Qune + V- (AVupe), inK e Ty, (25)
Je(une) == —AVUf, - vt — AVu, - vT = [AVUp] - ve, ON € € &. (26)

For K € Tp, we define the local error estimator n,(up ¢, K) and the oscillation oscy(up ¢, K) for the eigenvalue problem (12)
by

lune, K) = Bl ReCun)lgc + Y helle(uno)ls .

ec&p,eCok
oscp(un e, K) = g1 = PORk(un )3+ Y hell(l = Pede(un )13 -
ec&p,eCak
For any Up = (Uni, . . ., Unitqg—1) € (V4), we set

’lh (Up, K) = Znh upe, K) and osch (Up, K) = onsc,1 Up¢, K).

Similarly, we also introduce some modules of our adaptlve multigrid algorithm for multiple eigenvalue problem as
follows:

o (A, @) = EG_SOLVE(V}): Solve the eigenvalue problem (14) in the finite element space Vj, and return the desired g
eigenpair approximations (A, @) € R? x (V).

o {(nn(Un; K)}ker;, = EG_ESTIMATE(Uy, 75): Compute the local error indicators on each element.

o My = EG_MARK(O, {ns(Up; K)}keT;,, Tn): Construct a minimal subset My, from 7y by selecting some elements in 7
such that

nn(Un; Mp) = 0n,(Un; Tr), (27)
and mark all elements in Mj,.

Then the adaptive multigrid method for multiple eigenvalue problem is defined in Algorithm 3.1. Instead of solving
an eigenvalue problem in each adaptive finite element space, with our approach, we only need to solve several linear
boundary value problems by adaptive multigrid method in the adaptively refined space and a small-scale eigenvalue
problem in a low dimensional space. The idea is an extension of two-grid method for the eigenvalue problem [44] to
multigrid case by adding a special correction step. The correction step can not only keep the H'-norm accuracy of the
approximate eigenfunction obtained from the adaptive space, but also gives a higher order L2-norm accuracy. Since there
is no eigenvalue problem solving in the refined triangulations directly, which needs more computation and memory than
solving the associated boundary value problems, the proposed algorithm has a higher efficiency than the standard adaptive
finite element method.
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Algorithm 3.1 (Adaptive Multigrid Method).

1. Given a parameter 0 < # < 1. Generate a coarse mesh 75 on computing domain §2 and construct the corresponding
finite element space V. Pick up an initial mesh 7,, which is produced by refining 7 several times in the uniform
way. Then build the initial finite element space V;, on 7p,. Let p denote the multigrid iteration times. Set k := 1
and do the following loops:

EG_SOLVE(V,,. ), when k = 1;

2. (Ahka Uhk) = i T .

EG_SOLVE(Vy @ span{Uy,}), whenk > 1;

3. {nn(Unys K)Yke, = EG_ESTIMATE(Up,, Th );

4. th = EG,MARI((Q, {T]hk(Uhk; K)}KE'Thka 7?1)():

5. (Thysrs Vi )0: REFINE(Mp,, Ty, );

6. (a) set U,Skil = Up,;

(b) For € =0,---,p—1,Uj " = MGBVP_SOLVE( A Un,, Uy | V.., );

] —_y» .
(c) Set Upy,, = Uy, s

7. Set k := k+ 1 and go to step 2.

Remark 3.1. In Algorithm 3.1, we only need to solve a series of boundary value problems on adaptive spaces in step 6 and
solve some low dimensional eigenvalue problems in step 2. The dimension of these eigenvalue problems (dim (Vy) 4+ q)
remains unchanged during the adaptive refinement, thus the overall efficiency of Algorithm 3.1 will not be significantly
more expensive than the adaptive multigrid method for the corresponding elliptic boundary value problem.

In the 6-th step of Algorithm 3.1, the multigrid method is adopted for the linearized boundary value problems which
includes pre-smoothing, coarse grid correction and post smoothing. Here, we choose some linear smoothers such as
Richardson, Jacobi, Gauss-Seidel and symmetrized Gauss-Seidel iteration in the multigrid method.

Define My p,(A;) = span{uy, i, ..., Up,i+q—1}- In the following analysis, we need some crude a priori error estimates
presented in the following lemma.

Lemma 3.7. The approximate eigenfunction space My p,(A;) obtained by Algorithm 3.1 has the following error estimates

OM(A:), My p (M) < 82, (28)

D(M(%i), My, (A1) < na(H)Su(Ai). (29)
For each eigenvalue, we have

Mt — M S SH(M), fore=1i,....i+q—1. (30)

Proof. From Lemma 3.3, there holds
O(M(A;), My p (M) S sup inf  fu— vy llae

~

ueM(i) g, eVH@span{f}hk)

< sup inf |lu — vy llae = Su(Ai)
ueM(a;) Yy EVH

Similarly, from Lemma 3.3, the following estimates hold

B(M(Ai), My (1)) S Ma(H)Sk( i) (31)
and

Mt = Mi S 8H (M), (32)

Then we complete the proof. O
3.3. The connections between eigenvalue problems and boundary value problems

In order to analyze the convergence and complexity property of Algorithm 3.1, we establish the connections between
the solutions of the eigenvalue problem (12) and the associated boundary value problem (2) in this subsection.
From (18), eigenvalue problems (12) and (14) can be rewritten as

u= T(Au) and l_lh = Th()_uhl_lh). (33)
For any u € M(4;), we define the spectral projection from V to My p,(%:) by E‘hk : V. — My p,(A;). Then there exist g

constants {ay, }; 4" such that

Epu= Zahk,zuhk,e- (34)
¢
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Further, from Lemma 3.5, we obtain that ), aﬁk’{ <1

“(l?hk Ufh,(u)

Define A" =
b(Ehk u,Ehk u)

, we have

1
h 2
M= =—— 2 Oy oMy, 65
D Uo7

which together with Lemma 3.1 yields

lu— Enul? o llu— Enul2 o
NEn,ull3 o 2o Xt

Define w' € V by

h § :
w'k = ahk,g)nhk,ﬂuw.
13

A — AM| <

Journal of Computational and Applied Mathematics 415 (2022) 114450

(35)

(36)

(37)

For the approximate solution Lv]h,<+1 = (izhkﬂ,,-, R athrl’H_q_]) derived in the 6-th step of Algorithm 3.1, let us denote

~h v
wkH = E Olhy,Unyy .2+
14

Then based on the structure of the multigrid iteration and the involved linear smoothers in Algorithm 3.1, W+ is the
multigrid approximate solution for the finite element solution Py, whk with the initial value Epu(= >, oy eUng,e)-
Based on the above discussions, we can derive the following theorem.

Theorem 3.1. Assume the convergence rate of the multigrid iteration used in Algorithm 3.1 is v. Given u € M(A;), the following

connections hold

lu = Epytllae = lw™ = Py w0

+ Or(Vig, v))Ilu — Eny, ulla,e + llu — Epullag), (38)
lu — En., ulla.e = llw™ — Py, wlq.0

+O(r(Vi, v))([lu — En,yullae + llu — Enttfla.). (39)

with r(Vig, v) = na(H) + vP.

Proof. u — E‘hkﬂu can be decomposed as follows

u— E‘hk“u =(u— whk+1 Y+ (whk+1 _ ph,(+1whk+1) + Phk+1(wh’(+1 _ whk)

+ (Phk+1 wh — E”kﬂu)'

(40)

For the first part of (40), associating with (12), (33), (34) and (37), we have

lu — wht ”2,9 = a(u — w1, u — W)

— (ry — — a1
= (hu § ey by g, U .05 U — W)
4

= (Ai(u — Epp u) + Z Aty q.0(Ai = Ayeq 0 Uhyy g 05 U — wh"“). (41)
¢

The second term of (41) can be estimated as follows

h
(Z ahk+1l()‘f - )‘hk+1sl)uhk+1~l’ u—w k+1)

4
h
S 1@y eOhi = Ay Ol elloe lu = w1 g o
12

S (O e e = 20) (e = 20) Yl — 04 o
2

t

A

4

A

> h
na(H)llu — Ep s tullaellu — w™lgq.

1/2
O o 20 =32 (3 e — 2) Pl — " o g
4

(42)
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Combining (41) and (42) leads to
lu — w" oo < |t — En,, ullo.e + na(H)lu — En, ulloo
< na(H)llu — Eny, o (43)
With regard to the third part of (40), referring to (6) and the proved result (43), we have the following estimates
1Py (W™ —w™)lq 0 < llu — w' oo + lu — w0
S na(H)(llu — Enyullae + llu — Entlla.g)- (44)
For the last term of (40), since W+ —Ehk“ ueVy @Span{ﬁhk+1 }, we use (34) and (37) to show the following inequalities
[Py, w"™ — Epy,qull? o = a(Ppy, ,w"™ — Ep, 1, Poy,,w" — Ep, u)
= Py, W™ — Ep,, i, Py, w — @1 Mt — Ep )

h, r h ~h
= a(Phk+1w = Eh!<+1u’Phl<+1w K —wh)

+ (Z gt (Mgt — AUy, ¢ + Ai(Entt — Ehkﬂll)
¢

Nh =
+ § :ahlﬁ—ll()“i - )“hk-H,5)uhk-¢-1l7 W — Ehk+1u)
14

he _ E he _ ~h
S IPh w™ — Eny g lla, 2 [[Pryy w™ — w7 g0
Z - ~h -
+ na(H)(I[u — Entllae + llu — Enulla. )| w™+" — En tlla.o
he _ & he _ ~h >
IPhyyy ™ — Enyep g Ulla,2 |1 Pryyy w™ — W lg,.@ + ma(H)(lu — Entlla,2

+ llu = Enpy ulla, @)@ — Phy,, w™lg 0 + [|Phy, w™ — Epy, tlla,2)- (45)

A

From the convergence rate v of the multigrid method, we can derive

he _ ~h
[Ppyyyw™ — w*H g,

IA

h -
vp||Phk+1w k— Ehku”a,()

< VP(|IPhy,,w"™ — Ppytllae + Pyt — Ullae + llu — Enullae)
< VP([lw™ — ullgo + IIEn,, ,u — llae + llu — Enttlla.0)
< V(1 + Cna(H))(llu — Epy, ulla.@ + llu — Enttlla, ). (46)

Combining (45) and (46) leads to
”Phk+1 wi — Ehkﬂu”i(z
< (WP 4+ na(H))(llu — Epyyr lla, 2 + lu — Enttlla,2)IPhy,, wh — Epqttlla,2
+ P na(H)(lu — Epy, ullae + llu — Epullae)? (47)
Thus the following estimate holds
IPhy,w"™ — Epqtllae S (0P + na(H)(lu — Enulla.e + lu — Ep, ullag)- (48)

Using (43), (44) and (48), we can easily prove (38). B
The second identity (39) can be proved by the same technique using the decomposition of u — Ep,, u as follows

u— Ethu =(u— whk) + (whk - Phk+1whk) + (Phk+1whk - Ehkﬂu)'
So we complete the proof. O

Theorem 3.1 has built the connections between the error estimates of the eigenvalue problem and the associated
boundary value problem. Since the difference is a higher order term and the theoretical results of the boundary value
problem have already been well analyzed, we can derive the theoretical results of adaptive multigrid method for the
eigenvalue problem by following the procedure of adaptive finite element method for linear elliptic boundary value
problem.

For the projection Eju = > ¢ helpe, we define the element residual and the jump residual as follows:

Ri(Epu) = Zdh,zkh,euh.z — ¢Equ+ V - (AVEpu), inK € 7Ty, (49)
¢
Je(Eptt) == —AVEuu*t - v — AVEuu™ - v~ := [AVEuu] - v, ON € € &, (50)

9
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Then we define the local error estimator and the oscillation by

Me(Ent, K) = R IReEn)g c + D helle(Ent)l3
ecERNIK

oscp(Entt, K) = M|l — PORK(EnIG + D hell(l — Pele(Entt) 5 .
eeEpNaK

Similarly to Theorem 3.1, we have the following two theorems about the error estimator and oscillation by combining
the definitions of the error estimator and oscillation, Sobolev trace theorem and the inverse inequality of the finite element
method.

Theorem 3.2. Given any u € M(};), the following connections between the a posteriori error estimators hold

E — P41
nhl<+1(Ehk+lu’ Thyetr ) = nth(Pth W, Ty )

+O(r(Vig, v))(Ilu — En, tlla,e + llu — Enullae), (51)
Mhyesq (Ehk+1 U, Thyyq )= ’ﬁhk+1 (Phk+1 whk’ 777k+1)
+O(r(Vig, v))IIu — Eny tlla.e + llu — Enullae). (52)

Theorem 3.3. Given any u € M(};), the following connections between the oscillations hold

E — 63¢ g1
OSCth(Ethu, 771k+1) = OSCth(Pth wr, 771!«+1)

+ O(r(Vig, v))(Ilu — Enyyytlla,e + llu — Epulla,e), (53)
Oschk+1(Ehk+]u’ 77!k+1) = (;;C“kﬂ(Phkﬂ whk’ 77U<+1)
+ O(r(Vig, v))(Ilu — Enyyy ulla,e + llu — Epttlla,). (54)

3.4. The efficiency and reliability of the residual type a posteriori error estimator

Now we propose the efficiency and reliability of the residual type a posteriori error estimator for eigenvalue problems
as Lemma 2.1. In the rest of this paper, we assume the mesh size H and v? are small enough such that

r(Vi, V)llu — Enully o < llu— Ep,ullz o, for k> 1. (55)

Remark 3.2. It is worth mentioning that the assumption (55) indicates that the initial mesh should be small enough
such that the error does not change too much after each refinement step. From another point of view, there exist both
sharp upper bound and lower bound for |[u — Ep, ullq ¢ (see [45]) when the exact eigenfunction u does not belong to finite
element space Vj,. Thus such an assumption is reasonable generally.

Besides, in order to meet such a condition, we may need to execute several times multigrid iteration step (p > 1).
But in our numerical experiments, one or two times iteration steps are enough to derive the optimal accuracy due to the
efficiency of the multigrid method.

Based on Theorems 3.1-3.3 and (55), we can obtain the following reliability and efficiency of the a posteriori error
estimator for eigenvalue problem by applying Lemma 2.1.

Lemma 3.8. There exist some constants depending only on the shape regularity of T, such that

”u - Ehk+1u||§,() < Cl 7)}21,(+1(Ehk+111, 777k+1 )v (56)

Cznlel<+1(éhk+lu’ Thyesr) < U — Ehkﬂ””i,(l + C3oscﬁk+1(ﬁhk+1ua Thisr)- (57)
Consequently, we have

|Ai — At | < ’7i21k+1(}_3hk+1u7 771k+1 )- (58)

Proof. Since w' is the exact solution of the elliptic boundary value problem, from Lemma 2.1, we have

h hy (2 = ~2 h
”w k— Ph,(+1w k ”uﬂQ =< Clnth(Pth w ka 7?”{+1 )7 (59)

CZﬁﬁl<+1(Phk+1whk’ 771k+1) = ”whk - Phk+1 whk ”29 + C36§E%k+1(Phk+1 whk’ 77”{+1 ) (60)
Then we can derive the desired results by applying Lemmas 2.1, 3.1, Theorems 3.1-3.3. O

10
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In order to further built the efficiency and reliability for the residual type a posteriori error estimator 1y, (U, Tn,)
which was actually used in Algorithm 3.1, the following connections between np, (En, U, Tp,) and np, (Up,, Tp,) will play
a crucial role in our analysis. For readability purpose of this paper, the detailed proof of Lemma 3.9 was proposed in
Appendix.

i+q—1

Lemma 3.9. For any orthogonal basis {u,},_; of M(A;), we have the following estimates
1 2 = 2 2q 21
- Ey U, K) < Uy, K) < ————— Ep U, K)+ R(Up,)), 61
qnhk( U, K) < nj (Un,, K) 1—Cn§(H)(n"k( n U, K) + R(Up,)) (61)

where Ep U = (En Ui, .. ., Enlizq—1), RWUp) = Y0 3  h2[Anee — Angs)? |ung.slI3 - Consequently

N (En U, Ty ) = i (Un,., Th,) and oscp, (En U, T,) = 0sci (Uny., Try)- (62)

Theorem 3.4. Let A; € R be an eigenvalue of (12) with multiplicity q, we have the following estimates for the eigenpair
approximations obtained from Algorithm 3.1

O (M(i), Mi ey (1)) < Cutli (Unep 1> Thyy)s (63)
C2’7ﬁk+1(uhk+1 ’ 771k+1) = @z(M()‘i)’ MthkJrl()‘i)) + C305Cﬁk+1(uhk+1 s Thies )- (64)
Proof. Let {uj, ..., uirq—1} be an orthogonal basis of M(4;). On the one hand
sup inf flu—vlloe < sup [lu—Ep, ulloe
ueM () VEMH. by 1 (M ueM(1;)
s e:i,T,?i(qq llue — Enypqtiella.e
S U = By, Ulla.g- (65)
On the other hand
sup inf  flu—vlloe = sup [lu— Py, ullee
ueM() VEMH by 4 (i) ueM(1;)
Z Z:i,l?l,?-)#(q—l lue — Phy,itella.e
2 U - I_JthUIIa,Q, (66)

where l_’hk +1 is the Galerkin projection from V to Vy @ Span{Uhk .1} defined by

a(u — I_’hkﬂu, VHhe) =0, VYupp,, €V @ span{lvfhkﬂ}.

From Lemma 3.8, we have

- Ehk+1 U”i,.@ =G n%k+1(Ehk+1U’ Ther1): (67)

C277ﬁk+1 (Ehk+] U7 771,(+1 ) =< ”U - Ehk+1 u ”59 + CBOSCﬁk+1 (Ehk+1 L]7 77‘](+1 ), (68)
Hence, we obtained from Lemma 3.4 that

IU = P, UIZ o < Cimiy (B U, Ty (69)

CZ’lﬁkﬂ (Ehk+1 U, 7;'k+1) <lu— I_)hk-H U”ﬁ,(z + C3OSCI3,<+1 (Ehk+1 U, 7;'k+1) (70)

when H is small enough.
Combining (65)-(70) and Lemma 3.9, we get

. 2 2
sup inf  Ju—vllzo < Cing, Une,qs Thr)s
ueM(2;) VEMH by 1 (i a8 M1 2k 1 ke 1

2 : 2 2
CZnhk+1(Uhk+17 7;!,(+1) =< sup inf ) ”u - U”a,_Q + C3oschk+1(uhk+1a 771](_‘_1 )
ueM(ry) VEMH 4 (A

Namely
O*(M(A), My, (1)) < Cimi (Uny> Thier ) (71)

G, (Unir» Tyy) < O (M), My (M) + C3056h,  (Uny s Thsy)- (72)
From (71), (72) and Lemma 3.2, we can derive the desired estimates. O

11
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4. Convergence and optimal complexity of adaptive multigrid method

In this section, we will study the convergence property and complexity analysis of Algorithm 3.1.
4.1. Convergence property

This subsection is devoted to introducing the convergence property of Algorithm 3.1 based on the existing results for
the elliptic boundary value problem and the connections between the elliptic boundary value problem and eigenvalue

problem presented in Theorems 3.1-3.3.

Lemma 4.1. Let 6 € (0, 1) be a given constant. If there holds

ﬂﬁk(Uh,(, Mp,) = 97]ﬁk(Uh,<, Ty )s (73)
then for any orthogonal basis {ue}'+q ! of M(A;), there exists a constant 6 € (0, 1) such that

ﬂﬁ,<(Eh,<U, Mp,) = é’)ﬁk(EhkU, Ty (74)
where Ep U = (Ep Ui, . . ., Ep Uiq—1).

Proof. From Lemma 3.9 and (73), we have

2q 2 (% 2.2 2
T e (17 (Bn U, M) + ; Z e = A P Nt 1 )
= Uﬁ,((Uhka th) = Qnﬁk(Uhk, 7711() (75)

By using the similar procedure as that, for deducing Lemma 3.9, we get

Do e = sl g s15 gy, S MaCH)G (Uns T, ). (76)

Combining (75) and (76) leads to

2q Cna(H)

7711k(EhkU th) + Uﬁk(uhk, 77!;() = gn}%k(uhw ﬁlk )

= Cal() - Coh)
Consequently
2q 2 (o C’?g(H) 2
—n; (B, U, Mp) > (0 — —F—— Up,.
1— CTIE(H) nhk( hy hk) = ( 1_ Cng(H))nhk( hy 771;{)
1 Cn(H)
= —(0 - = )i (En U, Th)-

q 1—Cn2(H)
Hence, there exists a constant C such that

1 -
TyEn U, Mu) = 55 (001 = Crl(H) = Cal()) o (B0, )
0
= 2

provided H is small enough.
Taking 6 = 5% (1 — CpZ(H)), we can derive the desired result. O
q

— (1= Co(H) i (En U, T,

Now we prove the following convergence result which describes error reduction of Algorithm 3.1 by using the obtained
conclusions.

Lemma 4.2. Let 6 € (0, 1), A; € R be some eigenvalue of (12) with multiplicity q and the corresponding eigenspace being
M) = span{u;, ..., Uiyq—1}, {(Anyeo tne) € = 1,...,1 4+ q — 1} be a sequence of finite element solutions produced by
Algorithm 3.1. Then there exist constants y > 0 and & € (0, 1) depending only on the shape regularity of meshes and marking
parameter 6 such that

WU~ Eny U2 + vk, By U Tiy) < @(IU = En U2 o + y 02 (EnU. Ti,).- (77)

Proof. Since the following marking strategy is used in Algorithm 3.1

M Une» M) = 0 (Uny., Tr)- (78)
12
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Then, from Lemma 4.1, there exists a constant 6 € (0, 1) such that
Uﬁk(EhkU, th) > énﬁk(ﬁhkU, 7;1;() (79)

For any u, € M(%;), define w™ according to (34) and (37). Set Wi = (w™-*);"%"" From Theorem 3.2, (55) and (79),
there exists a constant 6’ € (0, 1) such that

;iﬁk(Pthhk’ th) > 9/’77[21,((1311,( tha 771;{) (80)

The inequality (80) means that we derive the Dorfler's marking strategy for elliptic boundary value problem, then we
conclude from Lemma 2.2 that there exist constants ¥ > 0 and & < (0, 1) satisfying

IW™ — Py, Wlo @ + P70, | Py W™, Ty ,)
< E2(IW" — P, W |lo.0 + Y75, (Po W™, Tp)). (81)
Combining (39), (52), (55) and (81) leads to
IU = En Ullz o + V1, (Bnp Us Ty
< (14 8)(IW™ = Po W12 5 + V7T, Py s W, Th,,)
+C87 (Vi vUIU = B, UlZ o + IU — En U2 )
< (14 8)(IW™ = Py, WHIE o + P70 (Phypy W™, Ty ,)
+C87 (Vi vUIU = En UNZ o + Vi, By Uy T )- (82)
Simplifying the above formula leads to the following estimates when r(Vy, v) is small enough
IU = Ep,, Ullz o + 1777ﬁk+1(1§hk+1 U, Tyt
146
(1+87)2
T 1 C8 (Vi v)

(IW" — Py WIZ o + T, (P W, Ty )

(W — Py W2 5 + Y07 (P W™, Tp,)). (83)

Using a similar argument on the righthand term of (83), we have
W™ — Po WIE o + P75, (P W™ Thy)
< (148, + €85 (Ve v)XIIU — En UII2 o + Vi (En U, Ty )- (84)
From (83) and (84), the following estimate holds
IU = En, Ulla o + Vi, B Us Ty
_ (L 80)(1 + 8 + €85 'r(Vy, v))&?

o) (IU = EnUIl; o + ¥, (En,U. Ta, ). (83)
- 1 H>
Set

(14 8)(1+ 8+ C8; ' r(Viy, v))&2 ~

o = , Y=Y,

1—C87'r(Vy, v)
we can derive
1U — Eng Ulla o + iy, By U i) < @ (IU = EnUIZ o + v (Bn U. T, )).
which is just the desired result (77). O

Similar to Theorem 3.4, we can also get the contraction property for the gap between M(};) and its finite element
approximation My p, (A;).

Theorem 4.1. Let 1; € R be some eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(A;) =
{ui, ... Uirg—1h {(Ah.e, Unye), € =1, ..., i4+q— 1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
there exists a constant & € (0, 1), depending only on the shape regularity of meshes and the marking parameter 6 such that

O(M(Ai), My p, (1)) S @". (86)

13
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Proof. For any u € M(2;), there exist q constants {«,} such that u = ), a,u,. Thus, we have

L 2 I 2
lu = Enul2 o = 1Y ctelue — Enyue)l2

4
2 C 2 C 2
D el llue = Enguela g = > llue — Enuell? o
14 14 14

< > (e = Enyuels o + v i, (Enyie, Ta,) < @
4

IA

Therefore, from the definition of &, there holds
O(M(Xi), My p, (M) < @".

Using Lemma 3.2, we then arrive at (86). O

4.2. Complexity analysis

In this subsection, we propose the complexity analysis of Algorithm 3.1. As in the normal analysis of AFEM for the
boundary value problems, in order to state the result of the complexity estimate, we introduce a function approximation
class as follows (cf. [11])

A = {v e H(R) : |v]; < 00},
where | - |, is defined as follows
|v|s ;= supe inf , (#Th, — #Tn, )
>0 L 2 2
(Ti Ty inf (J0—vm 12 g +osc7, (o Ty ) <)

and Ty, C Ty, means 7y, is a refinement of 7, . In this study, we use #7 to denote the number of elements in the mesh 7.
So A° is the class of functions that can be approximated within a given tolerance ¢ by continuous piecewise polynomial
functions over a partition 7y, satisfying #7,, — #7p, < e~ s |y|)5,

Notice that the convergence result presented in Lemma 4.2 is the same as that in [11,14]. By using the same technique,
we can prove that Algorithm 3.1 has the following optimal complexity. Please refer to papers [11,14] for the detailed proof.

Lemma 4.3. Let A; € R be an eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(};) =
{ui, ..., Uirg—1} {(Ay 05 Uny0), € =1, ..., i4+q— 1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
the following optimality holds

”U - EhkU”éQ + Oscﬁk(éhkua 771]() 5 (#771)( - #7710 )7255 (87)
M =Nl S (#Thy, — #Tho) ™, (88)
provided H is small enough.

Similar to Theorem 4.1, we obtain the following conclusion from Lemma 4.3.

Theorem 4.2. Let A; € R be an eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(X;) =
{ui, ..., Uiyg—1} {(Apn,e, Ung,e), £ =i, ..., i+q— 1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
the kth iterate solution space My p, () satisfies

O(M(Ai), My p (Ai)) S (#Thy, — #Tig) >,
provided H is small enough.

Now we come to briefly estimate the computational work of Algorithm 3.1. Here we have to use additionally, that the
sequence of unknowns belongs to a geometric progression (see e.g. [46]):

Ny < ogNg < Ngy1 < 0Ny, k=1,2,... (89)
Theorem 4.3. Assume the multiple eigenvalue problem solving in the coarse spaces Vy and Vi, need work My and M;,
respectively, and the work of the multigrid solver for the involved boundary value problems in Vy, is O(Ny) fork =2,3,...,n.
Then the total computational work of Algorithm 3.1 can be bounded by O(M1 + My log(N,) + Nn) and furthermore O(Nn)
provided My and M, are small enough.

14
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Fig. 1. The initial mesh and the triangulations after adaptive iterations for Example 1.

Proof. Let W denote the whole computational work of Algorithm 3.1, W denote the work on the kth level for k =
1, ..., n. From the definition of Algorithm 3.1 and (89), it follows that

n n
W = ZWk = (’)(M] + Z(Nk +MH))
k=1 k=2

= O(M; + My(n — 1)+ N, Z(i)(n_k))

k=2 00
= O(M; 4+ My log(N,) + Ny).

Thus, the computational work W can be bounded by O(M1 + My log(N,) + N,,), and moreover, by O(N,) if My and M;
are small enough. O

5. Numerical experiments

In this section, we present two numerical examples for the second order elliptic eigenvalue problems by Algorithm 3.1.
In these numerical examples, the well known implicitly restarted Lanczos method, which is included in the popular
package ARPACK, is adopted to solve the small-scale eigenvalue problems. We set p = 2 in Algorithm 3.1, and
each adaptive multigrid iteration step is executed with one multigrid V-cycle as the basic iteration using two times
Gauss-Seidel iterations on those newly refined elements and their neighbors.

In Algorithm 3.1, we need to provide the multiplicity of the desired eigenvalue, which is usually unknown. In this case,
we can first compute the approximate eigenpairs on the initial mesh and then deduce the multiplicity of the desired
eigenvalue. Besides, in most case, people need to solve the smallest N eigenvalues, or the largest N eigenvalues, or
the N eigenvalues closed to a special value. Then we can use our algorithm to solve such problems through using the
desired N approximate solutions to construct the low dimensional correction space, which is involved in the second step
of Algorithm 3.1.

Example 1. In the first example, we consider the following harmonic oscillator equation (see [47])

(90)

—JAu+ 3xPu = 2w, ing,
u = 0, on d0s2,

where £2 = R® and |x| = ,/x? 4 X3 -+ x3. The eigenvalues of (90) are A, = n+ 1 with multiplicity n(n+1)/2(n =1,2,...)

and eigenfunction is u, = ke~ **/2H,(x) with any nonzero constant x and Hy(x) = (—1)"e* (d" /dx")e~*". Since the solution
of (90) exponentially decays, we set 2 = (—4, 4)> in our computation.

We calculate the approximations of the first two smallest eigenvalues A; and A, with multiplicity 1 and multiplicity
3, respectively. The eigenvalue problem is solved by Algorithm 3.1 with the parameters & = 0.4. Figs. 1 shows the initial
mesh and the triangulations after 15 times adaptive refinements. Fig. 2 shows the corresponding error estimates. It is
shown in Fig. 2 that the eigenpair approximations by Algorithm 3.1 have the optimal convergence rate which coincide
with the theoretical results.

In order to show the efficiency of Algorithm 3.1 more intuitively, we present the computational time of Algorithm 3.1
and direct AFEM in Fig. 3, and the eigenvalue problems involved in the direct AFEM are solved by the popular package
ARPACK. Fig. 3 shows that Algorithm 3.1 has a better efficiency than the direct AFEM. Meanwhile, Algorithm 3.1 has the
linear computational complexity.

15
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Eigenvalue errors of Algorithm 2 Eigenfunction errors of Algorithm 2
10 —¥— the 1-st eigenvalue || —¥— the 1-st eigenfucntion
X —©- the 2-nd eigenvalue —©—the 2-nd eigenfunction
A =B~ the 3-rd eigenvalue , =B the 3-rd eigenfunction
—}— the 4-th eigenvalue 10° (RS —}— the 4-th eigenfunction |{
== slope=-2/3 == slope=-1/3

10
4 o
[e] o
£ £
w I

107 w0l

10°F

10° 10° 10 10°
Number of elements Number of elements

Fig. 2. The errors of the eigenpair approximations by Algorithm 3.1 for Example 1.

CPU Time of Adaptive Algorithm

=¥ Time of Algorithm 2
“©- Time of direct AFEM
== slope=1

CPU Time

Number of elements

Fig. 3. The computational time (in second) by Algorithm 3.1 and direct AFEM for Example 1.

Example 2. In the second example, we consider the following second order elliptic eigenvalue problem

—V.-(AVu)4+eu = Au, in$2,
u = 0, on ds2, 91)
lullo.e = 1,
with
T+ —5)P (= 3x—3) X1—35)x—3)
A= - —12) 1+xk—17% K-Dxs—1) |.
X1 =) —3) (o—3)xs—3) 1+(5— ;)

@ = eM=202=3)05-2) and 2 = (—1,1)%\[0, 1)®. Hence, eigenfunctions with singularities are expected due to the
nonconvex property.

Since the exact eigenvalues are not known, we choose adequately accurate approximations on finer finite element
space as the exact eigenpairs for numerical tests. In this example, we give the numerical results for the first five eigenpair
approximations of Algorithm 3.1 with the parameter § = 0.4. Fig. 4 shows the triangulation after 15 times adaptive
iterations and the corresponding section along XY plane. Fig. 5 gives the numerical results of eigenpair approximations
which show the optimal convergence rate of Algorithm 3.1.

Similarly, we also present the computational time of Algorithm 3.1 and direct AFEM in Fig. 6. The eigenvalue problems
involved in the direct AFEM are also solved by the popular package ARPACK. Fig. 6 shows that Algorithm 3.1 has a better
efficiency than the direct AFEM. Meanwhile, Algorithm 3.1 has the linear computational complexity.
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Fig. 4. The triangulation after adaptive iterations and the section along the X-Y plane for Example 2.

Eigenfunction errors of Algorithm 2

—3%— the 1-st eigenfucntion
—©- the 2-nd eigenfunction
=B the 3-rd eigenfunction

the 4-th eigenfunction
the 5-th eigenfunction

Eigenvalue errors of Algorithm 2

—¥— the 1-st eigenvalue

-~ the 2-nd eigenvalue

=B the 3-rd eigenvalue
the 4-th eigenvalue ||
the 5-th eigenvalue

4 == slope=-2/3

Errors

6 104 105 6
Number of elements

n
4

10

10° 10
Number of elements

Fig. 5. The errors of the eigenpair approximations by Algorithm 3.1 for Example 2.

CPU Time of Adaptive Algorithm

6 :
07 == Time of Algorithm 2
“©- Time of direct AFEM
== slope=1

CPU Time

10° 10°
Number of elements

Fig. 6. The computational time (in second) by Algorithm 3.1 and direct AFEM for Example 2.
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Appendix. Proof of Lemma 3.9

Proof. For E’hkug, there exist g constants ﬂ,‘fk,j, j=i,...,i+q— 1such that
i+q—1
Ente = Y Biyjungs VE=1,...i+q—1 (92)
j=i
Thus, we have
M (Enlie, K) = Uﬁk(z Biy iy i» K)
J
= hil Z Bij (At — P j + V - (AVuy, )5 ¢

+ Z h“]ezﬂhwuhw)’

ecEy eCoK

Zﬁh,(])zz hzunx(uhk,j)no,ﬁ > helleCun s
J

eeshk,ecaK

Z BrsV Z N (U K) = _(Br, Y0k, (Uny. K).
Jj

J
Note that Lemma 3.5 indicates ||Ehkul||0,_g < 1, namely Zj(ﬂﬁ,<,j)2 < 1. Then we arrive at
N (En U, K) = > 7 (Enue, K) < qnp (Un,, K). (93)
¢

Besides, since E‘h, : M(X;) = My p,(%;) is one-to-one and onto when H is sufficiently small (see p.283 of [43]), we get that
{Ehkug}';:‘f] is a basis of MH e (Ai), namely My p, (A;) = span{up,;, ..., Unitq—1} = Span{Ep;, ..., Ep,Ui1q-1}. So, there
exist g constants ﬂh“ (j=i,...,i+q— 1) such that

i+q—1
Une = Y BrEnty, YE=i....i+q—1 (94)
j=i

Similarly, from the definition of T]ﬁk(Uhk’[, K), (92) and (94), we get
i (U0 K)
2 2 2
= hK”)\hk,Zuhk,Z — Qup, ¢+ V- (-Avuhk,é)”o,[( + Z he “]e(uhk,Z)HO’e

eclp, , eCoK

= gl Y A Bhy Enlty — ¢ Z Br iEneij + V - (AV( Z Br iEncui)) 3.

J

+ Z he ”]e Z'BhuE"kuJ ”0e

ectp . eCoK

<> B’ ( hi¢ | A, eEntty — @Enuj + V - (AVEq )5
j j

+ Z he”]e(éhkuf)”;e )

eeShk,eCBK

= Z(szk,j)z Z ( h12< H)‘hkl Z ﬂ{;k.suhkvs - ¢E’1kuf +V. (AVEhkuJ')”g,K
j j s

+ Z he||]e(Ehkuj)”(2).e )

ec&p, ek
Z ﬁhk 1)2 Z ( 2h12< H Z)‘hlﬁsﬁik,suhk,s - ¢E’U<uf +V. (AVEhkuj)”(Z),K
Jj s
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2
+ 2 hellErw) ||0e+2h2||ZﬁhksAhk — s )

ecp,.eCoK 0.K
<2 Z(.Bhk] (Z Nhy (Enuj, K) +q Z hig Ay = Mgs? ||”’1k-5||§.1<)'
J
Note that

1= b(uhk,ﬁv Uhk.é) = b(Z Bﬁk,jl_ihkujv Z Bﬁk,jﬁhkuj)

- Z 'Bhk] Ehkuj’ Ehku] + Z ﬂhk Sﬂhkj (Ehkum Ehku])
S#J

Further, from Lemma 3.6, we can derive the following estimate for the right-hand terms of (96)

(1= Cn2(H)) D (B 7 < Y (Bh, )V b(Enj, En) < (14 CnZ(H) Y (B, ;)

J J J
and
| > B oBh, ib(Enus. Enaip)| <Y (Br, ;Pn2(H).
sj j
By (96), (97) and (98), we can derive

1 1
1+ Cr(H) = Z(ﬁ wo = Ty

Combining (95) and (99) leads to

nﬁ,(uh,( K)

Cn Z Z nt, (Engtts, K)

a

2q
_ E E h2 A ¢ — Ansl?llu 2
+ 1= Cﬂg(H) xl [T hk,s| I hk,s”o,l(

4 s
2q 2 (% 2 2 2
= — E, U, K)+ E E he|An, e — A u ),
1= Cﬂg(H) (ﬂhk( hy ) — %! hy, £ hk,s| Il hk,s”o,](

which is just the desired estimate (61).
Note that (58) implies

ki = Anel S M (Ui Th), Ve =1 ... i+ q—1.

By the fact that ||up, ¢llo,o = 1 and the abovementioned inequality, we have

ZZthé _)\hks| Z h2 ”uhks”()l(

KeTh,
ng(H) Z Z Mgt = Mys]

qna(H ZM, el < ne(HM} (Un,. Thy)-

A

A

Therefore, we arrive at

2q

2 2 (@ 4 2
Ny (Un,, 7 <7(7} Ep U, T +C H)ny, (Up,, 7 )7
hk( hy hk) 1 Cn(zl(”) hk( hy hk) na( ) hk( hy hk)

when H is small enough, that is

2q

2
Un,s Thy) < ————=
ﬂh,(( hy hk) 1_ C?}g(H)

U}%k(éhk u, 771,( )

(95)

(96)

(97)

(98)

(99)

(100)

(101)

Then we derive the first equality of (62) from (93) and (101), and the second equality can be proved similarly. O
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