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a b s t r a c t

A new type of adaptive multigrid method is presented for multiple eigenvalue problems
based on multilevel correction scheme and adaptive multigrid method. Different from
the classical adaptive finite element method which requires to solve eigenvalue prob-
lems on the adaptively refined triangulations, with our approach we just need to solve
several linear boundary value problems in the current refined space and an eigenvalue
problem in a very low dimensional space. Further, the involved boundary value problems
are solved by an adaptive multigrid iteration. Since there is no eigenvalue problem to
be solved on the refined triangulations, which is quite time-consuming, the proposed
method can achieve the same efficiency as that of the adaptive multigrid method for
the associated linear boundary value problems. Besides, the corresponding convergence
and optimal complexity are verified theoretically and demonstrated numerically.
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1. Introduction

Solving large-scale eigenvalue problem is one of the fundamental problems in modern science and engineering field. It
s always a very difficult task to solve high dimensional eigenvalue problems especially for multiple eigenvalue problems,
hich come from practical physical and chemical sciences [1–3]. Different from the case of the boundary value problems,
here are no many efficient numerical methods for solving eigenvalue problems with optimal complexity. The aim of this
aper is to design a new type of adaptive multigrid method for multiple eigenvalue problems, by combining the multigrid
ethod and adaptive finite element method.
Since the adaptive finite element method (AFEM) was proposed by Babuška and his collaborators in [4], it has

een widely used to solve partial differential equations with singularities. The convergence and optimal complexity
f AFEM have been much studied in recent years. For linear partial differential equations, especially, for the Poisson
quation and its variants, the theory is well-developed. For instance, Dörfler [5] introduced Dörfler’s marking and proved
trict energy error reduction for the Laplace problem provided the initial mesh is fine enough. Following their work,
örfler and Wilderotter [6], Morin, nochetto and Siebert [7], Binev, dehmen and Devore [8], Mekchay and Nochetto [9],
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Stevenson [10] and Cascon et al. [11] have further studied the adaptive convergence of the standard finite element
methods. Stevenson [10] and Cascon et al. [11] also analyzed the complexity of the adaptive method. For eigenvalue
problem, Carstensen et al. [12,13] considered AFEM for simple eigenvalue problems and eigenvalue clusters. Moreover,
the error reduction and optimal complexity analysis of AFEM can be found in [14] based on the connections between
boundary value problem and eigenvalue problem. In [15,16], some methods are introduced to derive the a priori (without
any computational effort) estimates of the eigenvalues of large matrices approximated by several Galerkin techniques
based on the GLT theory and on the notion of symbol [17]. In [18,19], the techniques are provided for showing how close
the eigenvalues of the finite dimensional approximations are with respect to the eigenvalues of the continuous problem.
For more results about eigenvalue problems, please refer to [8–10,20–26] and the references cited therein.

In this paper, we will propose and analyze a new type of adaptive multigrid method to solve the multiple eigenvalue
roblems based on the adaptive mesh refinement, multigrid method and the recent work on the multilevel correction
ethod [27–33]. Different from the classical approach which solves the large-scale eigenvalue problem in the new finite
lement space after each mesh refinement, with our approach we only need to solve several linear boundary value
roblems on the current refined mesh and then correct the approximate solution by solving a low dimensional eigenvalue
roblem in a specially designed correction space. During the adaptively refining process, the size of the low dimensional
igenvalue problems will be fixed. Further, the involved boundary value problems are solved by the adaptive multigrid
ethod, which was initially proposed by Brandt in [34]. For more results about the adaptive multigrid method, please

efer to [35–38] and the references cited therein. Since the main computation of the proposed algorithm is solving the
inear boundary value problems on the adaptively refined partitions, the cost of the new adaptive multigrid method will
ot be more expensive than the adaptive multigrid method for the associated boundary value problems. In addition, we
rove the convergence and optimal complexity of the new algorithm by adopting the techniques in [11,14].
In this study, we will research the following elliptic eigenvalue problem: Find (λ, u) such that{

−∇ · (A∇u) + φu = λu, in Ω,

u = 0, on ∂Ω,
(1)

here A is a symmetric and positive definite matrix with elements belong to W 1,∞, φ ∈ L∞ is a nonnegative function,
⊂ Rd (d = 2, 3) is a bounded domain with Lipschitz boundary ∂Ω .
An outline of this paper is as follows. In Section 2, we will introduce some notations and recall some preliminaries of

he standard AFEM for the boundary value problems. In Section 3, we construct the adaptive multigrid method for multiple
igenvalue problems. The corresponding convergence and complexity analysis are presented in Section 4. Finally, some
umerical examples are presented in the last section to illustrate the efficiency of the proposed algorithm.

. Preliminaries of standard AFEM for boundary value problem

In this section, we should review some basic results of AFEM [5,7,9,11] for linear boundary value problem, which will
e a basis of the following analysis for multiple eigenvalue problems. In this study, we use the standard notation for
obolev spaces W s,p(Ω) and their associated norms ∥ ·∥s,p,Ω and seminorms | · |s,p,Ω (see, e.g., [39]). For p = 2, we denote
s(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. For simplicity, we use V to denote H1
0 (Ω) in the rest of the

aper.
In this section, we consider the following elliptic boundary value problem:{

Luℓ = −∇ · (A∇uℓ) + φuℓ = fℓ, in Ω, ℓ = i, . . . , i + q − 1,
uℓ = 0, on ∂Ω.

(2)

emark 2.1. In fact, (2) is a linear system composed of q boundary value problems. The reason why we study (2) in this
ection is that we will encounter the equation as (2) in our analysis for multiple eigenvalue problem. Here, i and q denote
ositive integers which will be introduced in the next section.

The weak form of (2) is defined as follows: Find uℓ ∈ V such that

a(uℓ, vℓ) = b(fℓ, vℓ), ∀vℓ ∈ V , ℓ = i, . . . , i + q − 1, (3)

here

a(uℓ, vℓ) =

∫
Ω

(
A∇uℓ · ∇vℓ + φuℓvℓ

)
dΩ, b(fℓ, vℓ) =

∫
Ω

fℓvℓdΩ.

rom the properties of A and φ, the bilinear form a(·, ·) is bounded over V

|a(w, v)| ≲ ∥w∥a,Ω∥v∥a,Ω , ∀w, v ∈ V ,

nd satisfies

ca∥w∥1,Ω ≤ ∥w∥a,Ω ≤ Ca∥w∥1,Ω ,

here the energy norm ∥ · ∥ is defined by ∥w∥ =
√
a(w, w).
a,Ω a,Ω

2
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Now, we begin to define the finite element approximation of the boundary value problem (2). First we decompose
he computing domain Ω to generate a conforming triangulation Th. The diameter of a cell K ∈ Th is denoted by hK and
he mesh size h describes the maximum diameter of all cells K ∈ Th. Based on the partition Th, we can construct a finite
element space denoted by Vh ⊂ V which is composed of piecewise polynomials.

The standard finite element method for (3) is to solve the following discrete elliptic boundary value problems: Find
uh,ℓ ∈ Vh such that

a(uh,ℓ, vh,ℓ) = b(fℓ, vh,ℓ), ∀vh,ℓ ∈ Vh, ℓ = i, . . . , i + q − 1. (4)

For the purpose of analysis, we define the Galerkin projection Ph : V → Vh by

a(u − Phu, vh) = 0, ∀vh ∈ Vh. (5)

Then we have

∥Phu∥a,Ω ≤ ∥u∥a,Ω , ∀u ∈ V . (6)

In this paper, we use Eh to denote the set of interior faces of Th. Based on the conclusions of AFEM for boundary value
roblems (see, e.g. [5,7,9,11]), we define the element residual R̃K (uh,ℓ) and the jump residual J̃e(uh,ℓ) as follows:

R̃K (uh,ℓ) := fℓ − Luh,ℓ = fℓ + ∇ · (A∇uh,ℓ) − φuh,ℓ, in K ∈ Th, (7)

J̃e(uh,ℓ) := −A∇u+

h,ℓ · ν+
− A∇u−

h,ℓ · ν−
= [A∇uh,ℓ] · νe, on e ∈ Eh, (8)

where e is the common side of elements K+ and K− with the unit outward normals ν+ and ν−, respectively, and νe = ν−.
For K ∈ Th, we define the local error indicator η̃h(uh,ℓ, K ) and the oscillation õsc2h(uh,ℓ, K ) by

η̃2
h(uh,ℓ, K ) := h2

K∥R̃K (uh,ℓ)∥2
0,K +

∑
e∈Eh,e⊂∂K

he∥̃Je(uh,ℓ)∥2
0,e,

õsc2h(uh,ℓ, K ) := h2
K∥(I − PK )R̃K (uh,ℓ)∥2

0,K +

∑
e∈Eh,e⊂∂K

he∥(I − Pe )̃Je(uh,ℓ)∥2
0,e,

where I denotes the identity operator, PK and Pe denote the L2-projection operators to polynomials of some degree on K
and e, respectively.

Given a subset ω ⊂ Ω , we define the error estimator η̃h(uh,ℓ, ω) and the oscillation õsch(uh,ℓ, ω) by

η̃2
h(uh,ℓ, ω) =

∑
K∈Th,K⊂ω

η̃2
h(uh,ℓ, K ) and õsc2h(uh,ℓ, ω) =

∑
K∈Th,K⊂ω

õsc2h(uh,ℓ, K ).

Now we recall the reliability and efficiency of the abovementioned residual type a posteriori error estimator in the
following lemma (see, e.g., [9,11,40]).

Lemma 2.1. There exist some constants C̃1, C̃2 and C̃3, which depend on the shape-regularity of Th, such that the following
reliability and efficiency hold

∥uℓ − uh,ℓ∥
2
a,Ω ≤ C̃1̃η

2
h(uh,ℓ; Th), (9)

C̃2̃η
2
h(uh,ℓ; Th) ≤ ∥uℓ − uh,ℓ∥

2
a,Ω + C̃3õsc2h(uh,ℓ; Th). (10)

The standard AFEM can be written as a loop of the following form

Solve → Estimate → Mark → Refine.

More precisely, to get Thk+1 from Thk , we first solve the discrete equation on Thk to get the approximate solution and then
calculate the a posteriori error estimator on each mesh element. Next we mark elements to be subdivided according to
the values of the a posteriori error estimator and refine these elements in such a way that the triangulation is still shape
regular and conforming.

For simplicity, we use
∑

ℓ to represent
∑i+q−1

ℓ=i in the rest of this paper, and the index ℓ may be different at different
places. For any finite element function Uh = (uh,i, . . . , uh,i+q−1) ∈ (Vh)q, we denote

η̃2
h(Uh, K ) =

∑
ℓ

η̃2
h(uh,ℓ, K ) and õsc2h(Uh, K ) =

∑
ℓ

õsc2h(uh,ℓ, K ).

For any U = (ui, . . . , ui+q−1) ∈ (V )q, we denote

∥U∥a,Ω = (
∑

ℓ

∥uℓ∥
2
a,Ω )1/2.

In order to simplify the description of the AFEM, we first introduce some modules for the boundary value problem:
3
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• Φ = BVP−SOLVE({fℓ}
i+q−1
ℓ=i , Vh): Solve the boundary value problem (4) in the finite element space Vh and return the

discrete solution Φ ∈ (Vh)q.
• Φ = MGBVP−SOLVE({fℓ}

i+q−1
ℓ=i , Φ0, Vh): Solve the boundary value problem (4) by the adaptive multigrid method with

the initial value Φ0 ∈ (Vh)q in the finite element space Vh and return the iteration solution Φ ∈ (Vh)q.
• {̃ηh(Uh; K )}K∈Th = BVP−ESTIMATE(Uh, Th): Compute the local a posteriori error indicator η̃h(Uh; K ) on each mesh

element K ∈ Th.
• Mh = BVP−MARK(θ, {̃ηh(Uh; K )}K∈Th , Th): Construct a subset Mh by Dörfler’s marking strategy presented in [5],

i.e., construct a minimal subset Mh from Th by selecting some elements in Th such that

η̃h(Uh;Mh) ≥ θη̃h(Uh; Th)

and mark all the elements in Mh.
• (Thk+1 , Vhk+1 ) = REFINE(Mhk , Thk ): Output a conforming refinement Thk+1 according to Mhk where all elements of

Mhk are refined and construct the finite element space Vhk+1 .

The basic loop of the classical AFEM for the elliptic boundary value problem (3) is presented in Algorithm 2.1.

lgorithm 2.1 (Adaptive Finite Element Method).

1. Given a parameter 0 < θ < 1 and an initial mesh Th1 . Set k := 1.
2. Uhk = BVP−SOLVE({fℓ}

i+q−1
ℓ=i , Vhk );

3. {̃ηhk (Uhk; K )}K∈Thk
= BVP−ESTIMATE(Uhk , Thk );

4. Mhk = BVP−MARK (θ, {̃ηhk (Uhk; K )}K∈Thk
, Thk );

5. (Thk+1 , Vhk+1 ) = REFINE(Mhk , Thk );
6. Set k := k + 1 and go to step 2.

Now, we recall the well-known convergence result of the AFEM for the elliptic boundary value problem (see [11,14,40]).
he following lemma is an extension of corresponding result for the case of q = 1 in [11] by some primary operations
nd it will be used in our analysis.

emma 2.2 ([11, Theorem 4.1]). Let {Uhk}k∈N be a sequence of finite element solutions produced by Algorithm 2.1. Then, there
xist two constants γ̃ > 0 and ξ ∈ (0, 1) depending only on the shape regularity of meshes and the marking parameter θ ,
uch that any two consecutive iterations satisfy

∥U − Uhk+1∥
2
a,Ω + γ̃ η̃2

hk+1
(Uhk+1 , Thk+1 ) ≤ ξ 2(∥U − Uhk∥

2
a,Ω + γ̃ η̃2

hk (Uhk , Thk )). (11)

3. Adaptive multigrid method for multiple eigenvalue problems

In this section, we design a novel adaptive multigrid method for solving the multiple eigenvalue problems based on
the multilevel correction scheme and adaptive multigrid method.

3.1. Finite element method for eigenvalue problems

First, we recall some basic theoretical results of the finite element method for the eigenvalue problems in this
subsection.

The corresponding variational form for the eigenvalue problem (1) can be described as follows: Find (λ, u) ∈ R × V
such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V . (12)

As we know, eigenvalue problem (12) has an eigenvalue sequence (see [41,42]):

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞

and the corresponding eigenfunctions

u1, u2, . . . , uk, . . . ,

where b(ui, uj) = δij and λj are repeated according to their geometric multiplicity in the sequence {λj}.
The following property about the eigenvalue and eigenfunction approximation is useful (see [41,43]).

emma 3.1. Let (λ, u) be an eigenpair of (12). For any w ∈ V \ {0}, there holds the following expansion

a(w, w)
− λ =

a(w − u, w − u)
− λ

b(w − u, w − u)
. (13)
b(w, w) b(w, w) b(w, w)
4
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The standard finite element scheme for eigenvalue problem (12) is described as follows: Find (λ̄h, ūh) ∈ R × Vh such
hat b(ūh, ūh) = 1 and

a(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh. (14)

rom [41–43], the discrete eigenvalue problem (14) has an eigenvalue sequence

0 < λ̄h,1 ≤ λ̄h,2 ≤ · · · ≤ λ̄h,k ≤ · · · ≤ λ̄h,Nh

nd the corresponding eigenfunctions

ūh,1, ūh,2, . . . , ūh,k, . . . , ūh,Nh ,

here b(ūh,i, ūh,j) = δi,j, 1 ≤ i, j ≤ Nh and Nh denotes the dimension of Vh.
Let M(λi) denote the eigenfunction space corresponding to the eigenvalue λi which is defined by

M(λi) = {w ∈ V : w is an eigenfunction of (12) corresponding to λi and b(w, w) = 1}.

For generality, let q be the multiplicity of the desired eigenvalue. It means λi = · · · = λi+q−1. We use (λ̄h,i, ūh,i), . . . ,
λ̄h,i+q−1, ūh,i+q−1) to denote the eigenpair approximations for the eigenvalues λi = · · · = λi+q−1 and their corresponding
eigenfunction space M(λi). Let

Mh(λi) = span{ūh,i, . . . , ūh,i+q−1}. (15)

or two subspaces X and Y of V , we denote

Θ̂(X, Y ) = sup
w∈X,∥w∥0=1

inf
v∈Y

∥w − v∥a,Ω , Φ̂(X, Y ) = sup
w∈X,∥w∥0=1

inf
v∈Y

∥w − v∥0,Ω .

Then we define the gaps between M(λi) and Mh(λi) in ∥ · ∥a,Ω as

Θ(M(λi),Mh(λi)) = max{Θ̂(M(λi),Mh(λi)), Θ̂(Mh(λi),M(λi))} (16)

nd in ∥ · ∥0,Ω as

Φ(M(λi),Mh(λi)) = max{Φ̂(M(λi),Mh(λi)), Φ̂(Mh(λi),M(λi))}. (17)

For Θ̂(X, Y ) defined above, we have (see, e.g., Theorem 6.1 of [41]) the following lemma.

emma 3.2. If dim X = dim Y < ∞, then Θ̂(X, Y ) ≤ Θ̂(Y , X)[1 − Θ̂(Y , X)]−1.

Let T : L2(Ω) → V be the operator defined by

a(Tw, v) = b(w, v), ∀v ∈ V , (18)

nd Th : L2(Ω) → Vh be the operator defined by

a(Thw, vh) = b(w, vh), ∀vh ∈ Vh. (19)

Let Γ be a circle in the complex plane centered at λ−1
i and not enclosing any other eigenvalues of T . Define the spectral

rojection associated with T and λi as follows (see [41,43])

E = E(λi) =
1

2π i

∫
Γ

(z − T )−1dz. (20)

or h sufficiently small, except λ̄−1
h,i , . . . , λ̄

−1
h,i+q−1, there is no other eigenvalue of Th contained in Γ . So we can define the

pectral projection associated with Th and λ̄h,i, . . ., λ̄h,i+q−1 as

Eh = Eh(λi) =
1

2π i

∫
Γ

(z − Th)−1dz. (21)

For the eigenpair approximation by the finite element method, the following two lemmas (see [41,43]) give key
estimates.

Lemma 3.3. Let λi = · · · = λi+q−1 be any eigenvalues of (12) with multiplicity q and ūh,ℓ with ∥ūh,ℓ∥0,Ω = 1 be the
igenfunction corresponding to λ̄h,ℓ (ℓ = i, . . . , i + q − 1). Then, there holds

∥u − Ehu∥0,Ω ≲ ηa(h)∥u − Ehu∥a,Ω , ∥u − Ehu∥a,Ω ≲ δh(λi), ∀u ∈ M(λi),
∥ūh,ℓ − Eūh,ℓ∥0,Ω ≲ ηa(h)∥ūh,ℓ − Eūh,ℓ∥a,Ω , ∥ūh,ℓ − Eūh,ℓ∥a,Ω ≲ δh(λi),
λ̄h,ℓ − λi ≲ δ2h (λi),

here

δh(λi) = sup inf
v ∈V

∥w − vh∥a,Ω , ηa(h) = sup
2

inf
v ∈V

∥Tf − vh∥a,Ω .

w∈M(λi) h h f∈L (Ω),∥f ∥0,Ω=1 h h

5
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Lemma 3.4. For any u ∈ M(λi), we have

1 ≤
∥u − Ehu∥a,Ω

∥u − Phu∥a,Ω
= 1 + O(ν(h)), (22)

where ν(h) is defined as follows

ν(h) = sup
f∈V ,∥f ∥a,Ω=1

inf
vh∈Vh

∥Tf − vh∥a,Ω

and ν(h) → 0 as h → 0.

We will also use the following two lemmas in our analysis (see [14]).

Lemma 3.5 ([14, Corollary 2.10]). For any u ∈ M(λi), there holds

1 − Cηa(h)δh(λi) ≤ ∥Ehu∥2
0,Ω ≤ 1, (23)

here C is a constant not depending on mesh size.

emma 3.6 ([14, Corollary 2.11]). For any uj, uℓ ∈ M(λi) with b(uj, uℓ) = δj,ℓ (j, ℓ = i, . . . , i + q − 1), we have

b(Ehuj, Ehuℓ) = δj,ℓ + O
(
ηa(h)δh(λi)

)
. (24)

.2. Adaptive multigrid method

In this subsection, we propose an adaptive multigrid method based on the combination of the multilevel correction
ethod, multigrid method and adaptive mesh refinement.
According to the element residual R̃K (uh,ℓ) and the jump residual J̃e(uh,ℓ) of the boundary value problem (2), we define

he element residual and the jump residual of the eigenvalue problem (12) as follows:

RK (uh,ℓ) := λh,ℓuh,ℓ − φuh,ℓ + ∇ · (A∇uh,ℓ), in K ∈ Th, (25)

Je(uh,ℓ) := −A∇u+

h,ℓ · ν+
− A∇u−

h,ℓ · ν−
= [A∇uh,ℓ] · νe, on e ∈ Eh. (26)

or K ∈ Th, we define the local error estimator ηh(uh,ℓ, K ) and the oscillation osch(uh,ℓ, K ) for the eigenvalue problem (12)
y

η2
h(uh,ℓ, K ) := h2

K∥RK (uh,ℓ)∥2
0,K +

∑
e∈Eh,e⊂∂K

he∥Je(uh,ℓ)∥2
0,e,

osc2h (uh,ℓ, K ) := h2
K∥(I − PK )RK (uh,ℓ)∥2

0,K +

∑
e∈Eh,e⊂∂K

he∥(I − Pe)Je(uh,ℓ)∥2
0,e.

For any Uh = (uh,i, . . . , uh,i+q−1) ∈ (Vh)q, we set

η2
h(Uh, K ) =

∑
ℓ

η2
h(uh,ℓ, K ) and osc2h (Uh, K ) =

∑
ℓ

osc2h (uh,ℓ, K ).

Similarly, we also introduce some modules of our adaptive multigrid algorithm for multiple eigenvalue problem as
ollows:

• (Λ, Φ) = EG−SOLVE(Vh): Solve the eigenvalue problem (14) in the finite element space Vh and return the desired q
eigenpair approximations (Λ, Φ) ∈ Rq

× (Vh)q.
• {ηh(Uh; K )}K∈Th = EG−ESTIMATE(Uh, Th): Compute the local error indicators on each element.
• Mh = EG−MARK(θ, {ηh(Uh; K )}K∈Th , Th): Construct a minimal subset Mh from Th by selecting some elements in Th

such that

ηh(Uh;Mh) ≥ θηh(Uh; Th), (27)

and mark all elements in Mh.

Then the adaptive multigrid method for multiple eigenvalue problem is defined in Algorithm 3.1. Instead of solving
n eigenvalue problem in each adaptive finite element space, with our approach, we only need to solve several linear
oundary value problems by adaptive multigrid method in the adaptively refined space and a small-scale eigenvalue
roblem in a low dimensional space. The idea is an extension of two-grid method for the eigenvalue problem [44] to
ultigrid case by adding a special correction step. The correction step can not only keep the H1-norm accuracy of the
pproximate eigenfunction obtained from the adaptive space, but also gives a higher order L2-norm accuracy. Since there
s no eigenvalue problem solving in the refined triangulations directly, which needs more computation and memory than
olving the associated boundary value problems, the proposed algorithm has a higher efficiency than the standard adaptive
inite element method.
6
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Algorithm 3.1 (Adaptive Multigrid Method).

1. Given a parameter 0 < θ < 1. Generate a coarse mesh TH on computing domain Ω and construct the corresponding
finite element space VH . Pick up an initial mesh Th1 which is produced by refining TH several times in the uniform
way. Then build the initial finite element space Vh1 on Th1 . Let p denote the multigrid iteration times. Set k := 1
and do the following loops:

2. (Λhk ,Uhk ) =

{
EG−SOLVE(Vh1 ), when k = 1;
EG−SOLVE(VH ⊕ span{Ŭhk}), when k > 1;

3. {ηhk (Uhk; K )}K∈Thk
= EG−ESTIMATE(Uhk , Thk );

4. Mhk = EG−MARK (θ, {ηhk (Uhk; K )}K∈Thk
, Thk );

5. (Thk+1 , Vhk+1 ) = REFINE(Mhk , Thk );
6. (a) set U (0)

hk+1
= Uhk ;

(b) For ℓ = 0, · · · , p − 1, U (ℓ+1)
hk+1

= MGBVP−SOLVE(ΛhkUhk ,U
(ℓ)
hk+1

, Vhk+1 );
(c) Set Ŭhk+1 = U (p)

hk+1
;

7. Set k := k + 1 and go to step 2.

Remark 3.1. In Algorithm 3.1, we only need to solve a series of boundary value problems on adaptive spaces in step 6 and
solve some low dimensional eigenvalue problems in step 2. The dimension of these eigenvalue problems (dim (VH ) + q)
remains unchanged during the adaptive refinement, thus the overall efficiency of Algorithm 3.1 will not be significantly
more expensive than the adaptive multigrid method for the corresponding elliptic boundary value problem.

In the 6-th step of Algorithm 3.1, the multigrid method is adopted for the linearized boundary value problems which
includes pre-smoothing, coarse grid correction and post smoothing. Here, we choose some linear smoothers such as
Richardson, Jacobi, Gauss–Seidel and symmetrized Gauss–Seidel iteration in the multigrid method.

Define MH,hk (λi) = span{uhk,i, . . . , uhk,i+q−1}. In the following analysis, we need some crude a priori error estimates
presented in the following lemma.

Lemma 3.7. The approximate eigenfunction space MH,hk (λi) obtained by Algorithm 3.1 has the following error estimates

Θ̂(M(λi),MH,hk (λi)) ≲ δH (λi), (28)

Φ̂(M(λi),MH,hk (λi)) ≲ ηa(H)δH (λi). (29)

For each eigenvalue, we have

λhk,ℓ − λi ≲ δ2H (λi), for ℓ = i, . . . , i + q − 1. (30)

Proof. From Lemma 3.3, there holds

Θ̂(M(λi),MH,hk (λi)) ≲ sup
u∈M(λi)

inf
vhk∈VH⊕span{Ŭhk }

∥u − vhk∥a,Ω

≲ sup
u∈M(λi)

inf
vhk∈VH

∥u − vhk∥a,Ω := δH (λi).

Similarly, from Lemma 3.3, the following estimates hold

Φ̂(M(λi),MH,hk (λi)) ≲ ηa(H)δH (λi) (31)

and

λhk,ℓ − λi ≲ δ2H (λi). (32)

Then we complete the proof. □

3.3. The connections between eigenvalue problems and boundary value problems

In order to analyze the convergence and complexity property of Algorithm 3.1, we establish the connections between
the solutions of the eigenvalue problem (12) and the associated boundary value problem (2) in this subsection.

From (18), eigenvalue problems (12) and (14) can be rewritten as

u = T
(
λu

)
and ūh = Th

(
λ̄hūh

)
. (33)

For any u ∈ M(λi), we define the spectral projection from V to MH,hk (λi) by Ēhk : V → MH,hk (λi). Then there exist q
constants {αhk,ℓ}

i+q−1
ℓ=i such that

Ēhku =

∑
αhk,ℓuhk,ℓ. (34)
ℓ

7
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Further, from Lemma 3.5, we obtain that
∑

ℓ α2
hk,ℓ

≤ 1.

Define λhk =
a(Ēhku,Ēhku)

b(Ēhku,Ēhku)
, we have

λhk =
1∑

ℓ α2
hk,ℓ

∑
ℓ

α2
hk,ℓλhk,ℓ, (35)

hich together with Lemma 3.1 yields

|λi − λhk | ≤
∥u − Ēhku∥

2
a,Ω

∥Ēhku∥
2
0,Ω

=
∥u − Ēhku∥

2
a,Ω∑

ℓ α2
hk,ℓ

. (36)

Define whk ∈ V by

whk =

∑
ℓ

αhk,ℓλhk,ℓTuhk,ℓ. (37)

For the approximate solution Ŭhk+1 = (ŭhk+1,i, . . . , ŭhk+1,i+q−1) derived in the 6-th step of Algorithm 3.1, let us denote

w̃hk+1 =

∑
ℓ

αhk,ℓŭhk+1,ℓ.

Then based on the structure of the multigrid iteration and the involved linear smoothers in Algorithm 3.1, w̃hk+1 is the
multigrid approximate solution for the finite element solution Phk+1w

hk with the initial value Ēhku(=
∑

ℓ αhk,ℓuhk,ℓ).
Based on the above discussions, we can derive the following theorem.

Theorem 3.1. Assume the convergence rate of the multigrid iteration used in Algorithm 3.1 is ν. Given u ∈ M(λi), the following
connections hold

∥u − Ēhk+1u∥a,Ω = ∥whk+1 − Phk+1w
hk+1∥a,Ω

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ), (38)

∥u − Ēhk+1u∥a,Ω = ∥whk − Phk+1w
hk∥a,Ω

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ), (39)

ith r(VH , ν) = ηa(H) + νp.

roof. u − Ēhk+1u can be decomposed as follows

u − Ēhk+1u = (u − whk+1 ) + (whk+1 − Phk+1w
hk+1 ) + Phk+1 (w

hk+1 − whk )

+ (Phk+1w
hk − Ēhk+1u). (40)

For the first part of (40), associating with (12), (33), (34) and (37), we have

∥u − whk+1∥
2
a,Ω = a(u − whk+1 , u − whk+1 )

=
(
λiu −

∑
ℓ

αhk+1,ℓλhk+1,ℓuhk+1,ℓ, u − whk+1
)

=
(
λi(u − Ēhk+1u) +

∑
ℓ

αhk+1,ℓ(λi − λhk+1,ℓ)uhk+1,ℓ, u − whk+1
)
. (41)

he second term of (41) can be estimated as follows(∑
ℓ

αhk+1,ℓ(λi − λhk+1,ℓ)uhk+1,ℓ, u − whk+1
)

≲
∑

ℓ

|αhk+1,ℓ(λi − λhk+1,ℓ)|∥uhk+1,ℓ∥0,Ω∥u − whk+1∥0,Ω

≲
(∑

ℓ

α2
hk+1,ℓ(λhk+1,ℓ − λi)

)1/2(∑
ℓ

(λhk+1,ℓ − λi)
)1/2

∥u − whk+1∥a,Ω

≲ (
∑

ℓ

α2
hk+1,ℓ)

1/2(λhk+1 − λi)1/2
(∑

ℓ

(λhk+1,ℓ − λi)
)1/2

∥u − whk+1∥a,Ω

≲ ηa(H)∥u − Ēhk+1u∥a,Ω∥u − whk+1∥a,Ω . (42)
8
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Combining (41) and (42) leads to

∥u − whk+1∥a,Ω ≲ ∥u − Ēhk+1u∥0,Ω + ηa(H)∥u − Ēhk+1u∥a,Ω

≲ ηa(H)∥u − Ēhk+1u∥a,Ω . (43)

With regard to the third part of (40), referring to (6) and the proved result (43), we have the following estimates

∥Phk+1 (w
hk+1 − whk )∥a,Ω ≤ ∥u − whk+1∥a,Ω + ∥u − whk∥a,Ω

≲ ηa(H)
(
∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω

)
. (44)

For the last term of (40), since w̃hk+1−Ēhk+1u ∈ VH⊕span{Ŭhk+1}, we use (34) and (37) to show the following inequalities

∥Phk+1w
hk − Ēhk+1u∥

2
a,Ω = a(Phk+1w

hk − Ēhk+1u, Phk+1w
hk − Ēhk+1u)

= a(Phk+1w
hk − Ēhk+1u, Phk+1w

hk − w̃hk+1 + w̃hk+1 − Ēhk+1u)

= a(Phk+1w
hk − Ēhk+1u, Phk+1w

hk − w̃hk+1 )

+
(∑

ℓ

αhk,ℓ(λhk,ℓ − λi)uhk,ℓ + λi(Ēhku − Ēhk+1u)

+

∑
ℓ

αhk+1,ℓ(λi − λhk+1,ℓ)uhk+1,ℓ, w̃
hk+1 − Ēhk+1u

)
≲ ∥Phk+1w

hk − Ēhk+1u∥a,Ω∥Phk+1w
hk − w̃hk+1∥a,Ω

+ ηa(H)(∥u − Ēhku∥a,Ω + ∥u − Ēhk+1u∥a,Ω )∥w̃hk+1 − Ēhk+1u∥a,Ω

≲ ∥Phk+1w
hk − Ēhk+1u∥a,Ω∥Phk+1w

hk − w̃hk+1∥a,Ω + ηa(H)(∥u − Ēhku∥a,Ω

+ ∥u − Ēhk+1u∥a,Ω )(∥w̃hk+1 − Phk+1w
hk∥a,Ω + ∥Phk+1w

hk − Ēhk+1u∥a,Ω ). (45)

rom the convergence rate ν of the multigrid method, we can derive

∥Phk+1w
hk − w̃hk+1∥a,Ω ≤ νp

∥Phk+1w
hk − Ēhku∥a,Ω

≤ νp(∥Phk+1w
hk − Phk+1u∥a,Ω + ∥Phk+1u − u∥a,Ω + ∥u − Ēhku∥a,Ω )

≤ νp(∥whk − u∥a,Ω + ∥Ēhk+1u − u∥a,Ω + ∥u − Ēhku∥a,Ω )

≤ νp(1 + Cηa(H))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ). (46)

Combining (45) and (46) leads to

∥Phk+1w
hk − Ēhk+1u∥

2
a,Ω

≤ (νp
+ ηa(H))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω )∥Phk+1w

hk − Ēhk+1u∥a,Ω

+ νpηa(H)(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω )2. (47)

Thus the following estimate holds

∥Phk+1w
hk − Ēhk+1u∥a,Ω ≲ (νp

+ ηa(H))
(
∥u − Ēhku∥a,Ω + ∥u − Ēhk+1u∥a,Ω

)
. (48)

Using (43), (44) and (48), we can easily prove (38).
The second identity (39) can be proved by the same technique using the decomposition of u − Ēhk+1u as follows

u − Ēhk+1u = (u − whk ) + (whk − Phk+1w
hk ) + (Phk+1w

hk − Ēhk+1u).

o we complete the proof. □

Theorem 3.1 has built the connections between the error estimates of the eigenvalue problem and the associated
oundary value problem. Since the difference is a higher order term and the theoretical results of the boundary value
roblem have already been well analyzed, we can derive the theoretical results of adaptive multigrid method for the
igenvalue problem by following the procedure of adaptive finite element method for linear elliptic boundary value
roblem.
For the projection Ēhu =

∑
ℓ αh,ℓuh,ℓ, we define the element residual and the jump residual as follows:

RK (Ēhu) :=

∑
ℓ

αh,ℓλh,ℓuh,ℓ − φĒhu + ∇ · (A∇Ēhu), in K ∈ Th, (49)

Je(Ēhu) := −A∇Ēhu+
· ν+

− A∇Ēhu−
· ν−

:= [A∇Ēhu] · νe, on e ∈ Eh. (50)
9
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Then we define the local error estimator and the oscillation by

η2
h(Ēhu, K ) := h2

K∥RK (Ēhu)∥2
0,K +

∑
e∈Eh∩∂K

he∥Je(Ēhu)∥2
0,e,

osc2h (Ēhu, K ) := h2
K∥(I − PK )RK (Ēhu)∥2

0,K +

∑
e∈Eh∩∂K

he∥(I − Pe)Je(Ēhu)∥2
0,e.

Similarly to Theorem 3.1, we have the following two theorems about the error estimator and oscillation by combining
he definitions of the error estimator and oscillation, Sobolev trace theorem and the inverse inequality of the finite element
ethod.

heorem 3.2. Given any u ∈ M(λi), the following connections between the a posteriori error estimators hold

ηhk+1 (Ēhk+1u, Thk+1 ) = η̃hk+1 (Phk+1w
hk+1 , Thk+1 )

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ), (51)

ηhk+1 (Ēhk+1u, Thk+1 ) = η̃hk+1 (Phk+1w
hk , Thk+1 )

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ). (52)

Theorem 3.3. Given any u ∈ M(λi), the following connections between the oscillations hold

oschk+1 (Ēhk+1u, Thk+1 ) = õschk+1 (Phk+1w
hk+1 , Thk+1 )

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ), (53)

oschk+1 (Ēhk+1u, Thk+1 ) = õschk+1 (Phk+1w
hk , Thk+1 )

+O(r(VH , ν))(∥u − Ēhk+1u∥a,Ω + ∥u − Ēhku∥a,Ω ). (54)

3.4. The efficiency and reliability of the residual type a posteriori error estimator

Now we propose the efficiency and reliability of the residual type a posteriori error estimator for eigenvalue problems
as Lemma 2.1. In the rest of this paper, we assume the mesh size H and νp are small enough such that

r(VH , ν)∥u − Ēhku∥
2
a,Ω ≤ ∥u − Ēhk+1u∥

2
a,Ω , for k ≥ 1. (55)

Remark 3.2. It is worth mentioning that the assumption (55) indicates that the initial mesh should be small enough
such that the error does not change too much after each refinement step. From another point of view, there exist both
sharp upper bound and lower bound for ∥u− Ēhku∥a,Ω (see [45]) when the exact eigenfunction u does not belong to finite
element space Vhk . Thus such an assumption is reasonable generally.

Besides, in order to meet such a condition, we may need to execute several times multigrid iteration step (p ≥ 1).
But in our numerical experiments, one or two times iteration steps are enough to derive the optimal accuracy due to the
efficiency of the multigrid method.

Based on Theorems 3.1–3.3 and (55), we can obtain the following reliability and efficiency of the a posteriori error
estimator for eigenvalue problem by applying Lemma 2.1.

Lemma 3.8. There exist some constants depending only on the shape regularity of Thk+1 such that

∥u − Ēhk+1u∥
2
a,Ω ≤ C1η

2
hk+1

(Ēhk+1u, Thk+1 ), (56)

C2η
2
hk+1

(Ēhk+1u, Thk+1 ) ≤ ∥u − Ēhk+1u∥
2
a,Ω + C3osc2hk+1

(Ēhk+1u, Thk+1 ). (57)

Consequently, we have

|λi − λhk+1 | ≲ η2
hk+1

(Ēhk+1u, Thk+1 ). (58)

Proof. Since whk is the exact solution of the elliptic boundary value problem, from Lemma 2.1, we have

∥whk − Phk+1w
hk∥2

a,Ω ≤ C̃1̃η
2
hk+1

(Phk+1w
hk , Thk+1 ), (59)

C̃2̃η
2
hk+1

(Phk+1w
hk , Thk+1 ) ≤ ∥whk − Phk+1w

hk∥2
a,Ω + C̃3õsc2hk+1

(Phk+1w
hk , Thk+1 ). (60)

Then we can derive the desired results by applying Lemmas 2.1, 3.1, Theorems 3.1–3.3. □
10
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w

In order to further built the efficiency and reliability for the residual type a posteriori error estimator ηhk (Uhk , Thk )
which was actually used in Algorithm 3.1, the following connections between ηhk (ĒhkU, Thk ) and ηhk (Uhk , Thk ) will play
a crucial role in our analysis. For readability purpose of this paper, the detailed proof of Lemma 3.9 was proposed in
Appendix.

Lemma 3.9. For any orthogonal basis {uℓ}
i+q−1
ℓ=i of M(λi), we have the following estimates

1
q
η2
hk (ĒhkU, K ) ≤ η2

hk (Uhk , K ) ≤
2q

1 − Cη2
a (H)

(
η2
hk (ĒhkU, K ) + R(Uhk )

)
, (61)

here ĒhkU = (Ēhkui, . . . , Ēhkui+q−1), R(Uhk ) =
∑

ℓ

∑
s h

2
K |λhk,ℓ − λhk,s|

2
∥uhk,s∥

2
0,K . Consequently

η2
hk (ĒhkU, Thk ) ∼= η2

hk (Uhk , Thk ) and osc2hk (ĒhkU, Thk ) ∼= osc2hk (Uhk , Thk ). (62)

Theorem 3.4. Let λi ∈ R be an eigenvalue of (12) with multiplicity q, we have the following estimates for the eigenpair
approximations obtained from Algorithm 3.1

Θ2(M(λi),MH,hk+1 (λi)) ≤ C1η
2
hk+1

(Uhk+1 , Thk+1 ), (63)

C2η
2
hk+1

(Uhk+1 , Thk+1 ) ≤ Θ2(M(λi),MH,hk+1 (λi)
)
+ C3osc2hk+1

(Uhk+1 , Thk+1 ). (64)

Proof. Let {ui, . . . , ui+q−1} be an orthogonal basis of M(λi). On the one hand

sup
u∈M(λi)

inf
v∈MH,hk+1 (λi)

∥u − v∥a,Ω ≤ sup
u∈M(λi)

∥u − Ēhk+1u∥a,Ω

≲ max
ℓ=i,...,i+q−1

∥uℓ − Ēhk+1uℓ∥a,Ω

≲ ∥U − Ēhk+1U∥a,Ω . (65)

On the other hand

sup
u∈M(λi)

inf
v∈MH,hk+1 (λi)

∥u − v∥a,Ω ≥ sup
u∈M(λi)

∥u − P̄hk+1u∥a,Ω

≳ max
ℓ=i,...,i+q−1

∥uℓ − P̄hk+1uℓ∥a,Ω

≳ ∥U − P̄hk+1U∥a,Ω , (66)

where P̄hk+1 is the Galerkin projection from V to VH ⊕ span{Ŭhk+1} defined by

a(u − P̄hk+1u, vH,hk+1 ) = 0, ∀vH,hk+1 ∈ VH ⊕ span{Ŭhk+1}.

From Lemma 3.8, we have

∥U − Ēhk+1U∥
2
a,Ω ≤ C1η

2
hk+1

(Ēhk+1U, Thk+1 ), (67)

C2η
2
hk+1

(Ēhk+1U, Thk+1 ) ≤ ∥U − Ēhk+1U∥
2
a,Ω + C3osc2hk+1

(Ēhk+1U, Thk+1 ). (68)

Hence, we obtained from Lemma 3.4 that

∥U − P̄hk+1U∥
2
a,Ω ≤ C1η

2
hk+1

(Ēhk+1U, Thk+1 ), (69)

C2η
2
hk+1

(Ēhk+1U, Thk+1 ) ≤ ∥u − P̄hk+1U∥
2
a,Ω + C3osc2hk+1

(Ēhk+1U, Thk+1 ) (70)

when H is small enough.
Combining (65)–(70) and Lemma 3.9, we get

sup
u∈M(λi)

inf
v∈MH,hk+1 (λi)

∥u − v∥
2
a,Ω ≤ C1η

2
hk+1

(Uhk+1 , Thk+1 ),

C2η
2
hk+1

(Uhk+1 , Thk+1 ) ≤ sup
u∈M(λi)

inf
v∈MH,hk+1 (λi)

∥u − v∥
2
a,Ω + C3osc2hk+1

(Uhk+1 , Thk+1 ).

Namely

Θ̂2(M(λi),MH,hk+1 (λi)) ≤ C1η
2
hk+1

(Uhk+1 , Thk+1 ), (71)

C2η
2
hk+1

(Uhk+1 , Thk+1 ) ≤ Θ̂2(M(λi),MH,hk+1 (λi)) + C3osc2hk+1
(Uhk+1 , Thk+1 ). (72)
From (71), (72) and Lemma 3.2, we can derive the desired estimates. □
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4. Convergence and optimal complexity of adaptive multigrid method

In this section, we will study the convergence property and complexity analysis of Algorithm 3.1.

.1. Convergence property

This subsection is devoted to introducing the convergence property of Algorithm 3.1 based on the existing results for
he elliptic boundary value problem and the connections between the elliptic boundary value problem and eigenvalue
roblem presented in Theorems 3.1–3.3.

emma 4.1. Let θ ∈ (0, 1) be a given constant. If there holds

η2
hk (Uhk ,Mhk ) ≥ θη2

hk (Uhk , Thk ), (73)

hen for any orthogonal basis {uℓ}
i+q−1
ℓ=i of M(λi), there exists a constant θ̄ ∈ (0, 1) such that

η2
hk (ĒhkU,Mhk ) ≥ θ̄η2

hk (ĒhkU, Thk ), (74)

here ĒhkU = (Ēhkui, . . . , Ēhkui+q−1).

Proof. From Lemma 3.9 and (73), we have
2q

1 − Cη2
a (H)

(
η2
hk (ĒhkU,Mhk ) +

∑
ℓ

∑
s

|λhk,ℓ − λhk,s|
2η2

a (H)∥uhk,s∥
2
0,Mhk

)
≥ η2

hk (Uhk ,Mhk ) ≥ θη2
hk (Uhk , Thk ). (75)

By using the similar procedure as that, for deducing Lemma 3.9, we get∑
ℓ

∑
s

|λhk,ℓ − λhk,s|
2η2

a (H)∥uhk,s∥
2
0,Mhk

≲ η4
a (H)η2

hk (Uhk , Thk ). (76)

Combining (75) and (76) leads to

2q
1 − Cη2

a (H)
η2
hk (ĒhkU,Mhk ) +

Cη4
a (H)

1 − Cη2
a (H)

η2
hk (Uhk , Thk ) ≥ θη2

hk (Uhk , Thk ).

Consequently

2q
1 − Cη2

a (H)
η2
hk (ĒhkU,Mhk ) ≥ (θ −

Cη4
a (H)

1 − Cη2
a (H)

)η2
hk (Uhk , Thk )

≥
1
q
(θ −

Cη4
a (H)

1 − Cη2
a (H)

)η2
hk (ĒhkU, Thk ).

Hence, there exists a constant C such that

η2
hk (ĒhkU,Mhk ) ≥

1
2q2

(
θ (1 − Cη2

a (H)) − Cη4
a (H)

)
η2
hk (ĒhkU, Thk )

≥
θ

2q2
(
1 − Cη2

a (H)
)
η2
hk (ĒhkU, Thk ),

provided H is small enough.
Taking θ̄ =

θ

2q2
(
1 − Cη2

a (H)
)
, we can derive the desired result. □

Now we prove the following convergence result which describes error reduction of Algorithm 3.1 by using the obtained
conclusions.

Lemma 4.2. Let θ ∈ (0, 1), λi ∈ R be some eigenvalue of (12) with multiplicity q and the corresponding eigenspace being
(λi) = span{ui, . . . , ui+q−1}, {(λhk,ℓ, uhk,ℓ), ℓ = i, . . . , i + q − 1} be a sequence of finite element solutions produced by

Algorithm 3.1. Then there exist constants γ > 0 and α̃ ∈ (0, 1) depending only on the shape regularity of meshes and marking
parameter θ such that

∥U − Ēhk+1U∥
2
a,Ω + γ η2

hk+1
(Ēhk+1U, Thk+1 ) ≤ α̃2(

∥U − ĒhkU∥
2
a,Ω + γ η2

hk (ĒhkU, Thk )
)
. (77)

Proof. Since the following marking strategy is used in Algorithm 3.1

η2 (U ,M ) ≥ θη2 (U , T ). (78)
hk hk hk hk hk hk

12
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w

Then, from Lemma 4.1, there exists a constant θ̄ ∈ (0, 1) such that

η2
hk (ĒhkU,Mhk ) ≥ θ̄η2

hk (ĒhkU, Thk ). (79)

For any uℓ ∈ M(λi), define whk,ℓ according to (34) and (37). Set W hk = (whk,ℓ)i+q−1
ℓ=i . From Theorem 3.2, (55) and (79),

there exists a constant θ ′
∈ (0, 1) such that

η̃2
hk (PhkW

hk ,Mhk ) ≥ θ ′η̃2
hk (PhkW

hk , Thk ). (80)

The inequality (80) means that we derive the Dörfler’s marking strategy for elliptic boundary value problem, then we
conclude from Lemma 2.2 that there exist constants γ̃ > 0 and ξ ∈ (0, 1) satisfying

∥W hk − Phk+1W
hk∥a,Ω + γ̃ η̃2

hk+1
(Phk+1W

hk , Thk+1 )

≤ ξ 2(
∥W hk − PhkW

hk∥a,Ω + γ̃ η̃2
hk (PhkW

hk , Thk )
)
. (81)

Combining (39), (52), (55) and (81) leads to

∥U − Ēhk+1U∥
2
a,Ω + γ̃ η2

hk+1
(Ēhk+1U, Thk+1 )

≤ (1 + δ1)
(
∥W hk − Phk+1W

hk∥2
a,Ω + γ̃ η̃2

hk+1
(Phk+1W

hk , Thk+1 )
)

+ Cδ−1
1 r2(VH , ν)(∥U − Ēhk+1U∥

2
a,Ω + ∥U − ĒhkU∥

2
a,Ω )

≤ (1 + δ1)
(
∥W hk − Phk+1W

hk∥2
a,Ω + γ̃ η̃2

hk+1
(Phk+1W

hk , Thk+1 )
)

+ Cδ−1
1 r(VH , ν)(∥U − Ēhk+1U∥

2
a,Ω + γ̃ η2

hk+1
(Ēhk+1U, Thk+1 )). (82)

Simplifying the above formula leads to the following estimates when r(VH , ν) is small enough

∥U − Ēhk+1U∥
2
a,Ω + γ̃ η2

hk+1
(Ēhk+1U, Thk+1 )

≤
1 + δ1

1 − Cδ−1
1 r(VH , ν)

(
∥W hk − Phk+1W

hk∥2
a,Ω + γ̃ η̃2

hk+1
(Phk+1W

hk , Thk+1 )
)

≤
(1 + δ1)ξ 2

1 − Cδ−1
1 r(VH , ν)

(
∥W hk − PhkW

hk∥2
a,Ω + γ̃ η̃2

hk (PhkW
hk , Thk )

)
. (83)

Using a similar argument on the righthand term of (83), we have

∥W hk − PhkW
hk∥2

a,Ω + γ̃ η̃2
hk (PhkW

hk , Thk )

≤ (1 + δ2 + Cδ−1
2 r(VH , ν))(∥U − ĒhkU∥

2
a,Ω + γ̃ η2

hk (ĒhkU, Thk )). (84)

From (83) and (84), the following estimate holds

∥U − Ēhk+1U∥
2
a,Ω + γ̃ η2

hk+1
(Ēhk+1U, Thk+1 )

≤
(1 + δ1)(1 + δ2 + Cδ−1

2 r(VH , ν))ξ 2

1 − Cδ−1
1 r(VH , ν)

(∥U − ĒhkU∥
2
a,Ω + γ̃ η2

hk (ĒhkU, Thk )). (85)

Set

α̃2
:=

(1 + δ1)
(
1 + δ2 + Cδ−1

2 r(VH , ν)
)
ξ 2

1 − Cδ−1
1 r(VH , ν)

, γ = γ̃ ,

e can derive

∥U − Ēhk+1U∥
2
a,Ω + γ η2

hk+1
(Ēhk+1U, Thk+1 ) ≤ α̃2(

∥U − ĒhkU∥
2
a,Ω + γ η2

hk (ĒhkU, Thk )
)
,

which is just the desired result (77). □

Similar to Theorem 3.4, we can also get the contraction property for the gap between M(λi) and its finite element
approximation MH,hn (λi).

Theorem 4.1. Let λi ∈ R be some eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(λi) =

{ui, . . . , ui+q−1}, {(λhn,ℓ, uhn,ℓ), ℓ = i, . . . , i+q−1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
there exists a constant α̃ ∈ (0, 1), depending only on the shape regularity of meshes and the marking parameter θ such that

Θ(M(λi),MH,hn (λi)) ≲ α̃n. (86)
13
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Proof. For any u ∈ M(λi), there exist q constants {αℓ} such that u =
∑

ℓ αℓuℓ. Thus, we have

∥u − Ēhnu∥
2
a,Ω = ∥

∑
ℓ

αℓ(uℓ − Ēhnuℓ)∥2
a,Ω

≤

∑
ℓ

|αℓ|
2
∑

ℓ

∥uℓ − Ēhnuℓ∥
2
a,Ω =

∑
ℓ

∥uℓ − Ēhnuℓ∥
2
a,Ω

≤

∑
ℓ

(
∥uℓ − Ēhnuℓ∥

2
a,Ω + γ η2

hn (Ēhnuℓ, Thn )
)
≲ α̃2n.

Therefore, from the definition of Θ̂ , there holds

Θ̂(M(λi),MH,hn (λi)) ≲ α̃n.

Using Lemma 3.2, we then arrive at (86). □

4.2. Complexity analysis

In this subsection, we propose the complexity analysis of Algorithm 3.1. As in the normal analysis of AFEM for the
boundary value problems, in order to state the result of the complexity estimate, we introduce a function approximation
class as follows (cf. [11])

As
:= {v ∈ H1

0 (Ω) : |v|s < ∞},

where | · |s is defined as follows

|v|s := sup
ε>0

ε inf
{Thk⊂Th1 :inf

(
∥v−vhk ∥

2
a,Ω+osc2hk

(vhk ,Thk )
)1/2

≤ε}

(#Thk − #Th1 )
s

and Thk ⊂ Th1 means Thk is a refinement of Th1 . In this study, we use #T to denote the number of elements in the mesh T .
So As is the class of functions that can be approximated within a given tolerance ε by continuous piecewise polynomial
functions over a partition Thk satisfying #Thk − #Th1 ≲ ε−1/s

|v|
1/s
s .

Notice that the convergence result presented in Lemma 4.2 is the same as that in [11,14]. By using the same technique,
we can prove that Algorithm 3.1 has the following optimal complexity. Please refer to papers [11,14] for the detailed proof.

Lemma 4.3. Let λi ∈ R be an eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(λi) =

{ui, . . . , ui+q−1}, {(λhk,ℓ, uhk,ℓ), ℓ = i, . . . , i+q−1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
the following optimality holds

∥U − ĒhkU∥
2
a,Ω + osc2hk (ĒhkU, Thk ) ≲ (#Thk − #Th0 )

−2s, (87)

|λhk − λi| ≲ (#Thk − #Th0 )
−2s, (88)

provided H is small enough.

Similar to Theorem 4.1, we obtain the following conclusion from Lemma 4.3.

Theorem 4.2. Let λi ∈ R be an eigenvalue of (12) with multiplicity q and the corresponding eigenspace being M(λi) =

{ui, . . . , ui+q−1}, {(λhn,ℓ, uhn,ℓ), ℓ = i, . . . , i+q−1} be a sequence of finite element solutions produced by Algorithm 3.1. Then,
the kth iterate solution space MH,hk (λi) satisfies

Θ(M(λi),MH,hk (λi)) ≲ (#Thk − #Th0 )
−s,

provided H is small enough.

Now we come to briefly estimate the computational work of Algorithm 3.1. Here we have to use additionally, that the
sequence of unknowns belongs to a geometric progression (see e.g. [46]):

Nk < σ0Nk ≤ Nk+1 < σ1Nk, k = 1, 2, . . . (89)

Theorem 4.3. Assume the multiple eigenvalue problem solving in the coarse spaces VH and Vh1 need work MH and M1,
respectively, and the work of the multigrid solver for the involved boundary value problems in Vhk is O(Nk) for k = 2, 3, . . . , n.
Then the total computational work of Algorithm 3.1 can be bounded by O

(
M1 + MH log(Nn) + Nn

)
and furthermore O

(
Nn

)
provided M and M are small enough.
H 1

14
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P
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w

Fig. 1. The initial mesh and the triangulations after adaptive iterations for Example 1.

roof. Let W denote the whole computational work of Algorithm 3.1, Wk denote the work on the kth level for k =

, . . . , n. From the definition of Algorithm 3.1 and (89), it follows that

W =

n∑
k=1

Wk = O
(
M1 +

n∑
k=2

(Nk + MH )
)

= O
(
M1 + MH (n − 1) + Nn

n∑
k=2

( 1
σ0

)(n−k))
= O

(
M1 + MH log(Nn) + Nn

)
.

Thus, the computational work W can be bounded by O
(
M1 +MH log(Nn)+Nn

)
, and moreover, by O(Nn) if MH and M1

are small enough. □

5. Numerical experiments

In this section, we present two numerical examples for the second order elliptic eigenvalue problems by Algorithm 3.1.
In these numerical examples, the well known implicitly restarted Lanczos method, which is included in the popular
package ARPACK, is adopted to solve the small-scale eigenvalue problems. We set p = 2 in Algorithm 3.1, and
each adaptive multigrid iteration step is executed with one multigrid V-cycle as the basic iteration using two times
Gauss–Seidel iterations on those newly refined elements and their neighbors.

In Algorithm 3.1, we need to provide the multiplicity of the desired eigenvalue, which is usually unknown. In this case,
we can first compute the approximate eigenpairs on the initial mesh and then deduce the multiplicity of the desired
eigenvalue. Besides, in most case, people need to solve the smallest N eigenvalues, or the largest N eigenvalues, or
the N eigenvalues closed to a special value. Then we can use our algorithm to solve such problems through using the
desired N approximate solutions to construct the low dimensional correction space, which is involved in the second step
of Algorithm 3.1.

Example 1. In the first example, we consider the following harmonic oscillator equation (see [47]){
−

1
2∆u +

1
2 |x|

2u = λu, in Ω,

u = 0, on ∂Ω,
(90)

here Ω = R3 and |x| =

√
x21 + x22 + x23. The eigenvalues of (90) are λn = n+

1
2 with multiplicity n(n+1)/2 (n = 1, 2, . . .)

and eigenfunction is un = κe−|x|2/2Hn(x) with any nonzero constant κ and Hn(x) = (−1)nex
2
(dn/dxn)e−x2 . Since the solution

of (90) exponentially decays, we set Ω = (−4, 4)3 in our computation.
We calculate the approximations of the first two smallest eigenvalues λ1 and λ2 with multiplicity 1 and multiplicity

3, respectively. The eigenvalue problem is solved by Algorithm 3.1 with the parameters θ = 0.4. Figs. 1 shows the initial
mesh and the triangulations after 15 times adaptive refinements. Fig. 2 shows the corresponding error estimates. It is
shown in Fig. 2 that the eigenpair approximations by Algorithm 3.1 have the optimal convergence rate which coincide
with the theoretical results.

In order to show the efficiency of Algorithm 3.1 more intuitively, we present the computational time of Algorithm 3.1
and direct AFEM in Fig. 3, and the eigenvalue problems involved in the direct AFEM are solved by the popular package
ARPACK. Fig. 3 shows that Algorithm 3.1 has a better efficiency than the direct AFEM. Meanwhile, Algorithm 3.1 has the
linear computational complexity.
15
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ϕ
n

s
a

Fig. 2. The errors of the eigenpair approximations by Algorithm 3.1 for Example 1.

Fig. 3. The computational time (in second) by Algorithm 3.1 and direct AFEM for Example 1.

Example 2. In the second example, we consider the following second order elliptic eigenvalue problem{
−∇ · (A∇u) + ϕu = λu, in Ω,

u = 0, on ∂Ω,

∥u∥0,Ω = 1,
(91)

with

A =

⎛⎝ 1 + (x1 −
1
2 )

2 (x1 −
1
2 )(x2 −

1
2 ) (x1 −

1
2 )(x3 −

1
2 )

(x1 −
1
2 )(x2 −

1
2 ) 1 + (x2 −

1
2 )

2 (x2 −
1
2 )(x3 −

1
2 )

(x1 −
1
2 )(x3 −

1
2 ) (x2 −

1
2 )(x3 −

1
2 ) 1 + (x3 −

1
2 )

2

⎞⎠ ,

= e(x1−
1
2 )(x2−

1
2 )(x3−

1
2 ) and Ω = (−1, 1)3\[0, 1)3. Hence, eigenfunctions with singularities are expected due to the

onconvex property.
Since the exact eigenvalues are not known, we choose adequately accurate approximations on finer finite element

pace as the exact eigenpairs for numerical tests. In this example, we give the numerical results for the first five eigenpair
pproximations of Algorithm 3.1 with the parameter θ = 0.4. Fig. 4 shows the triangulation after 15 times adaptive

iterations and the corresponding section along XY plane. Fig. 5 gives the numerical results of eigenpair approximations
which show the optimal convergence rate of Algorithm 3.1.

Similarly, we also present the computational time of Algorithm 3.1 and direct AFEM in Fig. 6. The eigenvalue problems
involved in the direct AFEM are also solved by the popular package ARPACK. Fig. 6 shows that Algorithm 3.1 has a better
efficiency than the direct AFEM. Meanwhile, Algorithm 3.1 has the linear computational complexity.
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Fig. 4. The triangulation after adaptive iterations and the section along the X–Y plane for Example 2.

Fig. 5. The errors of the eigenpair approximations by Algorithm 3.1 for Example 2.

Fig. 6. The computational time (in second) by Algorithm 3.1 and direct AFEM for Example 2.
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Appendix. Proof of Lemma 3.9

Proof. For Ēhkuℓ, there exist q constants βℓ
hk,j

, j = i, . . . , i + q − 1 such that

Ēhkuℓ =

i+q−1∑
j=i

βℓ
hk,juhk,j, ∀ℓ = i, . . . , i + q − 1. (92)

Thus, we have

η2
hk (Ēhkuℓ, K ) = η2

hk (
∑

j

βℓ
hk,juhk,j, K )

= h2
K∥

∑
j

βℓ
hk,j

(
λhk,juhk,j − φuhk,j + ∇ · (A∇uhk,j)

)
∥
2
0,K

+

∑
e∈Ehk ,e⊂∂K

he
Je(∑

j

βℓ
hk,juhk,j)

2
0,e

≤

∑
j

(βℓ
hk,j)

2
∑

j

(
h2
K∥RK (uhk,j)∥

2
0,K +

∑
e∈Ehk ,e⊂∂K

he
Je(uhk,j)

2
0,e

)
=

∑
j

(βℓ
hk,j)

2
∑

j

η2
hk (uhk,j, K ) =

∑
j

(βℓ
hk,j)

2η2
hk (Uhk , K ).

Note that Lemma 3.5 indicates ∥Ēhkuℓ∥0,Ω ≤ 1, namely
∑

j(β
ℓ
hk,j

)2 ≤ 1. Then we arrive at

η2
hk (ĒhkU, K ) =

∑
ℓ

η2
hk (Ēhkuℓ, K ) ≤ qη2

hk (Uhk , K ). (93)

Besides, since Ēhk : M(λi) → MH,hk (λi) is one-to-one and onto when H is sufficiently small (see p.283 of [43]), we get that
{Ēhkuℓ}

i+q−1
ℓ=i is a basis of MH,hk (λi), namely MH,hk (λi) = span{uhk,i, . . . , uhk,i+q−1} = span{Ēhkui, . . . , Ēhkui+q−1}. So, there

exist q constants β̂ℓ
hk,j

(j = i, . . . , i + q − 1) such that

uhk,ℓ =

i+q−1∑
j=i

β̂ℓ
hk,jĒhkuj, ∀ℓ = i, . . . , i + q − 1. (94)

Similarly, from the definition of η2
hk
(uhk,ℓ, K ), (92) and (94), we get

η2
hk (uhk,ℓ, K )

= h2
K∥λhk,ℓuhk,ℓ − φuhk,ℓ + ∇ · (A∇uhk,ℓ)∥

2
0,K +

∑
e∈Ehk ,e⊂∂K

he
Je(uhk,ℓ)

2
0,e

= h2
K∥

∑
j

λhk,ℓβ̂
ℓ
hk,jĒhkuj − φ

∑
j

β̂ℓ
hk,jĒhkuj + ∇ ·

(
A∇(

∑
j

β̂ℓ
hk,jĒhkuj)

)
∥
2
0,K

+

∑
e∈Ehk ,e⊂∂K

he
Je(∑

j

β̂ℓ
hk,jĒhkuj)

2
0,e

≤

∑
j

(β̂ℓ
hk,j)

2
∑

j

(
h2
K

λhk,ℓĒhkuj − φĒhkuj + ∇ · (A∇Ēhkuj)
2
0,K

+

∑
e∈Ehk ,e⊂∂K

he
Je(Ēhkuj)

2
0,e

)
=

∑
j

(β̂ℓ
hk,j)

2
∑

j

(
h2
K

λhk,ℓ

∑
s

β
j
hk,s

uhk,s − φĒhkuj + ∇ · (A∇Ēhkuj)
2
0,K

+

∑
e∈Ehk ,e⊂∂K

he
Je(Ēhkuj)

2
0,e

)
≤

∑
(β̂ℓ

hk,j)
2
∑ (

2h2
K

∑
λhk,sβ

j
hk,s

uhk,s − φĒhkuj + ∇ · (A∇Ēhkuj)
2
0,K
j j s
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C

+

∑
e∈Ehk ,e⊂∂K

he
Je(Ēhkuj)

2
0,e + 2h2

K

∑
s

β
j
hk,s

(λhk,ℓ − λhk,s)uhk,s
2

0,K

)
≤ 2

∑
j

(β̂ℓ
hk,j)

2
(∑

j

η2
hk (Ēhkuj, K ) + q

∑
s

h2
K |λhk,ℓ − λhk,s|

2
uhk,s

2
0,K

)
. (95)

Note that

1 = b(uhk,ℓ, uhk,ℓ) = b(
∑

j

β̂ℓ
hk,jĒhkuj,

∑
j

β̂ℓ
hk,jĒhkuj)

=

∑
j

(β̂ℓ
hk,j)

2b(Ēhkuj, Ēhkuj) +

∑
s̸=j

β̂ℓ
hk,sβ̂

ℓ
hk,jb(Ēhkus, Ēhkuj). (96)

Further, from Lemma 3.6, we can derive the following estimate for the right-hand terms of (96)

(1 − Cη2
a (H))

∑
j

(β̂ℓ
hk,j)

2
≤

∑
j

(β̂ℓ
hk,j)

2b(Ēhkuj, Ēhkuj) ≤ (1 + Cη2
a (H))

∑
j

(β̂ℓ
hk,j)

2 (97)

and ⏐⏐∑
s̸=j

β̂ℓ
hk,sβ̂

ℓ
hk,jb(Ēhkus, Ēhkuj)

⏐⏐ ≲ ∑
j

(β̂ℓ
hk,j)

2η2
a (H). (98)

By (96), (97) and (98), we can derive

1
1 + Cη2

a (H)
≤

∑
j

(β̂ℓ
hk,j)

2
≤

1
1 − Cη2

a (H)
. (99)

ombining (95) and (99) leads to

η2
hk (Uhk , K )

≤
2

1 − Cη2
a (H)

∑
ℓ

∑
j

η2
hk (Ēhkuj, K )

+
2q

1 − Cη2
a (H)

∑
ℓ

∑
s

h2
K |λhk,ℓ − λhk,s|

2
∥uhk,s∥

2
0,K

=
2q

1 − Cη2
a (H)

(
η2
hk (ĒhkU, K ) +

∑
ℓ

∑
s

h2
K |λhk,ℓ − λhk,s|

2
∥uhk,s∥

2
0,K

)
, (100)

which is just the desired estimate (61).
Note that (58) implies

|λi − λhk,ℓ| ≲ η2
hk (uhk,ℓ, Thk ), ∀ℓ = i, . . . , i + q − 1.

By the fact that ∥uhk,ℓ∥0,Ω = 1 and the abovementioned inequality, we have∑
ℓ

∑
s

|λhk,ℓ − λhk,s|
2

∑
K∈Thk

h2
K∥uhk,s∥

2
0,K

≲ η4
a (H)

∑
ℓ

∑
s

|λhk,ℓ − λhk,s|

≲ qη4
a (H)

∑
ℓ

|λi − λhk,ℓ| ≲ η4
a (H)η2

hk (Uhk , Thk ).

Therefore, we arrive at

η2
hk (Uhk , Thk ) ≤

2q
1 − Cη2

a (H)

(
η2
hk (ĒhkU, Thk ) + Cη4

a (H)η2
hk (Uhk , Thk )

)
,

when H is small enough, that is

η2
hk (Uhk , Thk ) ≤

2q
1 − Cη2

a (H)
η2
hk (ĒhkU, Thk ). (101)

Then we derive the first equality of (62) from (93) and (101), and the second equality can be proved similarly. □
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