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Abstract
This paper aims to introduce a novel adaptive multigrid method for the elastic-
ity eigenvalue problem. Different from the developing adaptive algorithms for the
elasticity eigenvalue problem, the proposed approach transforms the elasticity eigen-
value problem into a series of boundary value problems in the adaptive spaces and
some small-scale elasticity eigenvalue problems in a low-dimensional space. As our
algorithm avoids solving large-scale elasticity eigenvalue problems, which is time-
consuming, and the boundary value problem can be solved efficiently by the adaptive
multigrid method, our algorithm can evidently improve the overall solving efficiency
for the elasticity eigenvalue problem. Meanwhile, we present a rigorous theoretical
analysis of the convergence and optimal complexity. Finally, some numerical exper-
iments are presented to validate the theoretical conclusions and verify the numerical
efficiency of our approach.
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1 Introduction

The large-scale elasticity eigenvalue problem is a fundamental problem in the study of
vibrations in elastic structures. However, studies of efficient algorithms for solving this
problem are scarce compared to those for solving other types of eigenvalue problems.
The corresponding conclusions can be found in [16, 22, 25, 33, 39, 47, 50] and the
references therein. Therefore, we investigate an efficient numerical algorithm for the
following elasticity eigenvalue problem:

{−divσ(u) = λu, in Ω,

u = 0, on ∂Ω.
(1.1)

Here, u = (u1, . . . , ud)T is the desired vector function of displacement, σ(u) is the
symmetric Cauchy stress tensor satisfying

σ(u) = 2με(u) + λ(∇ · u)I,

whereμ and λ denote Lamé constants, ε(u) = 1
2 (∇u+∇uT ) denotes the linear strain

tensor, and I denotes the identity matrix.
The multigrid method is a well-known optimal algorithm that can derive the opti-

mal error estimates with linear computational complexity. For elliptic boundary value
problems, the theoretical results are well developed. In [54], Xu presented a uniform
framework for analyzing the multigrid method, domain decomposition method, and
other iteration methods. Thus far, studies on the multigrid method have been mainly
focused on boundary value problems. For eigenvalue problems, there exists no cor-
responding multigrid method that can obtain optimal solutions. In [55], a two-grid
method was proposed for solving eigenvalue problems by combining two meshes of
different scales. The optimal error estimates could be obtained by adjusting the mesh
sizes appropriately. In [29, 56], a multigrid method was designed on the basis of the
shift-inverse technique.Theoptimal approximations could beobtained through solving
a nearly singular boundary value problem in eachmultigrid space. A recently designed
multilevel correction method [12, 27, 30, 34, 35, 52] extended the two-grid method
to multigrid method, which needs to solve only some boundary value problems in
the multigrid spaces and some small-scale eigenvalue problems in a low-dimensional
space.

For the elasticity eigenvalue problem, we often derive a singular eigenfunction
when the computing domain is non-convex or the equation has a jump coefficient.
In such cases, we need to adopt the adaptive finite element method (AFEM) which
has been widely used to solve singular partial differential equations. The AFEM
was first proposed by Babuška in [2, 3]. Since then, a mature theoretical system has
been developed. In [46], Nochetto, Siebert, and Veeser reviewed existing findings on
adaptive algorithms. Cascon [9] proposed themost widely used version of the adaptive
algorithm. For further details on the AFEM for elliptic boundary value problems,
readers may refer to [17, 24, 26, 43–45, 48] and the references therein. The AFEM is
also an efficient technique for solving eigenvalue problems. Dai et al. [14] presented
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the convergence and optimal complexity analysis by establishing connections between
the boundary value problems and the eigenvalue problems. More details about AFEM
for eigenvalue problems can be found in [8, 18, 20, 21, 28, 32, 38, 42] and the references
therein.

It is worth mentioning that the multigrid method and the AFEM have close con-
nections, as the adaptive mesh refinement technique has been confirmed to be fully
compatible with the multilevel mesh structure. On the basis of such connections,
Brandt [4, 7] designed a type of multilevel adaptive technique (MLAT). Subsequently,
McCormick [40] investigated the fast adaptive composite (FAC) grid method. For fur-
ther details on the adaptive multigrid method, readers may refer to [13, 23, 41, 49, 51]
and the references therein. Many adaptive multigrid algorithms have been developed
for solving linear elasticity problems [5, 15, 31, 37]. However, studies on the elasticity
eigenvalue problem are relatively scarce.

In this study, a new type of multilevel correction adaptive multigrid method is
designed for solving the elasticity eigenvalue problem on the basis of our recent
advances in the multilevel correction method [27, 30, 35, 53, 57] and adaptive multi-
grid method. Different from the developing AFEMs for eigenvalue problems, we do
not need to solve eigenvalue problem directly in adaptive spaces in the new adaptive
method, which is the key to improving efficiency. The main strategy is to transform
the elasticity eigenvalue problem into some elasticity boundary value problems in the
adaptive finite element spaces and some small-scale elasticity eigenvalue problems in
a low-dimensional space. Though the AFEM can generate optimal mesh, we still need
to solve the elasticity boundary value problem directly in each adaptive space. Since
there exist many repeated mesh elements between two adjacent mesh levels, the actual
computational work is still very large. To improve efficiency, we adopt the adaptive
multigrid method for the associated elasticity boundary value problems. Further, the
dimension of the small-scale elasticity eigenvalue problem is fixed and small in solv-
ing process; thus, the computation time is negligible if the size of the mesh becomes
increasingly smaller after some refinement steps. As our method avoids solving large-
scale elasticity eigenvalue problems, it improves the overall solving efficiency of the
elasticity eigenvalue problem. Finally, we also present the rigorous theoretical analysis
of its convergence and optimal complexity.

The overall structure of this paper is as follows. In Sect. 2, we review the classical
AFEM for the elasticity boundary value problem. Section 3 introduces our novel
adaptive multigrid method for solving the elasticity eigenvalue problem. Section 4
presents the corresponding convergence analysis. Section 5 describes some numerical
experiments conducted to verify the solving efficiency and validate the theoretical
analysis of our approach. Finally, Sect. 6 concludes the paper.

2 Preliminaries of classical AFEM for the elasticity boundary value
problem

In this section, we review the classical AFEM for solving the elasticity boundary
value problem. The presented conclusions will be used in our analysis of the elasticity
eigenvalue problem. The standard notation for Sobolev spacewill be used in this paper.
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Let Ω ⊂ R
d(d = 2, 3) be a bounded domain with Lipschitz continuous boundary.

The symbol x � y means that x ≤ Cy.
In this study, we first consider the elasticity boundary value problem:

{−divσ(u) = f, in Ω,

u = 0, on ∂Ω.
(2.1)

Here, f = ( f1, . . . , fd)T is the vector function of mass forces. For linear plane strain,
the Lamé constants satisfy

λ = Eν

(1 + ν)(1 − 2ν)
and μ = E

2(1 + ν)
, (2.2)

where ν and E denote the Poisson coefficient and the elasticity modulus, respectively.
For simplicity, we use the symbol (·, ·) to denote the L2-inner product in L2(Ω),

[L2(Ω)]d , or [L2(Ω)]d×d , as required, and we use ‖·‖0,Ω to denote the norm induced
by (·, ·) hereafter.

The weak form of the linear elasticity boundary value problem (2.1) is defined as
follows: Find u ∈ V := (H1

0 (Ω))d such that

a(u, v) = (f, v), ∀v ∈ V , (2.3)

where

a(u, v) = 2μ(ε(u), ε(v)) + λ(∇ · u,∇ · v). (2.4)

In [19], it has been proven that a(·, ·) satisfies

a(v, v) ≥ ca‖v‖21,Ω, a(u, v) ≤ Ca‖u‖1,Ω‖v‖1,Ω, ∀u, v ∈ V , (2.5)

implying that we can define the energy norm as follows:

‖u‖a,Ω = √
a(u,u), ∀u ∈ V . (2.6)

Now, we introduce the classical AFEM for solving the elasticity boundary value
problem (2.3). First, let Tk be a regular mesh which is a decomposition of the com-
puting domain Ω [14, 20]. Then we use Sk ⊂ H1

0 (Ω) to denote the corresponding
finite element space, and denote Vk = (Sk)d .

Then, the classical finite element scheme is to solve the following discrete elasticity
boundary value problem: Find uk ∈ Vk such that

a(uk, vk) = (f, vk), ∀vk ∈ Vk . (2.7)

For the bilinear form a(·, ·), let us define a projection operator Pk : V → Vk by

a(u − Pku, vk) = 0, ∀vk ∈ Vk . (2.8)
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Then, we can obtain uk = Pku and

‖Pku‖a,Ω ≤ ‖u‖a,Ω, ∀u ∈ V . (2.9)

To derive a new adaptive mesh after solving (2.7), we need to use the a posteriori
error estimator. Following the procedure of the classical AFEM (see, e.g. [9, 43, 44]),
we first define the element residual R̂T (uk) and the jump ĴE (uk) as follows

R̂T (uk) := f + divσ(u), for T ∈ Tk,

ĴE (uk) := − σ(u+
k ) · ν+ − σ(u−

k ) · ν− := [σ(uk) · νE ], for E ∈ Ek,

where Ek denote the set of interior faces for d = 3 (edges for d = 2) ofTk , νE = ν−,
E denotes the common side of elements T+ and T− with outward normals ν+ and
ν−, respectively.

On the basis of the two definitions, the local error estimators on each mesh element
T ∈ Tk are defined by:

η̂2k (uk; T ) := h2T ‖R̂T (uk)‖20,T +
∑

E∈Ek ,E⊂∂T

hE‖ĴE (uk)‖20,E ,

ôsc2k(uk; T ) := h2T ‖(I − PT )R̂T (uk)‖20,T
+

∑
E∈Ek ,E⊂∂T

hE‖(I − PE )ĴE (uk)‖20,E ,

where PT and PE denote the L2-projections to polynomials of some degree on T and
E .

Next, for a submesh T ′ ⊂ Tk , the global error estimators are defined by:

η̂2k (uk;T ′) :=
∑
T∈T ′

η̂2k (uk; T ) and ôsc2k(uk;T ′) :=
∑
T∈T ′

ôsc2k(uk; T ).

The procedure of the adaptive finite element method can be described as follows:

Solve → Estimate → Mark → Refine.

Specifically, to obtain a new mesh Tk+1 from Tk , we first need to deal with the
elasticity boundary value problem (2.7) on Tk to derive an approximation. Then, we
calculate the local error estimators for all mesh elements. Next, we mark some mesh
elements on the basis of the values of local error estimators. We use the bisection of
elements for the marked mesh elements in this paper. Finally, we refine the marked
elements such that the new mesh is still shape-regular and conforming.

To simplify the description of the classical AFEM to solve elasticity boundary value
problem, we introduce the following notations:

– uk = EBVP−SOLVE(f, Vk): Solve the elasticity boundary value problem (2.3) in
Vk and return the finite element solution uk ∈ Vk .
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– uk = MGEBVP−SOLVE(f,u0, Vk): Solve the elasticity boundary value problem
(2.3) by the multigrid method with initial value u0 ∈ Vk in Vk and return the
multigrid approximation uk ∈ Vk .

– {̂ηk(uk; T )}T∈Tk = EBVP−ESTIMATE(uk,Tk): Compute η̂k(uk; T ) on each
mesh element T ∈ Tk .

– Mk = EBVP−MARK(θ, η̂k(uk; T ),Tk): Select a subset Mk using Dörfler’s
marking strategy defined in [17]; in other words, choose a minimal subset Mk

from Tk satisfying

η̂k(uk;Mk) ≥ θη̂k(uk;Tk).

– (Tk+1, Vk+1) = REFINE(Tk,Mk): Generate a newmeshTk+1 and finite element
space Vk+1 according toMk where at least all element of Mk are refined.

The classical AFEM for the elasticity boundary value problem (2.3) is summarized
in Algorithm 2.1.

Algorithm 2.1 Adaptive Finite Element Method.
Given an initial mesh T1 and a refinement parameter θ ∈ (0, 1). Set k := 1 and
execute the following loops:

1. uk = EBVP−SOLVE(f, Vk);
2. {̂ηk(uk; T )}T∈Tk = EBVP−ESTIMATE(uk,Tk);
3. Mk = EBVP−MARK(θ, η̂k(uk; T ),Tk);
4. (Tk+1, Vk+1) = REFINE(Tk,Mk);
5. Set k := k + 1 and proceed to step 1.

The theoretical conclusions for the elasticity boundary value problem follow the
classical adaptive finite element theory. Finally, we recall some conclusions on the
AFEMfor the elasticity boundary value problem in the following lemmas. The detailed
proofs of the following lemmas are simple extensions of the corresponding results in
subsection 2.1 of [14] by some simple operations.

Lemma 2.1 The following reliability and efficiency of the a posteriori error estimator
hold:

‖u − uk‖2a,Ω ≤ Ĉuη̂
2
k (uk;Tk) (2.10)

and

Ĉ
η̂
2
k (uk;Tk) ≤ ‖u − uk‖2a,Ω + ôsc2k(uk;Tk), (2.11)

where the coefficients depend only on the shape-regularity of Tk .

Lemma 2.2 The following estimate about the projection and the oscillation holds

‖u − Pku‖2a,Ω + ôsc2k(Pku;Tk) ≤ Ĉ inf
vk∈Vk

(‖u − vk‖2a,Ω + ôsc2k(vk;Tk)
)
,

where Ĉ depends only on the shape regularity of the initial mesh T1.
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Lemma 2.3 The finite element approximate solutions derived from Algorithm 2.1 sat-
isfy the following convergence

‖u − uk+1‖2a,Ω + γ̂ η̂2k+1(uk+1;Tk+1) ≤ ξ̂2
(‖u − uk‖2a,Ω + γ̂ η̂2k (uk;Tk)

)
,

(2.12)

where γ̂ > 0 and ξ̂ ∈ (0, 1) are two constants that depend only on the shape regularity
of meshes and marking parameter θ .

In this paper, we assume that the marking parameter θ satisfies θ ∈ (0, θ∗) with θ∗
being defined in Assumption 5.8 of [9].

Lemma 2.4 Suppose thatTk,∗ is derived by refiningTk , and the two projections Pk,∗u
and Pku satisfy

‖u − Pk,∗u‖2a,Ω + ôsc2k,∗(Pk,∗u;Tk,∗) ≤ ξ̃20
(‖u − Pku‖2a,Ω + ôsc2k(Pku;Tk)

)

with ξ̃20 ∈ (0, 1
2 ). Denote θ̃ = θ∗(1 − 2ξ̃20 )

1
2 , Then, we can derive the following

estimate

η̂k(Pku;Tk\(Tk,∗ ∩ Tk)) ≥ θ̃ η̂k(Pku;Tk).

3 Multilevel correction adaptivemultigrid method for the elasticity
eigenvalue problem

This section is devoted to proposing a novel multilevel correction adaptive multigrid
method for the elasticity eigenvalue problem (1.1).

The weak form of the elasticity eigenvalue problem (1.1) can be written as follows:
Find (λ,u) ∈ R × V such that

a(u, v) = λ(u, v), ∀v ∈ V . (3.1)

From [1, 10], the elasticity eigenvalue problem (3.1) has eigenvalues:

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · , lim
i→∞ λi = ∞

and the corresponding eigenfunctions:

u1,u2, . . . ,ui , . . . ,

where (ui ,u j ) = δi j .
The standard finite element method for (3.1) is to solve the following discrete

elasticity eigenvalue problem: Find (λ̄k, ūk) ∈ R × Vk such that

a(ūk, vk) = λ̄k(ūk, vk), ∀vk ∈ Vk . (3.2)
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From [1, 10], the discrete elasticity eigenvalue problem (3.2) has eigenvalues:

0 < λ̄k,1 ≤ λ̄k,2 ≤ · · · ≤ λ̄k,Nk

and the corresponding eigenfunctions:

ūk,1, ūk,2, . . . , ūk,Nk ,

where (ūk,i , ūk, j ) = δi, j , 1 ≤ i, j ≤ Nk (Nk is the dimension of the finite element
space Vk).

Denote M(λ) as the eigenspace corresponding to λ as follows:

M(λ) = {w ∈ V : w is an eigenfunction of (3.1) corresponding to λ, ‖w‖0,Ω = 1}.

Let us define

δk(λ) = sup
w∈M(λ)

inf
vk∈Vk

‖w − vk‖a,Ω

and

ηa(Vk) = sup
f∈(L2(Ω))d ,‖f‖0,Ω=1

inf
vk∈Vk

‖T f − vk‖a,Ω,

where T : (L2(Ω))d → V is defined as

a(T f, v) = (f, v), ∀f ∈ (L2(Ω))d and ∀v ∈ V . (3.3)

For the standard finite element approximate eigenvalue and approximate eigenfunc-
tion, we can obtain (see [1, 10]):

Lemma 3.1 An exact eigenpair (λ,u) of (3.1) exists such that each approximation
(λ̄k, ūk) has the following estimates

‖u − ūk‖a,Ω � δk(λ), (3.4)

‖u − ūk‖0,Ω � ηa(Vk)‖ū − ūk‖a,Ω, (3.5)

|λ − λ̄k | � ‖u − ūk‖2a,Ω, (3.6)

where the hidden coefficient depends on the desired eigenvalue but is independent of
mesh size.

3.1 Multilevel correction adaptive multigrid method

A novel adaptive multigrid method is designed in this subsection for the elasticity
eigenvalue problem (3.1) on the basis of our recent advances in the multilevel correc-
tion method, multigrid iteration and adaptive refinement technique.
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Following the definition of the element residual R̂T (uk) and jump ĴE (uk) for
the elasticity boundary value problem, for the elasticity eigenvalue problem (3.2), we
define:

RT (λk,uk) := divσ(uk) + λkuk, for T ∈ Tk,

JE (uk) := −σ(u+
k ) · ν+ − σ(u−

k ) · ν− := [σ(uk) · νE ], for E ∈ Ek .

On the basis of the two definitions above, we define the local error estimator for
the elasticity eigenvalue problem (3.2) on each mesh element T inTk by:

η2k (λk,uk; T ) := h2T ‖RT (λk,uk)‖20,T +
∑

E∈Ek ,E⊂∂T

hE‖JE (uk)‖20,E ,

osc2k(λk,uk; T ) := h2T ‖(I − PT )RT (λk,uk)‖20,T
+

∑
E∈Ek ,E⊂∂T

hE‖(I − PE )JE (uk)‖20,E .

Then for a subset T ′ ⊂ Tk , the global error estimators are defined by

η2k (λk,uk;T ′) :=
∑
T∈T ′

η2k (λk,uk; T ), osc2k(λk,uk;T ′) :=
∑
T∈T ′

osc2k(λk,uk; T ).

Similarly, we introduce the following notations for the elasticity eigenvalue prob-
lem:

– (λk,uk) = EEG−SOLVE(Vk): Solve the elasticity eigenvalue problem in Vk and
return the finite element solution (λk,uk) ∈ R × Vk for the desired eigenpair.

– {ηk(λk,uk; T )}T∈Tk = EEG−ESTIMATE(λk,uk,Tk): Compute ηk(λk,uk; T )

on each mesh element T ∈ Tk .
– Mk = EEG−MARK(θ, ηk(λk,uk; T ),Tk): Choose a minimal subset Mk from
Tk satisfying

ηk(λk,uk;Mk) ≥ θηk(λk,uk;Tk). (3.7)

Subsequently, we design the novel adaptive multigrid method for the elasticity
eigenvalue problem (3.2) in Algorithm 3.1, which is the main component of this
paper.

Algorithm 3.1 Multilevel Correction Adaptive Multigrid Method
Construct a coarse mesh TH and a coarse finite element space VH on the computing
domain Ω . Select an initial mesh T1 and an initial finite element space V1 through
refining TH using the regular method such that VH ⊆ V1. Set k := 1 and execute the
following loops:

1. (λk,uk) =
{
EEG−SOLVE(V1), when k = 1;
EEG−SOLVE(VH ⊕ span{ŭk}), when k > 1;

2. {ηk(λk,uk; T )}T∈Tk = EEG−ESTIMATE(λk,uk,Tk);
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3. Mk = EEG−MARK(θ, ηk(λk,uk; T ),Tk);
4. (Tk+1, Vk+1) = REFINE(Tk,Mk);
5. (a) set u(0)

k+1 = uk ;
(b) For 
 = 0, . . . , p − 1:

u(
+1)
k+1 = MGEBVP−SOLVE(λkuk,u

(
)
k+1, Vk+1),

End For.
(c) Set ŭk+1 = u(p)

k+1;
6. Set k := k + 1 and proceed to step 1.

Remark 3.1 In Algorithm 3.1, we need to solve p-times the elasticity boundary value
problem and a small-scale elasticity eigenvalue problem during each iteration. The key
point of Algorithm 3.1 is the addition of a correction step after solving the elasticity
boundary value problems in adaptive spaces. In fact, if we remove these correction
steps, the algorithm will become an inverse power method and the corresponding
convergence rate will then depend on the eigenvalue gaps (see e.g. [1, 11]). Therefore,
such a strategy is not sufficiently stable and may fail to converge to the desired solu-
tions when the eigenvalue gap is small. In this case, the correction step can help to
guarantee the convergence. Hence, we actually obtain two drivers for the convergence
in Algorithm 3.1 by adding the correction step; thus a good convergence rate can be
achieved even when the eigenvalue gap is small.

Although we need to additionally solve an elasticity eigenvalue problem in VH ⊕
span{ŭk}, the dimension and sparsity of such elasticity eigenvalue problemwill remain
unchanged; thus the computational time is negligible compared to that of elasticity
boundary value problem defined in adaptive space.

The main computational work of Algorithm 3.1 is spent on the elasticity boundary
value problems. However, it should be noted that the optimal complexity of AFEM
means only that the discretization scale is optimal but not that the computational work
is optimal. This is because we still need to solve the elasticity boundary value problem
in each level of the adaptive finite element space. To improve the efficiency of the elas-
ticity boundary value problem in each adaptive space, the adaptive multigrid method
is further involved in our algorithm which can solve the boundary value problem with
linear computational work.

3.2 The efficiency and reliability of the a posteriori error estimator

In this section, we prove that the a posteriori error estimator defined for the elasticity
eigenvalue problem has the efficiency and reliability property. The proof is mainly
based on the connections between the elasticity boundary value problem and the
elasticity eigenvalue problem. Such connections will also play an important role in
the proof of the convergence property.

For the purpose of theoretical analysis, let us define an elasticity boundary value
problem as follows: Find wk ∈ V such that

a(wk, v) = (λkuk, v) ∀v ∈ V . (3.8)
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Denote

ũk = Pkwk−1. (3.9)

Then, we can establish the following connections between the elasticity boundary
value problem and the elasticity eigenvalue problem.

Theorem 3.1 Assume that the adaptive multigrid iteration for the elasticity boundary
value problem

u(
+1)
k = MGBVP−SOLVE(λk−1uk−1,u

(
)
k , Vk) (3.10)

satisfies the following reduction property:

‖̃uk − u(
+1)
k ‖a,Ω ≤ ν‖̃uk − u(
)

k ‖a,Ω . (3.11)

Let u be the exact solution of (3.1), and uk be approximate solution produced by
Algorithm 3.1. Then, the following connections between the elasticity boundary value
problem and the elasticity eigenvalue problem hold:

‖u − uk‖a,Ω = ‖wk − Pkwk‖a,Ω

+O(r(VH , ν))(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω), (3.12)

‖u − uk‖a,Ω = ‖wk−1 − Pkwk−1‖a,Ω

+O(r(VH , ν))(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω), (3.13)

where r(VH , ν) = ηa(VH ) + ν p and the symbol a = b + O(r(VH , ν))c means
|a − b| � r(VH , ν)c.

Proof u − uk can be decomposed into the following four parts

u − uk = (u − wk) + (wk − Pkwk) + (Pkwk − Pkwk−1) + (Pkwk−1 − uk).

(3.14)

For the first part of (3.14), we have the following estimates by using (3.1), Lemma
3.1 and (3.8):

‖u − wk‖2a,Ω = a(u − wk,u − wk)

= (
λu − λkuk,u − wk)

≤ ‖λu − λkuk‖0,Ω‖u − wk‖0,Ω
= ‖(λ − λk)uk + λ(u − uk)‖0‖u − wk‖0
� (|λ − λk | + ‖u − uk‖0,Ω)‖u − wk‖0,Ω
� (|λ − λk | + ‖u − uk‖0,Ω)‖u − wk‖a,Ω

� ηa(VH )‖u − uk‖a,Ω‖u − wk‖a,Ω, (3.15)
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which leads to

‖u − wk‖a,Ω � ηa(VH )‖u − uk‖a,Ω . (3.16)

The third part of (3.14) can be estimated as follows by using (2.9) and the proved
result (3.16)

‖Pk(wk − wk−1)‖a,Ω ≤ ‖u − wk‖a,Ω + ‖u − wk−1‖a,Ω

� ηa(VH )
(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω

)
. (3.17)

For the last part of (3.14), because ŭk − uk ∈ VH ⊕ span{ŭk}, we can derive

‖Pkwk−1 − uk‖2a,Ω

= a(Pkwk−1 − uk, Pkwk−1 − uk)

= a(Pkwk−1 − uk, Pkwk−1 − ŭk) + a(Pkwk−1 − uk, ŭk − uk)

= a(Pkwk−1 − uk, Pkwk−1 − ŭk) + (λk−1uk−1 − λkuk, ŭk − uk)

� ‖Pkwk−1 − uk‖a,Ω‖Pkwk−1 − ŭk‖a,Ω

+ηa(VH )(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω)‖ŭk − uk‖a,Ω

� ‖Pkwk−1 − uk‖a,Ω‖Pkwk−1 − ŭk‖a,Ω + ηa(VH )(‖u − uk‖a,Ω +
‖u − uk−1‖a,Ω)(‖Pkwk−1 − ŭk‖a,Ω + ‖uk − Pkwk−1‖a,Ω). (3.18)

From (3.11), Pkwk−1 − ŭk can be estimated as follows

‖Pkwk−1 − ŭk‖a,Ω

≤ ν p‖Pkwk−1 − uk−1‖a,Ω

≤ ν p(‖Pkwk−1 − Pku‖a,Ω + ‖Pku − u‖a,Ω + ‖u − uk−1‖a,Ω)

≤ ν p(‖u − wk−1‖a,Ω + ‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω)

≤ ν p(1 + Cηa(VH ))(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω). (3.19)

Combining (3.18) and (3.19) leads to the following estimate

‖Pkwk−1 − uk‖2a,Ω

� (ν p + ηa(VH ))
(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω

)‖Pkwk−1 − uk‖a,Ω

+ν pηa(VH )
(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω

)2
, (3.20)

which further yields

‖Pkwk−1 − uk‖a,Ω � (ν p + ηa(VH ))
(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω

)
. (3.21)

Based on (3.16), (3.17) and (3.21), we can obtain the desired result (3.12).
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The second connection (3.13) can be proved in the same way by decomposing
u − uk into the following three parts

u − uk = (u − wk−1) + (wk−1 − Pkwk−1) + (Pkwk−1 − uk).

Then we complete the proof. ��

Remark 3.2 To improve the efficiency for the elasticity boundary value problem in
each adaptive space, the adaptive multigrid method is adopted in Algorithm 3.1, and
we can get a convergence rate for the adaptive multigrid iteration which only depends
on the multilevel mesh sequence [13, 51].

In Theorem 3.1, we have established connections between the elasticity boundary
value problem and the elasticity eigenvalue problem, which implies that the difference
is a high-order term. Therefore, we can prove the theoretical conclusions for the
elasticity eigenvalue problem by following the procedure for the elasticity boundary
value problem.

Similarly, the following two theorems can be proved in the same way as Theorem
3.1 by combining the definitions of the error estimators, inverse inequality and trace
theorem.

Theorem 3.2 Let u be the exact solution of (3.1), and uk be approximate solution
produced by Algorithm 3.1. Then, we have the following connections for the a posteri-
ori error estimators between the elasticity boundary value problem and the elasticity
eigenvalue problem:

ηk(λk,uk;Tk) = η̂k(Pkwk−1;Tk)

+O
(
r(VH , ν)

)
(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω), (3.22)

ηk(λk,uk;Tk) = η̂k(Pkwk;Tk)

+O
(
r(VH , ν)

)
(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω). (3.23)

Proof Using the triangle inequality and the definition of error estimators leads to

|ηk(λk,uk; T ) − η̂k(Pkwk−1; T )|
=

∣∣∣(h2T ‖λkuk + divσ(uk)‖20,T +
∑

E∈Ek ,E⊂∂T

hE‖[divσ(uk)] · νE‖20,E
)1/2

−
(
h2T ‖λk−1uk−1 + divσ (̃uk)‖20,T +

∑
E∈Ek ,E⊂∂T

hE‖[divσ (̃uk)] · νE‖20,E
)1/2∣∣∣

≤
{(

h2T ‖λkuk − λk−1uk−1 + divσ(uk − ũk)‖0,T
)2

+hE

∑
E∈Ek ,E⊂∂T

(
‖[divσ(uk)] · νE − [divσ (̃uk)] · νE‖0,E

)2}1/2

. (3.24)
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From the inverse estimate, we have

‖divσ(vk)‖0,T � h−1
T ‖σ(vk)‖0,T , ∀T ∈ Th, vk ∈ Vk . (3.25)

From the inverse estimate and the trace inequality

‖v‖0,∂T � h−1/2
T ‖v‖0,T + hs−1/2

T ‖v‖s,T ∀s > 1/2, v ∈ Hs(T ), T ∈ Tk,

we have

hE‖[divσ(vk)] · νE‖20,E � ‖σ(vk)‖20,T , ∀vk ∈ Vk . (3.26)

Using (3.24)–(3.26), we can derive

|ηk(λk,uk; T ) − η̂k(Pkwk−1; T )| � hT ‖λkuk − λk−1uk−1‖0,T + ‖σ(uk − ũk)‖0,T .

(3.27)

From Lemma 3.1, (3.21) and (3.27), there holds

|ηk(λk,uk;Tk) − η̂k(Pkwk−1;Tk)|

=

∣∣∣∣∣∣∣

⎛
⎝ ∑

T∈Tk

η2k (λk,uk; T )

⎞
⎠

1/2

−
⎛
⎝ ∑

T∈Tk

η̂2k (Pkw
k−1; T )

⎞
⎠

1/2
∣∣∣∣∣∣∣

�

⎛
⎝ ∑

T∈Tk

(
ηk(λk,uk; T ) − η̂k(Pkwk−1; T )

)2
⎞
⎠

1/2

� r(VH , ν)(‖u − uk‖a,Ω + ‖u − uk−1‖a,Ω).

This is the desired result (3.22). The second result (3.23) can be derived similarly. ��

Theorem 3.3 Let u be the exact solution of (3.1), and uk be approximate solution
produced by Algorithm 3.1. Then, we have the following connections for oscillations
between the elasticity boundary value problem and the elasticity eigenvalue problem:

osck(λk,uk;Tk) = ôsck(Pkwk−1;Tk)

+O
(
r(VH , ν)

)
(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω), (3.28)

osck(λk,uk;Tk) = ôsck(Pkwk;Tk)

+O
(
r(VH , ν)

)
(‖u − uk−1‖a,Ω + ‖u − uk‖a,Ω). (3.29)

Based on Theorems 3.1–3.3, we can prove the efficiency and reliability of the a
posterior error estimator through Lemma 2.1.
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Theorem 3.4 Let u be the exact solution of (3.1), and uk be approximate solution
produced by Algorithm 3.1. Then, two constants Cu and C
 that are independent
of the mesh size exist such that, when r(VH , ν) is sufficiently small, the following
efficiency and reliability hold:

‖u − uk‖2a,Ω ≤ Cuη
2
k (λk,uk;Tk) + O(r2(VH , ν))‖u − uk−1‖2a,Ω

and

C
η
2
k (λk,uk;Tk) ≤ ‖u − uk‖2a,Ω + osc2k(λk,uk;Tk) + O(r2(VH , ν))‖u − uk−1‖2a,Ω .

Proof Since wk−1 is the exact solution of the elasticity boundary value problem, we
can derive the following reliability and efficiency by using Lemma 2.1

‖wk−1 − Pkwk−1‖a,Ω ≤ Ĉu η̂k(Pkwk−1,Tk)

and

Ĉ
η̂
2
k (Pkw

k−1,Tk) ≤ ‖wk−1 − Pkwk−1‖2a,Ω + ôsc2k(Pkw
k−1,Tk).

Then we can get the desired results by combining the above estimates and Theorems
3.1–3.3. ��

4 Convergence of multilevel correction adaptivemultigrid algorithm
for the elasticity eigenvalue problem

4.1 Convergence of multilevel correction adaptive multigrid algorithm

This section provides the convergence estimates of Algorithm 3.1 on the basis of
existing results for the elasticity boundary value problem presented in Sect. 2 and the
connections presented in Theorems 3.1–3.3.

Theorem 4.1 When r(VH , ν) is sufficiently small, there exist constants γ, α0 > 0
and α ∈ (0, 1) which depend only on the mesh refinement parameter θ and the
shape regularity of the mesh, such that the approximate solution (λk,uk) produced by
Algorithm 3.1 satisfies

‖u − uk‖2a,Ω + γ η2k (λk,uk;Tk) ≤ α2(‖u − uk−1‖2a,Ω + γ η2k−1(λk−1,uk−1;Tk−1)
)

+α2
0r

2(VH , ν)‖u − uk−2‖2a,Ω . (4.1)

Proof From (3.7) and Theorem 3.2, there holds

η̂k−1(Pk−1wk−1;Mk−1) ≥ θη̂k−1(Pk−1wk−1;Tk−1)

−Cηr(VH , ν)(‖u − uk−1‖a,Ω + ‖u − uk−2‖a,Ω). (4.2)
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Then using (4.2) and the proof procedure of Lemma 2.3 in [9], there exist constants
γ̂ > 0 and ξ̂ ∈ (0, 1) such that

‖wk−1 − Pkwk−1‖2a,Ω + γ̂ η̂2k (Pkw
k−1;Tk)

≤ ξ̂2
(‖wk−1 − Pk−1wk−1‖2a,Ω + γ̂ η̂2k−1(Pk−1wk−1;Tk−1)

)
+Cr2(VH , ν)

(‖u − uk−1‖2a,Ω + ‖u − uk−2‖2a,Ω

)
. (4.3)

On the one hand, from (3.13), (3.22), (4.3) and Young inequality, we can derive

‖u − uk‖2a,Ω + γ̂ η2k (λk,uk;Tk)

≤ (1 + δ1)
(‖wk−1 − Pkwk−1‖2a,Ω + γ̂ η̂2k (Pkw

k−1;Tk)
)

+Cδ−1
1 r2(VH , ν)

(‖u − uk‖2a,Ω + ‖u − uk−1‖2a,Ω

)
≤ (1 + δ1)ξ̂

2(‖wk−1 − Pk−1wk−1‖2a,Ω + γ̂ η̂2k−1(Pk−1wk−1;Tk−1)
)

+Cδ−1
1 r2(VH , ν)

(‖u − uk‖2a,Ω + γ̂ η2k (λk,uk;Tk)
)

+Cδ−1
1 r2(VH , ν)

(‖u − uk−1‖2a,Ω + ‖u − uk−2‖2a,Ω

)
,

which yields the following estimates

‖u − uk‖2a,Ω + γ̂ η2k (λk,uk;Tk)

≤ (1 + δ1)ξ̂
2

1 − Cδ−1
1 r2(VH , ν)

(‖wk−1 − Pk−1wk−1‖2a,Ω + γ̂ η̂2k (Pk−1wk−1;Tk−1)
)

+ Cδ−1
1

1 − Cδ−1
1 r2(VH , ν)

r2(VH , ν)
(‖u − uk−1‖2a,Ω + ‖u − uk−2‖2a,Ω

)
. (4.4)

On the other hand, using the similar technique on the right side of (4.4), we can
obtain

‖wk−1 − Pk−1wk−1‖2a,Ω + γ̂ η̂2k−1(Pk−1wk−1;Tk−1)

≤ (
1 + δ1

)(‖u − uk−1‖2a,Ω + γ̂ η2k−1(λk−1,uk−1;Tk−1)
)

+Cδ−1
1 r2(VH , ν)

(‖u − uk−1‖2a,Ω + ‖u − uk−2‖2a,Ω

)
. (4.5)

Finally, combining (4.4) and (4.5) leads to

‖u − uk‖2a,Ω + γ η2k (λk,uk;Tk) ≤ α2(‖u − uk−1‖2a,Ω + γ η2k−1(λk−1,uk−1;Tk−1)
)

+α2
0r

2(VH , ν)‖u − uk−2‖2a,Ω .

with

α2 := (1 + δ1)(1 + δ1 + Cδ−1
1 r2(VH , ν))ξ̂2 + Cδ−1

1 r2(VH , ν)

1 − Cδ−1
1 r2(VH , ν)

,
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α2
0 := (1 + δ1)Cδ−1

1 ξ̂2 + Cδ−1
1

1 − Cδ−1
1 r2(VH , ν)

, γ := γ̂ .

The contraction property (4.1) can be proved through choosing δ1 small enough
such that α < 1. Then we complete the proof. ��

Based on Theorem 4.1, the final convergence result is provided in Theorem 4.2.

Theorem 4.2 When r(VH , ν) is sufficiently small, two constants β > 0 and α̂ ∈ (0, 1)
exist, that depend only on the parameter θ and the shape regularity of the mesh, such
that

E2
k + β2r2(VH , ν)E2

k−1 ≤ α̂2(E2
k−1 + β2r2(VH , ν)E2

k−2), (4.6)

where E2
k = ‖u − uk‖2a,Ω + γ η2k (λk,uk;Tk).

Proof From Theorem 4.1, it is obvious that the following estimate holds

E2
k ≤ α2E2

k−1 + α2
0r

2(VH , ν)‖u − uk−2‖2a,Ω .

Chosen α̂ and β such that

α̂2 − β2r2(VH , ν) = α2, α̂2β2 = α2
0,

which leads to

α̂2 =
α2 +

√
α4 + 4α2

0r
2(VH , ν)

2
and β2 = 2α2

0

α2 +
√

α4 + 4α2
0r

2(VH , ν)

.

Thus, there holds α̂ < 1 when r(VH , ν) is small enough. Then we complete the proof.
��

4.2 Optimal complexity

In the last of this section, we also would like to briefly analyze the complexity of
Algorithm 3.1 as [14]. Similar to the normal analysis of AFEM, to analyze the optimal
complexity of Algorithm 3.1, we study a class of functions:

A s := {
v ∈ V : |v|s < ∞}

,

where

|v|s = sup
ε>0

ε inf
{T1≤Tε : inf

(λε,uε)
(‖v−uε‖2a,Ω+osc2ε(λε,uε;Tε))1/2≤ε}

(#Tε − #T1)
s .
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Herein, T1 ≤ Tε implies that Tε is refined from T1, and #T denotes the number
of mesh elements of T . Hence the functions belong to A s can be approximated to a
tolerance ε by piecewise polynomials on Tε with #Tε − #T1 � ε−1/s |v|1/ss .

First, the initial mesh size is assumed to be sufficiently small such that

r(VH , ν)‖u − uk‖2a,Ω ≤ ‖u − uk+1‖2a,Ω, for k ≥ 2. (4.7)

Then, the following convergence can be deduced from Theorem 4.1:

‖u − uk‖2a,Ω + γ η2k (λk,uk;Tk) ≤ ᾱ2(‖u − uk−1‖2a,Ω + γ η2k−1(λk−1,uk−1;Tk−1)
)
,

with ᾱ2 = α2 + α2
0r(VH , ν).

Remark 4.1 It is worth mentioning that the assumption (4.7) implies the initial mesh
should be fine enough such that the consecutive approximate solution doesn’t change
significantly. If u is not a piecewise linear polynomial, a sharp lower and upper bound
exist for ‖u−uk‖a,Ω (see [36], etc). Then the assumption (4.7) is reasonable generally.

In (4.7) and the convergence analysis, we all give some constraints on TH and the
multigrid iteration time p to derive the theoretical conclusions. But we will observe
from the numerical experiments that a coarsemeshTH and twoor three timesmultigrid
iteration steps are enough to derive the optimal numerical results.

Lemma 4.1 [9] LetTs andTt be two conforming refinements ofT1. Then, the smallest
common refinement of two meshes Ts and Tt , in other words, T := Ts ⊕ Tt , is
conforming and satisfies

#T ≤ #Ts + #Tt − #T1. (4.8)

Lemma 4.2 Let (λk,uk) ∈ R × Vk be the approximate eigenpair produced by Algo-
rithm 3.1. Let Tk ≤ Tk,∗, and (λk,∗,uk,∗) = EEG−SOLVE(VH ⊕ span{Pk,∗wk}).
Suppose that we have:

‖u − uk,∗‖2a,Ω + osc2k,∗(λk,∗,uk,∗;Tk,∗) ≤ β2∗
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)
.

Then the following relationship about the projections Pkwk and Pk,∗wk holds:

‖wk − Pk,∗wk‖2a,Ω + ôsc2k,∗(Pk,∗wk;Tk,∗)
≤ β̂2∗

(‖wk − Pkwk‖2a,Ω + ôsc2k(Pkw
k;Tk)

)
(4.9)

with

β̂2∗ := (1 + δ2)
(
(1 + δ2 + C∗δ−1

2 r2(VH , ν))β2∗ + C∗δ−1
2 r2(VH , ν)

)
1 − C2δ

−1
2 r(VH , ν)

. (4.10)
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Proof From Theorem 3.1 and 3.3, there exists a constant C∗ > 0 such that

‖wk − Pk,∗wk‖2a,Ω + ôsc2k,∗(Pk,∗wk;Tk,∗)
≤ (1 + δ2)

(‖u − uk,∗‖2a,Ω + osc2k,∗(λk,∗,uk,∗;Tk,∗)
)

+C∗δ−1
2 r2(VH , ν)

(‖u − uk,∗‖2a,Ω + ‖u − uk‖2a,Ω

)
≤ (1 + δ2)β

2∗
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)
+C∗δ−1

2 r2(VH , ν)β2∗
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)
+C∗δ−1

2 r2(VH , ν)‖u − uk‖2a,Ω

≤ Cr
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)
, (4.11)

where Cr = (
1 + δ2 + C∗δ−1

2 r2(VH , ν)
)
β2∗ + C∗δ−1

2 r2(VH , ν).

Similarly, we have the following estimates for the right side of (4.11)

‖u − uk‖2a,Ω + osc2k(λk,uk;Tk) ≤ (1 + δ2)
(‖wk − Pkwk‖2a,Ω + ôsc2k(Pkw

k;Tk)
)

1 − C2δ
−1
2 r(VH , ν)

.

(4.12)

Combining (4.11) and (4.12) leads to the desired result (4.9). ��

The following corollary is a direct consequence of Lemmas 2.4 and 4.2.

Corollary 4.1 Let (λk,uk) ∈ R× Vk and (λk,∗,uk,∗) ∈ R× Vk,∗ be as in Lemma 4.2.
Suppose that the following estimate holds

‖u − uk,∗‖2a,Ω + osc2k,∗(λk,∗,uk,∗;Tk,∗) ≤ β2∗
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)
,

where the constant β2∗ ∈ (0, 1/2). Then there holds:

ηk(λk,uk;Tk\(Tk,∗ ∩ Tk)) ≥ θ̂ηk(λk,uk;Tk),

where θ̂ = θ∗(1 − 2β̂2∗)
1
2 − Cr

1
2 (VH , ν), and θ∗ and β̂∗ are defined in Lemmas 2.4

and 4.2.

Lemma 4.3 Let the exact eigenfunction u ∈ A s and Tk be the mesh produced by
Algorithm 3.1 with the refinement parameter θ ∈ (

0, θ∗
)
. Then the marked set Mk

satisfies

#Mk �
(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)

)−1/(2s)|u|1/ss , (4.13)

where the hidden coefficient depends on the discrepancy between θ and θ∗.
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Proof Let ε be a small constant which will be defined later and letTε be the refinement
from the initial mesh T1 which has the minimum mesh elements satisfying

‖u − uε‖2a,Ω + osc2ε(λε,uε;Tε) ≤ ε2, (4.14)

where (λε,uε) is the standard finite element solution for the elasticity eigenvalue
problem on Tε. Then based on the definition of A s , there holds

#Tε − #T1 � ε−1/s |u|1/ss .

Let Tk,+ = Tk ⊕ Tε. Then from Lemma 4.1, we can derive

#Tk,+ − #Tk ≤ #Tε − #T1.

Follow the definition (3.8), we denote wε as the exact solution of the elasticity
boundary value problem with the right hand term λεuε, then from Lemma 2.2, we
have

‖wε − Pk,+wε‖2a,Ω + ôsc2k,+(Pk,+wε;Tk,+)

≤ Ĉ
(‖wε − Pεwε‖2a,Ω + ôsc2ε(Pεwε;Tε)

)
. (4.15)

Set (λk,+,uk,+) = EEG−SOLVE(VH ⊕span{Pk,+wk, Pk,+wε}). Perform the sim-
ilar procedure for (4.15) as that for Theorem 4.1, we can obtain

‖u − uk,+‖2a,Ω + osc2k,+(λk,+,uk,+;Tk,+)

≤ β2
0

(‖u − uε‖2a,Ω + osc2ε(λε,uε;Tε)
) ≤ β2

0ε
2, (4.16)

where

β2
0 = (1 + δ1)

(
1 + δ1 + Cδ−1

1 r(VH , ν)
)
Ĉ

1 − Cδ−1
1 r(VH , ν)

.

Let β∗ that appears in Corollary 4.1 be small enough such that θ̂ ≥ θ and set

ε = β∗
β0

(‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)
) 1
2 .

Then from (4.16) and Corollary 4.1, we can obtain that Tk,+ satisfies

ηk(λk,uk;Tk\(Tk,+ ∩ Tk)) ≥ θηk(λk,uk;Tk). (4.17)

Because Dörfler’s marking strategy chooses a minimum set Mk satisfying

ηk(λk,uk;Mk) ≥ θηk(λk,uk;Tk),
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thus Mk satisfies

#Mk ≤ #
(
Tk\(Tk,+ ∩ Tk)

) ≤ #Tk,+ − #Tk ≤ #Tε − #T1

�
(

β∗
β0

)−1/s (‖u − uk‖2a,Ω + osc2k(λk,uk;Tk)
)−1/(2s)|u|1/ss ,

which is (4.13) with the coefficient depending on the discrepancy between θ and θ∗.
��

From Lemma 4.3, we can obtain the optimal complexity analysis of Algorithm 3.1.
Actually, we derive the same upper bound in Lemma 4.3 as that in [14]; hence, we
can obtain the optimal complexity of Algorithm 3.1 using the same method. Herein,
we only present the conclusion in the following theorem.

Theorem 4.3 Let u ∈ A s be the exact eigenfunction of (3.1) and {(λk,uk)} be the
approximate eigenpairs produced by Algorithm 3.1. Then, the 
-th approximate eigen-
pair satisfies the following optimal bound:

‖u − u
‖2a,Ω + osc2
(λ
,u
;T
) � (#T
 − #T1)
−2s .

Remark 4.2 We want to emphasize that Theorem 4.3 gives the optimal complexity of
Algorithm 3.1, which is the same the classical AFEM for eigenvalue problems. But
the optimal complexity means the discretization scale (or adaptive mesh) is optimal,
not the computational work. Actually, the computational work directly reflects the
solving efficiency. Now, we make a brief estimate about the computational work of
Algorithm 3.1. which has an essential difference from that of the classical AFEM and
multilevel AFEM for eigenvalue problems. Herein, we need to use additionally, that
the sequence of unknowns belongs to a geometric progression (see e.g. [6]):

Nk < σ0Nk ≤ Nk+1 < σ1Nk, k = 1, 2, . . . (4.18)

Theorem 4.4 Assume the computational work for the elasticity eigenvalue problem
in VH and V1 is MH and M1, and the computational work of the adaptive multigrid
iteration for elasticity boundary value problem in Vk is O(Nk) for k = 2, . . . , n. Then
the total computational work of Algorithm 3.1 is O

(
M1+MH log(Nn)+Nn). Further,

if MH and M1 is small enough, a linear computational work O
(
Nn) can be derived.

Proof Let Wk denote the computational work of Algorithm 3.1 on Vk , and W denote
the whole computational work. Then we have

W =
n∑

k=1

Wk = O

(
M1 +

n∑
k=2

(Nk + MH )

)

= O

(
M1 + MH (n − 1) + Nn

n∑
k=2

σ
(k−n)
0

)

= O
(
M1 + MH log(Nn) + Nn

)
. (4.19)
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Further, a linear computational work O(Nn) for Algorithm 3.1 can be derived from
(4.19) if MH and M1 are small enough. ��

5 Numerical experiments

In this section, we present some numerical experiments conducted using Algorithm
3.1 for the elasticity eigenvalue problem. In these numerical experiments, we set the
parameter p = 2, and each adaptive multigrid method involved in Algorithm 3.1 for
the elasticity boundary value problems is executed by performing one multigrid V-
cycle iteration using the conjugate gradient smoother twice [13]. For the small-scale
elasticity eigenvalue problems, we adopt the implicitly restarted Lanczos method,
which is included in the popular package ARPACK. The adaptive finite element
spaces are constructedby the linear finite element space on themeshes through adaptive
refinement.

5.1 Example 1

In the first example, we solved the elasticity eigenvalue problem with Lamé constants
μ = 1 and λ = 1 in the three dimensional non-convex domain Ω = (−1, 1)3\[0, 1)3.
Owing to the non-convex property, singularity of the eigenfunction is expected.
Therefore, we used the multilevel correction adaptive multigrid method presented
in Algorithm 3.1 to solve the smallest eigenvalue of this example with the refinement
parameter θ = 0.4.

As the exact eigenpair is unknown, an approximate solution derived on a fine mesh
is selected as the exact solution in our numerical experiments. In this example, we set
H = h1 = 1/8 and V1 = VH . Figure 1 shows the initial mesh and the mesh after
10 adaptive refinements. For the adaptive mesh, the convergence rate is described
according to the number of degrees of freedom because the local refinement leads to
different mesh sizes. The mesh size h is equivalent to N−1/d for uniform refinement,
where d denotes the dimension of the space. Then the optimal convergence rate of
adaptive finite element method for eigenfunction and eigenvalue can reach N−1/d and
N−2/d , respectively, and the same conclusions can be found in [8, 48], etc. Figure 2
shows the errors of the approximate solutions derived by Algorithm 3.1. From Fig. 2,
we found that the approximate solutions derived by Algorithm 3.1 have the optimal
convergence rate.

In addition, we analyzed the CPU times of Algorithm 3.1 and the standard AFEM
(i.e., the elasticity eigenvalue problem is solved directly in each adaptive space) to
verify the efficiency of Algorithm 3.1. The corresponding results are presented in Fig.
3, which shows that Algorithm 3.1 is more efficient than the standard AFEM.

Besides, we also test Algorithm 3.1 for the 10 smallest eigenvalues. Figures 4 and
5 demonstrate the corresponding error estimates and computational time. From Fig.
4, we can still find that the approximate solutions derived by Algorithm 3.1 have the
optimal convergence rate. From Fig. 5, we can still find that Algorithm 3.1 is more
efficient than the standard AFEM.
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Fig. 1 Initial mesh and the adaptive mesh of Algorithm 3.1 for Example 1

Fig. 2 Errors of Algorithm 3.1
for Example 1

5.2 Example 2

In the second example, we solved the elasticity eigenvalue problem on the domain
Ω = (0, 1)3 with Lamé constants μ = 1 and λ = 1 on Ω = (0, 1)3\[1/2, 1)3, μ = 1
and λ = 100 on Ω = (1/2, 1)3. Since the discontinuity of the Lame constants also
leads to low regularity of eigenfunctions, so we use Algorithm 3.1 to solve the smallest
eigenvalue of this example with refinement parameter θ = 0.4.

As the exact eigenpair is unknown, an approximate solution derived on a finer
mesh is selected as the exact solution. In this example, we set H = h1 = 1/16 and
V1 = VH . Figure 6 shows the initial mesh. Figure 7 shows adaptive mesh and the cross
section of the adaptive mesh after 10 adaptive refinements. Figure 8 depicts the error
of the approximate solution derived by Algorithm 3.1. From Fig. 8, we found that the
approximate solution derived by Algorithm 3.1 has the optimal convergence rate.
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Fig. 3 Computational time (in s)
of Algorithm 3.1 for Example 1

Fig. 4 Errors of the ten smallest
eigenvalues for Example 1

Fig. 5 Computational time (in s)
of the ten smallest eigenvalues
for Example 1
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Fig. 6 Initial mesh and the adaptive mesh of Algorithm 3.1 for Example 2

Fig. 7 The cross section along coordinate axis and xy plane of the adaptive mesh for Example 2

In addition, we also analyzed the CPU times of Algorithm 3.1 and the standard
AFEM to show the efficiency of Algorithm 3.1. The corresponding results are pre-
sented in Fig. 9, which shows that Algorithm 3.1 is more efficient than the standard
AFEM.

6 Concluding remarks

In this paper, we proposed a novel multilevel correction adaptive multigrid method for
solving the elasticity eigenvalue problem on the basis of the adaptivemultigridmethod
and multilevel correction method. The key point of our approach is to transform the
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Fig. 8 Errors of Algorithm 3.1
for Example 2

Fig. 9 Computational time (in s)
of Algorithm 3.1 for Example 2

elasticity eigenvalue problem into a series of elasticity boundary value problems in a
sequence of adaptive finite element spaces and some small-scale elasticity eigenvalue
problems in a low-dimensional space. Further, the involved elasticity boundary value
problems were solved using the adaptive multigrid method. In addition, we proved the
convergence of the proposed algorithm rigorously. In the future, we plan to extend the
proposed algorithm to other linear and nonlinear eigenvalue problems.
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