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Abstract
This paper proposes a new type of multilevel method for solving the Steklov eigen-
value problem based on Newton’s method. In this iteration method, solving the 
Steklov eigenvalue problem is replaced by solving a small-scale eigenvalue prob-
lem on the coarsest mesh and a sequence of augmented linear problems on refined 
meshes, derived by Newton step. We prove that this iteration scheme obtains the 
optimal convergence rate with linear complexity, which improves the overall effi-
ciency of solving the Steklov eigenvalue problem. Moreover, an adaptive iteration 
scheme for multi eigenvalues based on this new multilevel method is given. Finally, 
some numerical experiments are provided to illustrate the efficiency of the proposed 
multilevel scheme.

Keywords Steklov eigenvalue problem · Finite element method · Newton’s method · 
Multilevel iteration · Adaptive algorithm

Mathematics Subject Classification (2010) 35Q99 · 65N25 · 65N30 · 65N55

Communicated by: Long Chen

 * Manting Xie 
 xiemanting@lsec.cc.ac.cn

 Meiling Yue 
 yuemeiling@lsec.cc.ac.cn

 Fei Xu 
 xufei@lsec.cc.ac.cn

1 School of Mathematics and Statistics, Beijing Technology and Business University, 
Beijing 100048, China

2 Beijing Institute for Scientific and Engineering Computing, College of Applied Sciences, 
Beijing University of Technology, Beijing 100124, China

3 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

http://orcid.org/0000-0003-3437-9576
http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09934-6&domain=pdf


 M. Yue et al.

1 3

   33  Page 2 of 29

1 Introduction

The Steklov eigenvalue problem arises in a wide number of physical and mechan-
ical applications. For instance, surface waves [9], stability of mechanical oscil-
lators immersed in a viscous fluid [16], the vibration modes of a structure in 
contact with an incompressible fluid [10], the antiplane shearing on a system of 
collinear faults under a slip-dependent friction law [14], vibrations of a pendulum 
[2] and eigen-oscillations of mechanical systems with boundary conditions con-
taining the frequency [22].

Because of the extensive applications, there has been a lot of research on the 
numerical methods for Steklov eigenvalue problems. For instance, [3, 5] and [23] 
studied the conforming and nonconforming finite element method, respectively. A 
two-grid method, multilevel/multigrid method are separately discussed in [11, 20, 
24, 33]. In [28], the authors propose an HDG method for the Steklov eigenvalue 
problem. [4, 17, 29, 34] considered the a posteriori error estimations and adap-
tive algorithms. Adaptive algorithms based on the shifted inverse iteration and 
multilevel correction have been studied in [12] and [26], respectively. In [15], the 
authors consider the multiscale analysis for the Steklov eigenvalue.

Newton’s method is one of the most powerful and well-known numerical 
methods for solving equations. With a suitable initial guess, Newton’s method is 
guaranteed to converge and the convergence rate is quadratic under some assump-
tions. Newton’s method has been widely used to handle minimization and maxi-
mization problems, solving transcendent equations, complex functions and non-
linear systems of equations, etc. Especially, in [18, 21, 27, 30–32, 35], Newton’s 
method has been applied to solve eigenvalue problems.

The main aim of this paper is to propose a type of multilevel/multigrid scheme 
based on Newton’s method for Steklov eigenvalue problems. In this iteration 
scheme, solving the Steklov eigenvalue problem is decomposed into solving the 
Steklov eigenvalue problem on the initial coarse mesh and a series of augmented 
boundary problems on each refined mesh. In this iteration method, we use the 
multilevel technique to get the initial approximation for Newton iteration, which 
guarantees the convergence rate. The corresponding error estimate and complex-
ity analysis of the proposed iteration scheme for the Steklov eigenvalue problem 
is given in this paper, which implies that this new method obtains an optimal 
convergence rate with linear computational work. Besides, we also give an adap-
tive iteration scheme for multi eigenvalues based on this new multilevel Newton 
iteration method for solving the Steklov eigenvalue problem. The efficiency of 
this adaptive method for multi eigenvalues is checked in the numerical example.

This paper is organized as follows. Section  2 is devoted to introducing the 
finite element method for the Steklov eigenvalue problem and the a priori error 
estimation. In Section  3, we give a multilevel Newton iteration scheme for the 
Steklov eigenvalue problem and analyze the error estimates and computational 
work of the proposed scheme. A multilevel Newton iteration scheme and an adap-
tive multilevel Newton iteration scheme for multi eigenvalues are proposed in 
Section 4 and Section 5, respectively. In Section 6, some numerical examples are 
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presented to validate the efficiency of the new type of multilevel method and our 
theoretical analysis. Some concluding remarks are given in the final section.

2  Preliminaries

In this section, we first introduce the Steklov eigenvalue problem considered in this 
paper. Then, the finite element approximation and priori error estimates for the Stek-
lov eigenvalue problem are given.

2.1  Steklov eigenvalue problem

Let Ω be a bounded domain in ℝ2 , with the cone property [1] and Lipschitz-contin-
uous boundary, and let the boundary Γ = ∂Ω. Let Γ0 and Γ1 be two complementary 
parts of Γ such that

We consider the following Steklov eigenvalue problem:

where and �

��
 is the outward normal derivative on Γ. Let V be a closed subspace of 

H1(Ω) defined by

For the finite element method, we introduce the corresponding weak form of the 
problem (2.1) as follows: Find (�, u) ∈ ℝ × V  such that b(u,u) = 1 and

where

The bilinear form b(⋅,⋅) is symmetric, continuous and semidefinite on the space V 
× V and symmetric, continuous and coercive over L2(Γ) × L2(Γ). In this paper, for 
all v ∈ V, we define ‖v‖a ∶=

√
a(v, v) , ‖v‖b ∶=

√
b(v, v) . It is easy to know that ∥⋅∥a 

is nothing but the standard norm ∥⋅∥1 and ∥⋅∥b is a seminorm.
From [7], we know (2.2) has an eigenvalue sequence {λj}:

Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = �, meas(Γ1) > 0.

(2.1)

⎧⎪⎨⎪⎩

−Δu + u = 0, in Ω,

u = 0, on Γ0,
�u

��
= �u, on Γ1,

V = {v ∈ H1(Ω)|v = 0 on Γ0}.

(2.2)a(u, v) = �b(u, v), ∀v ∈ V ,

(2.3)a(u, v) = ∫
Ω
(∇u∇v + uv)dΩ,

(2.4)b(u, v) = ∫
Γ1
uvds.
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 and the associated eigenfunctions

 where b(ui,uj) = δij (δij is Kronecker notation). In the sequence {λj}, the λj are 
repeated according to their geometric multiplicity. In order to give the error esti-
mates, let M(λi) denote the eigenfunction space corresponding to the eigenvalue λi 
which is defined by

Furthermore, we consider the Dirichlet-Neumann problem associated with (2.2): 
for f ∈ L2(Γ), find Tf ∈ V such that

where T : L2(Γ) → V  is the solution operator. Since the form a(⋅,⋅) is V -elliptic and 
this problem is well defined.

Now we turn to give the following regularity results.

Lemma 2.1 [5, (4.10)] and [10, Proposition 4.4] For the Dirichlet-Neumann prob-
lem (2.5), if f ∈ L2(Γ), then Tf ∈ H1+γ/2(Ω) and

where γ = 1 if Ω is convex and γ < π/ω (with ω being the largest inner angle of Γ) 
(see, e.g., [19]). Furthermore, if f ∈ H1/2(Γ), we have Tf ∈ H1+γ(Ω) and

Denote the Rayleigh quotient over V by R(⋅) as follows: for any u ∈ V, ∥u∥b≠ 0

Then, the eigenvalues λ can be characterized as extremum of R(⋅) (see, e.g., [6, 7, 
17]) by the following minimum-maximum principle:

and maximum-minimum principle:

0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆k ≤ ⋯ , lim
k→∞

𝜆k = ∞,

u1, u2,⋯ , uk,⋯ ,

M
(
�
i

)
=
{
w ∈ V ∶ w is an eigenfunction of (2.2) corresponding to �

i

}
.

(2.5)a(Tf , v) = b(f , v), ∀v ∈ V ,

(2.6)‖Tf‖1+𝛾∕2 ≲ ‖f‖b,

(2.7)‖Tf‖1+𝛾 ≲ ‖f‖1∕2,Γ,

R(u) =
a(u,u)

b(u,u)
.

�
i
= min

S
i

max
u∈S

i‖u‖b≠0

R(u) = max
u∈K

i

R(u), i = 1, 2,⋯ ,

�i = maxSi−1 min
u∈S⟂

i−1‖u‖b≠0

R(u) = min
u∈K⟂

i−1‖u‖b≠0

R(u), i = 1, 2,⋯ ,
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where Si is a i-dimensional subspace of V, Ki is the space spanned by the eigen-
functions {uj}ij=1 and S⟂

i−1
 is the orthogonal complement of Si− 1 in V with respect to 

a(⋅,⋅).
In this paper, the letter C (with or without subscripts) denotes a generic posi-

tive constant which may be different at its different occurrences through the 
paper. For convenience, the symbols ≲ , ≳ and ≈ will be used in this paper. These 
x1 ≲ y1, x2 ≳ y2 and x3 ≈ y3, mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for 
some constants C1,c2,c3 and C3 that are independent of mesh size (see, e.g., [36]).

2.2  Discretization by the finite element method and error estimates

Now, let us define the finite element approximations of the problem (2.2). First, we 
generate a shape-regular decomposition of the computing domain Ω ⊂ ℝ

2 into trian-
gles or rectangles. The diameter of a cell K ∈ Th is denoted by hK. The mesh diam-
eter h describes the maximum diameter of all cells K ∈ Th . We consider the linear 
Lagrange conforming finite element space which is defined as follows

where P1(K) denotes the space of polynomials of degree no more than 1. Assume 
that the finite element space Vh satisfies the following assumption:

The finite element approximation for (2.2) is defined as follows: Find 
(�̄�h, ūh) ∈ ℝ × Vh such that b(ūh, ūh) = 1 and

Similarly, we know from [7] the eigenvalue problem (2.10) has eigenvalues

 and the corresponding eigenfunctions

 where b(ūi,h, ūj,h) = 𝛿ij, 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element space 
Vh).

From [6, 7, 17], we have the following minimum-maximum principle:

and maximum-minimum principle:

(2.8)Vh =
{
vh ∈ C(Ω) || vh|K ∈ P1(K), ∀K ∈ Th

}
∩ V ,

(2.9)lim
h→0

inf
vh∈Vh

‖w − vh‖a = 0, ∀w ∈ V .

(2.10)a(ūh, vh) = �̄�hb(ūh, vh), ∀vh ∈ Vh.

0 < �̄�1,h ≤ �̄�2,h ≤ ⋯ ≤ �̄�k,h ≤ ⋯ ≤ �̄�Nh,h
,

ū1,h, ū2,h,⋯ , ūk,h,⋯ , ūNh,h
,

�i,h = min
Si,h

max
uh∈Si,h
‖uh‖b≠0

R(uh) = max
uh∈Ki,h

R(uh), i = 1, 2,⋯ ,Nh,
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where Si,h is a i-dimensional subspace of Vh, Ki,h is the space spanned by the 
approximate eigenfunctions {uj,h}ij=1 and S⟂

i−1,h
 is the orthogonal complement sub-

space of Si− 1,h in Vh with respect to a(⋅,⋅).
Then we can define ηa(h) as

There exist the following error estimates for the eigenpair approximations by 
finite element method.

Proposition 2.1 [6, Lemma 3.7, (3.29b)], [7, P. 699] (i) For any eigenfunction 
approximation ūi,h of (2.10) (i = 1,2,⋯ ,Nh), there is an eigenfunction ui (∥ui∥b = 1) of 
(2.2) corresponding to λi satisfying the following error estimates

where

Here and hereafter C̄i is some constant depending on λi but independent of the 
mesh size h.

Corollary 2.1 Based on the regularity (2.7), if Vh is the linear finite element space, 
then we have the following estimates for ηa(h) and δh(λi)

The following trace theorem gives the relation between ∥⋅∥b and ∥⋅∥a.

Lemma 2.2 [1] There exists a constant Ctr > 0, such that

�i,h = max
Si−1,h

min
uh∈S

⟂

i−1,h
‖uh‖b≠0

R(uh) = min
uh∈K

⟂

i−1,h
‖uh‖b≠0

R(uh), i = 1, 2,⋯ ,Nh,

(2.11)
�a(h) = sup

f∈L2(Γ)
‖f‖b=1

infvh∈Vh
‖Tf − vh‖a.

(2.12)‖ui − ūi,h‖a ≤ C̄i𝛿h(𝜆i),

(2.13)‖ui − ūi,h‖b ≤ C̄i𝜂a(h)‖ui − ūi,h‖a,

(2.14)�̄�i,h − 𝜆i ≤ C̄i𝛿
2
h
(𝜆i),

�h(�i) ∶= sup
w∈M(�i),‖w‖b=1

inf
vh∈Vh

‖w − vh‖a.

(2.15)�a(h) = O(h� ),

(2.16)�h(�i) = O(h� ).

(2.17)‖v‖b ≤ Ctr‖v‖1∕2a ‖v‖1∕2
0

≤ Ctr‖v‖a, ∀v ∈ V .
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For the convergence analysis, we introduce the error expansion of the eigen-
value by the Rayleigh quotient formula which comes from [6, 7].

Lemma 2.3 [6, 7] Assume (λ,u) is a true solution of the eigenvalue problem (2.2), 
and û ∈ V  such that b(û, û) ≠ 0 . Then we have the following expansion

3  Multilevel Newton iteration method for Steklov eigenvalue 
problem

This section aims to present a type of multilevel Newton iteration scheme for solv-
ing the Steklov eigenvalue problem. We first introduce a type of one Newton itera-
tion step to improve the accuracy of the given eigenpair approximation and then give 
the multilevel iteration scheme. Next, the error estimation and complexity of this 
new method are analyzed.

In this section, we only consider the first and simple eigenvalue.

3.1  Existence and uniqueness of solutions

This subsection introduces the main idea that deduces our numerical method in this 
paper. Here, we use Lagrange multiplier method to transform Steklov eigenvalue 
problem (2.2) into the following nonlinear problem: Find (�, u) ∈ ℝ × V  such that 
for any (�, v) ∈ ℝ × V

If we have an eigenpair approximation (�̃, ũ) with b(ũ, ũ) = 1 , Newton’s method for 
the nonlinear problem (3.1) is to find (�̂, û) ∈ ℝ × V  such that for any (�, v) ∈ ℝ × V

where G′ is the Fréchet derivation of G . That is

Actually, the Newton form (3.3) can be rewritten as the following problem: Find 
(�̂, û) ∈ ℝ × V  such that

R(û) − � =
a(û−u,û−u)

b(û,û)
− �

b(û−u,û−u)

b(û,û)
.

(3.1)⟨G(�, u), (�, v)⟩ ∶= a(u, v) − �b(u, v) +
1

2
�(1 − b(u, u)) = 0.

(3.2)⟨G�(�̃, ũ)(û − ũ, �̂ − �̃), (�, v)⟩ = −⟨G(�̃, ũ), (�, v)⟩,

(3.3)
a(û − ũ, v) − �̃b(û − ũ, v) − (�̂ − �̃)b(ũ, v) − �b(û − ũ, ũ)

= −
(
a(ũ, v) − �̃b(ũ, v) +

1

2
�(1 − b(ũ, ũ))

)
.

(3.4)
{

a(û, v) − �̃b(û, v) − �̂b(ũ, v) = −�̃b(ũ, v), ∀v ∈ V ,

−�b(û, ũ) = −�, ∀� ∈ ℝ.
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In order to prove the unique solvability of (3.4), for any given approximate solution 
(�̃, ũ) ∈ ℝ × V  with �̃ = R(ũ) and b(ũ, ũ) = 1 , we define the following bilinear forms

Then, we just need to consider the well-posedness of the following mixed boundary 
value problem: Find (�̂, û) ∈ ℝ × V  such that

Before giving the well-posedness of (3.6), we define the spectral projection 
Ei ∶ V → span{ui} as follows

Then we have the following existence and uniqueness theorem.

Theorem  3.1 Assume (�̃, ũ) ∈ ℝ × V  , with �̃ = R(ũ) and b(ũ, ũ) = 1 , is a given 
eigenpair approximation corresponding to λ1 such that

Then the bilinear forms defined in (3.5) satisfy the following conditions

a) There exists CA =
𝜆2−𝜆1
2𝜆2

> 0 , such that

where V0 = {v ∈ V ∶ B(ũ;v,�) = 0, ∀� ∈ ℝ} = {v ∈ V ∶ b(ũ, v) = 0}.
b) There exists CB =

2Ctr√
1+4𝜆1C

2
tr

> 0 such that

Proof 1 Decompose ũ as ũ = E1ũ + (I − E1)ũ , where I denotes the identity operator. 
Then, from (2.10) and (3.7) we have

and

(3.5)A(�̃;w, v) = a(w, v) − �̃b(w, v), ∀(w, v) ∈ V × V ,

B(ũ;v,�) = −�b(ũ, v), ∀(�, v) ∈ ℝ × V .

(3.6)
{

A(�̃;û, v) + B(ũ;v, �̂) = −�̃b(ũ, v), ∀v ∈ V ,

B(ũ;û,�) = −�, ∀� ∈ ℝ.

(3.7)a(Eiw, ui) = a(w, ui), ∀w ∈ V .

(3.8)‖ũ − E1ũ‖2a ≤ �2−�1
2(1+2�2C

2
tr
)
.

(3.9)A(�̃;v, v) ≥ CA‖v‖2a, ∀v ∈ V0,

(3.10)inf
�∈ℝ

sup
v∈V

B(ũ;v,�)

‖v‖a��� ≥ CB.

b(E1ũ, (I − E1)ũ) = �−1
1
a(E1ũ, (I − E1)ũ) = 0,

1 = b(ũ, ũ) = b(E1ũ,E1ũ) + b
�
(I − E1)ũ, (I − E1)ũ

�
= ‖E1ũ‖2b + ‖(I − E1)ũ‖2b.
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Combining the trace theorem (2.17), the following equalities hold

According to Lemma 2.3, b(ũ, ũ) = 1 and a(E1ũ,E1ũ) = �1b(E1ũ,E1ũ) , we can 
obtain

which means

For any v ∈ V0, we also do the decomposition v = E1v + (I − E1)v. Noting

together with the definition of E1 in (3.7), we have

Combining the above equality, the Hölder inequality and (3.11), the following 
estimates hold

Setting � = ‖(I − E1)ũ‖a , together with (3.11) and (3.13) we have

From the maximum-minimum principle and a((I − E1)v,u1) = 0, there holds

From (3.14) and (3.15), the following estimates hold

When (3.8) hold, that is

(3.11)‖ũ − E1ũ‖2b ≤ C2
tr
‖ũ − E1ũ‖2a, ‖E1ũ‖2b ≥ 1 − C2

tr
‖ũ − E1ũ‖2a.

�̃ − �1 = ‖ũ − E1ũ‖2a − �1‖ũ − E1ũ‖2b ≤ ‖ũ − E1ũ‖2a,

(3.12)�̃ ≤ �1 + ‖ũ − E1ũ‖2a.

b(ũ, v) = b(E1ũ,E1v) + b
(
(I − E1)ũ, (I − E1)v

)
= 0,

b(E1ũ,E1v) = −b
(
(I − E1)ũ, (I − E1)v

)
= −b

(
(I − E1)ũ, v

)
.

(3.13)
‖E1ũ‖b‖E1v‖b = ��b(E1ũ,E1v)

�� = ���−b
�
(I − E1)ũ, v

���� ≤ ‖(I − E1)ũ‖b‖v‖b.

(3.14)‖E1v‖2b ≤
‖(I−E1)ũ‖2b
‖E1ũ‖2b

‖v‖2
b
≤

C2
tr
‖(I−E1)ũ‖2a

1−C2
tr
‖(I−E1)ũ‖2a

‖v‖2
b
=

C2
tr
�2

1−C2
tr
�2
‖v‖2

b
.

(3.15)

�2 = min
u∈span{u1}

⟂

‖u‖b≠0

R(u) ≤ R((I − E1)v)

=
a

�
(I−E1)v,(I−E1)v

�
b

�
(I−E1)v,(I−E1)v

� ≤ a(v,v)

b

�
(I−E1)v,(I−E1)v

� .

(3.16)

b(v, v) = b(E1v,E1v) + b
�
(I − E1)v, (I − E1)v

�
≤ b(E1v,E1v) +

1

�2
a(v, v)

≤
C2
tr
�2

1−C2
tr
�2
‖v‖2

b
+

1

�2
a(v, v).
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(3.16) leads to

Then, combining (3.8), (3.12), (3.17) and (3.18), there holds

which is the desired result (3.9). Now, we come to consider the second desired 
result (3.10). Take v = −ũ ∈ V  , since b(ũ, ũ) = 1 we have

From (3.8), (3.12) and (3.17), there hold

Therefore, (3.19) means that (3.10) holds for CB =
2Ctr√
1+4�1C

2
tr

 , and we complete 

the proof. □

Remark 3.1 According to Theorem  3.1 and the theory for the mixed finite ele-
ment method [13], there exists only one solution (�̂, û) of Newton iteration (3.6) to 
approximate the first eigenpair (λ1,u1).

Corollary 3.1 ([13]) Under the conditions of Theorem  3.1, for the approximation 
eigenpair (�̂, û) of Newton iteration (3.6), the following inequality holds

where constant Cd depends on CA and CB defined in Theorem 3.1.

(3.17)�2 = ‖(I − E1)ũ‖2a ≤ �2−�1
2(1+2�2C

2
tr
)
≤ 1

4C2
tr

,

(3.18)
b(v, v) ≤ 1

�2

(
1−

C2
tr
�2

1−C2
tr
�2

)a(v, v) ≤ 1

�2

(
1−

4

3
C2
tr
�2
)a(v, v) ≤ 1

�2

(
1−2C2

tr
�2
)a(v, v).

a(v, v) − �̃b(v, v) ≥
(
1 −

�̃

�2(1−2C2
tr
�2)

)
a(v, v)

=
�2−�̃−2�2C

2
tr
�2

�2(1−2C2
tr
�2)

a(v, v)

≥
�2−(�1+�

2)−2�2C
2
tr
�2

�2
a(v, v)

=
(�2−�1)−�

2(1+2�2C
2
tr
)

�2
a(v, v)

≥ �2−�1
2�2

a(v, v),

(3.19)
inf�∈ℝ supv∈V

B(ũ;v,�)

‖v‖a��� = inf�∈ℝ supv∈V
−�b(ũ,v)

‖v‖a��� = supv∈V
−b(ũ,v)

‖v‖a
≥ −b(ũ,−ũ)

‖−ũ‖a =
b(ũ,ũ)

‖ũ‖a =
1√
�̃
.

�̃ ≤ �1 + ‖ũ − E1ũ‖2a ≤ �1 +
1

4C2
tr

=
1+4�1C

2
tr

4C2
tr

.

(3.20)‖û‖a + ���̂�� ≤ Cd sup0≠(�,v)∈ℝ×V
A(�̃;û,v)+B(ũ;v,�̂)+B(ũ;û,�)

‖v‖a+��� ,
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3.2  One Newton iteration step

Assume we have obtained an eigenpair approximation (�1,hk , u1,hk ) ∈ ℝ × Vhk
 of 

the first eigenpair (�1, u1) ∈ ℝ × V  with ‖u1,hk‖b = 1 . Now we introduce a type of 
one iteration step to improve the accuracy of the current eigenpair approximation 
based on Newton iteration. Let Vhk+1

⊂ V  be a finer finite element space such that 
Vhk

⊂ Vhk+1
 . Based on this finer finite element space, we define the following one 

Newton iteration step.

Then we obtain a new eigenpair approximation (�1,hk+1 , u1,hk+1) ∈ ℝ × Vhk+1
 . 

Summarize the above two steps as

Theorem  3.2 Assume (�1,hk , u1,hk ) , with �1,hk = R(u1,hk ) and ‖u1,hk‖b = 1 , is an 
eigenpair approximation corresponding to λ1 such that (3.8) holds. After performing 
Algorithm 1, the output (�1,hk+1 , u1,hk+1) ∈ ℝ × Vhk+1

 has the following error estimates

where C1 and C2 depend on CA and CB but independent of the mesh sizes hk and 
hk+ 1.

(�1,hk+1 , u1,hk+1) = ������_���������(�1,hk , u1,hk ,Vhk+1
).

(3.24)‖ū1,hk+1 − u1,hk+1‖a ≤ C1‖ū1,hk+1 − u1,hk‖2a,

(3.25)��̄�1,hk+1 − 𝜆1,hk+1 � ≤ C2‖ū1,hk+1 − u1,hk‖4a,
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Proof  2 From the variational form (2.10) and the definition of bilinear forms 
(3.5), we know that (�̄�1,hk+1 , ū1,hk+1) satisfies the following equations, for any 
(�, vhk+1) ∈ ℝ × Vhk+1

Let us define whk+1
∶= ū1,hk+1 − �u1,hk+1 and 𝛾hk+1 ∶= �̄�1,hk+1 −

�𝜆1,hk+1 . From step 1 of 
Algorithm 1 and (3.26), the following equations hold, for any (�, vhk+1) ∈ ℝ × Vhk+1

Similarly to Corollary 3.1, for problem (3.27) the following estimate hold

Using Lemma 2.3, trace theorem (2.17) and (3.27), we have

Noting b(ū1,hk+1 , ū1,hk+1) = 1 and b(u1,hk , u1,hk ) = 1

From (3.28), (3.29) and (3.30), we have

Then the following estimate holds

Combining the trace theorem (2.17), normalization (3.22), (3.31) and 
‖ū1,hk+1‖b = 1 , we have the following inequalities

(3.26)

⎧
⎪⎨⎪⎩

A(𝜆1,hk ;ū1,hk+1 , vhk+1) + B(u1,hk ;vhk+1 , �̄�1,hk+1)

= (�̄�1,hk+1 − 𝜆1,hk )b(ū1,hk+1 , vhk+1) − �̄�1,hk+1b(u1,hk , vhk+1),

B(u1,hk ;ū1,hk+1 ,𝜇) = −𝜇b(ū1,hk+1 , u1,hk ).

(3.27)

⎧
⎪⎨⎪⎩

A(𝜆1,hk ;whk+1
, vhk+1) + B(u1,hk ;vhk+1 , 𝛾hk+1)

= (�̄�1,hk+1 − 𝜆1,hk )b(ū1,hk+1 − u1,hk , vhk+1),

B(u1,hk ;whk+1
,𝜇) = −𝜇b(ū1,hk+1 − u1,hk , u1,hk ).

(3.28)
‖whk+1

‖a + �𝛾hk+1 �
≲ sup

0≠(𝜇,vhk+1 )∈ℝ×Vhk+1

A(𝜆1,hk ;whk+1
,vhk+1

)+B(u1,hk ;vhk+1 ,𝛾hk+1 )+B(u1,hk ;whk+1
,𝜇)

‖vhk+1‖a+�𝜇�
.

(3.29)

A(𝜆1,hk ;whk+1
, vhk+1) + B(u1,hk ;vhk+1 , 𝛾hk+1)

= (�̄�1,hk+1 − 𝜆1,hk )b(ū1,hk+1 − u1,hk , vhk+1)

≤ ��̄�1,hk+1 − 𝜆1,hk �‖ū1,hk+1 − u1,hk‖b‖vhk+1‖b
≲ ‖ū1,hk+1 − u1,hk‖2a‖vhk+1‖a.

(3.30)
B(u1,hk ;whk+1

,𝜇) = −𝜇b(ū1,hk+1 − u1,hk , u1,hk )

=
𝜇

2
b(ū1,hk+1 − u1,hk , ū1,hk+1 − u1,hk )

≲ �𝜇�‖ū1,hk+1 − u1,hk‖2a.

‖whk+1
‖a + �𝛾hk+1 � ≲ ‖ū1,hk+1 − u1,hk‖2a.

(3.31)‖ū1,hk+1 − �u1,hk+1‖a ≲ ‖ū1,hk+1 − u1,hk‖2a.
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which means (3.24) hold. Furthermore, from Lemma 2.3 and (3.24), the other 
two desired results (3.25) can be obtained directly. The proof is complete. □

Remark 3.2 From Theorem 3.2, we know that Newton’s method has second order 
convergence rate when the initial approximation is good enough.

3.3  Multilevel Newton iteration method

This subsection is firstly devoted to introducing a type of multilevel scheme based 
on the One Newton Iteration Step given by Algorithm 1. Then, the convergence of 
this multilevel iteration method is considered.

Before introducing the multigrid scheme, we define a sequence of triangulations 
Thk

 of Ω. Suppose Th1 is the initial mesh and let Thk be obtained from Thk−1 via regular 
refinement (produce βd subelements) such that

 Based on this sequence of meshes, we construct the corresponding nested linear 
finite element spaces such that

and the following relation of approximation errors hold for k = 2,⋯ ,n

‖ū1,hk+1 − u1,hk+1‖a
≤

����ū1,hk+1 −
ū1,hk+1

‖�u1,hk+1‖b
����a +

����
ū1,hk+1

‖�u1,hk+1‖b
− u1,hk+1

����a
=

‖ū1,hk+1‖a
‖�u1,hk+1‖b

���‖�u1,hk+1‖b − 1
��� +

����
ū1,hk+1

‖�u1,hk+1‖b
−

�u1,hk+1

‖�u1,hk+1‖b
����a

=
‖ū1,hk+1‖a
‖�u1,hk+1‖b

���‖�u1,hk+1‖b − ‖ū1,hk+1‖b��� +
‖ū1,hk+1−�u1,hk+1‖a

‖�u1,hk+1‖b
≤

‖ū1,hk+1‖a
‖�u1,hk+1‖b

‖ū1,hk+1 − �u1,hk+1‖b +
‖ū1,hk+1−�u1,hk+1‖a

‖�u1,hk+1‖b
≲ ‖ū1,hk+1 − �u1,hk+1‖a ≲ ‖ū1,hk+1 − u1,hk‖2a,

hk =
1

�
hk−1.

(3.32)Vh1
⊂ Vh2

⊂ ⋯ ⊂ Vhn
,

(3.33)
1

�
�a(hk−1) ≤ C��a(hk),

1

�
�hk−1(�) ≤ C��hk (�), ��hk+1(�) ≤ C�

�
�hk (�).
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Finally, we obtain an eigenpair approximation (�1,hn , u1,hn ) ∈ ℝ × Vhn
.

Theorem 3.3 Suppose h1 is small enough such that u1,h1 satisfies condition (3.8)

and

Then, the output of Algorithm 2, (�1,hn , u1,hn ) , has the following error estimates

Besides, there exists an eigenfunction u1 ∈ M(λ1) such that the final convergence 
results hold

Proof 3 Let us prove (3.35) by the method of induction. Firstly, according to (2.10) 
and (3.34), we have u1,h1 = ū1,h1 , which means (3.35) holds for n = 1. Then we 
assume (3.35) holds for n = k, that is

‖u1,h1 − E1u1,h1‖2a ≤ �2−�1
2(1+2�2C

2
tr
)
,

2C1

(
C𝛿𝛽 + 2C̄2

1
(C𝛿𝛽 + C�

𝛿
𝛽−1)

)
𝛿h1(𝜆1) ≤ 1.

(3.35)‖u1,hn − ū1,hn‖a ≤ 𝛿hn(𝜆1),

(3.36)|𝜆1,hn − �̄�1,hn | ≤ C3𝛿
2
hn
(𝜆1).

(3.37)‖u1 − u1,hn‖a ≤ C4�hn(�1),

(3.38)|�1 − �1,hn | ≤ C5�
2
hn
(�1).



1 3

A multilevel Newton’s method for the Steklov eigenvalue problem  Page 15 of 29    33 

Now let us consider the case of n = k + 1. Combining (3.24), (3.33), (3.39), Proposi-
tion 2.1 and the triangle inequality leads to the following estimates

This means that (3.35) also holds for n = k + 1 if 
2C1

(
C𝛿𝛽 + 2C̄2

1
(C𝛿𝛽 + C�

𝛿
𝛽−1)

)
𝛿hk (𝜆1) ≤ 1 . Thus we prove the desired result (3.35). 

From Lemma 2.3 and (3.35), we easily get the second result (3.36). Finally, (3.37) 
and (3.38) can be deduced from (2.12), (2.14), (3.35)–(3.36) and the triangle ine-
quality. □

3.4  Work estimate of multilevel eigenvalue iteration scheme

In this subsection, we turn our attention to the estimate of computational work for 
Algorithm 2. We will show that Algorithm 2 makes the Steklov eigenvalue problem 
solving need almost the optimal computational work if the linear (3.21) only needs 
the linear computational work.

First, we investigate the dimension of each level linear finite element space as 
Nk ∶= dimVhk

 . Then the following property holds

Theorem  3.4 Assume solving the eigenvalue problem in the coarse space Vh1
 

needs work O(Mh1
) and the work for solving the linear equation (3.21) in each level 

space Vhk
 is only O(Nk) for k = 2,⋯ ,n. Then the work involved in Algorithm 2 is 

O(Nn +Mh1
) . Furthermore, the complexity will be O(Nn) provided Mh1

≤ Nn.

Proof 4 Let Wk denote the work of the iteration step defined in Algorithm 1 in the 
k-th finite element space Vhk

 for k = 2,⋯ ,n. From the iteration definition in Algo-
rithm 1, we have

Iterating (3.41) and using the fact (3.40), the following estimates hold

(3.39)‖u1,hk − ū1,hk‖a ≤ 𝛿2
hk
(𝜆1).

‖u1,hk+1 − ū1,hk+1‖a ≤ C1‖u1,hk − ū1,hk+1‖2a
≤ 2C1(‖u1,hk − ū1,hk‖2a + ‖ū1,hk − ū1,hk+1‖2a)
≤ 2C1

�
𝛿2
hk
(𝜆1) + (2‖ū1,hk − u‖2

a
+ 2‖u − ū1,hk+1‖2a)

�

≤ 2C1

�
𝛿2
hk
(𝜆1) + 2

�
C̄2
1
𝛿2
hk
(𝜆1) + C̄2

1
𝛿2
hk+1

(𝜆1)
��

≤ 2C1

�
C𝛿𝛽𝛿hk (𝜆1)𝛿hk+1(𝜆1) + 2C̄2

1
(C𝛿𝛽 + C�

𝛿
𝛽−1)𝛿hk (𝜆1)𝛿hk+1(𝜆1)

�
= 2C1

�
C𝛿𝛽 + 2C̄2

1
(C𝛿𝛽 + C�

𝛿
𝛽−1)

�
𝛿hk (𝜆1)𝛿hk+1(𝜆1).

(3.40)Nk ≈

(
1

�

)d(n−k)

Nn, k = 1, 2,⋯ , n.

(3.41)Wk = O(Nk), for k = 2,⋯ , n.
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This means the computational work is O(Nn +Mh1
) and the one O(Nn) can be 

derived with the condition Mh1
≤ Nn . □

Remark 3.3 The discrete linear system (3.21) leads to a saddle-point structure prob-
lem. The assumption that solving linear system (3.21) needs O(Nk) work is reason-
able since [8] provides the corresponding multigrid methods.

4  Multilevel scheme for multi eigenvalues

In this section, we extend the Newton’s iteration method for the first eigenvalue of 
the Steklov eigenvalue problem to multi eigenvalues (include simple and multiple 
eigenvalues). And, the efficiency of this scheme will be tested in Section 6.

4.1  Multi eigenvalues

Now, we turn to give the existence and uniqueness for multi eigenvalues similar to 
Theorem 3.1. Assume that λm < λm+ 1 and we have obtained the first m eigenpairs 
approximation {(�̃i, ũi)}mi=1 to the problem (3.1), which satisfy

 where �̃i = R(ũi) is the Rayleigh quotient of ũi.
The Newton’s method for multi eigenvalues of (3.1) is to find (Λi, ûi) ∈ ℝ

m × V  (i 
= 1,⋯ ,m) such that, for any (X, v) ∈ ℝ

m × V

where Λ(j)

i
 and X(j) is the j-th component of Λi and X respectively.

Now, we come to prove (4.1) has only one solution for any i = 1,⋯ ,m. For this 
aim, we define the following bilinear forms

(3.42)
Total work =

n∑
k=1

W
k
= O

�
M

h1
+

n�
k=2

N
k

�

= O

�
M

h1
+

n∑
k=2

�
1

�

�d(n−k)

N
n

�
= O(N

n
+M

h1
).

b(ũi, ũj) = �ij, i, j = 1,⋯ ,m,

(4.1)

⎧⎪⎨⎪⎩

A(�̃i;ûi, v) +
m∑
j=1

B(ũj;v,Λ
(j)

i
) = −�̃ib(ũi, v),

B(ũj;ûi,X
(j)) = −X(j)�ij, ∀j = 1,⋯ ,m,
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Here and hereafter in this section u ∈ V, v ∈ V, X = (X(1),X(2),⋯ ,X(m))T ∈ W = ℝ
m

.
Assume that fi ∈ V � , gi ∈ W � are defined as

 We consider the following multi mixed problems: Find (Λi, ûi) ∈ ℝ
m × V  such that

Define K = M(�1) ∪⋯ ∪M(�m) . About the existence and uniqueness of problem 
(4.3), the following theorem holds.

Theorem 4.1 Assume that there exists a decomposition of eigenfunction space K 
satisfying K = M(𝜆1)⊕⋯⊕M(𝜆m) such that ũi is an eigenfunction approximation 
to M(λi) (i = 1,⋯ ,m) with

and �̃i = R(ũi) . Then the bilinear forms defined in (4.2) satisfy the following 
conditions

1. There exists �CA =
m(𝜆m+1−𝜆m)

(m+1)𝜆m+1
> 0 such that

where Ṽ
0
= {v ∈ V ∶ B̃(v,X) = 0, ∀X ∈ W} = {v ∈ V ∶ b(ũj, v) = 0, j = 1,⋯m}.

2. There exists �CB =
(m+1)Ctr√

1+(m+1)2C2
tr
𝜆m

> 0 such that

where ‖X‖ ∶= max
j∈{1,⋯,m}

�X(j)�.
Based on these two conditions, for any i(i = 1,⋯ ,m), the multi mixed equations 

(4.3) have only one solution.

(4.2)B̃(v,X) =

m∑
j=1

B(ũj;v,X
(j)) = −

m∑
j=1

X(j)b(ũj, v).

fi(v) = −�̃ib(ũi, v), gi(X) = −

m∑
j=1

X(j)�ij.

(4.3)
{

A(�̃i;ûi, v) + B̃(v,Λi) = fi(v), ∀v ∈ V ,

B̃(ûi,X) = gi(X), ∀X ∈ W.

(4.4)‖ũi − Eiũi‖2a ≤ �m+1−�m

(m+1)
�
1+(m+1)�m+1C

2
tr

�

(4.5)A(�̃i;v, v) ≥ C̃A‖v‖2a, ∀v ∈ Ṽ0,

(4.6)inf
X∈W

sup
v∈V

B̃(v,X)

‖v‖a‖X‖ ≥ C̃B,
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Proof  5 We decompose ũi as ũi = Eiũi + (I − Ei)ũi . Then, {E1ũ1,⋯ ,Emũm} is an 
orthogonal basis of eigenfunction space K . Similarly, we have

and ‖ũi‖2b = ‖Eiũi‖2b + ‖(I − Ei)ũi‖2b (i = 1,⋯ ,m). Therefore, (I − Ei)ũi and ũi 
have estimates

According to Lemma 2.3, b(ũi, ũi) = 1 and a(Eiũi,Eiũi) = �ib(Eiũi,Eiũi) , we can 
obtain

which means

Similarly, we also do decomposition v ∈ Ṽ0 as

 satisfying

 According to the definition of Ṽ0 , we have

 Therefore

Setting �i = ‖(I − Ei)ũi‖a (i = 1,⋯ ,m), combining (4.7) and (4.9), the following 
estimates hold

Recall (4.4)

that is

b
(
Eiũi, (I − Ei)ũi

)
= �̃−1

i
a
(
Eiũi, (I − Ei)ũi

)
= 0,

(4.7)
‖(I − Ei)ũi‖b ≤ Ctr‖(I − Ei)ũi‖a, ‖Eiũi‖2b ≥ 1 − C2

tr
‖(I − Ei)ũi‖2a, i = 1,⋯ ,m.

�̃i − �i = ‖ũi − Eiũi‖2a − �i‖ũi − EIũi‖2b ≤ ‖ũi − Eiũi‖2a,

(4.8)�̃i ≤ �i + ‖ũi − Eiũi‖2a.

v = E1v +⋯ + Emv + v∗ = Eiv + (I − Ei)v, i = 1,⋯ ,m

v∗⊥bK, Eiv ∈ span{Ei�ui}, (I − Ei)v =

m∑
j=1,j≠i

Ejv + v∗, (I − Ei)v⊥bspan{Ei�ui}.

0 = b(ũi, v) = b
(
Eiũi + (I − Ei)ũi,Eiv + (I − Ei)v

)
.

(4.9)
‖Eiv‖b‖Eiũi‖b = �b(Eiv,Eiũi)� = � − b

�
(I − Ei)v, (I − Ei)ũi

��
= �b�v, (I − Ei)ũi

�� ≤ ‖v‖b‖(I − Ei)ũi‖b, i = 1,⋯ ,m.

(4.10)‖Eiv‖2b ≤
C2
tr
�2
i

‖Eiũi‖2b
‖v‖2

b
≤

C2
tr
�2
i

1−C2
tr
�2
i

‖v‖2
b
, i = 1,⋯ ,m.

�2
i
= ‖(I − Ei)ũi‖2a ≤ �m+1−�m

(m+1)
�
1+(m+1)�m+1C

2
tr

� ≤ 1

(m+1)2C2
tr

,
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From the maximum-minimum principle and v∗⊥aK , there holds

From (4.10), (4.11), (4.12) and the property ‖v‖2
b
= ‖E1v‖2b +⋯ + ‖Emv‖2b + ‖v∗‖2

b
,

where �max = max
i=1,⋯,m

�i . Then, (4.13) means

Using the definition of A(�̃i;⋅, ⋅) , (4.4), (4.8) and (4.14), the following inequalities 
hold

It means (4.5) holds for �CA =
m(𝜆m+1−𝜆m)

(m+1)𝜆m+1
> 0 when (4.4) holds.

Now, we come to prove (4.6). For any X ∈ W, assume that the index s ∈{1,2,⋯ 
,m} satisfies ∥X∥ = |X(s)|. From b(ũi, ũj) = �ij (i,j = 1,⋯ ,m) and the definition of 
B̃(⋅, ⋅) , taking v = −

X(s)

|X(s)| ũs we have

(4.11)
1

1−C2
tr
�2
i

≤ (m+1)2

m(m+2)
≤ m+1

m
.

(4.12)�m+1 = min
u∈K⟂

‖u‖b≠0

R(u) ≤ R(v∗) ≤ a(v,v)

b(v∗,v∗)
.

(4.13)

b(v, v) = b(E1v,E1v) +⋯ + b(Emv,Emv) + b(v∗, v∗)

≤
∑m

i=1

C2
tr
�2
i

1−C2
tr
�2
i

b(v, v) + b(v∗, v∗)

≤
∑m

i=1

C2
tr
�2
i

1−C2
tr
�2
i

b(v, v) +
1

�m+1
a(v, v)

≤
(m+1)C2

tr

m

∑m

i=1
�2
i
b(v, v) +

1

�m+1
a(v, v)

≤ (m + 1)C2
tr
�2
max

b(v, v) +
1

�m+1
a(v, v),

(4.14)b(v, v) ≤ 1

�m+1

(
1−(m+1)C2

tr
�2
max

)a(v, v).

(4.15)

A(�̃i;v, v) = a(v, v) − �̃ib(v, v) ≥
(
1 −

�̃i

�m+1

(
1−(m+1)C2

tr
�2
max

)
)
a(v, v)

=
�m+1

(
1−(m+1)C2

tr
�2
max

)
−�̃i

�m+1

(
1−(m+1)C2

tr
�2
max

) a(v, v)

=
�m+1−�̃i−(m+1)C

2
tr
�2
max

�m+1

�m+1

(
1−(m+1)C2

tr
�2
max

) a(v, v)

≥
�m+1−(�i+�

2
i
)−(m+1)C2

tr
�2
max

�m+1

�m+1

(
1−(m+1)C2

tr
�2
max

) a(v, v)

≥
�m+1−�i−�

2
max

(
1+(m+1)C2

tr
�m+1

)
�m+1

a(v, v)

≥
�m+1−�m−

�m+1−�m

m+1

�m+1
a(v, v)

=
m(�m+1−�m)

(m+1)�m+1
a(v, v).
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Then combining (4.4), (4.8) and (4.16), we have

where �CB =
(m+1)Ctr√

1+(m+1)2C2
tr
𝜆m

> 0 . It means that (4.6) holds.

From the theory for the mixed finite element method [13], there exists only one 
solution for the (4.3) for any i = 1,⋯ ,m.

4.2  Multilevel iteration for multi eigenvalues

Similarly, we first give one iteration step to improve the given approximations to 
the first m eigenpairs. Assume we have obtained the first m eigenpairs approxima-
tion (�i,hk , ui,hk ) ∈ ℝ × Vhk

 with ‖ui,hk‖b = 1 (i = 1,⋯ ,m). Now we introduce a type 
of iteration step to improve the accuracy of the current eigenpair approximations. Let 
Vhk+1

⊂ V be a finer finite element space such that Vhk
⊂ Vhk+1

.

We summarize above two steps as

(4.16)

sup
v∈V

B̃(v,X)

‖v‖a = sup
v∈V

−
∑m

j=1
X(j)b(ũj, v)

‖v‖a ≥
�X(s)�b(ũs, ũs)

‖ũs‖a
=

‖X‖�
�̃s

≥
‖X‖�
�̃m

.

(4.17)sup
v∈V

B̃(v,X)

‖v‖a ≥ ‖X‖√
�m+�

2
m

≥ ‖X‖�
�m+

1

(m+1)2C2
tr

= C̃B‖X‖,

{�i,hk+1 , ui,hk+1}
m
i=1

= ������_���������_�����({�i,hk , ui,hk}
m
i=1

,Vhk+1
).
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Now, we are ready to give the corresponding multilevel correction method for 
multi eigenvalues.

Finally, we get m eigenpair approximations {�i,hn , ui,hn}
m
i=1

∈ ℝ × Vhn
.

Remark 4.1 In Algorithm 3, computation can be used to solve linear system (4.18) 
for different i. Then, the work estimate of Algorithm 4 is the same as Algorithm 2 
(presented in Theorem 3.4).

5  Multilevel iteration with adaptive method

In this section, based on the a posteriori error estimators we will establish an adap-
tive multilevel Newton iteration for the Steklov eigenvalue problem. Here, we only 
describe the scheme without analysis.

In the above multilevel Newton iteration method, we refine the mesh uniformly. 
However, this is not practical since the amount of required memory will increase 
very rapidly as we refine the mesh. Hence, an efficient refinement strategy is desired. 
On the one hand, the solution should be resolved well with the refined mesh. On the 
other hand, the total amount of the mesh elements should be controlled well to make 
the simulation efficient. Based on the above discussion, the adaptive mesh method is 
a competitive candidate for the refinement strategy.

A standard adaptive mesh process can be described by the following one

 More precisely, to get Thk+1 from Thk , we first solve the discrete equation on Thk to 
get the approximate solution and then calculate the a posteriori error estimator on 

⋯����� → �������� → ���� → ������⋯.
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each mesh element. Next, we mark the elements with big errors and these elements 
are refined in such a way that the triangulation is still shaped regular and conform-
ing. Here, we choose the classical residual type a posteriori error estimator for (2.1). 
First, define the element residual RK(uh) and the jump residual Je(uh) for the eigen-
pair approximation (λh,uh) as follows (see, e.g., [4, 17]):

where e is the common edge of elements K+ and K− with outward normals ν+ and 
ν− respectively, νe = ν+, Eh is the set of all inner edges of Th and EΓ is the set of all 
boundary edges of Th.

For each element K ∈ Th , we define the local error indicator ηh(uh,K)

and the error indicator for a subdomain ω ⊂Ω by

Based on the error indicator (5.2), we choose the Dörfler’s marking strategy for m 
approximations u1,h,⋯ ,um,h to construct subset Mh for local refinement.

Now we state the multilevel iteration scheme with an adaptive method for the 
Steklov eigenvalue problem. Based on the adaptive refinement method described 
above, and one Newton iteration step for multi eigenvalues defined by Algorithm 3, 
the multilevel iteration method is given in the following algorithm.

RK(uh) ∶= −Δuh + uh, in K ∈ Th,

Je(uh) ∶=

{
1

2
(∇u+

h
⋅ �+ + ∇u−

h
⋅ �−) ∶=

1

2
[[∇uh]]e ⋅ �e, for e ∈ Eh,

∇uh ⋅ � − �huh, for e ∈ EΓ,

(5.1)𝜂h(uh,K) ∶=
�
h2
K
‖RK(uh)‖0,K +

∑
e∈Eh,e⊂𝜕K

he‖Je(uh)‖0,e
�1∕2

,

(5.2)𝜂h(uh,𝜔) ∶=
� ∑

K∈Th,K⊂𝜔

𝜂2
h
(uh,K)

�1∕2

.
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Finally, we get m eigenpair approximations {�i,hn , ui,hn}
m
i=1

∈ ℝ × Vhn
.

Fig. 1  The initial meshes for Example 1
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6  Numerical results

In this section, some numerical examples are presented to illustrate the efficiency 
of the multilevel iteration scheme proposed in Algorithms 2, 4 and 6, respectively. 
For simplicity, we consider the situation that Γ0 = ∅ and Γ1 = Γ. In this paper, all 
schemes are running on the same machine ThinkPad T570 (Matlab, R2016b). The 
machine is equipped with Intel Core i7-7500U (2.90GHz) CPU with 8G memory.

6.1  Steklov eigenvalue problem on unit square

We first consider Steklov eigenvalue problem defined on unit square Ω = (0,1) 
× (0,1). The sequence of linear finite element spaces is constructed on the series 
of meshes which are produced by the regular refinement with β = 2 (producing 
β2 subelements). In this example, we choose two meshes that are generated by 
the Delaunay method as the initial mesh Th1 to produce two sequences of finite 
element spaces for investigating the convergence behaviors. Figure 1 shows this 
two initial meshes, the left is coarse mesh (h1 = 1/6) and the right is fine mesh (h1 
= 1/12).

Since the exact eigenvalue is unknown for this problem, we use an accurate enough 
approximation [0.240079083080045, 1.492303119894411, 1.492303120006201, 
2.082647034280811] given by the extrapolation method (see, e.g., [25]) as the first 
four exact eigenvalues to investigate the error. Algorithm  2 is applied to solve the 
eigenvalue problem. Figure 2 gives the corresponding numerical results for the first 
eigenvalue λ1 = 0.2400790830800452. From Fig. 2, we find that the multilevel itera-
tion scheme can obtain the optimal error estimates as the expected one for the direct 
finite element method, which confirms with the convergence Theorem 3.3 for multi-
level Newton’s method. To show the high efficiencies of Algorithm 2, we also give 
the CPU time of our multigrid method and the standard finite element method to 
solve the problem for coarse initial mesh in Table 1.

Fig. 2  The errors of the multilevel iteration algorithm for the first eigenvalue λ1 on the unit square. (The 
left subfigure is for the coarse initial mesh in Fig. 1 and the right one for the fine initial mesh in Fig. 1)
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We also check the convergence behavior for multi eigenvalue approximations 
with Algorithm 4. Here the first four eigenvalues are investigated. Similarly, we use 
the coarse and fine initial meshes shown in Fig. 1, respectively. The corresponding 
numerical results are given in Fig. 3 and Table 2, which also exhibit the optimal con-
vergence orders and high efficiencies of the multilevel iteration scheme.

6.2  Steklov eigenvalue problem on dumbbell‑shaped domain

In order to show our multilevel Newton iteration method can work well with adap-
tive method (Algorithm 6), we discuss the Steklov eigenvalue problem defined on a 
dumbbell-shaped domain Ω = (0,�)2 ∪

[
�,

5

4
�
]
×
(

3

8
�,

5

8
�
)
∪
(

5

4
�,

9

4
�
)
× (0,�) . 

The initial mesh for this dumbbell-shaped domain is given in Fig. 4.

Table 1  The CPU time of Algorithm 2 and the direct finite element method for first eigenvalue of Exam-
ple 1 (coarse initial mesh)

Level Number of degrees of 
freedom

Time of Algorithm 2 (s) Time of direct FEM (s)

1 464 0.034874 0.042280
2 1856 0.059542 0.096778
3 7424 0.218019 0.339148
4 29696 0.767854 1.349842
5 118784 4.421342 10.641550
6 475136 28.759214 65.702863
7 1900544 169.821724 365.798662

Fig. 3  The errors of the multilevel iteration algorithm for the first four eigenvalues on the unit square 
(The left subfigure is for the coarse initial mesh in Fig. 1 and the right one for the fine initial mesh in 
Fig. 1)
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It is easy to know that reentrant corners of the dumbbell domain result in the sin-
gularities of the eigenfunctions. The convergence order for eigenfunction approxima-
tions is less than 1 by the linear finite element method, which is the order predicted 
by the theory for regular eigenfunctions. We consider using the adaptive Algorithm 6 
to solve this problem. Figure 5 shows the mesh after 9 adaptive refinements.

Since the exact solution is unknown, we use the accurate enough approxima-
tion [0.580124563836536,0.606949611404787,0.767254752494938,0.767868
169277588, 0.771144654505056] given by the extrapolation method (see, e.g., 
[25]) as the first five exact eigenvalues to investigate the error. First, we investigate 
the convergent rate of the adaptive posterior error estimator �h(uh, Th) defined in 
(5.1). Figure 6 presents the corresponding numerical results for the first five eigen-
function approximations. Here, we use ηh(ui,h) to denote the i-th error estimator 
�h(ui,h, Th) . The error estimates of eigenvalues are also given in Fig. 6 which shows 
that our multilevel iteration method combines well with the adaptive finite ele-
ment method naturally and Algorithm 6 has the optimal convergence rate.

Table 2  The CPU time of Algorithm 4 and the direct finite element method for the first four eigenvalues 
of Example 1 (coarse initial mesh)

Level Number of degrees of 
freedom

Time of Algorithm 4 (s) Time of direct FEM (s)

1 464 0.035578 0.061425
2 1856 0.078948 0.301429
3 7424 0.276420 0.708873
4 29696 1.027417 2.007012
5 118784 5.675398 12.800388
6 475136 36.104498 68.077419
7 1900544 221.599882 447.711348

Fig. 4  The initial meshes for Example 2
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7  Concluding remarks

In this paper, a type of multilevel method for the Steklov eigenvalue problem based 
on Newton iteration is proposed. With this iteration method, solving the Steklov 
eigenvalue problem on the finest finite element space can be substituted by solving a 
small-scale Steklov eigenvalue problem in the coarsest space and solving a sequence 
of augmented linear problems in the corresponding sequence of finite element 
spaces, derived by Newton iteration step. We use the current approximate solution 
as the start solution of the next level and the quadratic convergence rate of Newton’s 
method ensures the accuracy of the numerical solution. Then, the proposed scheme 
improves the overall efficiency of Steklov eigenvalue problem solving by the finite 
element method. We prove that our multilevel method obtains an optimal conver-
gence rate with linear complexity. Some numerical examples express the efficiency 
of this iteration method. What’s more, this type of multilevel iteration method works 

Fig. 5  The mesh after 9 adaptive refinements

Fig. 6  The errors of the adaptive multilevel iteration algorithm for the first five eigenfunction approxima-
tions, where ηh(ui,h) (i = 1,2,⋯ ,5) denote the i-th posterior error estimator and λi,h (i = 1,2,⋯ ,5) denote 
the i-th eigenvalue approximation of λi (i = 1,2,⋯ ,5)
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well with the adaptive finite element method for multi eigenvalues, which also be 
tested in numerical examples.
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