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A TYPE OF FULL MULTIGRID METHOD FOR NON-SELFADJOINT STEKLOV
EIGENVALUE PROBLEMS IN INVERSE SCATTERING

Manting Xie1 , Fei Xu2 and Meiling Yue3,*

Abstract. In this paper, a type of full multigrid method is proposed to solve non-selfadjoint Steklov
eigenvalue problems. Multigrid iterations for corresponding selfadjoint and positive definite boundary
value problems generate proper iterate solutions that are subsequently added to the coarsest finite
element space in order to improve approximate eigenpairs on the current mesh. Based on this full
multigrid, we propose a new type of adaptive finite element method for non-selfadjoint Steklov eigen-
value problems. We prove that the computational work of these new schemes are almost optimal, the
same as solving the corresponding positive definite selfadjoint boundary value problems. In this case,
these type of iteration schemes certainly improve the overfull efficiency of solving the non-selfadjoint
Steklov eigenvalue problem. Some numerical examples are provided to validate the theoretical results
and the efficiency of this proposed scheme.
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1. Introduction

Inverse scattering problems for inhomogeneous media have many applications, such as medical imaging and
nondestructive testing and so on. Recently, non-selfadjoint Steklov eigenvalues have been widely applied in the
inverse scattering problem. Particularly, it can be used to reconstruct the shape of the obstacle and estimate
the index of refraction of the inhomogeneous medium [9]. Compared with the transmission eigenvalue problem,
non-selfadjoint Steklov eigenvalues associated with the scattering problem have many advantages [30], and the
potential to work for a wider class of problems, such as the surface waves, mechanical oscillators immersed in a
viscous fluid and the vibration modes of a structure in contact with an incompressible fluid [10,11,27,31].
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finite element method.
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As we know, there are many efficient methods for solving selfadjoint Steklov eigenvalue problems [1, 4, 21,
34, 37, 49]. However, the non-selfadjoint Steklov eigenvalue problem for inverse scattering will lead to a non-
Hermitian matrices, the multiplicities are not known, and the computation of complex eigenvalues and eigen-
vectors of such non-Hermitian matrices are quite challenging. The differential operator corresponding to this
problem is non-selfadjoint and the associated weak formulation does not satisfy 𝐻1-elliptic condition, which are
the main differences from those studied before. Hence, extensions of the methods for selfadjoint eigenvalue prob-
lems to the non-selfadjoint ones are not trivial [48]. [9] studies the mathematical properties of non-selfadjoint
Steklov eigenvalue problems and its conforming finite element approximation, later [31] an explicit convergence
estimate for approximate eigenvalues. A two-grid method for this problem have been proposed in [5]. In [46],
the authors use the complementary technique [40, 41] to give a new type of adaptive method. [32] gives a dis-
continuous Galerkin methods for non-selfadjoint Steklov eigenvalue problem. In this paper, we aim to construct
a type of full multigrid method for non-selfadjoint Steklov eigenvalue problems.

In recent ten years, the multilevel correction method for eigenvalue problems has been proposed in [29, 36]
and applied in many useful eigenvalue problems, such as nonlinear eigenvalue problems [25, 26], biharmonic
eigenvalue problem [50], nonsymmetric eigenvalue problem [42,48], Fredholm integral eigenvalue problems [43],
Bose-Einstein Condensates [39], Kohn-Sham equation [24], interior transmission eigenvalue problem [38] and so
on. Recently, [44] propose a parallel multilevel correction method for linear selfadjoint eigenvalue problems.
Especially, multilevel correction method has been applied to non-selfadjoint Steklov eigenvalue problems in
[51]. As we know, the multigrid method [3, 7, 8, 20] as an efficient preconditioners provide an optimal order
algorithm for solving boundary value problems. Hence, the aim of this paper is to present a full multigrid
method [15, 26, 44] (sometimes also referred to as nested finite element method) for solving non-selfadjoint
Steklov eigenvalue problems based on the combination of the multilevel correction method and the multigrid
iteration for boundary value problems. Comparing with the method in [29,36,37,51], we do not need to solve the
linear boundary value problem exactly in each correction step in this paper. Some multigrid iteration steps are
used to get an approximate solution. In this new version of multigrid method, solving non-selfadjoint Steklov
eigenvalue problems will not be much more difficult than the multigrid scheme for the corresponding positive
definite selfadjoint boundary value problems.

The adaptive finite element method (AFEM) has been widely used to solve singular partial differential
equations, which can generate a sequence of optimal triangulations by refining those elements where the errors,
as the local error estimators indicate, are relatively large. The AFEM is really an effective way to make efficient
use of given computational resources. In addition to being widely used in boundary value problems [13,14,33,35],
AFEM is also a very useful and efficient way for solving large-scale eigenvalue problems [12,18,19,22]. It should
be noted that the optimal complexity of AFEM means the discretization scale is optimal but not that the
computational work is optimal, which is the motivation of this paper. Recently, [23, 24] propose an efficient
AFEM based on multilevel correction method. From this idea, we give a new type of AFEM based on full
multigrid. In this method, solving non-selfadjoint Steklov eigenvalue problem only includes solving the associated
positive definite selfadjoint boundary value problems on a series of adaptively refined partitions by multigrid
method and the non-selfadjoint Steklov eigenvalue problem with a coarse mesh. Comparing with the standard
multigrid method, we only need to do smoothing steps on the newly refined elements and their neighbors.
The dimension of the coarse mesh for determining approximate eigenpairs will remain unchanged during the
adaptive process, thus this computational time can be ignored as the size of mesh becomes smaller after some
refinement steps. Hence, the main computation will be spent on the positive definite selfadjoint boundary value
problems on adaptive spaces, and the cost of this new AFEM can be improved to be almost optimal.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method for non-
selfadjoint Steklov eigenvalue problems. A type of full multigrid method based on the multilevel correction
scheme is presented and analyzed in Section 3. Section 4 is devoted to giving a new type of AFEM based on full
multigrid proposed in Section 3. In Section 5, three numerical examples are presented to validate the efficiency
of the proposed method. Finally, some concluding remarks are given in the last section.
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2. Discretization by finite element method

In this section, we introduce the concerned nonsymmetric eigenvalue problem and its corresponding finite
element method. The standard notation for the Sobolev spaces 𝑊 𝑠,𝑝(Ω) and their associated norms ‖ · ‖𝑠,𝑝,Ω

and seminorms | · |𝑠,𝑝,Ω will be used (see, e.g. [8,16]). For 𝑝 = 2, we denote 𝐻𝑠(Ω) = 𝑊 𝑠,2(Ω), ‖ · ‖𝑠,Ω = ‖ · ‖𝑠,2,Ω

for simplicity. In this paper, ‖ · ‖𝑠,Ω are abbreviated to ‖ · ‖𝑠, and the letter 𝐶 (with or without subscripts)
denotes a generic positive constant which may be different at its different occurrences through the paper. For
convenience, the symbols ., & and ≈ will be used in this paper. These 𝑥1 . 𝑦1, 𝑥2 & 𝑦2 and 𝑥3 ≈ 𝑦3, mean
that 𝑥1 ≤ ̃︀𝐶1𝑦1, 𝑥2 ≥ ̃︀𝑐2𝑦2 and ̃︀𝑐3𝑥3 ≤ 𝑦3 ≤ ̃︀𝐶3𝑥3 for some constants ̃︀𝐶1,̃︀𝑐2,̃︀𝑐3 and ̃︀𝐶3 that are independent of
mesh size.

2.1. Non-selfadjoint Steklov eigenvalue problems

In this paper, we consider the following non-selfadjoint Steklov eigenvalue problem to find 𝜆 ∈ C and
𝑢 ∈ 𝐻1(Ω) such that {︂

∇ · (𝒜∇𝑢) + 𝜅2𝑛(𝑥)𝑢 = 0, in Ω,
𝜕𝑢
𝜕𝜈 + 𝜆𝑢 = 0, on 𝜕Ω, (2.1)

where Ω ⊂ R2 is a bounded polygonal domain with Lipshitz boundary 𝜕Ω and 𝜈 be the unit outward normal to
𝜕Ω, 𝒜 is a uniformly bounded symmetric positive definite matrix function defined on Ω, 𝜅 is the wavenumber
and 𝑛(𝑥) is the index of refraction. Assume that 𝑛 = 𝑛(𝑥) is a bounded complex valued function given by

𝑛(𝑥) = 𝑛1(𝑥) + i
𝑛2(𝑥)
𝜅

,

where i =
√
−1, 𝑛1(𝑥) > 0 and 𝑛2(𝑥) ≥ 0 are bounded smooth functions. Set 𝑉 = 𝐻1(Ω).

For the aim of finite element discretization, we define the corresponding weak form of (2.1) as follows: Find
(𝜆, 𝑢) ∈ C× 𝑉 , 𝑢 ̸= 0, such that

𝑎(𝑢, 𝑣) = −𝜆𝑏(𝑢, 𝑣), ∀𝑣 ∈ 𝑉, (2.2)

where

𝑎(𝑢, 𝑣) = (𝒜∇𝑢,∇𝑣)− 𝜅2(𝑛𝑢, 𝑣),

𝑏(𝑢, 𝑣) =
∫︁

𝜕Ω

𝑢𝑣d𝑠,

being two continuous sesquilinear forms, with

(𝜑, 𝜓) =
∫︁

Ω

𝜑𝜓d𝑥,

and overline denoting the complex conjugate of a function.
For any 𝑔 ∈ 𝐻1(Ω), 𝑏(𝑓, 𝑔) has a continuous extension to 𝑓 ∈ 𝐻−1/2(𝜕Ω) so that 𝑏(𝑓, 𝑔) is continuous on

𝐻−1/2(𝜕Ω)×𝐻1/2(𝜕Ω). For convenience, we define a 𝐻1(Ω) inner product as follows

𝑎𝑠(𝑤, 𝑣) := (𝒜∇𝑤,∇𝑣) + (𝑤, 𝑣), ∀𝑤, 𝑣 ∈ 𝑉,

and the following ellipticity holds

1
𝐶2

𝑎

‖𝑣‖21 ≤ 𝑎𝑠(𝑣, 𝑣), ∀𝑣 ∈ 𝑉. (2.3)

For the non-selfadjoint Steklov eigenvalue problem (2.2), there exists the corresponding adjoint eigenvalue
problem (cf. [31]): Find (𝜆*, 𝑢*) ∈ C× 𝑉 such that

𝑎(𝑣, 𝑢*) = −𝑏(𝑣, 𝜆*𝑢*) = −𝜆*𝑏(𝑣, 𝑢*), ∀𝑣 ∈ 𝑉. (2.4)
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Note that the (2.2) and (2.4) are also connected via 𝜆 = 𝜆*.
For simplicity, we only consider the nondefective eigenvalues (the ascent equals to 1) of the non-adjoint Steklov

eigenvalue problem. Thus, the algebraic multiplicity equals to the geometric multiplicity and the generalized
eigenspace is the same as the eigenspace. More details about the nonsymmetric eigenvalue problems, please
refer to [2, 41,42,46,48].

2.2. Finite element method

Now, we introduce the finite element method (cf. [2]) for the non-selfadjoint Steklov eigenvalue problem (2.2)
and its corresponding adjoint problem (2.4).

First, we decompose the computing domain Ω ⊂ R𝑑 (𝑑 = 2, 3) into shape-regular triangles or rectangles
for 𝑑 = 2 (tetrahedrons or hexahedrons for 𝑑 = 3) and the diameter of a cell 𝐾 ∈ 𝒯ℎ is denoted by ℎ𝐾 . The
mesh diameter ℎ describes the maximum diameter of all cells 𝐾 ∈ 𝒯ℎ. Based on the mesh 𝒯ℎ, we construct
the conforming finite element space denoted by 𝑉ℎ ⊂ 𝑉 . For simplicity, we only consider the linear Lagrange
conforming finite element space which is defined as follows

𝑉ℎ =
{︀
𝑣ℎ ∈ 𝐶(Ω)

⃒⃒
𝑣ℎ|𝐾 ∈ 𝒫1(𝐾), ∀𝐾 ∈ 𝒯ℎ

}︀
, (2.5)

where 𝒫1(𝐾) denotes the space of polynomials of degree ≤ 1.
The standard finite element method for (2.2) is to solve the following eigenvalue problem: Find (̂︀𝜆ℎ, ̂︀𝑢ℎ) ∈

C× 𝑉ℎ such that
𝑎(̂︀𝑢ℎ, 𝑣ℎ) = −̂︀𝜆ℎ𝑏(̂︀𝑢ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ. (2.6)

We give the discretization of the adjoint problem (2.4) in the same finite element space: Find (̂︀𝜆*ℎ, ̂︀𝑢*ℎ) ∈ C×𝑉ℎ

such that
𝑎(𝑣ℎ, ̂︀𝑢*ℎ) = −̂︀𝜆*ℎ𝑏(𝑣ℎ, ̂︀𝑢*ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (2.7)

also we have the relation ̂︀𝜆ℎ = ̂︀𝜆*ℎ. Hereafter, we use the triple (̂︀𝜆ℎ, ̂︀𝑢ℎ, ̂︀𝑢*ℎ) to denote the finite element method
approximate eigenpair of the non-selfadjoint Steklov eigenvalue problems (2.2) and (2.4).

Define 𝜂𝑎(𝑉ℎ) and 𝜂*𝑎(𝑉ℎ) as

𝜂𝑎(𝑉ℎ) := sup
𝑓∈𝐻1/2(𝜕Ω)
‖𝑓‖1/2,𝜕Ω=1

inf
𝑣ℎ∈𝑉ℎ

‖𝑇𝑓 − 𝑣ℎ‖1,

𝜂*𝑎(𝑉ℎ) := sup
𝑓∈𝐻1/2(𝜕Ω)
‖𝑓‖1/2,𝜕Ω=1

inf
𝑣ℎ∈𝑉ℎ

‖𝑇*𝑓 − 𝑣ℎ‖1,

where the operators 𝑇 and 𝑇* : 𝐻−1/2(𝜕Ω) → 𝑉 are defined by

𝑎(𝑇𝑓, 𝑣) = 𝑏(𝑓, 𝑣), ∀𝑓 ∈ 𝐻−1/2(𝜕Ω) and ∀𝑣 ∈ 𝑉, (2.8)
𝑎(𝑣, 𝑇*𝑓) = 𝑏(𝑓, 𝑣), ∀𝑓 ∈ 𝐻−1/2(𝜕Ω) and ∀𝑣 ∈ 𝑉 . (2.9)

Introduce the following Neumann eigenvalue problem:{︂
∇ · (𝒜∇𝑢) + 𝜅2𝑛(𝑥)𝑢 = 0, in Ω,
𝜕𝑢
𝜕𝜈 = 0, on 𝜕Ω.

When 𝜅2 is not a Neumann eigenvalue of the above eigenvalue problem, we have that for any 𝑓 ∈ 𝐻−1/2(𝜕Ω),
there exist unique solution for (2.8) and (2.9).

In order to give the convergence order of eigenpair approximations by the finite element method, we need
the following regularity result for the boundary value problem (2.8).



A TYPE OF FULL MULTIGRID METHOD FOR NON-SELFADJOINT STEKLOV EIGENVALUE PROBLEMS 1783

Lemma 2.1 ([5, 6]). For the Steklov-type boundary value problem (2.8), if 𝑓 ∈ 𝐿2(𝜕Ω), then 𝑇𝑓 ∈ 𝐻1+𝜎/2(Ω)
and

‖𝑇𝑓‖1+𝜎/2 ≤ 𝐶‖𝑓‖0,𝜕Ω. (2.10)

Furthermore, if 𝑓 ∈ 𝐻1/2(𝜕Ω), we have 𝑇𝑓 ∈ 𝐻1+𝜎(Ω) and

‖𝑇𝑓‖1+𝜎 ≤ 𝐶‖𝑓‖1/2,𝜕Ω. (2.11)

Here 𝜎 = 1 if Ω is convex and 𝜎 < 𝜋/𝜔 (with 𝜔 being the largest inner angle of 𝜕Ω) (see, e.g., Grisvard, 1986).

Let 𝑀(𝜆) and 𝑀*(𝜆) denote two eigenspaces corresponding to the eigenvalue 𝜆 of (2.2) and (2.4), respectively,

𝑀(𝜆) =
{︀
𝑢 ∈ 𝑉 : 𝑢 is an eigenfunction of (2.2) corresponding to 𝜆

}︀
,

𝑀*(𝜆) =
{︀
𝑢* ∈ 𝑉 : 𝑢* is an eigenfunction of (2.4) corresponding to 𝜆

}︀
.

Then, we introduce the following notation for error estimation

𝛿(𝑢, 𝑉ℎ) := sup
𝑢∈𝑀(𝜆),‖𝑢‖0=1

inf
𝑣ℎ∈𝑉ℎ

‖𝑢− 𝑣ℎ‖1,

𝛿(𝑢*, 𝑉ℎ) := sup
𝑢*∈𝑀*(𝜆),‖𝑢*‖0=1

inf
𝑣ℎ∈𝑉ℎ

‖𝑢* − 𝑣ℎ‖1.

Since the ascent of the non-selfadjoint Steklov eigenvalue problem equals to 1, we have the following error
estimates.

Lemma 2.2 ([5, 31]).
(i) For any eigenfunction approximations ̂︀𝑢ℎ and ̂︀𝑢*ℎ of (2.6) and (2.7), respectively, there exist eigenfunctions

𝑢 and 𝑢* of (2.2) and (2.4), such that

‖𝑢− ̂︀𝑢ℎ‖1 ≤
(︀
1 + 𝐶𝜆(𝜂𝑎(𝑉ℎ) + 𝛿(𝑢*, 𝑉ℎ))

)︀
𝛿(𝑢, 𝑉ℎ), (2.12)

‖𝑢* − ̂︀𝑢*ℎ‖1 ≤ (︀1 + 𝐶𝜆(𝜂*𝑎(𝑉ℎ) + 𝛿(𝑢, 𝑉ℎ))
)︀
𝛿(𝑢*, 𝑉ℎ), (2.13)

Furthermore,

‖𝑢− ̂︀𝑢ℎ‖0 ≤ 𝐶𝜆𝜂𝑎(𝑉ℎ)𝛿(𝑢, 𝑉ℎ), (2.14)
‖𝑢* − ̂︀𝑢*ℎ‖0 ≤ 𝐶𝜆𝜂

*
𝑎(𝑉ℎ)𝛿(𝑢*, 𝑉ℎ), (2.15)

and

‖𝑢− ̂︀𝑢ℎ‖−1/2,𝜕Ω ≤ 𝐶𝜆𝜂𝑎(𝑉ℎ)𝛿(𝑢, 𝑉ℎ), (2.16)
‖𝑢* − ̂︀𝑢*ℎ‖−1/2,𝜕Ω ≤ 𝐶𝜆𝜂

*
𝑎(𝑉ℎ)𝛿(𝑢*, 𝑉ℎ). (2.17)

(ii) For each eigenvalue, we have

|𝜆− ̂︀𝜆ℎ| ≤ 𝐶𝜆𝛿(𝑢, 𝑉ℎ)𝛿(𝑢*, 𝑉ℎ). (2.18)

Here and hereafter 𝐶𝜆 is some constant depending on eigenvalue 𝜆 but independent of the mesh size ℎ.

Corollary 2.3. Based on the regularity (2.10), if 𝑉ℎ is the linear finite element space, then we have the following
estimates for 𝜂𝑎(𝑉ℎ), 𝜂*𝑎(𝑉ℎ), 𝛿(𝑢, 𝑉ℎ) and 𝛿(𝑢*, 𝑉ℎ):

𝜂𝑎(𝑉ℎ) ≤ 𝐶𝜎ℎ
𝜎,

𝜂*𝑎(𝑉ℎ) ≤ 𝐶𝜎ℎ
𝜎,

𝛿(𝑢, 𝑉ℎ) ≤ 𝐶𝜎ℎ
𝜎,

𝛿(𝑢*, 𝑉ℎ) ≤ 𝐶𝜎ℎ
𝜎,

𝐶𝜎 is some constant depending on (𝜆, 𝑢, 𝑢*) but independent of the mesh size ℎ.
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Lemma 2.4 ([47] Lem. 4.1). Suppose that (̂︀𝜆ℎ, ̂︀𝑢ℎ) ∈ C× 𝑉 is an eigenpair of (2.6). Let 𝑢⊥ℎ be the orthogonal
projection of ̂︀𝑢ℎ to 𝑀*

ℎ(𝜆) in the sense of inner product 𝑏(·, ·), and let

̂︀𝑢*ℎ =
𝑢⊥ℎ

‖𝑢⊥ℎ ‖0,𝜕Ω
,

and ̂︀𝜆*ℎ = ̂︀𝜆ℎ. Then when ℎ is small enough |𝑏(̂︀𝑢ℎ, ̂︀𝑢*ℎ)| ≥ 𝐶0/|̂︀𝜆ℎ|.

Remark 2.5. We can use the algorithm in Remark 4.1 in [47] to compute 𝑢⊥ℎ and then obtain ̂︀𝑢*ℎ.

Lemma 2.6 ([46, 51]). Assume (𝜆, 𝑢) ∈ C × 𝑉 and (𝜆, 𝑢*) ∈ C × 𝑉 satisfy (2.2) and (2.4), respectively, and
suppose 𝑤, 𝑤* ∈ 𝑉 such that 𝑏(𝑤,𝑤*) ̸= 0. Let us define

𝜆 =
𝑎(𝑤,𝑤*)
𝑏(𝑤,𝑤*)

.

Then we have following expansion

𝜆− 𝜆 =
−𝑎(𝑤 − 𝑢,𝑤* − 𝑢*)− 𝜆𝑏(𝑤 − 𝑢,𝑤* − 𝑢*)

𝑏(𝑤,𝑤*)
.

3. Full multigrid algorithm for non-selfadjoint Steklov eigenvalue problem

In this section, a type of full multigrid method is presented. In order to describe the full multigrid method,
we first introduce the sequence of finite element spaces. We generate a coarse mesh 𝒯𝐻 with the mesh size 𝐻
and the coarse linear finite element space 𝑉𝐻 is defined on the mesh 𝒯𝐻 . Then a sequence of triangulations 𝒯ℎ𝑘

of Ω ⊂ R𝑑 is determined as follows. Suppose 𝒯ℎ1 (produced from 𝒯𝐻 by regular refinements) is given and let
𝒯ℎ𝑘

be obtained from 𝒯ℎ𝑘−1 via 𝜁 times regular refinements (produce (𝛽𝑑)𝜁 subelements) such that

ℎ𝑘 =
(︂

1
𝛽

)︂𝜁

ℎ𝑘−1, 𝑘 = 2, · · · , 𝑛, (3.1)

where the positive number 𝛽 denotes the refinement index and larger than 1 (usually for classical bisection
refinement 𝛽 = 2 and 𝜁 = 1). Based on this sequence of meshes, the corresponding nested linear finite element
spaces can be built such that

𝑉𝐻 ⊆ 𝑉ℎ1 ⊂ 𝑉ℎ2 ⊂ · · · ⊂ 𝑉ℎ𝑛 . (3.2)

The sequence of finite element spaces 𝑉ℎ1 ⊂ 𝑉ℎ2 ⊂ · · · ⊂ 𝑉ℎ𝑛
and the finite element space 𝑉𝐻 have the following

relations of approximation accuracy (cf. [8, 16]): for 𝑘 = 2, · · · , 𝑛

1
𝐶𝛿

(︂
1
𝛽

)︂𝜁

𝛿(𝑢, 𝑉ℎ𝑘−1) ≤ 𝛿(𝑢, 𝑉ℎ𝑘
) ≤ 𝐶𝛿

(︂
1
𝛽

)︂𝜁

𝛿(𝑢, 𝑉ℎ𝑘−1), (3.3)

1
𝐶*𝛿

(︂
1
𝛽

)︂𝜁

𝛿(𝑢*, 𝑉ℎ𝑘−1) ≤ 𝛿(𝑢*, 𝑉ℎ𝑘
) ≤ 𝐶*𝛿

(︂
1
𝛽

)︂𝜁

𝛿(𝑢*, 𝑉ℎ𝑘−1). (3.4)
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3.1. One correction step

First, we present the one correction step to improve the accuracy of the given eigenvalue and eigenfunction
approximation. This correction contains solving an auxiliary boundary value problem inexactly on the current
finite element space and an eigenvalue problem on a slight extension of the coarsest finite element space. In this
paper, we use (̂︀𝜆ℎ, ̂︀𝑢ℎ, ̂︀𝑢*ℎ) to denote the solution of direct finite element method, see Lemma 2.2.

Assume that we have obtained the algebraic eigenpair approximations

(𝜆(ℓ)
ℎ𝑘
, 𝑢

(ℓ)
ℎ𝑘
, 𝑢
*(ℓ)
ℎ𝑘

) ∈ C× 𝑉ℎ𝑘
× 𝑉ℎ𝑘

where (ℓ) denotes the ℓ-th iteration step in the 𝑘-th level finite element space 𝑉ℎ𝑘
. In this subsection, a type of

correction step to improve the accuracy of the current eigenpair approximation (𝜆(ℓ)
ℎ𝑘
, 𝑢

(ℓ)
ℎ𝑘
, 𝑢
*(ℓ)
ℎ𝑘

) will be given as
follows.

Algorithm 3.1. One Correction Step

1. Define the following auxiliary boundary value problems:
Find �̌�(ℓ+1)

ℎ𝑘
∈ 𝑉ℎ𝑘

such that

𝑎𝑠(�̌�(ℓ+1)
ℎ𝑘

, 𝑣ℎ𝑘
) = −𝜆(ℓ)

ℎ𝑘
𝑏(𝑢(ℓ)

ℎ𝑘
, 𝑣ℎ𝑘

) + ((1 + 𝜅2𝑛(𝑥))𝑢(ℓ)
ℎ𝑘
, 𝑣ℎ𝑘

), ∀𝑣ℎ𝑘
∈ 𝑉ℎ𝑘

. (3.5)

Find �̌�*(ℓ+1)
ℎ𝑘

∈ 𝑉ℎ𝑘
such that

𝑎𝑠(𝑣ℎ𝑘
, �̌�
*(ℓ+1)
ℎ𝑘

) = −𝜆(ℓ)
ℎ𝑘
𝑏(𝑣ℎ𝑘

, 𝑢
*(ℓ)
ℎ𝑘

) + (𝑣ℎ𝑘
, (1 + 𝜅2𝑛(𝑥))𝑢*(ℓ)ℎ𝑘

), ∀𝑣ℎ𝑘
∈ 𝑉ℎ𝑘

. (3.6)

Solve (3.5) and (3.6) by performing 𝑚 multigrid iteration steps with the initial guess value 𝑢(ℓ)
ℎ𝑘

and 𝑢*(ℓ)ℎ𝑘

to obtain two new approximate solutions ̃︀𝑢(ℓ+1)
ℎ𝑘

and ̃︀𝑢*(ℓ+1)
ℎ𝑘

, respectively.

2. Define 𝑉𝐻,ℎ𝑘
= 𝑉𝐻 + span{̃︀𝑢(ℓ+1)

ℎ𝑘
} and 𝑉 *𝐻,ℎ𝑘

= 𝑉𝐻 + span{̃︀𝑢*(ℓ+1)
ℎ𝑘

}, and solve the following eigenvalue
problem:
Find (𝜆(ℓ+1)

ℎ𝑘
, 𝑢

(ℓ+1)
ℎ𝑘

) ∈ C× 𝑉𝐻,ℎ𝑘
such that

𝑎(𝑢(ℓ+1)
ℎ𝑘

, 𝑣𝐻,ℎ𝑘
) = −𝜆(ℓ+1)

ℎ𝑘
𝑏(𝑢(ℓ+1)

ℎ𝑘
, 𝑣𝐻,ℎ𝑘

), ∀𝑣𝐻,ℎ𝑘
∈ 𝑉𝐻,ℎ𝑘

. (3.7)

Find 𝑢*(ℓ+1)
ℎ𝑘

∈ 𝑉 *𝐻,ℎ𝑘
according to Lemma 2.4 and Remark 2.5.

In order to simplify the notation and summarize the above two steps, we define

(𝜆(ℓ+1)
ℎ𝑘

, 𝑢
(ℓ+1)
ℎ𝑘

, 𝑢
*(ℓ+1)
ℎ𝑘

) = EigenMG(𝑉𝐻 , 𝜆
(ℓ)
ℎ𝑘
, 𝑢

(ℓ)
ℎ𝑘
, 𝑢
*(ℓ)
ℎ𝑘

, 𝑉ℎ𝑘
,𝑚).

Remark 3.1. Here we first use finite element method to discretize (3.7) and then use implicitly restarted
Arnoldi methods (e.g., ARPACK or “eigs/sptarn” function in MATLAB) to solve the algebraic eigenvalue
problem.

Lemma 3.2 ([3, 7, 8, 20]). Performing 𝑚 multigrid iteration to solve linear Equations (3.5) and (3.6) with the
initial guess value 𝑢(ℓ)

ℎ𝑘
and 𝑢

*(ℓ)
ℎ𝑘

, we obtain two new approximate solutions ̃︀𝑢(ℓ+1)
ℎ𝑘

and ̃︀𝑢*(ℓ+1)
ℎ𝑘

which have the
following uniform contraction rate:

‖�̌�(ℓ+1)
ℎ𝑘

− ̃︀𝑢(ℓ+1)
ℎ𝑘

‖1 ≤ 𝜃‖�̌�(ℓ+1)
ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1, (3.8)

‖�̌�*(ℓ+1)
ℎ𝑘

− ̃︀𝑢*(ℓ+1)
ℎ𝑘

‖1 ≤ 𝜃‖�̌�*(ℓ+1)
ℎ𝑘

− 𝑢
*(ℓ)
ℎ𝑘

‖1, (3.9)
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where 𝜃 < 1 is a fixed constant independent of the mesh size ℎ𝑘 and iteration step ℓ.

Now, we turn to give the error estimates of Algorithm 3.1, which indicates that the accuracy of numerical
eigenpair can be improved after one correction step.

Theorem 3.3. Assume the given eigenpair approximation (𝜆(ℓ)
ℎ𝑘
, 𝑢

(ℓ)
ℎ𝑘
, 𝑢
*(ℓ)
ℎ𝑘

) has following estimates

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖0 ≤ 𝐶𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1, (3.10)

‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ)
ℎ𝑘

‖0 ≤ 𝐶𝜂*𝑎(𝑉𝐻)‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ)
ℎ𝑘

‖1, (3.11)

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖−1/2,𝜕Ω ≤ 𝐶𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1, (3.12)

‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ)
ℎ𝑘

‖−1/2,𝜕Ω ≤ 𝐶𝜂*𝑎(𝑉𝐻)‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ)
ℎ𝑘

‖1, (3.13)

|̂︀𝜆ℎ𝑘
− 𝜆

(ℓ)
ℎ𝑘
| ≤ 𝐶‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1‖̂︀𝑢*ℎ𝑘

− 𝑢
*(ℓ)
ℎ𝑘

‖1. (3.14)

After the One Correction Step defined in Algorithm 3.1, the resultant approximate eigenpair
(𝜆(ℓ+1)

ℎ𝑘
, 𝑢

(ℓ+1)
ℎ𝑘

, 𝑢
*(ℓ+1)
ℎ𝑘

) has the following error estimates

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1 ≤ 𝛾‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖1, (3.15)

‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ+1)
ℎ𝑘

‖1 ≤ 𝛾*‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ)
ℎ𝑘

‖1, (3.16)

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖0 ≤ 𝐶𝜆𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1, (3.17)

‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ+1)
ℎ𝑘

‖0 ≤ 𝐶𝜆𝜂
*
𝑎(𝑉𝐻)‖̂︀𝑢*ℎ𝑘

− 𝑢
*(ℓ+1)
ℎ𝑘

‖1, (3.18)

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖−1/2,𝜕Ω ≤ 𝐶𝜆𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1, (3.19)

‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ+1)
ℎ𝑘

‖−1/2,𝜕Ω ≤ 𝐶𝜆𝜂
*
𝑎(𝑉𝐻)‖̂︀𝑢*ℎ𝑘

− 𝑢
*(ℓ+1)
ℎ𝑘

‖1, (3.20)

|̂︀𝜆ℎ𝑘
− 𝜆

(ℓ+1)
ℎ𝑘

| ≤ 𝐶𝜆‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1‖̂︀𝑢*ℎ𝑘
− 𝑢

*(ℓ+1)
ℎ𝑘

‖1, (3.21)

where

𝛾 = 𝜃 +
(︁
𝜃𝐶𝜆 + (1 + 𝜃) ̃︀𝐶 + (1 + 𝜃) ̃︀𝐶𝐶𝜆

(︀
𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︀)︁(︁
𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︁
(3.22)

𝛾* = 𝜃 +
(︁
𝜃𝐶𝜆 + (1 + 𝜃) ̃︀𝐶* + (1 + 𝜃) ̃︀𝐶*𝐶𝜆

(︀
𝜂*𝑎(𝑉𝐻) + 𝛿(𝑢, 𝑉𝐻)

)︀)︁(︁
𝜂*𝑎(𝑉𝐻) + 𝛿(𝑢, 𝑉𝐻)

)︁
(3.23)

and

̃︀𝐶 = 𝐶2
𝑎𝐶
(︁
𝐶𝑡𝑟

(︀
|̂︀𝜆ℎ𝑘

|+ ‖𝑢(ℓ)
ℎ𝑘
‖−1/2,𝜕Ω

)︀
+ ‖1 + 𝜅2𝑛(𝑥)‖∞

)︁
,

̃︀𝐶* = 𝐶2
𝑎𝐶
(︁
𝐶𝑡𝑟

(︀
|̂︀𝜆ℎ𝑘

|+ ‖𝑢*(ℓ)ℎ𝑘
‖−1/2,𝜕Ω

)︀
+ ‖1 + 𝜅2𝑛(𝑥)‖∞

)︁
.

Proof. From (2.6) and (3.5) and trace theorem, setting 𝑤ℎ𝑘
= ̂︀𝑢ℎ𝑘

− �̌�
(ℓ+1)
ℎ𝑘

∈ 𝑉ℎ𝑘
, we have

𝑎𝑠(̂︀𝑢ℎ𝑘
− �̌�

(ℓ+1)
ℎ𝑘

, 𝑤ℎ𝑘
) = −𝑏(̂︀𝜆ℎ𝑘

̂︀𝑢ℎ𝑘
− 𝜆

(ℓ)
ℎ𝑘
𝑢

(ℓ)
ℎ𝑘
, 𝑤ℎ𝑘

) +
(︀
(1 + 𝜅2𝑛(𝑥))(̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘

), 𝑤ℎ𝑘

)︀
≤
(︀
|̂︀𝜆ℎ𝑘

|‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖−1/2,𝜕Ω + |̂︀𝜆ℎ𝑘

− 𝜆
(ℓ)
ℎ𝑘
|‖𝑢(ℓ)

ℎ𝑘
‖−1/2,𝜕Ω

)︀
‖𝑤ℎ𝑘

‖1/2,𝜕Ω

+‖1 + 𝜅2𝑛(𝑥)‖∞‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖0‖𝑤ℎ𝑘

‖0
≤
(︀
|̂︀𝜆ℎ𝑘

|‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖−1/2,𝜕Ω + |̂︀𝜆ℎ𝑘

− 𝜆
(ℓ)
ℎ𝑘
|‖𝑢(ℓ)

ℎ𝑘
‖−1/2,𝜕Ω

)︀
𝐶𝑡𝑟‖𝑤ℎ𝑘

‖1
+‖1 + 𝜅2𝑛(𝑥)‖∞‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖0‖𝑤ℎ𝑘

‖1,
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where 𝐶𝑡𝑟 is the constant in trace theorem. It leads to the following estimates by using (2.3), (3.10), (3.12) and
(3.14)

‖̂︀𝑢ℎ𝑘
− �̌�

(ℓ+1)
ℎ𝑘

‖1 ≤ ̃︀𝐶(︀𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)
)︀
‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1 (3.24)

where ̃︀𝐶 = 𝐶2
𝑎𝐶
(︁
𝐶𝑡𝑟

(︀
|̂︀𝜆ℎ𝑘

|+ ‖𝑢(ℓ)
ℎ𝑘
‖−1/2,𝜕Ω

)︀
+ ‖1 + 𝜅2𝑛(𝑥)‖∞

)︁
.

Combining (3.8) and (3.24) leads to the following error estimate for ̃︀𝑢(ℓ+1)
ℎ𝑘

‖�̌�(ℓ+1)
ℎ𝑘

− ̃︀𝑢(ℓ+1)
ℎ𝑘

‖1 ≤ 𝜃‖�̌�(ℓ+1)
ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1

≤ 𝜃
(︀
‖�̌�(ℓ+1)

ℎ𝑘
− ̂︀𝑢ℎ𝑘

‖1 + ‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖1
)︀

≤ 𝜃
(︁

1 + ̃︀𝐶(︀𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)
)︀)︁
‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1. (3.25)

Then from (3.24) and (3.25), we have the following inequalities

‖̂︀𝑢ℎ𝑘
− ̃︀𝑢(ℓ+1)

ℎ𝑘
‖1 ≤ ‖̂︀𝑢ℎ𝑘

− �̌�
(ℓ+1)
ℎ𝑘

‖1 + ‖�̌�(ℓ+1)
ℎ𝑘

− ̃︀𝑢(ℓ+1)
ℎ𝑘

‖1

≤
(︁
𝜃 + (1 + 𝜃) ̃︀𝐶(︀𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︀)︁
‖̂︀𝑢ℎ𝑘

− 𝑢
(ℓ)
ℎ𝑘
‖1. (3.26)

Since 𝑉𝐻,ℎ𝑘
⊂ 𝑉ℎ𝑘

, the eigenvalue problem (3.7) can be regarded as a finite dimensional subspace approxi-
mation of the eigenvalue problem (2.6). Combining 𝑉𝐻 ⊂ 𝑉𝐻,ℎ𝑘

and (2.12) the following estimates hold

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1 ≤
(︁

1 + 𝐶𝜆

(︀
𝜂𝑎(𝑉𝐻,ℎ𝑘

) + 𝛿(𝑢*, 𝑉𝐻,ℎ𝑘
)
)︀)︁

inf
𝑣𝐻,ℎ𝑘

∈𝑉𝐻,ℎ𝑘

‖̂︀𝑢ℎ𝑘
− 𝑣𝐻,ℎ𝑘

‖1

≤
(︁

1 + 𝐶𝜆

(︀
𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︀)︁
‖̂︀𝑢ℎ𝑘

− ̃︀𝑢(ℓ+1)
ℎ𝑘

‖1

≤ 𝛾‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ)
ℎ𝑘
‖1, (3.27)

here 𝛾 = 𝜃 +
(︁
𝜃𝐶𝜆 + (1 + 𝜃) ̃︀𝐶 + (1 + 𝜃) ̃︀𝐶𝐶𝜆

(︀
𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︀)︁(︁
𝜂𝑎(𝑉𝐻) + 𝛿(𝑢*, 𝑉𝐻)

)︁
. That is the desired

result (3.15).
Using (2.14), we have the following estimates

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖0 ≤ 𝐶𝜆𝜂𝑎(𝑉𝐻,ℎ𝑘
) inf

𝑣𝐻,ℎ𝑘
∈𝑉𝐻,ℎ𝑘

‖̂︀𝑢ℎ𝑘
− 𝑣𝐻,ℎ𝑘

‖1

≤ 𝐶𝜆𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1. (3.28)

Similarly, using (2.16), we have

‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖−1/2,𝜕Ω ≤ 𝐶𝜆𝜂𝑎(𝑉𝐻,ℎ𝑘
) inf

𝑣𝐻,ℎ𝑘
∈𝑉𝐻,ℎ𝑘

‖̂︀𝑢ℎ𝑘
− 𝑣𝐻,ℎ𝑘

‖1

≤ 𝐶𝜆𝜂𝑎(𝑉𝐻)‖̂︀𝑢ℎ𝑘
− 𝑢

(ℓ+1)
ℎ𝑘

‖1. (3.29)

The estimates (3.16), (3.18) and (3.20) for the adjoint problem can be proved in the similar way. Then the
desired (3.21) is the direct result of Lemma 2.2 and 2.6. �

Remark 3.4. Definitions (3.22) and (3.23), Lemma 2.2, Corollary 2.3 together with Lemma 3.2 imply that
𝛾 < 1 and 𝛾* < 1 when 𝐻 is small enough. If the considering eigenvalue 𝜆 is large or the spectral gap is
small, then we need to choose a smaller 𝐻. Furthermore, we can increase the multigrid steps for boundary
value problem to reduce 𝜃, and then makes 𝛾 and 𝛾* smaller. However, the practical application is not limited
by these requirements. Actually, 𝐻 and the coarsest space only need to match the number of eigenpairs to be
computed. In numerical implementations, 𝐻 does not need to be very small (e.g. 𝐻 =

√
2

8 in Subsect. 5.1).
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3.2. Full multigrid method for non-selfadjoint Steklov eigenvalue problem

Based on the one correction step defined in Algorithm 3.1, a type of full multigrid scheme will be introduced
in this subsection. The optimal error estimate with the optimal computational work will be deduced for this
type of full multigrid method.

Since the multigrid method for the boundary value problem has the uniform error reduction rate (cf. [20]),
we can choose suitable 𝑚 such that 𝜃 < 1 in (3.8) and (3.9). From the definition (3.22) for 𝛾, it is obvious that
𝛾 < 1 if the mesh size 𝐻 of 𝒯𝐻 is small enough. Based on these property, we can design a full multigrid method
for non-selfadjoint Steklov eigenvalue problem as follows.

Algorithm 3.2. Full Multigrid Scheme

1. Solve the following non-selfadjoint Steklov eigenvalue problem in 𝑉ℎ1 :
Find (𝜆ℎ1 , 𝑢ℎ1) ∈ C× 𝑉ℎ1 × 𝑉ℎ1 such that

𝑎(𝑢ℎ1 , 𝑣ℎ1) = −𝜆ℎ1𝑏(𝑢ℎ1 , 𝑣ℎ1), ∀𝑣ℎ1 ∈ 𝑉ℎ1 .

and find 𝑢*ℎ1
∈ 𝑉ℎ1 according to Lemma 2.4 and Remark 2.5.

Hence we get the desired eigenpair approximation (𝜆ℎ1 , 𝑢ℎ1 , 𝑢
*
ℎ1

) ∈ C× 𝑉ℎ1 × 𝑉ℎ1 .
2. For 𝑘 = 2, · · · , 𝑛− 1, do the following iterations

∙ Set 𝜆(0)
ℎ𝑘

= 𝜆ℎ𝑘−1 , 𝑢
(0)
ℎ𝑘

= 𝑢ℎ𝑘−1 and 𝑢*(0)ℎ𝑘
= 𝑢*ℎ𝑘−1

.
∙ Perform the correction steps

(𝜆(ℓ+1)
ℎ𝑘

, 𝑢
(ℓ+1)
ℎ𝑘

, 𝑢
*(ℓ+1)
ℎ𝑘

) = EigenMG(𝑉𝐻 , 𝜆
(ℓ)
ℎ𝑘
, 𝑢

(ℓ)
ℎ𝑘
, 𝑢
*(ℓ)
ℎ𝑘

, 𝑉ℎ𝑘
,𝑚), for ℓ = 0, · · · , 𝑝− 1.

∙ Set 𝜆ℎ𝑘
= 𝜆

(𝑝)
ℎ𝑘

, 𝑢ℎ𝑘
= 𝑢

(𝑝)
ℎ𝑘

and 𝑢*ℎ𝑘
= 𝑢

*(𝑝)
ℎ𝑘

.
End Do

3. Do the following iterations on the finest level space 𝑉ℎ𝑛

∙ Set 𝜆(0)
ℎ𝑛

= 𝜆ℎ𝑛−1 , 𝑢
(0)
ℎ𝑛

= 𝑢ℎ𝑛−1 and 𝑢*(0)ℎ𝑛
= 𝑢*ℎ𝑛−1

.
∙ Perform the correction steps

(𝜆(ℓ+1)
ℎ𝑛

, 𝑢
(ℓ+1)
ℎ𝑛

, 𝑢
*(ℓ+1)
ℎ𝑛

) = EigenMG(𝑉𝐻 , 𝜆
(ℓ)
ℎ𝑛
, 𝑢

(ℓ)
ℎ𝑛
, 𝑢
*(ℓ)
ℎ𝑛

, 𝑉ℎ𝑛 ,𝑚), for ℓ = 0, · · · , 𝑝− 1.

∙ Set 𝑢ℎ𝑛 = 𝑢
(𝑝)
ℎ𝑛

and 𝑢*ℎ𝑛
= 𝑢

*(𝑝)
ℎ𝑛

.
∙ Compute the generalized Rayleigh quotient

𝜆ℎ𝑛
=
𝑎(𝑢ℎ𝑛

, 𝑢*ℎ𝑛
)

𝑏(𝑢ℎ𝑛
, 𝑢*ℎ𝑛

)
. (3.30)

Finally, we obtain an eigenpair approximation (𝜆ℎ𝑛 , 𝑢ℎ𝑛 , 𝑢
*
ℎ𝑛

) ∈ C× 𝑉ℎ𝑛 × 𝑉ℎ𝑛 in the finest space.

Remark 3.5. Actually, if we know the distribution of eigenvalues in advance, our algorithm (Algorithm 3.2,
3.4 and 4.2) can solve any eigenvalue we want. But, the distribution of eigenvalues is an open problem. So we
just show the convergence of several eigenvalues with smallest magnitude in our numerical tests.
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Theorem 3.6. Assume (3.3) and the conditions of Theorem 3.3 hold. After implementing Algorithm 3.2, the
resultant eigenpair approximation (𝜆ℎ𝑛

, 𝑢ℎ𝑛
, 𝑢*ℎ𝑛

) has the following error estimate

‖̂︀𝑢ℎ𝑛
− 𝑢ℎ𝑛

‖1 ≤ 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝛿(𝑢, 𝑉ℎ𝑛

), (3.31)

‖̂︀𝑢*ℎ𝑛
− 𝑢*ℎ𝑛

‖1 ≤ 2𝐶𝜆
𝐶*𝛿𝛽

𝜁(𝛾*)𝑝

1− 𝐶*𝛿𝛽
𝜁(𝛾*)𝑝

𝛿(𝑢*, 𝑉ℎ𝑛
), (3.32)

‖̂︀𝑢ℎ𝑛 − 𝑢ℎ𝑛‖−1/2,𝜕Ω ≤ 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝜂𝑎(𝑉𝐻)𝛿(𝑢, 𝑉ℎ𝑛), (3.33)

‖̂︀𝑢*ℎ𝑛
− 𝑢*ℎ𝑛

‖−1/2,𝜕Ω ≤ 2𝐶𝜆
𝐶*𝛿𝛽

𝜁(𝛾*)𝑝

1− 𝐶*𝛿𝛽
𝜁(𝛾*)𝑝

𝜂*𝑎(𝑉𝐻)𝛿(𝑢*, 𝑉ℎ𝑛
), (3.34)

|̂︀𝜆ℎ𝑛
− 𝜆ℎ𝑛

| ≤ 4𝐶2
𝜆

𝐶𝛿𝐶
*
𝛿𝛽

2𝜁(𝛾𝛾*)𝑝

(1− 𝐶𝛿𝛽𝜁𝛾𝑝)(1− 𝐶*𝛿𝛽
𝜁(𝛾*)𝑝)

𝛿(𝑢, 𝑉ℎ𝑛
)𝛿(𝑢*, 𝑉ℎ𝑛

), (3.35)

under the conditions 𝐶𝛿𝛽
𝜁𝛾𝑝 < 1 and 𝐶*𝛿𝛽

𝜁(𝛾*)𝑝 < 1.

Proof. Define 𝑒𝑘 := ̂︀𝑢ℎ𝑘
− 𝑢ℎ𝑘

. Then from Step 1 in Algorithm 3.2, we have 𝑒1 = 0. Then the assumption
(3.10)–(3.14) in Theorem 3.3 are satisfied for 𝑘 = 1. From Algorithms 3.1 and 3.2, Theorem 3.3, and recursive
argument, the assumption (3.10)–(3.14) hold for each level of space 𝑉ℎ𝑘

(𝑘 = 1, · · · , 𝑛). Then the convergence
rate (3.15) and (3.16) are valid for all 𝑘 = 1, · · · , 𝑛 and ℓ = 0, · · · , 𝑝− 1.

For 𝑘 = 2, · · · , 𝑛, from Lemma 2.2 and 3.3, and recursive argument, we have

‖𝑒𝑘‖1 ≤ 𝛾𝑝‖̂︀𝑢ℎ𝑘
− 𝑢ℎ𝑘−1‖1

≤ 𝛾𝑝
(︀
‖̂︀𝑢ℎ𝑘

− ̂︀𝑢ℎ𝑘−1‖1 + ‖̂︀𝑢ℎ𝑘−1 − 𝑢ℎ𝑘−1‖1
)︀

≤ 𝛾𝑝
(︀
‖̂︀𝑢ℎ𝑘

− 𝑢‖1 + ‖𝑢− ̂︀𝑢ℎ𝑘−1‖1 + ‖̂︀𝑢ℎ𝑘−1 − 𝑢ℎ𝑘−1‖1
)︀

≤ 𝛾𝑝
(︀
𝐶𝜆𝛿(𝑢, 𝑉ℎ𝑘

) + 𝐶𝜆𝛿(𝑢, 𝑉ℎ𝑘−1) + ‖𝑒𝑘−1‖1
)︀

≤ 𝛾𝑝
(︀
2𝐶𝜆𝛿(𝑢, 𝑉ℎ𝑘−1) + ‖𝑒𝑘−1‖1

)︀
. (3.36)

From (3.3), we have the following relationship

𝛿(𝑢, 𝑉ℎ𝑘
) ≤

(︀
𝐶𝛿𝛽

𝜁
)︀𝑛−𝑘

𝛿(𝑢, 𝑉ℎ𝑛
). (3.37)

Then, by iterating inequality (3.36) and the condition 𝐶𝛿𝛽
𝜁𝛾𝑝 < 1, the following inequalities hold

‖𝑒𝑛‖1 ≤ 2𝐶𝜆𝛾
𝑝𝛿(𝑢, 𝑉ℎ𝑛−1) + 2𝐶𝜆𝛾

2𝑝𝛿(𝑢, 𝑉ℎ𝑛−2) + · · ·+ 2𝐶𝜆𝛾
(𝑛−1)𝑝𝛿(𝑢, 𝑉ℎ1)

≤ 2𝐶𝜆

𝑛−1∑︁
𝑘=1

𝛾(𝑛−𝑘)𝑝𝛿(𝑢, 𝑉ℎ𝑘
) = 2𝐶𝜆

(︃
𝑛−1∑︁
𝑘=1

(︀
𝐶𝛿𝛽

𝜁𝛾𝑝
)︀𝑛−𝑘

)︃
𝛿(𝑢, 𝑉ℎ𝑛)

≤ 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝛿(𝑢, 𝑉ℎ𝑛

). (3.38)

For such choice of 𝑝, we arrive the desired result (3.31). Equation (3.33) is obtained by (3.19) and (3.31).
Equation (3.32) and (3.34) can be proved in the similar way. Furthermore, (3.35) can be obtained similar to
(3.21) from Lemma 2.6. �

Now, we turn to the following final error estimates for our full multigrid method.
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Theorem 3.7. Assume the conditions of Lemma 2.2, Corollary 2.3 and Theorem 3.6 hold. After implementing
Algorithm 3.2, the resultant eigenpair approximation (𝜆ℎ𝑛

, 𝑢ℎ𝑛
, 𝑢*ℎ𝑛

) has the following error estimates

‖𝑢− 𝑢ℎ𝑛
‖1 ≤ 𝐶1ℎ

𝜎
𝑛, (3.39)

‖𝑢* − 𝑢*ℎ𝑛
‖1 ≤ 𝐶2ℎ

𝜎
𝑛, , (3.40)

‖𝑢− 𝑢ℎ𝑛
‖−1/2,𝜕Ω ≤ 𝐶3𝐻

𝜎ℎ𝜎
𝑛, (3.41)

‖𝑢* − 𝑢*ℎ𝑛
‖−1/2,𝜕Ω ≤ 𝐶4𝐻

𝜎ℎ𝜎
𝑛, (3.42)

|𝜆− 𝜆ℎ𝑛 | ≤ 𝐶5ℎ
2𝜎
𝑛 , (3.43)

where 𝐶1 =
(︁

1 + 2𝐶𝜆𝐶𝜎ℎ
𝜎
𝑛 + 2𝐶𝜆

𝐶𝛿𝛽𝜁𝛾𝑝

1−𝐶𝛿𝛽𝜁𝛾𝑝

)︁
𝐶𝜎, 𝐶2 =

(︁
1 + 2𝐶𝜆𝐶𝜎ℎ

𝜎
𝑛 + 2𝐶𝜆

𝐶*
𝛿 𝛽𝜁(𝛾*)𝑝

1−𝐶*
𝛿 𝛽𝜁(𝛾*)𝑝

)︁
𝐶𝜎,

𝐶3 =
(︁
𝐶𝜆𝐶𝜎 + 2𝐶𝜆𝐶𝜎

𝐶𝛿𝛽𝜁𝛾𝑝

1−𝐶𝛿𝛽𝜁𝛾𝑝

)︁
𝐶𝜎, 𝐶4 =

(︁
𝐶𝜆𝐶𝜎 + 2𝐶𝜆𝐶𝜎

𝐶*
𝛿 𝛽𝜁(𝛾*)𝑝

1−𝐶*
𝛿 𝛽𝜁(𝛾*)𝑝

)︁
𝐶𝜎 and

𝐶5 = 𝐶1𝐶2
|𝜆ℎ𝑛 |

𝐶0

(︀
𝐶2

𝑎 + ‖1 + 𝜅2𝑛(𝑥)‖∞ + |𝜆|𝐶2
𝑡𝑟

)︀
.

Proof. Based on (2.12), (3.31), Corollary 2.3 and triangular inequality, we have

‖𝑢− 𝑢ℎ𝑛
‖1 ≤ ‖𝑢− ̂︀𝑢ℎ𝑛

‖1 + ‖̂︀𝑢ℎ𝑛
− 𝑢ℎ𝑛

‖1

≤
(︀
1 + 𝐶𝜆(𝜂𝑎(𝑉ℎ𝑛

) + 𝛿(𝑢*, 𝑉ℎ𝑛
))
)︀
𝛿(𝑢, 𝑉ℎ𝑛

) + 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝛿(𝑢, 𝑉ℎ𝑛

)

≤
(︂

1 + 𝐶𝜆(𝜂𝑎(𝑉ℎ𝑛) + 𝛿(𝑢*, 𝑉ℎ𝑛)) + 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝

)︂
𝛿(𝑢, 𝑉ℎ𝑛)

≤
(︂

1 + 2𝐶𝜆𝐶𝜎ℎ
𝜎
𝑛 + 2𝐶𝜆

𝐶𝛿𝛽
𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝

)︂
𝐶𝜎ℎ

𝜎
𝑛.

This is the desired result (3.39).
From (2.16), (3.33), Corollary 2.3 and triangular inequality, the following estimates hold:

‖𝑢− 𝑢ℎ𝑛‖−1/2,𝜕Ω ≤ ‖𝑢− ̂︀𝑢ℎ𝑛‖−1/2,𝜕Ω + ‖̂︀𝑢ℎ𝑛 − 𝑢ℎ𝑛‖−1/2,𝜕Ω

≤ 𝐶𝜆𝜂𝑎(𝑉ℎ𝑛
)𝛿(𝑢, 𝑉ℎ𝑛

) + 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝜂𝑎(𝑉𝐻)𝛿(𝑢, 𝑉ℎ𝑛

)

≤
(︂
𝐶𝜆𝜂𝑎(𝑉ℎ𝑛

) + 2𝐶𝜆
𝐶𝛿𝛽

𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝜂𝑎(𝑉𝐻)

)︂
𝛿(𝑢, 𝑉ℎ𝑛

)

≤
(︂
𝐶𝜆𝐶𝜎ℎ

𝜎
𝑛 + 2𝐶𝜆𝐶𝜎

𝐶𝛿𝛽
𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝
𝐻𝜎

)︂
𝐶𝜎ℎ

𝜎
𝑛

≤
(︂
𝐶𝜆𝐶𝜎 + 2𝐶𝜆𝐶𝜎

𝐶𝛿𝛽
𝜁𝛾𝑝

1− 𝐶𝛿𝛽𝜁𝛾𝑝

)︂
𝐶𝜎𝐻

𝜎ℎ𝜎
𝑛.

This is the desired result (3.41).
The estimates (3.40) and (3.42) for the adjoint problem can be proved in the similar way.
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Combining Lemma 2.4, 2.6, (2.3), (3.30) and trace theorem, we obtain

|𝜆ℎ𝑛
− 𝜆| =

⃒⃒⃒⃒
⃒−𝑎(𝑢ℎ𝑛

− 𝑢, 𝑢*ℎ𝑛
− 𝑢*)− 𝜆𝑏(𝑢ℎ𝑛

− 𝑢, 𝑢*ℎ𝑛
− 𝑢*)

𝑏(𝑢ℎ𝑛
, 𝑢*ℎ𝑛

)

⃒⃒⃒⃒
⃒

≤
|𝑎𝑠(𝑢ℎ𝑛 − 𝑢, 𝑢*ℎ𝑛

− 𝑢*)|+ |
(︀
(1 + 𝜅2𝑛(𝑥))(𝑢ℎ𝑛 − 𝑢), 𝑢*ℎ𝑛

− 𝑢*
)︀
|+ |𝜆||𝑏(𝑢ℎ𝑛 − 𝑢, 𝑢*ℎ𝑛

− 𝑢*)|
|𝑏(𝑢ℎ𝑛 , 𝑢

*
ℎ𝑛

)|

≤ |𝜆ℎ𝑛
|

𝐶0

(︁
𝐶2

𝑎‖𝑢ℎ𝑛
− 𝑢‖1‖𝑢*ℎ𝑛

− 𝑢*‖1 + ‖1 + 𝜅2𝑛(𝑥)‖∞‖𝑢ℎ𝑛
− 𝑢)‖1‖𝑢*ℎ𝑛

− 𝑢*‖1

+|𝜆|𝐶2
𝑡𝑟‖𝑢ℎ𝑛 − 𝑢‖1‖𝑢*ℎ𝑛

− 𝑢*‖1
)︁

≤ |𝜆ℎ𝑛 |
𝐶0

(︀
𝐶2

𝑎 + ‖1 + 𝜅2𝑛(𝑥)‖∞ + |𝜆|𝐶2
𝑡𝑟

)︀
‖𝑢ℎ𝑛

− 𝑢‖1‖𝑢*ℎ𝑛
− 𝑢*‖1. (3.44)

From (3.44), (3.39) and (3.40), we can get the desired result (3.43). �

3.3. Estimate of the computational work

In this subsection, we turn our attention to the estimate of computational work for the full multigrid method
defined in Algorithm 3.2. It will be shown that the full multigrid method makes solving the non-selfadjoint
Steklov eigenvalue problem need almost the same work as solving the corresponding linear boundary value
problems. Besides, we turn our attention to the estimate of computational work for the full multigrid method
defined in Algorithm 3.2.

First, we define the dimension of each level finite element space as 𝑁𝑘 := dim𝑉ℎ𝑘
. Then we have

𝑁𝑘 ≈
(︁ 1
𝛽

)︁𝑑(𝑛−𝑘)𝜁

𝑁𝑛, 𝑘 = 1, 2, · · · , 𝑛. (3.45)

Theorem 3.8. Assume the eigenvalue solving in the coarse spaces 𝑉𝐻,ℎ𝑘
(𝑘 = 1, · · · , 𝑛) and 𝑉ℎ1 need work

𝑀𝐻 and 𝑀ℎ1 , respectively, and the work of the multigrid solver in each level space 𝑉ℎ𝑘
is 𝒪(𝑁𝑘) for 𝑘 =

2, 3, · · · , 𝑛. Then the total computational work of Algorithm 3.2 can be bounded by 𝒪(𝑁𝑛 +𝑀𝐻 log𝑁𝑛 +𝑀ℎ1),
and furthermore 𝒪(𝑁𝑛) provided 𝑀𝐻 ≪ 𝑁𝑛 and 𝑀ℎ1 ≤ 𝑁𝑛.

Proof. We use 𝑊𝑘 to denote the work involved in each correction step on the 𝑘-th finite element space 𝑉ℎ𝑘
.

Based on Algorithms 3.1 and 3.2,

𝑊1 = 2𝑀ℎ1 , 𝑊𝑘 . 2𝑀𝐻 + 2𝑚𝑁𝑘, 𝑘 = 2, · · · , 𝑛. (3.46)

Based on the property (3.45), iterating (3.46) leads to

Total work = 𝑊1 +
𝑛∑︁

𝑘=2

(𝑝𝑊𝑘) . 2𝑀ℎ1 +
𝑛∑︁

𝑘=2

(2𝑝𝑀𝐻 + 2𝑚𝑝𝑁𝑘)

. 𝑀ℎ1 + 𝑛𝑀𝐻 +
𝑛∑︁

𝑘=2

𝑁𝑘

. 𝑀ℎ1 +𝑀𝐻 log𝑁𝑛 +
𝑛∑︁

𝑘=2

(︂
1
𝛽

)︂𝑑(𝑛−𝑘)𝜁

𝑁𝑛

. 𝑁𝑛 +𝑀𝐻 log𝑁𝑛 +𝑀ℎ1 .

This is the desired result and we complete the proof. �
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Remark 3.9. The high efficiency of the multigrid method for boundary value problems leads to that one does
not need to choose large 𝑚 and 𝑝, please see Section 5 and [20, 26]. The computational works 𝒪(𝑀𝐻) and
𝒪(𝑀ℎ1) for the non-selfadjoint Steklov eigenvalue problem and its adjoint problem depend on the eigenvalue
solver. Fortunately, they are very small since the eigenvalue problems which are required to solve are defined on
very low dimensional spaces 𝑉𝐻,ℎ𝑘

(𝑘 = 2, · · · , 𝑛) and 𝑉ℎ1 . Thus, Algorithm 3.2 has the qusi-optimal complexity.

3.4. Full multigrid method for computing multiple eigenpairs

Based on full mutigrid method, we can extend Algorithm 3.2 to compute multiple eigenpairs. Firstly, we
should introduce the one correction step for computing multiple eigenpairs of non-selfadjoint Steklov problem.

Assume that we have obtained the 𝑞 eigenpair approximations (𝜆(ℓ)
𝑗,ℎ𝑘

, 𝑢
(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

) ∈ C × 𝑉ℎ𝑘
× 𝑉ℎ𝑘

for
𝑗 = 𝑖, · · · , 𝑖+ 𝑞− 1. Now we introduce a type of iteration step to improve the accuracy of the current eigenpair
approximation {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 .

Algorithm 3.3. One Correction Step for Computing Multiple Eigenpairs

1. For 𝑗 = 𝑖, · · · , 𝑖+ 𝑞 − 1, do:
Define the following auxiliary boundary value problems:
Find �̌�(ℓ+1)

𝑗,ℎ𝑘
∈ 𝑉ℎ𝑘

such that

𝑎𝑠(�̌�(ℓ+1)
𝑗,ℎ𝑘

, 𝑣ℎ𝑘
) = −𝜆(ℓ)

𝑗,ℎ𝑘
𝑏(𝑢(ℓ)

𝑗,ℎ𝑘
, 𝑣ℎ𝑘

) + ((1 + 𝜅2𝑛(𝑥))𝑢(ℓ)
𝑗,ℎ𝑘

, 𝑣ℎ𝑘
), ∀𝑣ℎ𝑘

∈ 𝑉ℎ𝑘
. (3.47)

Find �̌�*(ℓ+1)
𝑗,ℎ𝑘

∈ 𝑉ℎ𝑘
such that

𝑎𝑠(𝑣ℎ𝑘
, �̌�
*(ℓ+1)
𝑗,ℎ𝑘

) = −𝜆(ℓ)
𝑗,ℎ𝑘

𝑏(𝑣ℎ𝑘
, 𝑢
*(ℓ)
𝑗,ℎ𝑘

) + (𝑣ℎ𝑘
, (1 + 𝜅2𝑛(𝑥))𝑢*(ℓ)𝑗,ℎ𝑘

), ∀𝑣ℎ𝑘
∈ 𝑉ℎ𝑘

. (3.48)

Solve (3.47) and (3.48) by performing 𝑚 multigrid iteration steps with the initial guess value 𝑢(ℓ)
𝑗,ℎ𝑘

and

𝑢
*(ℓ)
𝑗,ℎ𝑘

to obtain two new approximate solutions ̃︀𝑢(ℓ+1)
𝑗,ℎ𝑘

and ̃︀𝑢*(ℓ+1)
𝑗,ℎ𝑘

, respectively.
2. Define

̃︀𝑉𝐻,ℎ𝑘
= 𝑉𝐻 + span{̃︀𝑢(ℓ+1)

𝑖,ℎ𝑘
, · · · , ̃︀𝑢(ℓ+1)

𝑖+𝑞−1,ℎ𝑘
}, ̃︀𝑉 *𝐻,ℎ𝑘

= 𝑉𝐻 + span{̃︀𝑢*(ℓ+1)
𝑖,ℎ𝑘

, · · · , ̃︀𝑢*(ℓ+1)
𝑖+𝑞−1,ℎ𝑘

},

and solve the following eigenvalue problems for 𝑗 = 𝑖, · · · , 𝑖+ 𝑞 − 1:
Find (𝜆(ℓ+1)

𝑗,ℎ𝑘
, 𝑢

(ℓ+1)
𝑗,ℎ𝑘

) ∈ C× ̃︀𝑉𝐻,ℎ𝑘
such that

𝑎(𝑢(ℓ+1)
𝑗,ℎ𝑘

, 𝑣𝐻,ℎ𝑘
) = −𝜆(ℓ+1)

𝑗,ℎ𝑘
𝑏(𝑢(ℓ+1)

𝑗,ℎ𝑘
, 𝑣𝐻,ℎ𝑘

), ∀𝑣𝐻,ℎ𝑘
∈ ̃︀𝑉𝐻,ℎ𝑘

.

Find 𝑢*(ℓ+1)
𝑗,ℎ𝑘

∈ ̃︀𝑉 *𝐻,ℎ𝑘
according to Lemma 2.4 and Remark 2.5.

In order to simplify the notation and summarize the above two steps, we define

{𝜆(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
*(ℓ+1)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = EigenMG Multi(𝑉𝐻 , {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 , 𝑉ℎ𝑘

,𝑚).

Since using the multigrid method for solving the boundary value problems in Step 1 of Algorithm 3.3, we
have the same uniform contraction rate as Lemma 3.2:

‖�̌�(ℓ+1)
𝑗,ℎ𝑘

− ̃︀𝑢(ℓ+1)
𝑗,ℎ𝑘

‖1 ≤ 𝜃‖�̌�(ℓ+1)
𝑗,ℎ𝑘

− 𝑢
(ℓ)
𝑗,ℎ𝑘

‖1,

‖�̌�*(ℓ+1)
𝑗,ℎ𝑘

− ̃︀𝑢*(ℓ+1)
𝑗,ℎ𝑘

‖1 ≤ 𝜃‖�̌�*(ℓ+1)
𝑗,ℎ𝑘

− 𝑢
*(ℓ)
𝑗,ℎ𝑘

‖1.
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Here we can choose suitable 𝑚 such that 𝜃 < 1 in the first step in Algorithm 3.3. Similar to Algorithm 3.2, we
can build the following full multigrid method for several eigenvalue problems.

Algorithm 3.4. Full Multigrid Scheme for Computing Multiple Eigenpairs

1. Solve the following non-selfadjoint Steklov eigenvalue problems in 𝑉ℎ1 :
Find {𝜆𝑗,ℎ1 , 𝑢𝑗,ℎ1}

𝑖+𝑞−1
𝑗=𝑖 ∈ C× 𝑉ℎ1 such that

𝑎(𝑢𝑗,ℎ1 , 𝑣ℎ1) = −𝜆𝑗,ℎ1𝑏(𝑢𝑗,ℎ1 , 𝑣ℎ1), ∀𝑣ℎ1 ∈ 𝑉ℎ1 .

Find {𝑢*𝑗,ℎ1
}𝑖+𝑞−1

𝑗=𝑖 ∈ 𝑉ℎ1 according to Lemma 2.4 and Remark 2.5.
Obtain the desired eigenpair approximation {𝜆𝑗,ℎ1 , 𝑢𝑗,ℎ1 , 𝑢

*
𝑗,ℎ1

}𝑖+𝑞−1
𝑗=𝑖 ∈ C× 𝑉ℎ1 × 𝑉ℎ1 .

2. For 𝑘 = 2, · · · , 𝑛, do the following iterations
∙ Set {𝜆(0)

𝑗,ℎ𝑘
, 𝑢

(0)
𝑗,ℎ𝑘

, 𝑢
*(0)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝜆𝑗,ℎ𝑘−1 , 𝑢𝑗,ℎ𝑘−1 , 𝑢

*
𝑗,ℎ𝑘−1

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Do the following one correction step by multigrid for ℓ = 0, · · · , 𝑝− 1:

{𝜆(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
*(ℓ+1)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = EigenMG Multi(𝑉𝐻 , {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 , 𝑉ℎ𝑘

,𝑚).

∙ Set {𝜆𝑗,ℎ𝑘
, 𝑢𝑗,ℎ𝑘

, 𝑢*𝑗,ℎ𝑘
}𝑖+𝑞−1

𝑗=𝑖 = {𝜆(𝑝)
𝑗,ℎ𝑘

, 𝑢
(𝑝)
𝑗,ℎ𝑘

, 𝑢
*(𝑝)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 .

End Do
3. Do the following iterations on the finest level space 𝑉ℎ𝑛

∙ Set {𝜆(0)
𝑗,ℎ𝑘

, 𝑢
(0)
𝑗,ℎ𝑘

, 𝑢
*(0)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝜆𝑗,ℎ𝑘−1 , 𝑢𝑗,ℎ𝑘−1 , 𝑢

*
𝑗,ℎ𝑘−1

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Do the following one correction step by multigrid for ℓ = 0, · · · , 𝑝− 1:

{𝜆(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
*(ℓ+1)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = EigenMG Multi(𝑉𝐻 , {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 , 𝑉ℎ𝑘

,𝑚).

∙ Set {𝑢𝑗,ℎ𝑘
, 𝑢*𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝑢(𝑝)

𝑗,ℎ𝑘
, 𝑢
*(𝑝)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Compute the generalized Rayleigh quotient

𝜆𝑗,ℎ𝑛
=
𝑎(𝑢𝑗,ℎ𝑛

, 𝑢*𝑗,ℎ𝑛
)

𝑏(𝑢𝑗,ℎ𝑛 , 𝑢
*
𝑗,ℎ𝑛

)
(𝑗 = 𝑖, · · · , 𝑖+ 𝑞 − 1).

Finally, we obtain an eigenpair approximation {𝜆𝑗,ℎ𝑛
, 𝑢𝑗,ℎ𝑛

, 𝑢*𝑗,ℎ𝑛
}𝑖+𝑞−1

𝑗=𝑖 ∈ C×𝑉ℎ𝑛
×𝑉ℎ𝑛

in the finest space.

Remark 3.10. We can also obtain the optimal convergence order and almost optimal estimation of computa-
tion work of Algorithm 3.4 similar to Theorem 3.6 and Theorem 3.8. For more detail, please refer to [15].

4. Adaptive full multigrid for multiple non-selfadjoint Steklov eigenvalue
problems

In this section, based on the a posteriori error estimators we will establish an adaptive full multigrid for the
non-selfadjoint Steklov eigenvalue problem. Here, we only describe the scheme without analysis.

In the above full multigrid method, we refine the mesh uniformly. However, this is not practical since the
amount of required memory will increase very rapidly as we refine the mesh. Hence, an efficient refinement
strategy is desired. On the one hand, the solution should be resolved well with the refined mesh. On the other
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hand, the total amount of the mesh elements should be controlled well to make the simulation efficient. Based
on the above discussion, adaptive mesh method is a competitive candidate for the refinement strategy.

A standard adaptive mesh process can be described by the following one

· · ·Solve → Estimate → Mark → Refine · · ·.

More precisely, to get 𝒯ℎ𝑘+1 from 𝒯ℎ𝑘
, we first solve the discrete equation on 𝒯ℎ𝑘

to get the approximate solution
and then calculate the a posteriori error estimator on each mesh element. Next, we mark the elements with big
errors and these elements are refined in such a way that the triangulation is still shape regular and conforming.
Here, we choose the ZZ recovery-based error estimator [45,53] for (2.1). Based on the recovery operator 𝐺ℎ (cf.
[45, 53]), for each element 𝐾 ∈ 𝒯ℎ, we define the local error indicator 𝜂ℎ(𝑢ℎ,𝐾) and 𝜂*ℎ(𝑢*ℎ,𝐾) by

𝜂ℎ(𝑢ℎ,𝐾) := ‖𝐺ℎ𝑢ℎ −∇𝑢ℎ‖0,𝐾 and 𝜂*ℎ(𝑢*ℎ,𝐾) := ‖𝐺ℎ𝑢
*
ℎ −∇𝑢*ℎ‖0,𝐾 , (4.1)

and the error indicator for a subdomain 𝜔 ⊂ Ω by

𝜂ℎ(𝑢ℎ, 𝜔) :=
(︁ ∑︁

𝐾∈𝒯ℎ,𝐾⊂𝜔

𝜂2
ℎ(𝑢ℎ,𝐾)

)︁1/2

and 𝜂*ℎ(𝑢*ℎ, 𝜔) :=
(︁ ∑︁

𝐾∈𝒯ℎ,𝐾⊂𝜔

𝜂*2ℎ (𝑢*ℎ,𝐾)
)︁1/2

,

and the main error indicator for a subdomain 𝜔 ⊂ Ω by

𝜂ℎ(𝑢ℎ, 𝑢
*
ℎ, 𝜔) :=

(︁
𝜂2

ℎ(𝑢ℎ, 𝜔) + 𝜂*2ℎ (𝑢*ℎ, 𝜔)
)︁1/2

. (4.2)

Based on the error indicator (4.2), we choose the Dörfler’s marking strategy for 𝑞 approximations
{𝜆𝑗,ℎ, 𝑢𝑗,ℎ, 𝑢

*
𝑗,ℎ}

𝑖+𝑞−1
𝑗=𝑖 to construct subset ℳℎ for local refinement.

Algorithm 4.1. Dörfler’s Marking Strategy.

1. Given a parameter ̂︀𝜃 ∈ (0, 1).
2. Construct a minimal subset ℳℎ from 𝒯ℎ by selecting some elements in 𝒯ℎ such that

𝑖+𝑞−1∑︁
𝑗=𝑖

𝜂ℎ(𝑢𝑗,ℎ, 𝑢
*
𝑗,ℎ,ℳℎ) ≥ ̂︀𝜃 𝑖+𝑞−1∑︁

𝑗=𝑖

𝜂ℎ(𝑢𝑗,ℎ, 𝑢
*
𝑗,ℎ, 𝒯ℎ).

3. Mark all the elements in ℳℎ.

Now we state the multigrid iteration scheme with adaptive method for non-selfadjoint Steklov eigenvalue
problem. Based on the adaptive refinement method described above, and one correction step for multiple
eigenvalues defined by Algorithm 3.3, the full multigrid method is given in the following algorithm.
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Algorithm 4.2. Full multigrid AFEM for multiple non-selfadjoint Steklov eigenvalue problems

1. Generate a coarse triangulation 𝒯𝐻 on the computing domain Ω, pick up an initial mesh 𝒯1 which is
produced by refining 𝒯𝐻 by the regular way, and choose a mark parameter ̂︀𝜃 ∈ (0, 1).

2. Build the initial finite element space 𝑉ℎ1 on the triangulation 𝒯ℎ1 , and solve the non-selfadjoint Steklov
eigenvalue problem and its adjoint problem on the initial finite element space 𝑉ℎ1 :
Find (𝜆ℎ1 , 𝑢ℎ1) ∈ C× 𝑉ℎ1 such that

𝑎(𝑢ℎ1 , 𝑣ℎ1) = −𝜆ℎ1𝑏(𝑢ℎ1 , 𝑣ℎ1), ∀𝑣ℎ1 ∈ 𝑉ℎ1 .

Find 𝑢*ℎ1
∈ 𝑉ℎ1 according to Lemma 2.4 and Remark 2.5.

Hence we obtain the desired eigenpair approximations {𝜆𝑗,ℎ1 , 𝑢𝑗,ℎ1 , 𝑢
*
𝑗,ℎ1

}𝑖+𝑞−1
𝑗=𝑖 ∈ C×𝑉ℎ1 ×𝑉ℎ1 , and set

𝑘 = 1.
3. Compute the local error indicators 𝜂ℎ(𝑢𝑗,ℎ𝑘

,𝐾) and 𝜂*ℎ(𝑢*𝑗,ℎ𝑘
,𝐾) (𝑗 = 𝑖, · · · , 𝑖+ 𝑞 − 1) on each element

𝐾 ∈ 𝒯ℎ𝑘
according to (4.1).

4. Construct ℳℎ𝑘
⊂ 𝒯ℎ𝑘

by Algorithm 4.1. Then refine ℳℎ𝑘
to get a new conforming mesh 𝒯ℎ𝑘+1 and

construct finite element space 𝑉ℎ𝑘+1 .
5. If 𝑘 < 𝑛, do:

Obtain new eigenpair approximations {𝜆𝑗,ℎ𝑘+1 , 𝑢𝑗,ℎ𝑘+1 , 𝑢
*
𝑗,ℎ𝑘+1

}𝑖+𝑞−1
𝑖=1 ∈ C × 𝑉ℎ𝑘+1 × 𝑉ℎ𝑘+1 by Algo-

rithm 3.3 on 𝒯ℎ𝑘+1 :
∙ Set {𝜆(0)

𝑗,ℎ𝑘
, 𝑢

(0)
𝑗,ℎ𝑘

, 𝑢
*(0)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝜆𝑗,ℎ𝑘−1 , 𝑢𝑗,ℎ𝑘−1 , 𝑢

*
𝑗,ℎ𝑘−1

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Perform the following multigrid iterations for ℓ = 0, · · · , 𝑝− 1

{𝜆(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
*(ℓ+1)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = EigenMG Multi(𝑉𝐻 , {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 , 𝑉ℎ𝑘

,𝑚).

∙ Set {𝜆𝑗,ℎ𝑘
, 𝑢𝑗,ℎ𝑘

, 𝑢*𝑗,ℎ𝑘
}𝑖+𝑞−1

𝑗=𝑖 = {𝜆(𝑝)
𝑗,ℎ𝑘

, 𝑢
(𝑝)
𝑗,ℎ𝑘

, 𝑢
*(𝑝)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Let 𝑘 = 𝑘 + 1 and go to step 3.
Else, do:
Obtain new eigenpair approximations {𝜆(𝑝)

𝑗,ℎ𝑛
, 𝑢

(𝑝)
𝑗,ℎ𝑛

, 𝑢
*(𝑝)
𝑗,ℎ𝑛

}𝑖+𝑞−1
𝑖=1 ∈ C×𝑉ℎ𝑘+1 ×𝑉ℎ𝑘+1 by Algorithm 3.3 on

𝒯ℎ𝑘+1 :
∙ Set {𝜆(0)

𝑗,ℎ𝑘
, 𝑢

(0)
𝑗,ℎ𝑘

, 𝑢
*(0)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝜆𝑗,ℎ𝑘−1 , 𝑢𝑗,ℎ𝑘−1 , 𝑢

*
𝑗,ℎ𝑘−1

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Perform the following multigrid iterations for ℓ = 0, · · · , 𝑝− 1

{𝜆(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
(ℓ+1)
𝑗,ℎ𝑘

, 𝑢
*(ℓ+1)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = EigenMG Multi(𝑉𝐻 , {𝜆(ℓ)

𝑗,ℎ𝑘
, 𝑢

(ℓ)
𝑗,ℎ𝑘

, 𝑢
*(ℓ)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 , 𝑉ℎ𝑘

,𝑚).

∙ Set {𝑢𝑗,ℎ𝑘
, 𝑢*𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 = {𝑢(𝑝)

𝑗,ℎ𝑘
, 𝑢
*(𝑝)
𝑗,ℎ𝑘

}𝑖+𝑞−1
𝑗=𝑖 .

∙ Compute the generalized Rayleigh quotient

𝜆𝑗,ℎ𝑛 =
𝑎(𝑢𝑗,ℎ𝑛

, 𝑢*𝑗,ℎ𝑛
)

𝑏(𝑢𝑗,ℎ𝑛 , 𝑢
*
𝑗,ℎ𝑛

)
(𝑗 = 𝑖, · · · , 𝑖+ 𝑞 − 1).

∙ Stop.

Finally, we get the eigenpair approximation

{𝜆𝑗,ℎ𝑛
, 𝑢𝑗,ℎ𝑛

, 𝑢*𝑗,ℎ𝑛
}𝑖+𝑞−1

𝑗=𝑖 ∈ C× 𝑉ℎ𝑛
× 𝑉ℎ𝑛

.
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Figure 1. The initial/coarsest mesh for Example 1.

Remark 4.1. For the Algorithm 4.2, we can also obtain the related error reduction property and the optimal
complexity analysis base on the asymptotic exactness of error estimators (cf. [45, Thm. 5.1 and 5.2]). Due to
the simplicity of this paper, we omit these parts. More details, please refer to [23].

Corollary 4.2. Assume the conditions of Theorem 3.8 hold, then the work involved in Algorithm 4.2 has the
following estimate

Total work ≤ 𝒪 (𝑁𝑛 +𝑀𝐻 log𝑁𝑛 +𝑀ℎ1) . (4.3)

Futhermore, the complexity will be 𝒪(𝑁𝑛) provided 𝒪(𝑀𝐻) ≪ 𝒪(𝑁𝑛) and 𝒪(𝑀ℎ1) ≤ 𝒪(𝑁𝑛).

5. Numerical results

In this section, some numerical examples are presented to illustrate the efficiency of the full multigrid method
proposed in Algorithm 3.2 and AFEM based on full multigrid adaptive finite element method 4.2 for non-
selfadjoint Steklov eigenvalue problems, respectively. When 𝑛(𝑥) is a real function, (2.2) is a selfadjoint eigenvalue
problem. And, we choose 𝑛(𝑥) = 4 + 4i in the following examples. In each level of the full multigrid scheme
defined in Algorithm 3.2, 3.4 and 4.2, the parameters are set to be 𝑚 = 3 and 𝑝 = 1, respectively. In addition, we
take 3 conjugate gradient smooth steps for the presmoothing and postsmoothing iteration step in the multigrid
iteration in Step 1 of Algorithm 3.1 and 3.3.

5.1. Non-selfadjoint Steklov eigenvalue problem on square domain

We first consider non-selfadjoint Steklov eigenvalue problem (2.1) with 𝒜(𝑥) = 1 and 𝑛(𝑥) = 4 + 4i defined
on square domain Ω = (−

√
2

2 ,
√

2
2 )2. Hence 𝜎 = 1. The sequence of linear finite element spaces are constructed

on the series of meshes which are produced by the regular refinement with 𝛽 = 2 (producing 𝛽2 subelements).
In this example, we choose a mesh which is generated by uniform refinement as the initial mesh 𝒯ℎ1 and the
coarsest mesh 𝒯𝐻 to produce a sequence of finite element spaces for investigating the convergence behaviors.
Figure 1 shows this initial meshes (ℎ1 = 𝐻 =

√
2/8)

Since the exact eigenvalue is unknown, we use the accurate enough approximation [0.686553 +
2.495294i,−0.343047 + 0.850747i,−0.343047 + 0.850747i,−0.950110 + 0.540097i] given by the extrapolation
method (see, e.g. [28]) as the first four exact eigenvalues (sorted by real part) to investigate the errors. Algo-
rithm 3.2 is applied to solve (2.1).

Figure 2 gives the corresponding numerical results for the first eigenvalue 𝜆1 = 0.686553 + 2.495294i. From
Figure 2, we find that the full multigrid can obtain the optimal error estimates as the expected one for the
direct finite element method, which confirms with the convergence Theorem 3.6 for Algorithm 3.2.
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Figure 2. The errors of the full multigrid method for the first eigenvalue 𝜆1 (left) and first
four eigenvalues 𝜆1, · · · , 𝜆4 (right) on the square domain for the initial mesh in Figure 1.

Figure 3. The initial/coarsest mesh for Example 2.

We also check the convergence behavior for multiple eigenvalue approximations with Algorithm 3.4. Here
the first four eigenvalues are investigated. Similarly, we use the same initial mesh shown in Figure 1. The
corresponding numerical results are given in Figure 2, which also exhibits the optimal convergence rate of the
full multigrid scheme Algorithm 3.4.

5.2. Non-selfadjoint Steklov eigenvalue problem on dumbbell shaped domain

In order to show our full multigrid method can work well with adaptive mesh (Algorithm 4.2), we discuss
the non-selfadjoint Steklov eigenvalue problem with 𝒜(𝑥) = 1 and 𝑛(𝑥) = 4 + 4i defined on a dumbbell shaped
domain Ω = (0, 𝜋)2 ∪ [𝜋, 5

4𝜋]× ( 3
8𝜋,

5
8𝜋) ∪ ( 5

4𝜋,
9
4𝜋)× (0, 𝜋). The initial/coarsest mesh for this dumbbell shaped

domain is given in Figure 3 which is generated by Delaunay method to produce a sequence of finite element
spaces for investigating the convergence behaviors.

It is easy to know that reentrant corners of the dumbbell domain result in the singularities of the eigenfunc-
tions. The convergence order for eigenfunction approximations is less than 1 by the linear finite element method,
which is the order predicted by the theory for regular eigenfunctions (𝜎 < 1). We consider to use the adaptive
Algorithm 4.2 to solve this problem. Figure 4 shows the mesh after 15 adaptive refinements.

Since the exact solution is unknown, we use the accurate enough approximation [−0.245575 −
1.723065i,−0.246998 − 1.720376i,−0.492629 − 1.284891i,−0.570899 − 1.344935i,−0.623435 − 1.198207i] given
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Figure 4. The mesh after 15 adaptive refinements.

Figure 5. The errors of the adaptive full multigrid algorithm for the first five eigenfunction
approximations (left) and eigenvalue approximations (right) where 𝜂𝑗,ℎ (𝑗 = 1, · · · , 5) denote
the 𝑗-th posterior error estimator 𝜂ℎ(𝑢𝑗,ℎ, 𝑢

*
𝑗,ℎ, 𝒯ℎ) and 𝜆𝑗,ℎ (𝑗 = 1, · · · , 5) denote the current

approximation of the 𝑗-th eigenvalue 𝜆𝑗 .

by the extrapolation method (see, e.g. [28]) as the first five exact eigenvalues to investigate the errors. First,
we investigate the convergent rate of the adaptive posterior error estimator 𝜂ℎ(𝑢ℎ, 𝑢

*
ℎ, 𝜔) (𝜔 ⊂ 𝒯ℎ) defined

in (4.2). Figure 5 presents the corresponding numerical results for the first five eigenfunction approximations.
Here, we use 𝜂𝑗,ℎ to denote the 𝑗-th error estimator 𝜂ℎ(𝑢𝑗,ℎ, 𝑢

*
𝑗,ℎ, 𝒯ℎ). The error estimate of eigenvalues are given

in Figure 5, which shows that our multilevel iteration method combines well with the adaptive finite element
method naturally and Algorithm 4.2 has the optimal convergence rate.

5.3. Non-selfadjoint Steklov eigenvalue problem with discontinuous coefficient

In this example, we consider the non-selfadjoint Steklov eigenvalue problem with with discontinuous coeffi-
cient. Define computational domain Ω = (−

√
2

2 ,
√

2
2 )2, discontinuous coefficient

𝒜(𝑥) =
{︂

100, in the 1st and 3rd quadrants,
1, in the 2nd and 4th quadrants,

and 𝑛(𝑥) = 4 + 4i. The initial/coarsest mesh for this square domain is the same as the one in Example 5.1.
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Figure 6. The mesh after 17 adaptive refinements.

Figure 7. The errors of the adaptive full multigrid algorithm for the first three eigenfunction
approximations (left) and eigenvalue approximations (right) where 𝜂𝑗,ℎ (𝑗 = 1, · · · , 3) denote
the 𝑗-th posterior error estimator 𝜂ℎ(𝑢𝑗,ℎ, 𝑢

*
𝑗,ℎ, 𝒯ℎ) and 𝜆𝑗,ℎ (𝑗 = 1, · · · , 3) denote the current

approximation of the 𝑗-th eigenvalue 𝜆𝑗 .

It is easy to know that the singularities is on the interface. The convergence order for eigenfunction approxi-
mations is less than 1 (𝜎 < 1) by the linear finite element method, which is the order predicted by the theory
for regular eigenfunctions. We also consider to use the adaptive Algorithm 4.2 to solve this problem. Figure 6
shows the mesh after 17 adaptive refinements.

Since the exact solution is unknown, we use the accurate enough approximation [1.451305 −
1.741234i,−0.942417 − 0.542984i,−1.563818 − 0.563167i] given by the extrapolation method (see, e.g. [28])
as the first three exact eigenvalues to investigate the errors.

Figure 7 shows the corresponding numerical results by Algorithm 4.2. From Figure 7, we can find that
Algorithm 4.2 is able to obtain the optimal error estimate. It shows that Algorithm 4.2 is efficient for solving
non-selfadjoint Steklov eigenvalue problems with discontinuous coefficient.
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6. Concluding remarks

In this paper, a type of full multigrid method is designed to solve non-selfadjoint eigenvalue problems based
on the multigrid for boundary value problems and the multilevel correction scheme for eigenvalue problems.
Furthermore, when the number of smoothing steps is chosen appropriately, our method can reach the optimal
convergence rate with the almost optimal computing complexity. At last, we propose a new type of AFEM
for multiple eigenvalues based on full multigrid with the almost optimal computing complexity. Three numer-
ical experiments validate the optimality and show that the proposed algorithms can also compute multiple
eigenvalues and solve the eigenvalue problems with complex vector.

Acknowledgements. The authors thank Prof. Hehu Xie for fruitful cooperations on eigenvalue computations that have
motivated this work and thank the anonymous referees for their helpful comments and suggestions on this work. This
work was supported in part by the National Natural Science Foundation of China (Grant No. 11801021, 12001402).
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