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Abstract. We provide some computable error estimates in solving a nonsymmetric eigen-
value problem by general conforming finite element methods on general meshes. Based
on the complementary method, we first give computable error estimates for both the
original eigenfunctions and the corresponding adjoint eigenfunctions, and then we in-
troduce a generalised Rayleigh quotient to deduce a computable error estimate for the
eigenvalue approximations. Some numerical examples are presented to illustrate our
theoretical results.
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1. Introduction

The numerical solution of the nonsymmetric eigenvalue problem we discuss here is im-
portant in scientific and engineering computation — e.g. convection-diffusion problems
in fluid mechanics and environmental applications [9,12,13]. Classical a priori error esti-
mates only give the asymptotic convergence order in the standard Galerkin finite element
method for the nonsymmetric eigenvalue problem [4], but a posteriori error estimates are
of great importance for the adaptive finite element method in particular. More discussion
of a posteriori error estimates can be found in Refs. [2, 5–7, 10, 12, 13, 15, 16] and other
references therein.

Here we consider computable a posteriori error estimates for the eigenpair approx-
imation of the nonsymmetric eigenvalue problem, solved by the conforming finite ele-
ment method on general meshes. Our approach is based on the complementary energy
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method [11,15–18]. Recently, the complementary energy method has been applied to de-
rive the a posteriori error estimates for symmetric eigenvalue problems [21] and nonlinear
eigenvalue problems [20]. It is well known that the nonsymmetric eigenvalue problem is
always associated with an adjoint eigenvalue problem. Using the complementary energy
method, we first derive asymptotic upper bounds for the error estimates of the original
eigenfunction approximation and the adjoint eigenfunction approximation. Based on the a

posteriori error estimates for the eigenfunction approximations and a generalised Rayleigh
quotient, we then obtain asymptotic upper bounds for the error estimates of the eigenval-
ues by the conforming finite element method. This means we can provide a computable
range of eigenvalues in the complex plane. Furthermore, the error estimates proposed here
have both efficiency and reliability properties, which is necessary for the a posteriori error
estimator.

The finite element method and corresponding error estimates for the nonsymmetric
eigenvalue problem are given in Section 2. Asymptotic upper-bound computable error
estimates of the original eigenfunction approximation and the adjoint eigenfunction ap-
proximation are proposed in Section 3. Based on the results in Section 3, in Section 4
we provide an upper bound for the error estimate of the eigenvalue approximations of the
nonsymmetric eigenvalue problem. Some numerical examples are presented in Section 5
to illustrate the theoretical analysis, and our concluding remarks are made in Section 6.

2. Finite Element Method

We use the standard notation W s,p(Ω) for Sobolev spaces, and ‖ · ‖s,p,Ω and | · |s,p,Ω for
their associated norms and seminorms, respectively — e.g. see Ref. [1]. For p = 2, we
denote Hs(Ω) = W s,2(Ω) and H1

0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the
sense of trace, and ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. Here we consider the complex Hilbert space H1

0(Ω),
and abbreviate ‖ · ‖s,Ω as ‖ · ‖s.

2.1. Nonsymmetric eigenvalue problem

For simplicity, we choose to consider the following nonsymmetric eigenvalue problem:
Find λ ∈ C and u such that

�
−∆u+ b ·∇u+ u = λu in Ω ,
u = 0 on ∂Ω ,

(2.1)

where Ω ⊂ Rd (d = 2,3) is a bounded polygonal domain with boundary ∂Ω, ∆ and ∇
respectively denote the Laplacian and gradient operator, and b = b(x) ∈ (W 1,∞(Ω))d is a
bounded real or complex vector function on Ω.

To address the finite element discretisation, we invoke the following variational form
for the problem (2.1): Find (λ,u) ∈ C × V such that

a(u, v) = λ(u, v) , ∀ v ∈ V , (2.2)
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where V := H1
0(Ω) and

a(u, v) := (∇u,∇v) + (b ·∇u, v) + (u, v) ,

(u, v) :=

∫

Ω

uv dΩ ,

with v denoting the complex conjugate of v. From the above definitions, it is evident that
the inner products a(u, v) and (u, v) are linear for the first variable and conjugate linear for
the second variable, and we note that (·, ·) is the standard L2(Ω) inner product.

For the nonsymmetric eigenvalue problem (2.2), there exists the following correspond-
ing adjoint eigenvalue problem [4]. Find λ∗ ∈ C and u∗ such that

�
−∆u∗ −∇· (b̄u∗) + u∗ = λ∗u∗ in Ω ,
u∗ = 0 on ∂Ω .

(2.3)

Here, (2.1) and (2.3) connect with each other according to λ∗ = λ̄. Using the unified
notation, we have the following variational form for the problem (2.3). Find (λ,u∗) ∈ C×V

such that
a(v,u∗) = (v,λ∗u∗) = λ(v,u∗) , ∀ v ∈ V . (2.4)

The conjugate bilinear form a(·, ·) is assumed to satisfy [22]

‖w‖1 ® sup
v∈V

|a(w, v)|
‖v‖1

and ‖w‖1 ® sup
v∈V

|a(v, w)|
‖v‖1

, ∀w ∈ V ; (2.5)

and we suppose a(·, ·) is V -elliptic — i.e.

‖v‖21 ® Re a(v, v) , ∀ v ∈ V , (2.6)

where Re denotes the real part of a complex number.
For simplicity, we only consider nondefective eigenvalues (with ascent equal to 1) of

the nonsymmetric eigenvalue problem. Thus the algebraic multiplicity equals the geometric
multiplicity and the generalised eigenspace is the same as the eigenspace. More detail on
nonsymmetric eigenvalue problems may be found in Ref. [4].

2.2. Finite element method

We now demonstrate the finite element method for the nonsymmetric eigenvalue prob-
lem (2.2) and its corresponding adjoint problem (2.4) — cf. Refs. [4,7,8]. The computing
domain Ω ⊂ Rd (d = 2,3) is decomposed into shape-regular triangles or rectangles for
d = 2 and tetrahedrons or hexahedrons for d = 3. The diameter of a cell K ∈ Th is denoted
by hK , with the mesh diameter h describing the maximum diameter of all such cells. Based
on the mesh Th, the conforming finite element space denoted by Vh ⊂ V is then constructed.
For simplicity, we only consider the Lagrange-type conforming finite element space

Vh =
�

vh ∈ C(Ω̄)
�� vh|K ∈ Pk , ∀K ∈ Th

	
∩H1

0(Ω) , (2.7)
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where Pk denotes the space of polynomials of degree at most k. Here we also assume that
the finite element space Vh satisfies the following conditions corresponding to the inequal-
ities (2.5):

‖wh‖1 ® sup
vh∈Vh

|a(wh, vh)|
‖vh‖1

and ‖wh‖1 ® sup
vh∈Vh

|a(vh, wh)|
‖vh‖1

, ∀wh ∈ Vh . (2.8)

The standard finite element method for (2.2) is to solve the following eigenvalue problem:
Find (λh,uh) ∈ C × Vh such that

a(uh, vh) = λh(uh, vh) , ∀ vh ∈ Vh . (2.9)

The discretisation of the adjoint problem (2.4) is taken in the same finite element space:
Find (λh,u∗

h
) ∈ C × Vh such that

a(vh,u∗
h
) = λh(vh,u∗

h
) , ∀ vh ∈ Vh . (2.10)

Assume λ is an eigenvalue of the variational forms (2.2) and (2.4) with multiplicity
m. According to the spectral theories of compact operators, there exist m eigenvalues
λ1,h, · · · ,λm,h of (2.9) and (2.10) converging to λ, and we denote the respective corre-
sponding eigenvectors by u1,h, · · · ,um,h and u∗1,h, · · · ,u∗

m,h. The two eigenspaces correspond-
ing to the eigenvalue λ of (2.2) and (2.4) are respectively:

M(λ) =
�
u ∈ V : u is an eigenfunction of (2.2) corresponding to λ

	
, (2.11)

M∗(λ) =
�
u∗ ∈ V : u∗ is an eigenfunction of (2.4)corresponding to λ

	
. (2.12)

We also define

Mh(λ) = span
�
u1,h, · · · ,um,h

	
, (2.13)

M∗
h
(λ) = span
�
u∗1,h, · · · ,u∗

m,h

	
. (2.14)

For two linear subspaces A and B of V , we denote

bΘ(A, B) = sup
w∈A,‖w‖1=1

inf
v∈B
‖w− v‖1 , bΦ(A, B) = sup

w∈A,‖w‖0=1
inf
v∈B
‖w− v‖0 ;

and define the gaps between A and B in ‖ · ‖1 as

Θ(A, B) =max
�bΘ(A, B), bΘ(B,A)

	
, (2.15)

and in ‖ · ‖0 as

Φ(A, B) =max
�bΦ(A, B), bΦ(B,A)

	
. (2.16)
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Then we introduce the following notation for error estimation:

δh(λ) := sup
u∈M(λ),‖u‖0=1

inf
vh∈Vh

‖u− vh‖1 , (2.17)

δ∗
h
(λ) := sup

u∗∈M∗(λ),‖u∗‖0=1
inf

vh∈Vh

‖u∗ − vh‖1 , (2.18)

ηa(h) := sup
f ∈V,‖ f ‖0=1

inf
vh∈Vh

‖T f − vh‖1 , (2.19)

η∗a(h) := sup
f ∈V,‖ f ‖0=1

inf
vh∈Vh

‖T∗ f − vh‖1 , (2.20)

where the operators T and T∗ ∈ L (V ) are defined as

a(Tu, v) = (u, v) = a(u, T∗v) , ∀u, v ∈ V . (2.21)

Noting that the ascent of the nonsymmetric eigenvalue problem considered is equal to
1, we have the error estimates in the following theorem.

Theorem 2.1 (cf. Refs. [4, Section 8], [22]). When the mesh size h is small enough, we have

the following error estimates:

Θ

�
M(λ), Mh(λ)
�
≤ Cλδh(λ) , (2.22)

Θ

�
M∗(λ), M∗h (λ)
�
≤ Cλδ

∗
h(λ) , (2.23)

Φ

�
M(λ), Mh(λ)
�
≤ Cλη

∗
a(h)δh(λ) , (2.24)

Φ

�
M∗(λ), M∗

h
(λ)
�
≤ Cληa(h)δ

∗
h
(λ) , (2.25)

|λ−λi,h| ≤ Cλδh(λ)δ
∗
h
(λ) , i = 1, · · · , m , (2.26)

where λ1,h, · · · ,λm,h are the eigenvalue approximations converging to λ. Here and hereafter

Cλ denotes some constant depending on the eigenvalue λ but independent of the mesh size h.

3. Complementarity-based Error Estimate

We now derive computable error estimates for the eigenfunction approximations of the
nonsymmetric eigenvalue problem and its corresponding adjoint problem, based on the
complementary method. For simplicity, (λ,u) and (λ,u∗) hereafter denote the solution of
the variational problems (2.2) and (2.4), respectively. Let (λh,uh) and (λh,u∗

h
) be the cor-

responding finite element eigenpair approximations in C ×Vh. We first recall the following
theorem.

Lemma 3.1. LetΩ ⊂Rd (d = 2,3) be a bounded Lipschitz domain with unit outward normal

ν to ∂Ω. Then the following Green’s formula holds:

(v,∇·p) + (∇v,p) = (v,p ·ν)∂Ω , ∀ v ∈ H1(Ω) and ∀p ∈W , (3.1)

where (·, ·)∂Ω is the L2(∂Ω) inner product on the boundary ∂Ω and W := H(div;Ω) = {p ∈
(L2(Ω))d :∇·p ∈ L2(Ω)}. In particular,

(v,∇·p) + (∇v,p) = 0 , ∀ v ∈ V and ∀p ∈W . (3.2)
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Theorem 3.1. Assume that the mesh size h is small enough, and that we have the finite element

eigenpair approximations (λh,uh) ∈ C × Vh and (λh,u∗
h
) ∈ C × Vh corresponding to the exact

eigenvalue λ. Then there exist exact eigenfunctions u ∈ M(λ) and u∗ ∈ M∗(λ) such that the

following inequalities hold:

‖u− uh‖1 ≤min
p∈W

1

1−αη∗
a
(h)
η(λh,uh,p) , (3.3)

‖u∗ − u∗h‖1 ≤min
p∈W

1

1−α∗ηa(h)
η∗(λh,u∗h,p) , (3.4)

where

α = C2
λ‖u‖0δ

∗
h(λ) + C2

λ|λh|η
∗
a(h) + Cλ‖b‖L∞(Ω) ,

α∗ = C2
λ‖u
∗‖0δh(λ) + C2

λ|λh|ηa(h) + Cλ‖b‖L∞(Ω) ,

and the error estimators η(λh,uh,p) and η∗(λh,u∗
h
,p) are defined as

η(λh,uh,p) =
�
‖λhuh − b ·∇uh − uh +∇·p‖

2
0 + ‖p−∇uh‖

2
0

�1/2
, (3.5)

η∗(λh,u∗
h
,p) =
�
‖λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+∇·p‖20 + ‖p−∇u∗

h
‖20
�1/2

. (3.6)

Proof. From inequality (2.24) in Theorem 2.1, for any uh ∈ Vh we can choose u ∈ M(λ)

such that ‖u−uh‖0 ≤ Cλη
∗
a
(h)‖u−uh‖1. Setting w= u−uh ∈ V and combining (2.2), (2.9)

and (3.2), for any p ∈W we have

‖u− uh‖
2
1 =
�
∇(u− uh),∇w
�
+ (u− uh, w)

=a(u, w)− (b ·∇u, w)− (∇uh,∇w)− (uh, w)

=λ(u, w)− (b ·∇u, w)− (∇uh,∇w)− (uh, w) + (∇·p, w) + (p,∇w)

=(λhuh − b ·∇uh − uh +∇·p, w) + (p−∇uh,∇w)

+
�
λu−λhuh − b ·∇(u− uh), w

�

≤‖λhuh − b ·∇uh − uh +∇·p‖0‖w‖0 + ‖p−∇uh‖0‖∇w‖0

+
�
‖λu−λhuh‖0 + ‖b ·∇(u− uh)‖0

�
‖w‖0

≤
�
‖λhuh − b ·∇uh − uh +∇·p‖

2
0 + ‖p−∇uh‖

2
0

�1/2
‖w‖1

+
�
|λ−λh|‖u‖0 + |λh|‖u− uh‖0 + ‖b‖L∞(Ω)‖∇(u− uh)‖0

�
‖w‖0 . (3.7)

Combining (2.24), (2.26) in Theorem 2.1 and (3.7) leads to the estimate

‖u− uh‖
2
1 ≤ η(λh,uh,p)‖w‖1 +

�
Cλδ
∗
h
(λ)‖u− uh‖1‖u‖0

+ Cλ|λh|η
∗
a
(h)‖u− uh‖1 + ‖b‖L∞‖u− uh‖1

�
Cλη
∗
a
(h)‖w‖1

= η(λh,uh,p)‖w‖1 +αη
∗
a
(h)‖u− uh‖1‖w‖1 .

The desired result (3.3) immediately follows from the arbitrariness of p ∈W and η∗
a
(h)→ 0

as h→ 0.
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Similarly, Eq. (3.4) can be proved with the complementary approach. For u∗
h
∈ Vh we can

choose u∗ ∈ M∗(λ) satisfying ‖u∗−u∗
h
‖0 ≤ Cλη

∗
a(h)‖u

∗−u∗
h
‖1. Then setting w = u∗−u∗

h
∈ V

and using (2.4), (2.10) and (3.2), for any p ∈W we have

‖u∗ − u∗h‖
2
1 =
�
∇w,∇(u∗ − u∗h)

�
+ (w,u∗ − u∗h)

=a(w,u∗)− (b ·∇w,u∗)− (∇w,∇u∗
h
)− (w,u∗

h
)

=λ(w,u∗)− (b ·∇w,u∗)− (∇w,∇u∗
h
)− (w,u∗

h
) + (w,∇· p) + (∇w,p)

=(w, λ̄u∗) +
�
w,∇· (b̄u∗)
�
− (∇w,∇u∗h)− (w,u∗h) + (w,∇· p) + (∇w,p)

=
�
w, λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+∇·p
�
+ (∇w,p−∇u∗

h
)

+

�
w, λ̄u∗ − λ̄hu∗

h
+∇·
�
b̄(u∗ − u∗

h
)
��

=
�
w, λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+∇·p
�
+ (∇w,p−∇u∗

h
)

+
�
w, λ̄u∗ − λ̄hu∗

h

�
−
�
∇w, b̄(u∗ − u∗

h
)
�

≤


λ̄hu∗h +∇· (b̄u∗h)− u∗h +∇·p




0‖w‖0 + ‖p−∇u∗h‖0‖∇w‖0

+ ‖λ̄u∗ − λ̄hu∗
h
‖0‖w‖0 +


b̄(u∗ − u∗

h
)




0‖∇w‖0

≤
�

λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+∇·p


2

0 + ‖p−∇u∗
h
‖20

�1/2
‖w‖1

+
�
|λ−λh|‖u

∗‖0 + |λh|‖u
∗ − u∗

h
‖0
�
‖w‖0 + ‖b‖L∞(Ω)‖u

∗

− u∗h‖0‖w‖1 . (3.8)

From inequalities (2.25) and (2.26) in Theorem 2.1, we therefore have

‖u∗ − u∗
h
‖21 ≤η

∗(λh,u∗
h
,p)‖w‖1 +
�
Cλδh(λ)‖u

∗ − u∗
h
‖1‖u

∗‖0 + Cλ|λh|ηa(h)‖u
∗ − u∗

h
‖1

+ ‖b‖L∞(Ω)‖u
∗ − u∗

h
‖1
�
Cληa(h)‖w‖1

=η∗(λh,u∗
h
,p)‖w‖1 +α

∗ηa(h)‖u
∗ − u∗

h
‖1‖w‖1 ,

so the second result (3.4) follows from the arbitrariness of p ∈ W and the fact ηa(h)→ 0
as h→ 0.

The consequent natural problems are to seek the minimisation of η(λh,uh,p) over W

for the given eigenpair approximation (λh,uh), and the minimisation of η∗(λh,u∗
h
,p) over

W for the given eigenpair approximation (λh,u∗
h
). We define the following two optimisation

problems:

Find p̂ ∈W such that η(λh,uh, p̂) =min
p∈W

η(λh,uh,p) ; and (3.9)

Find p̂∗ ∈W such that η∗(λh,u∗h, p̂∗) =min
p∈W

η∗(λh,u∗h,p) . (3.10)

The following lemma shows that these two optimisation problems are equivalent to prob-
lems involving certain partial differential equations.
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Lemma 3.2. The optimisation problems (3.9) and (3.10) are respectively equivalent to the

following problems:

Find p̂ ∈W such that â(p̂,q) =F (q) , ∀q ∈W ; and (3.11)

Find p̂∗ ∈W such that â(p̂∗,q) =F ∗(q) , ∀q ∈W , (3.12)

where

â(p,q) = (∇·p,∇·q) + (p,q) ,

F (q) = (−λhuh + b ·∇uh,∇·q) ,

F ∗(q) =
�
− λ̄hu∗

h
−∇· (b̄u∗

h
),∇· q
�

.

Proof. We first prove that the optimisation problems (3.9) and (3.11) are equivalent.
Let p̂ ∈W solve the optimisation problem (3.9) and q ∈W be arbitrary. Since the function
J(t) := η2(λh,uh, p̂+ tq) has a minimum at t = 0, we have in particular

J ′(0) = lim
t→0

J(t)− J(0)

t − 0
= lim

t→0

1

t

�
η2(λh,uh, p̂+ tq)−η2(λh,uh, p̂)

�
= 0 . (3.13)

According to Lemma 3.1 and the definition of the estimator (3.5),

η2(λh,uh, p̂+ tq)−η2(λh,uh, p̂)

=


λhuh − b ·∇uh − uh +∇· (p̂+ tq)



2
0 +


(p̂+ tq)−∇uh



2
0

− ‖λhuh − b ·∇uh − uh +∇· p̂‖
2
0 − ‖p̂−∇uh‖

2
0

=t2
�
(∇·q,∇·q) + (q,q)

�
+ t
�
(λhuh − b ·∇uh − uh +∇· p̂,∇·q)

+ (∇·q,λhuh − b ·∇uh − uh +∇· p̂) + (p̂−∇uh,q) + (q, p̂−∇uh)
�

=t2
�
(∇·q,∇·q) + (q,q)

�
+ 2t Re
�
(λhuh − b ·∇uh +∇· p̂,∇·q) + (p̂,q)

�
.

Then Eq. (3.13) may be rewritten

J ′(0) = 2Re
�
(λhuh − b ·∇uh,∇·q) + (∇· p̂,∇·q) + (p̂,q)

�
= 0 . (3.14)

We can replace q in Eq. (3.14) with iq to obtain

Im
�
(λhuh − b ·∇uh,∇·q) + (∇· p̂,∇· q) + (p̂,q)

�
= 0 , (3.15)

where Im denotes the imaginary part. Thus from Eqs. (3.14) and (3.15) we have that p̂

satisfies (3.11).

On the other hand, if p̂ ∈ W is the solution of the problem (3.11) we can show that
p̂ is also the solution of the optimisation problem (3.9). For any q ∈ W, using the Green
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formula (3.2) we have

η2(λh,uh,q) =η2
�
λh,uh, p̂+ (q− p̂)

�

=




λhuh − b ·∇uh − uh +∇·
�
p̂+ (q− p̂)
�




2

0
+





�
p̂+ (q− p̂)
�
−∇uh





2

0

=‖λhuh − b ·∇uh − uh +∇· p̂‖
2
0 + ‖p̂−∇uh‖

2
0

+
�
∇· (q− p̂),∇· (q− p̂)

�
+ (q− p̂,q− p̂)

+ 2Re
��
λhuh − b ·∇uh − uh +∇· p̂,∇· (q− p̂)

�
+ (p̂−∇uh,q− p̂)

�

=η2(λh,uh, p̂) +
�
∇· (q− p̂),∇· (q− p̂)

�
+ (q− p̂,q− p̂)

+ 2Re
��
λhuh − b ·∇uh +∇· p̂,∇· (q− p̂)

�
+ (p̂,q− p̂)
�

=η2(λh,uh, p̂) +
�
∇· (q− p̂),∇· (q− p̂)

�
+ (q− p̂,q− p̂)

≥η2(λh,uh, p̂) , (3.16)

so the optimisation problem (3.9) follows. Thus we have the equivalence of (3.9) and
(3.11), and similarly we can prove that (3.10) and (3.12) are equivalent to complete the
proof.

It is obvious that â(·, ·) defines the standard inner product in the Hilbert space W =

H(div;Ω) and induces the standard norm ‖q‖W =
p

â(q,q) for any q ∈W. From the Riesz
representation theorem, we know that both the dual problems (3.11) and (3.12) have
unique solutions. The equivalence described in Lemma 3.2 guarantees the well-posedness
of the optimisation problems (3.9) and (3.10).

We now state some properties of the estimators η(λh,uh,p) and η∗(λh,u∗
h
,p).

Lemma 3.3. Assume p̂ and p̂∗ are the solutions of the problems (3.11) and (3.12), respec-

tively. Then for any p ∈W, the following equalities hold:

η2(λh,uh,p) = η2(λh,uh, p̂) + ‖p̂− p‖2
W

, (3.17)

η∗2(λh,u∗
h
,p) = η∗2(λh,u∗

h
, p̂∗) + ‖p̂∗ − p‖2W . (3.18)

Lemma 3.3 can be deduced readily from (3.16) and the definition of the norm ‖ · ‖W.
Choosing some certain approximate solutions ph ∈ W and p∗

h
∈ W of (3.11) and (3.12),

respectively, we can give computable asymptotic upper bounds of the error estimates for
the eigenfunction approximations uh and u∗

h
as follows.

Corollary 3.1. There exist eigenfunctions u ∈ M(λ) and u∗ ∈ M∗(λ) such that the error

estimators η(λh,uh,ph) and η∗(λh,u∗
h
,p∗

h
) have the asymptotic upper bounds

‖u− uh‖1 ≤
1

1−αη∗
a
(h)
η(λh,uh,ph) , (3.19)

‖u∗ − u∗h‖1 ≤
1

1−α∗ηa(h)
η∗(λh,u∗h,p∗h) . (3.20)
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Now we proceed to discuss the efficiency and reliability of the estimators η(λh,uh, p̂),
η∗(λh,u∗

h
, p̂∗) and η(λh,uh,ph), η

∗(λh,u∗
h
,p∗

h
).

Theorem 3.2. Assume p̂ and p̂∗ are the solutions of the optimisation problems (3.9) and

(3.10), respectively. Under the conditions of Theorem 3.1, there exist exact eigenfunctions

u ∈ M(λ) and u∗ ∈ M∗(λ) satisfying the inequalities

θ1‖u− uh‖1 ≤ η(λh,uh, p̂)≤ θ2‖u− uh‖1 , (3.21)

θ ∗1‖u
∗ − u∗

h
‖1 ≤ η

∗(λh,u∗
h
, p̂∗) ≤ θ ∗2‖u

∗ − u∗
h
‖1 , (3.22)

where

θ1 = 1− αη∗a(h), θ
∗
1 = 1−α∗ηa(h) ,

θ2 =
�
3C2
λ‖uh‖

2
0(δ
∗
h
(λ))2 + 3C2

λ|λ− 1|2(η∗
a
(h))2 + 3‖b‖2

L∞(Ω)
+ 1
�1/2

,

θ ∗2 =
�
3C2
λ‖u
∗
h
‖20δ

2
h
(λ) + 3C2

λ|λ− 1|2η2
a(h) + 3‖b‖2

W 1,∞(Ω)
+ 1
�1/2

.

Proof. The left-hand inequalities in (3.21) and (3.22) are respectively the direct conse-
quences of (3.3) and (3.4), so we proceed to consider the right-hand inequalities. For uh

in (3.21), we can choose u ∈ M(λ) such that ‖u− uh‖0 ≤ Cλη
∗
a
(h)‖u− uh‖1. From (2.2),

(3.5) and that ∇u ∈W, we have

η2(λh,uh,∇u) = ‖λhuh − b ·∇uh − uh +∆u‖20 + ‖∇u−∇uh‖
2
0

=


λhuh − b ·∇uh − uh − (λu− b ·∇u− u)



2
0 + ‖∇u−∇uh‖

2
0 .

Combining (3.9) and Theorem 2.1, we obtain

η2(λh,uh, p̂) ≤η2(λh,uh,∇u)

=


λhuh − b ·∇uh − uh − (λu− b ·∇u− u)



2
0 + ‖∇u−∇uh‖

2
0

=


(λh −λ)uh + (λ− 1)(uh − u) + b ·∇(u− uh)



2
0 + ‖∇(u− uh)‖

2
0

≤3|λh −λ|
2‖uh‖

2
0 + 3|λ− 1|2‖u− uh‖

2
0 +
�
3‖b‖2

L∞(Ω)
+ 1
�

∇(u− uh)


2

0

≤θ2
2 ‖u− uh‖

2
1 ,

which is the right-hand inequality in (3.21). For the right-hand inequality in (3.22), we
choose u∗ ∈ M∗(λ) such that ‖u∗−u∗

h
‖0 ≤ Cληa(h)‖u

∗ −u∗
h
‖1. Then using (2.4), (3.6) and

that ∇u∗ ∈W we have

�
η∗(λh,u∗

h
,∇u∗)
�2
=


λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+∆u∗


2

0 + ‖∇u∗ −∇u∗
h
‖20

=


λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+ u∗ −∇· (b̄u∗)− λ̄u∗



2
0

+


∇(u∗ − u∗

h
)


2

0 ,
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on noting that u∗ satisfies (2.3). Then combining (3.10) and Theorem 2.1, we obtain
�
η∗(λh,u∗h, p̂∗)
�2
≤
�
η∗(λh,u∗h,∇u∗)

�2

=


λ̄hu∗

h
+∇· (b̄u∗

h
)− u∗

h
+ u∗ −∇· (b̄u∗)− λ̄u∗



2
0 +


∇(u∗ − u∗

h
)


2

0

=


(λ̄h − λ̄)u

∗
h
+ (λ̄− 1)(u∗

h
− u∗) +∇· (b̄(u∗

h
− u∗))


2

0

+


∇(u∗ − u∗h)


2

0

≤3|λh −λ|
2‖u∗

h
‖20 + 3|λ− 1|2‖u∗ − u∗

h
‖20

+
�
3‖b‖2

W1,∞(Ω)
+ 1
�
‖u∗ − u∗

h
‖21

≤(θ ∗2 )
2‖u∗ − u∗h‖

2
1 ,

which is the right-hand inequality in (3.22).

Corollary 3.2. Assume the conditions of Theorem 3.2 hold and two constants γ1 > 0 and

γ∗1 > 0 exist such that ‖p̂− ph‖W ≤ γ1‖u− uh‖1 and ‖p̂∗ − p∗
h
‖W ≤ γ

∗
1‖u
∗ − u∗

h
‖1. Then the

following inequalities hold:

η(λh,uh,ph) ≤ γ2‖u− uh‖1 , (3.23)

η∗(λh,u∗
h
,p∗

h
)≤ γ∗2‖u

∗ − u∗
h
‖1 , (3.24)

where γ2 =
q
θ2

2 + γ
2
1 and γ∗2 =
Æ
(θ ∗2 )

2 + (γ∗1)
2.

Proof. From Eq. (3.17) and inequality (3.21) we have

η2(λh,uh,ph) = η
2(λh,uh, p̂) + ‖p̂− ph‖

2
W

≤ θ2
2 ‖u− uh‖

2
1 + γ

2
1‖u− uh‖

2
1

= (θ2
2 + γ

2
1)‖u− uh‖

2
1 , (3.25)

which implies (3.23). Inequality (3.24) similarly follows from (3.18) and (3.22).

Remark 3.1. In our computations (cf. Section 5), we use higher order finite element meth-
ods to solve the problems (3.11) and (3.12) such that their approximations ph and p∗

h
satisfy

the conditions ‖p̂ − ph‖W ≤ γ1‖u− uh‖1 and ‖p̂∗ − p∗
h
‖W ≤ γ

∗
1‖u
∗ − u∗

h
‖1 in Corollary 3.2

with two bounded constants γ1 and γ∗1.

4. Computable Error Bound for the Eigenvalue Approximation

Given the upper bound for the error estimates of the eigenfunction approximations
presented in Section 3, we proceed to obtain a computable error estimate for eigenvalue
approximations. The process is direct, from the following Rayleigh quotient expansion for
the nonsymmetric eigenvalue problem.
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Lemma 4.1. Assume (λ,u) ∈ C ×V and (λ,u∗) ∈ C ×V satisfy (2.2) and (2.4) respectively,

and suppose ψ, ψ∗ ∈ V are such that (ψ,ψ∗) 6= 0. If we define

bλ = a(ψ,ψ∗)

(ψ,ψ∗)
,

then we have the expansion

bλ− λ =
a(ψ− u,ψ∗ − u∗)−λ(ψ− u,ψ∗ − u∗)

(ψ,ψ∗)
. (4.1)

Proof. From the variational forms (2.2) and (2.4),

a(ψ− u,ψ∗ − u∗)−λ(ψ− u,ψ∗ − u∗)

=
�
a(ψ,ψ∗)−λ(ψ,ψ∗)

�
+
�
a(u,u∗)− λ(u,u∗)

�
−
�
a(u,ψ∗)−λ(u,ψ∗)

�

−
�
a(ψ,u∗)−λ(ψ,u∗)

�

=a(ψ,ψ∗)−λ(ψ,ψ∗)

=
�
a(ψ,ψ∗)− bλ(ψ,ψ∗)

�
+ (bλ−λ)(ψ,ψ∗)

=(bλ−λ)(ψ,ψ∗) , (4.2)

hence the desired result Eq. (4.1).

Theorem 4.1. Suppose (λh,uh) ∈ C ×Vh and (λh,u∗
h
) ∈ C ×Vh are the solutions correspond-

ing to λ of the discrete problems (2.9) and (2.10), respectively. Then if (uh,u∗
h
) = 1, we have

the error estimate

|λh −λ| ≤ θ(h)η(λh,uh, p̂)η∗(λh,u∗
h
, p̂∗) , (4.3)

where

θ(h) =
1+ Cλ‖b‖L∞(Ω)ηa(h) + C2

λ
|λ− 1|ηa(h)η

∗
a
(h)

(1−αη∗a(h))(1−α
∗ηa(h))

(4.4)

and

lim
h→0

θ(h) = 1 . (4.5)

Furthermore, assuming that ph and p∗
h

are the respective approximate solutions of the optimi-

sation problems (3.11) and (3.12), when h is small enough the following explicit asymptotic

result holds:

|λh −λ| ≤ 2η(λh,uh,ph)η
∗(λh,u∗

h
,p∗

h
) . (4.6)
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Proof. We can choose u ∈ M(λ) such that ‖u−uh‖0 ≤ Cλη
∗
a(h)‖u−uh‖1, and also choose

u∗ ∈ M∗(λ) satisfying ‖u∗ − u∗
h
‖0 ≤ Cληa(h)‖u

∗ − u∗
h
‖1. From Lemma 4.1,

|λh −λ| =
���a(uh − u,u∗

h
− u∗)−λ(uh − u,u∗

h
− u∗)

���

=

���
�
∇(uh − u),∇(u∗

h
− u∗)
�
+
�
b ·∇(uh − u),u∗

h
− u∗
�

− (λ− 1)(uh − u,u∗
h
− u∗)

���

≤‖uh − u‖1‖u
∗
h − u∗‖1 + ‖b‖L∞(Ω)



∇(uh − u)




0‖u
∗
h − u∗‖0

+ |λ− 1| ‖uh − u‖0‖u
∗
h
− u∗‖0 . (4.7)

Then combining Theorem 2.1, (3.3), (3.4) and (4.7) we have

|λh −λ| ≤
�
1+ Cλ‖b‖L∞(Ω)ηa(h) + C2

λ|λ− 1|ηa(h)η
∗
a(h)
�
‖uh − u‖1‖u

∗
h − u∗‖1

≤
1+ Cλ‖b‖L∞(Ω)ηa(h) + C2

λ
|λ− 1|ηa(h)η

∗
a
(h)

(1−αη∗a(h))(1−α
∗ηa(h))

η(λh,uh, p̂)η∗(λh,u∗
h
, p̂∗)

=θ(h)η(λh,uh, p̂)η∗(λh,u∗h, p̂∗), (4.8)

which is the desired result (4.3).

Obviously, since ηa(h),η
∗
a(h) → 0 as h → 0 we know that limh→0 θ(h) = 1, and the

explicit asymptotic result (4.6) can be deduced directly from (3.9), (3.10) and (4.5).

5. Numerical Results

We illustrate the efficiency of the computable a posteriori error estimates for the pro-
posed eigenpair approximations in three examples, where b = [b1, b2]

T ∈ C 2 in the non-
symmetric term is some constant vector. The nonsymmetric eigenvalue problems (2.2) and
(2.4) were solved on the unit square Ω = (0,1)× (0,1) with the real vector b = [1,1/2]T

and then the complex vector b = [1 + 2i,1/2 − 1i]T , as discussed in Subsections 5.1 and
5.2. In Subsection 5.3, we discuss the solution of the nonsymmetric eigenvalue problem
on an L-shaped domain Ω= (−1,1)× (−1,1)/[0,1)× (−1,0] with b = [1,1/2]T , using the
adaptive finite element method. All of these three examples drawn from Refs. [12,13,22]
are nondefective, and we computed their eigenvalues and corresponding eigenfunctions.

In the first two examples, the exact solutions of the nonsymmetric eigenvalue problem
and its adjoint are [12,13]

λk,ℓ =
b2

1 + b2
2

4
+ (k2 + ℓ2)π2 + 1 , (5.1)

uk,ℓ = exp
� b1 x1 + b2 x2

2

�
sin(kπx1) sin(ℓπx2) , (5.2)

u∗
k,ℓ = exp
�
−

b1 x1 + b2 x2

2

�
sin(kπx1) sin(ℓπx2) , (5.3)
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Figure 1: The initial mesh for the unit square.

where k,ℓ ∈ N +. The a posteriori error estimators η(λh,uh, p̂h) and η∗(λh,u∗
h
, p̂∗

h
) were

obtained using the finite element method to solve the dual problems (3.11) and (3.12).
In all examples, the dual problems were solved on the same mesh Th, with the H(div;Ω)
conforming finite element space [3]

W
p

h
=
�
w ∈W
�� w|K ∈ RTp , ∀K ∈ Th

	

where RTp = (Pp)
d + xPp, to produce the finite element method for the dual problems

(3.11) and (3.12) as follows:

Find p̂h ∈W
p

h
such that â(p̂h,qh) =F (qh) , ∀qh ∈W

p

h
; and (5.4)

Find p̂∗
h
∈W

p

h
such that â(p̂∗

h
,qh) =F

∗(qh) , ∀qh ∈W
p

h
. (5.5)

To illustrate the efficiency of (4.3) in Theorem 4.1, we compare the error estimate |λ−λh|
with ξh := η(λh,uh, p̂h)η

∗(λh,u∗
h
, p̂∗

h
) in the numerical results.

5.1. Nonsymmetric eigenvalue problem for real constant vector b

In the first example, where vector b = [1,1/2]T and the nonsymmetric eigenvalue
problems (2.2) and (2.4) are defined on the unit square Ω= (0,1)× (0,1), we produced a
sequence of finite element spaces on a sequence of meshes obtained by regular refinement
(connecting the midpoint of each edge) from an initial mesh generated by the Delaunay
method — cf. Fig. 1.

We first used the linear conforming finite element method to solve the nonsymmetric
eigenvalue problems (2.2) and (2.4), and then solved both dual problems (5.4) and (5.5)
in the finite element spaces W0

h
and W1

h
. Fig. 2 depicts our numerical results for the first

eigenpair. From the left and middle subfigures, we see the computable error estimates are
efficient when the corresponding dual problems are solved with W1

h
, in agreement with

Corollary 3.2 — the efficiency indices η(λh,uh,ph)/‖u − uh‖1 are [0.997985259387722,
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Figure 2: The errors of the �rst eigenpair for the nonsymmetri
 eigenvalue problems on the unit

square domain with a real 
onstant ve
tor b and solved by the linear �nite element method, where

η(λh, uh,p0
h
) and η(λh, uh,p1

h
) in the left sub�gure denote the a posteriori error estimates η(λh, uh, p̂h)

when the dual problem is solved by W0
h
and W1

h
respe
tively, and η∗(λh, u∗

h
,p∗0

h
) and η∗(λh, u∗

h
,p∗1

h
) in the

middle sub�gure denote the 
orresponding quantities of the adjoint problem, and in the right sub�gure
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Figure 3: The errors of the �rst eigenpair for the nonsymmetri
 eigenvalue problems on the unit

square domain with a real 
onstant ve
tor b and solved by the quadrati
 �nite element method, where

η(λh, uh,p1
h
) and η(λh, uh,p2

h
) in the left sub�gure denote the a posteriori error estimates η(λh, uh, p̂h)

when the dual problem is solved by W1
h
and W2

h
respe
tively, and η∗(λh, u∗

h
,p∗1

h
) and η∗(λh, u∗

h
,p∗2

h
) in the

middle sub�gure denote the 
orresponding quantities of the adjoint problem, and in the right sub�gure

ξ1
h
= η(λh, uh,p1

h
)η∗(λh, u∗

h
,p∗1

h
) and ξ2

h
= η(λh, uh,p2

h
)η∗(λh, u∗

h
,p∗2

h
).

0.999528187698220, 0.999884580446569, 0.999971303308288, 0.999992834043646,
0.999998208728180]. The right subfigure reflects the bound for the eigenvalue error esti-
mate |λ−λh| in Theorem 4.1.

The quadratic finite element method was also applied to solve the nonsymmetric eigen-
value problems (2.2) and (2.4), and we chose the finite element spaces W1

h
and W2

h
for the

dual problems (5.4) and (5.5). The corresponding numerical results for the first eigenpair
are presented in Fig. 3. The left and middle subfigures show that the computable a poste-

riori error estimates are efficient when the corresponding dual problems are solved by W2
h
,

as expected from Corollary 3.2. The right subfigure reflects the bound of the eigenvalue
error |λ−λh| in Theorem 4.1.

We also checked the efficiency of the computable bound for the summation of the first
6 eigenvalues — i.e. 21/16+[2π2, 5π2, 5π2, 8π2, 10π2, 10π2] in this example. Fig. 4 gives
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Figure 4: The errors for the error summation of the �rst 6 eigenvalues on the unit square do-

main with a real 
onstant ve
tor b. In the left sub�gure, the nonsymmetri
 eigenvalue prob-

lems are solved by the linear �nite element method, where ξ0
j,h = η(λ j,h, u j,h,p0

j,h)η
∗(λ j,h, u∗

j,h,p∗0
j,h)

and ξ1
j,h = η(λ j,h, u j,h,p1

j,h)η
∗(λ j,h, u∗

j,h,p∗1
j,h). In the right sub�gure the eigenvalue problems are

solved by quadrati
 �nite element method, where ξ1
j,h = η(λ j,h, u j,h,p1

j,h)η
∗(λ j,h, u∗

j,h,p∗1
j,h) and ξ2

j,h =

η(λ j,h, u j,h,p2
j,h)η

∗(λ j,h, u∗
j,h,p∗2

j,h).

the corresponding numerical results. The left subfigure resulted from using the linear finite
element method to solve the eigenvalue problems (2.2) and (2.4), and the dual problems
(5.4) and (5.5) were solved in W0

h
and W1

h
. The right subfigure resulted from using the

quadratic finite element method to solve the eigenvalue problems (2.2) and (2.4), and the
dual problems (5.4) and (5.5) were solved in W1

h
and W2

h
. Fig. 4 also reveals that the

computable error estimates are efficient when the errors of the dual problems are small
compared to the errors of the original nonsymmetric eigenvalue problems, consistent with
Corollary 3.2.

5.2. Nonsymmetric eigenvalue problem for complex constant vector b

In the second example, where the nonsymmetric term is assumed to be a complex con-
stant vector b = [1+ 2i,1/2− 1i]T , again using the initial mesh shown in Fig. 1 we solved
the nonsymmetric eigenvalue problems (2.2) and (2.4) on the unit squareΩ = (0,1)×(0,1)
by the linear finite element method, and the corresponding dual problems (5.4) and (5.5)
were both solved in the finite element spaces W0

h
and W1

h
. Fig. 5 presents the numerical

results for the first eigenpair. The left and middle subfigures show that the computable a

posteriori error estimate is efficient when the corresponding dual problems are solved by
W1

h
, in agreement with Corollary 3.2. The right subfigure also confirms the result presented

in Theorem 4.1.
The quadratic finite element method was also chosen to solve the nonsymmetric eigen-

value problems (2.2) and (2.4), and the corresponding dual problems (5.4) and (5.5) were
both solved in the finite element spaces W1

h
and W2

h
. Fig. 6 presents the corresponding

numerical results for the first eigenpair. The left and middle subfigure show that the com-
putable a posteriori error estimate is efficient when the corresponding dual problems are
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Figure 5: The errors for the �rst eigenpair for the nonsymmetri
 eigenvalue problems on the unit

square domain with a 
omplex 
onstant ve
tor b solved by the linear �nite element method, where

η(λh, uh,p0
h
) and η(λh, uh,p1

h
) in the left sub�gure denote the a posteriori error estimates η(λh, uh, p̂h)

when the dual problem is solved by both W0
h
and W1

h
, and η∗(λh, u∗

h
,p∗0

h
) and η∗(λh, u∗

h
,p∗1

h
) in the

middle sub�gure denote the 
orresponding quantities of the adjoint problem, and in the right sub�gure

ξ0
h
= η(λh, uh,p0

h
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h
,p∗0

h
) and ξ1

h
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h
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Figure 6: The errors for the �rst eigenpair for the nonsymmetri
 eigenvalue problems on the unit

square domain with a 
omplex 
onstant ve
tor b solved by the quadrati
 �nite element method, where

η(λh, uh,p1
h
) and η(λh, uh,p2

h
) in the left sub�gure denote the a posteriori error estimates η(λh, uh, p̂h)

when the dual problem is solved by both W0
h
and W1

h
, and η∗(λh, u∗

h
,p∗1

h
) and η∗(λh, u∗

h
,p∗2

h
) in the

middle sub�gure denote 
orresponding quantities of the adjoint problem, and in the right sub�gure

ξ1
h
= η(λh, uh,p1

h
)η∗(λh, u∗

h
,p∗1

h
) and ξ2

h
= η(λh, uh,p2

h
)η∗(λh, u∗

h
,p∗2

h
).

solved by W2
h
, which is also consistent with Corollary 3.2. The right subfigure shows the ef-

ficiency of the bound for the error |λ−λh| of the first eigenvalue presented in Theorem 4.1.

5.3. Nonsymmetric eigenvalue problem on the L-shaped domain

Finally, we considered the nonsymmetric eigenvalue problems (2.2) and (2.4) defined
on the L-shaped domain Ω = (−1,1) × (−1,1)/[0,1) × (−1,0] with b = [1,1/2]T . Since
Ω has a re-entrant corner, the first eigenfunction is expected to be singular. For the first
eigenvalue approximation, the convergence order by the linear finite element method red
proved to be less than 2, the order predicted by the theory for regular eigenfunctions.
Since the exact eigenvalue is unknown, we chose an adequately accurate approximation
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Initial Mesh Mesh after 14 iterations

Figure 7: The initial mesh (left) and the sub�gure after 14 adaptive iterations (right) for the L-shaped

domain.

λ = 10.95240442893276 by the extrapolation method [14] to represent the exact first
eigenvalue for our numerical tests.

We produced a sequence of finite element spaces on the sequence of meshes gener-
ated by the adaptive refinement (c.f. [19, 21]). The initial mesh and the subfigure after
14 adaptive iterations are shown in Fig. 7. The ZZ recovery method [23] was adopted as
the a posteriori error estimator in the adaptive refinement for the eigenfunction and the

corresponding adjoint eigenfunction approximations
q
‖u− uh‖

2
1 + ‖u

∗ − u∗
h
‖21. The non-

symmetric eigenvalue problems (2.2) and (2.4) were solved by the linear finite element
method, and the corresponding dual problems (5.4) and (5.5) were both solved in the
finite element spaces W0

h
and W1

h
. In order to test the efficiency of the computable a poste-

riori error estimate for the eigenfunction approximations, we defined an average quantity
ζh :=
Æ
η2(λh,uh, p̂h) +η∗2(λh,u∗

h
, p̂∗

h
) and compared it with the ZZ error estimator. Fig. 8

gives the corresponding numerical results for the adaptive iterations. From the numerical
results, we see that the computable a posteriori error estimate works well on the adaptive
meshes for both eigenvalue and eigenfunction when the dual problems are solved in W1

h
.

6. Concluding Remarks

We have obtained computable error estimates for nondefective eigenpair approxima-
tions of the nonsymmetric eigenvalue problem, solved by general conforming finite element
methods on the general meshes. The computable error estimate of the eigenvalue approx-
imation can provide a computable range, including the exact eigenvalue in the complex
plane. Some numerical examples demonstrate the efficiency of the proposed computable
error estimates. In future, we envisage extending our approach to Stokes and other eigen-
value problems that involve the Kohn-Sham or Hartree-Fock equations, and to compute the
band gaps in photonic crystals.
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Figure 8: The errors for the �rst eigenpair when the nonsymmetri
 eigenvalue problems are de-

�ned on the L-shaped domain solved by the linear �nite element method. In the left sub�gure,

ζ
j

h
:=
q
η2(λh, uh,p j

h
) +η∗2(λh, u∗

h
,p∗ j

h
) ( j = 0, 1), η(λh, uh,p0

h
) and η(λh, uh,p1

h
) denote the a posteri-

ori error estimate η(λh, uh, p̂h) when the dual problems are solved by both W0
h
and W1

h
, η∗(λh, u∗

h
,p∗0

h
)

and η∗(λh, u∗
h
,p∗1

h
) are the 
orresponding quantities of the adjoint problem, and in the right sub�gure

ξ0
h
= η(λh, uh,p0

h
)η∗(λh, u∗

h
,p∗0

h
) and ξ1

h
= η(λh, uh,p1

h
)η∗(λh, u∗

h
,p∗1

h
).
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