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Abstract. A multigrid method is proposed to compute the ground state solution of
Bose-Einstein condensations by the finite element method based on the multilevel cor-
rection for eigenvalue problems and the multigrid method for linear boundary value
problems. In this scheme, obtaining the optimal approximation for the ground state
solution of Bose-Einstein condensates includes a sequence of solutions of the linear
boundary value problems by the multigrid method on the multilevel meshes and some
solutions of nonlinear eigenvalue problems some very low dimensional finite element
space. The total computational work of this scheme can reach almost the same op-
timal order as solving the corresponding linear boundary value problem. Therefore,
this type of multigrid scheme can improve the overall efficiency for the simulation of
Bose-Einstein condensations. Some numerical experiments are provided to validate
the efficiency of the proposed method.
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1 Introduction

Bose-Einstein condensation (BEC), which is a gas of bosons that are in the same quantum
state, is an active field [6,23,29]. In 2001, the Nobel Prize in Physics was awarded Eric A.
Cornell, Wolfgang Ketterle and Carl E. Wieman [4, 19, 29] for their research in BEC. The
properties of the condensate at zero or very low temperature [20, 31] can be described
by the well-known Gross-Pitaevskii equation (GPE) [24, 28] which is a time-independent

∗Corresponding author. Email addresses: hhxie@lsec.cc.ac.cn (H. Xie), xiemanting@lsec.cc.ac.cn

(M. Xie)

http://www.global-sci.com/ 648 c©2016 Global-Science Press

https://doi.org/10.4208/cicp.191114.130715a
Downloaded from https://www.cambridge.org/core. Tianjin University, on 13 Apr 2020 at 15:55:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.4208/cicp.191114.130715a
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


H. Xie and M. Xie / Commun. Comput. Phys., 19 (2016), pp. 648-662 649

nonlinear Schrödinger equation [30]. So far, it is found that the GPE fits well for most of
experiments [5, 18, 20, 26].

As we know that the wave function ψ of a sufficiently dilute condensates satisfies the
following GPE

(
−

h̄2

2m
∆+W̃+

4πh̄2aN

m
|ψ|2

)
ψ=µψ, (1.1)

where W̃ is the external potential, µ is the chemical potential and N is the number of
atoms in the condensate. The effective two-body interaction is 4πh̄2a/m, where h̄ is the
Plank constant, a is the scattering length (positive for repulsive interaction and negative
for attractive interaction) and m is the particle mass. In this paper, we assume the external
potential W̃(x) is measurable and locally bounded and tends to infinity as |x|→∞ in the
sense that

inf
|x|≥r

W̃(x)→∞ for r→∞.

Then the wave function ψ must vanish exponentially fast as |x| → ∞. Furthermore,
Eq. (1.1) can be written as

(
−∆+

2m

h̄2
W̃+8πaN|ψ|2

)
ψ=

2mµ

h̄2
ψ. (1.2)

Hence in this paper, we are concerned with the following non-dimensionalized GPE
problem:

Find (λ,u)∈R×H1(Ω) such that





−∆u+Wu+ζ|u|2u=λu, in Ω,

u=0, on ∂Ω,∫
Ω
|u|2dΩ=1,

(1.3)

where Ω⊂R
d (d=1,2,3) denotes the computing domain which has the cone property [1],

ζ is some positive constant and W(x)=γ1x2
1+···+γdx2

d≥0 with γ1,··· ,γd>0 [8, 39].
So far, there exist many papers discussing the numerical methods for the time-

dependent GPEs and time-independent GPEs. Please refer to the papers [2, 3, 5–8, 13,
16, 18–22, 29, 34] and the papers cited therein. Especially, in [39], the convergence of the
finite element method for GPEs was proved and a prior error estimates presented in [12]
which will be used in this paper. In [14, 15, 27], two-grid finite element methods for GPE
have been proposed and analyzed.

Recently, a type of multigrid method for eigenvalue problems has been proposed
in [32, 35–37]. The aim of this paper is to present a multigrid scheme for GPE (1.3) based
on the multilevel correction method in [32]. With this method, solving GPE will has
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almost the same efficiency as solving the corresponding linear boundary value problem.
The multigrid method for GPE is based on a sequence of nested finite element spaces with
different levels of accuracy which can be built in the same way as the multilevel method
for boundary value problems [38]. The corresponding error and computational work
estimates of the proposed multigrid scheme for the GPE will also be analyzed. Based
on the analysis, the proposed method can obtain optimal errors with an almost optimal
computational work. The eigenvalue multigrid procedure can be described as follows:
(1) solve the GPE in the initial finite element space; (2) use the multigrid method to solve
an auxiliary linear boundary value problem which is constructed by using the previously
obtained eigenpair approximation; (3) solve the GPE again on the finite element space
which is constructed by combining the coarsest finite element space with the obtained
eigenfunction approximation in step (2). Then go to step (2) for the next loop until stop. In
this method, we replace solving semi-linear eigenvalue problem GPE on the finest finite
element space by solving a sequence of linear boundary value problems with multigrid
scheme in the corresponding sequence of finite element spaces and some GPEs in a very
low dimensional finite element space. So this multigrid method can improve the overall
efficiency of solving GPEs as it does for linear boundary value problems. Compared with
other numerical methods, the proposed method here is simple and easy to analyze.

An outline of the paper goes as follows. In Section 2, we introduce finite element
method for the ground state solution of BEC, i.e. non-dimensionalized GPE (1.3). A type
of one corrections step is given in Sections 3 based on the fixed-point iteration. In Section
4, we propose a type of multigrid algorithm for solving the non-dimensionalized GPE
by the finite element method. Section 5 is devoted to estimating the computational work
for the multigrid method defined in Section 4. Two numerical examples are provided in
Section 6 to validate our theoretical analysis. Some concluding remarks are given in the
last section.

2 Finite element method for GPE problem

In this section, we introduce some notation and the finite element method for the GPE
(1.3). The letter C (with or without subscripts) denotes a generic positive constant which
may be different at its different occurrences. For convenience, the symbols ., & and ≈
will be used in this paper. That x1.y1,x2&y2 and x3≈y3, mean that x1 ≤C1y1, x2 ≥ c2y2

and c3x3≤y3≤C3x3 for some constants C1,c2,c3 and C3 that are independent of mesh sizes
(see, e.g., [38]). We shall use the standard notation for the Sobolev spaces Ws,p(Ω) and
their associated norms ‖·‖s,p,Ω and seminorms |·|s,p,Ω (see, e.g., [1]). For p=2, we denote

Hs(Ω)=Ws,2(Ω) and H1
0(Ω)= {v∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of

trace, ‖·‖s,Ω =‖·‖s,2,Ω. In this paper, we set V=H1
0(Ω) and use ‖·‖s to denote ‖·‖s,Ω for

simplicity.

For the aim of finite element discretization, we define the corresponding weak form
for (1.3) as follows:
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Find (λ,u)∈R×V such that b(u,u)=1 and

a(u,v)=λb(u,v), ∀v∈V, (2.1)

where

a(u,v) :=
∫

Ω

(
∇u∇v+Wuv+ζ|u|2uv

)
dΩ, b(u,v) :=

∫

Ω
uvdΩ.

Now, let us define the finite element method [11, 17] for the problem (2.1). First we
generate a shape-regular decomposition of the computing domain Ω⊂R

d (d=2,3) into
triangles or rectangles for d=2 (tetrahedrons or hexahedrons for d=3) and the diameter
of a cell K∈Th is denoted by hK . The mesh diameter h describes the maximum diameter
of all cells K ∈ Th. Based on the mesh Th, we construct the linear finite element space
denoted by Vh ⊂V. We assume that Vh ⊂V is a family of finite-dimensional spaces that
satisfy the following assumption:

lim
h→0

inf
vh∈Vh

‖w−vh‖1=0, ∀w∈V. (2.2)

The standard finite element method for Eq. (2.1) is to solve the following eigenvalue
problem:

Find (λ̄h,ūh)∈R×Vh such that b(ūh,ūh)=1 and

a(ūh,vh)= λ̄hb(ūh,vh), ∀vh ∈Vh. (2.3)

Then we define
δh(u) := inf

vh∈Vh

‖u−vh‖1. (2.4)

Lemma 2.1. ([12, Theorem 1]) There exists h0 > 0, such that for all 0< h < h0, the smallest
eigenpair approximation (λ̄h,ūh) of (2.3) has the following error estimates:

‖u−ūh‖1.δh(u), (2.5)

‖u−ūh‖0.ηa(Vh)‖u−ūh‖1.ηa(Vh)δh(u), (2.6)

|λ−λ̄h|.‖u−ūh‖
2
1+‖u−ūh‖0.ηa(Vh)δh(u), (2.7)

where ηa(Vh) is defined as follows:

ηa(Vh)=‖u−ūh‖1+ sup
f∈L2(Ω),‖ f ‖0=1

inf
vh∈Vh

‖T f −vh‖1 (2.8)

with the operator T being defined as follows:

Find T f ∈u⊥ such that

a(T f ,v)+2(ζ|u|2(T f ),v)−(λ(T f ),v)=( f ,v), ∀v∈u⊥,

where u⊥=
{

v∈H1
0 (Ω) : |

∫
Ω

uvdΩ=0
}

.
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3 One correction step based on fixed-point iteration

In this section, we introduce a type of one correction step based on the fixed-point itera-
tion to improve the accuracy of the given eigenpair approximation. This correction step
contains solving an auxiliary linear boundary value problem with multigrid method in
the finer finite element space and a GPE on a very low dimensional finite element space.

In order to define the one correction step, we introduce a very coarse mesh TH and
the low dimensional linear finite element space VH defined on the mesh TH. Assume we
have obtained an eigenpair approximation (λhk

,uhk
)∈R×Vhk

and the coarse space VH is
a subset of Vhk

. Let Vhk+1
⊂V be a finer finite element space such that Vhk

⊂Vhk+1
. Based

on this finer finite element space, we define the following one correction step.

Algorithm 3.1. One Correction Step based on Fixed-point Iteration

1. Define the following auxiliary boundary value problem:

Find êhk+1
∈Vhk+1

such that

(∇êhk+1
,∇vhk+1

)=λhk
b(uhk

,vhk+1
)−a(uhk

,vhk+1
), ∀vhk+1

∈Vhk+1
. (3.1)

Solve this equation with multigrid method [9,11,25,33,38] to obtain an approxima-
tion ẽhk+1

∈Vhk+1
with the error estimate ‖ẽhk+1

−êhk+1
‖1.ςhk+1

and set ũhk+1
=uhk

+ẽhk+1
.

Here ςhk+1
is used to denote the accuracy for the multigrid iteration.

2. Define a new finite element space VH,hk+1
=VH+span{ũhk+1

} and solve the following
eigenvalue problem:

Find (λhk+1
,uhk+1

)∈R×VH,hk+1
such that b(uhk+1

,uhk+1
)=1 and

a(uhk+1
,vH,hk+1

)=λhk+1
b(uhk+1

,vH,hk+1
), ∀vH,hk+1

∈VH,hk+1
. (3.2)

Summarize above two steps into

(λhk+1
,uhk+1

)=Correction(VH ,λhk
,uhk

,Vhk+1
,ςhk+1

).

Theorem 3.1. Assume hk<h0 and there exists a real number εhk
(u) such that the given eigenpair

approximation (λhk
,uhk

)∈R×Vhk
has the following error estimates:

‖ūhk
−uhk

‖0+|λ̄hk
−λhk

|= εhk
(u). (3.3)

Then after one correction step, the resultant approximation (λhk+1
,uhk+1

)∈R×Vhk+1
has the fol-

lowing error estimates:

‖ūhk+1
−uhk+1

‖1. εhk+1
(u), (3.4)

‖ūhk+1
−uhk+1

‖0.ηa(VH)‖u−uhk+1
‖1, (3.5)

|λ̄hk+1
−λhk+1

|.ηa(VH)εhk+1
(u), (3.6)

where εhk+1
(u) :=ηa(Vhk

)δhk
(u)+‖ūhk

−uhk
‖0+|λ̄hk

−λhk
|+ςhk+1

.
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Proof. First, we define H1
0(Ω) inner-product â(·,·) as

â(w,v)=
∫

Ω
∇w∇vdΩ, ∀w,v∈V.

From problems (2.3) and (3.1), inequality (3.3), Lemma 2.1, Hölder inequality and Sobolev
space embedding inequality, the following estimates hold for any vhk+1

∈Vhk+1

â(ūhk+1
−uhk

− êhk+1
,vhk+1

)

=b(λ̄hk+1
ūhk+1

−λhk
uhk

,vhk+1
)

+
(
(W+ζ‖uhk

‖2)uhk
−(W+ζ‖ūhk+1

‖2)ūhk+1
,vhk+1

)

.‖λ̄hk+1
ūhk+1

−λhk
uhk

‖0‖vhk+1
‖1

+‖ūhk+1
−uhk

‖0(‖ūhk+1
‖2

0,6,Ω+‖uhk
‖2

0,6,Ω)‖vhk+1
‖0,6,Ω

.
(
‖λ̄hk+1

ūhk+1
−λ̄hk

ūhk
‖0+‖λ̄hk

ūhk
−λhk

uhk
‖0

)
‖vhk+1

‖1

+
(
‖ūhk+1

−ūhk
‖0+‖ūhk

−uhk
‖0

)
(‖ūhk+1

‖2
1+‖uhk

‖2
1)‖vhk+1

‖1

.
(
ηa(Vhk

)δhk
(u)+εhk

(u)
)
‖vhk+1

‖1.

Then we have
‖ūhk+1

−uhk
− êhk+1

‖1.ηa(Vhk
)δhk

(u)+εhk
(u). (3.7)

From (3.7) and ‖ẽhk+1
− êhk+1

‖1.ςhk+1
, the following estimate holds

‖ūhk+1
−ũhk+1

‖1 =‖ūhk+1
−uhk

− ẽhk+1
‖1.ηa(Vhk

)δhk
(u)+εhk

(u)+ςhk+1
. (3.8)

Now we come to estimate the error for the eigenpair solution (λhk+1
,uhk+1

) of problem
(3.2). Since VH,hk+1

is a subset of Vhk+1
, we can think of problem (3.2) as a subspace ap-

proximation for the problem (2.3). Then based on the definition of VH,hk+1
, the subspace

approximation result from [12] and Lemma 2.1, the following estimates hold

‖ūhk+1
−uhk+1

‖1. inf
vH,hk+1

∈VH,hk+1

‖ūhk+1
−vH,hk+1

‖≤‖ūhk+1
−ũhk+1

‖1

.ηa(Vhk
)δhk

(u)+εhk
(u)+ςhk+1

. (3.9)

This is the desired result (3.4). Then (3.5) and (3.6) can be proved based on (3.4) and
Lemma 2.1.

Remark 3.1. We can also solve the following auxiliary boundary value problem in Step 1
of Algorithm 3.1:

Find êhk+1
∈Vhk+1

such that

(∇êhk+1
,∇vhk+1

)+(Wêhk+1
,vhk+1

)+(ζ|uhk
|2 êhk+1

,vhk+1
)

=λhk
b(uhk

,vhk+1
)−a(uhk

,vhk+1
), ∀vhk+1

∈Vhk+1
. (3.10)

From the proof of Theorem 3.1, the error estimate results (3.4)-(3.6) will also hold if we
replace the boundary value problem (3.1) by (3.10) in Algorithm 3.1.
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4 Multigrid method for GPE

In this section, we introduce a type of multigrid method based on the One Correction Step
defined in Algorithms 3.1. This type of multigrid method can obtain the same optimal
error estimate as that for solving the GPE directly on the finest finite element space.

In order to develop multigrid scheme, we define a sequence of triangulations Thk
of

Ω as follows. Suppose Th1
is produced from TH by some regular refinements and let Thk

be obtained from Thk−1
via a regular refinement such that

hk ≈
1

β
hk−1, k=2,··· ,n, (4.1)

where β denotes the refinement index. Based on this sequence of meshes, we construct
the corresponding linear finite element spaces Vh1

,··· ,Vhn
such that

VH =Vh0
⊆Vh1

⊂Vh2
⊂···⊂Vhn

⊂V. (4.2)

In this paper, we assume the following relations of approximation errors hold

ηa(Vhk
)≈

1

β
ηa(Vhk−1

), δhk
(u)≈

1

β
δhk−1

(u), k=2,··· ,n. (4.3)

Algorithm 4.1. Multigrid Scheme for GPE

1. Construct a sequence of nested finite element spaces VH,Vh1
,Vh2

,··· ,Vhn
such that

(4.2) and (4.3) hold.

2. Solve the GPE on the initial finite element space Vh1
:

Find (λh1
,uh1

)∈R×Vh1
such that b(uh1

,uh1
)=1 and

a(uh1
,vh1

)=λh1
b(uh1

,vh1
), ∀vh1

∈Vh1
.

3. Do k=1,··· ,n−1

Obtain a new eigenpair approximation (λhk+1
,uhk+1

)∈R×Vhk+1
with the one correc-

tion step defined by Algorithm 3.1

(λhk+1
,uhk+1

)=Correction(VH,λhk
,uhk

,Vhk+1
,ςhk+1

).

End Do

Finally, we obtain an eigenpair approximation (λhn
,uhn

)∈R×Vhn
.

Theorem 4.1. Assume h1 <h0 and the error ςhk+1
of the linear solving by the multigrid method

in the correction step on the k+1-th level mesh satisfies ςhk+1
≤ ηa(Vhk

)δhk
(u) for k= 1,··· ,n−
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1. After implementing Algorithm 4.1, the resultant eigenpair approximation (λhn
,uhn

) has the
following error estimates

‖ūhn
−uhn

‖1.β2ηa(Vhn
)δhn

(u), (4.4)

‖ūhn
−uhn

‖0.ηa(Vhn
)δhn

(u), (4.5)

|λ̄hn
−λhn

|.ηa(Vhn
)δhn

(u), (4.6)

under the condition Cβ2ηa(VH)<1 for the concerned constant C.

Proof. From Lemma 2.1 and the definition of Algorithm 4.1, we have ūh1
=uh1

and λ̄h1
=

λh1
. Then from the proof of Theorem 3.1 with εh1

(u) = 0 and ςh2
. ηa(Vh1

)δh1
(u), the

following estimates hold:

‖ūh2
−uh2

‖1.ηa(Vh1
)δh1

(u), (4.7)

‖ūh2
−uh2

‖0.ηa(VH)‖ūh2
−uh2

‖1.ηa(VH)ηa(Vh1
)δh1

(u), (4.8)

|λ̄h2
−λh2

|.ηa(VH)‖ūh2
−uh2

‖1.ηa(VH)ηa(Vh1
)δh1

(u). (4.9)

Based on Theorem 3.1, (4.3), (4.7)-(4.9) and recursive argument, the final eigenfunction
approximation uhn

has the following error estimates:

‖ūhn
−uhn

‖1.ηa(Vhn−1
)δhn−1

(u)+‖ūhn−1
−uhn−1

‖0+|λ̄hn−1
−λhn−1

|

.ηa(Vhn−1
)δhn−1

(u)+ηa(VH)‖ūhn−1
−uhn−1

‖1

.ηa(Vhn−1
)δhn−1

(u)+ηa(VH)ηa(Vhn−2
)δhn−2

(u)

+η2
a(VH)‖ūhn−2

−uhn−2
‖1

.
n−1

∑
k=1

(
ηa(VH)

)n−k−1
ηa(Vhk

)δhk
(u)

.
(n−1

∑
k=1

(
β2ηa(VH)

)n−k−1
)

β2ηa(Vhn
)δhn

(u)

.
1

1−β2ηa(VH)
β2ηa(Vhn

)δhn
(u).β2ηa(Vhn

)δhn
(u).

This means we have obtained the desired result (4.4). And (4.5) can be proved by the
similar argument in the proof of Theorem 3.1 which can be stated as follows

‖ūhn
−uhn

‖0.ηa(VH)‖ūhn
−uhn

‖1.ηa(VH)β2ηa(Vhn
)δhn

(u)≤ηa(Vhn
)δhn

(u).

Similar derivative can lead to the desired result (4.6) and the proof is complete.

Based on the results in Theorem 4.1, we can give the final error estimates for Algo-
rithm 4.1 as follows.
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Corollary 4.1. Under the conditions of Theorem 4.1, we have the following error estimates:

‖u−uhn
‖1.δhn

(u), (4.10)

‖u−uhn
‖0.ηa(Vhn

)δhn
(u), (4.11)

|λ−λhn
|.ηa(Vhn

)δhn
(u). (4.12)

5 Discussion of the computational work

In this section, we come to analyze the computational work for the multigrid scheme
defined in Algorithm 4.1. Since the linear boundary value problem (3.1) in Algorithm 3.1
is solved by multigrid method, the computational work for this part is optimal order.

First, we define the dimension of each level linear finite element space as

Nk :=dimVhk
, k=1,··· ,n.

Then we have

Nk ≈

( 1

β

)d(n−k)
Nn, k=1,··· ,n. (5.1)

The computational work for the second step in Algorithm 3.1 is different from the
linear eigenvalue problems [32, 35–37]. In this step, we need to solve a nonlinear eigen-
value problem (3.2). Always, some type of nonlinear iteration method (self-consistent
iteration or Newton type iteration) is used to solve this nonlinear eigenvalue problem. In
each nonlinear iteration step, we need to assemble the matrix on the finite element space
VH,hk

(k= 2,··· ,n) which needs the computational work O(Nk). Fortunately, the matrix
assembling can be carried out by the parallel way easily in the finite element space since
it has no data transfer. Here, we use m computing nodes in a computer cluster.

Theorem 5.1. Assume we use m computing-nodes in Algorithm 4.1, the GPE problem solved
in the coarse spaces VH,hk

(k= 1,··· ,n) and Vh1
need work O(MH) and O(Mh1

), respectively,
and the work multigrid method for solving the source problem in Vhk

be O(Nk) for k=2,3,··· ,n.
Let ̟ denote the nonlinear iteration times when we solve the nonlinear eigenvalue problem (3.2).
Then in each computational node, the work involved in Algorithm 4.1 has the following estimate:

Total work=O

((
1+

̟

m

)
Nn+MH logNn+Mh1

)
. (5.2)

Proof. Let Wk denote the work in any processor of the correction step in the k-th finite
element space Vhk

. Then with the correction definition, we have

Wk = O

(
Nk+MH+̟

Nk

m

)
. (5.3)
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Iterating (5.3) and using the fact (5.1), we obtain

Total work=
n

∑
k=1

Wk =O

(
Mh1

+
n

∑
k=2

(
Nk+MH+̟

Nk

m

))

=O

( n

∑
k=2

(
1+

̟

m

)
Nk+(n−1)MH+Mh1

)

=O

(
n

∑
k=2

( 1

β

)d(n−k)(
1+

̟

m

)
Nn+MH logNn+Mh1

)

=O
((

1+
̟

m

)
Nn+MH logNn+Mh1

)
. (5.4)

This is the desired result and we complete the proof.

Remark 5.1. Since we have a good enough initial solution ũhk+1
in the second step of Al-

gorithm 3.1, then solving the nonlinear eigenvalue problem (3.2) always does not need
many nonlinear iteration times (always ̟≤3). In this case, the complexity in each com-
putational node will be O(Nn) provided MH≪Nn and Mh1

≤Nn (the total computational
work will also be O(Nn) even if we only use one computing-node (m=1)).

6 Numerical examples

In this section, we provided two numerical examples to validate the efficiency of the
multigrid method stated in Algorithm 4.1.

Example 6.1. In this example, we solve GPE (1.1) with the computing domain Ω being
the unit square Ω=(0,1)×(0,1), W= x2

1+x2
2 and ζ=1.

The sequence of finite element spaces are constructed by using the linear finite ele-
ment on the sequence of meshes which are produced by regular refinement with β= 2
(connecting the midpoints of each edge). In this example, we use two meshes which
are generated by Delaunay method as the initial mesh TH = Th1

to investigate the con-
vergence behaviors. Since the exact eigenvalue is not known, we choose an adequately
accurate approximation as the exact first eigenvalue for our numerical tests. Fig. 1 shows
the corresponding initial meshes: one is coarse and the other is fine.

From the error estimate result of GPEs by the finite element method, we have

δh(u)=h, ηa(Vh)=h.

Then from Theorem 4.1, the following estimates hold

‖ūhn
−uhn

‖1.h2
n, ‖ūhn

−uhn
‖0.h2

n, |λ̄hn
−λhn

|.h2
n . (6.1)

Algorithm 4.1 is applied to solve the GPE. For comparison, we also solve the GPE di-
rectly by the finite element method. Fig. 2 gives the corresponding numerical results for
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Figure 1: The coarse and fine initial meshes for the unit square (left: H=1/6 and right: H=1/12).
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Figure 2: The errors of the multigrid algorithm for the first eigenvalue and the corresponding eigenfunction,
where udir

h and λdir
h denote the eigenfunction and eigenvalue approximation by direct eigenvalue solving (The

left figure corresponds to the left mesh in Fig. 1 and the right figure corresponds to the right mesh in Fig. 1).

the ground state solution (the smallest eigenvalue and the corresponding eigenfunction)
corresponding to the two initial meshes illustrated in Fig. 1. From Fig. 2, we find the
multigrid scheme can obtain the same optimal error estimates as the direct finite element
method for the eigenvalue and the corresponding eigenfunction approximations which
validates the results stated in Theorem 4.1 and (6.1). In addition, Fig. 3 shows the corre-
sponding energies of the ground state solutions.

Example 6.2. In this example, we also solve the GPE (1.1), where the computing domain
Ω is the L-shape domain Ω=(−1,1)×(−1,1)\[0,1)×(−1,0], W= x2

1+x2
2 and ζ=1.
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Figure 3: The energies of the multigrid algorithm for Example 6.1, where E(udir
h ) denotes the energy by direct

eigenvalue solving (The left figure corresponds to the left mesh in Fig. 1 and the right figure corresponds to the
right mesh in Fig. 1).

Since Ω has a reentrant corner, eigenfunctions with singularities are expected. The
convergence order for eigenvalue approximations is less than 2 by the linear finite el-
ement method which is the order predicted by the theory for regular eigenfunctions.
Thus, the adaptive refinement is adopted to couple with the multigrid method described
in Algorithm 4.1 and the ZZ-method [40] is used to compute the a posteriori error esti-
mators.

First, we investigate the numerical results for the first eigenvalue approximations.
Since the exact eigenvalue is not known, we also choose an adequately accurate approx-
imation as the exact smallest eigenvalue for our numerical tests. We give the numerical
results of the multigrid method in which the sequence of meshes Th1

,··· ,Thn
is produced

by the adaptive refinement. Fig. 4 shows the mesh and eigenfunction contour after 15
adaptive iterations, the energies of the ground state solutions and the corresponding a
posteriori error estimates for the adaptive iterations. From Fig. 4, we can find the multi-
grid method can also work on the adaptive family of meshes and obtain the optimal
accuracy. The multigrid method can be coupled with the adaptive refinement naturally
which produce a type of adaptive finite element method (AFEM) for the GPE where the
direct eigenvalue solving in the finest space is not required. This can also improve the
overall efficiency of the AFEM for the nonlinear eigenvalue problem solving.

7 Concluding remarks

In this paper, we propose a multigrid method to solve the GPE based on the multilevel
correction method. With this method, solving GPE is not more difficult than solving
the corresponding linear boundary value problem. The corresponding error and com-
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Figure 4: The triangulation after adaptive iterations for Example 6.2 by the linear element (upper left), the
contour of the ground state solution (upper right), the energies of the ground solutions (lower left) and the a
posteriori error estimates for the eigenfunction approximations (lower right).

putational work estimates have also been given for the proposed multigrid scheme. The
idea and the method here can also be extended to other nonlinear eigenvalue problems
which always comes from the electronic structure computation. Algorithm 4.1 can also
be coupled with other numerical schemes to produce some efficient solvers for nonlinear
eigenvalue problems.
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