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Abstract: It is a common paradigm in object detection frameworks that the samples in training
and testing have consistent distributions for the two main tasks: Classification and bounding box
regression. This paradigm is popular in sampling strategy for training an object detector due to
its intuition and practicability. For the task of localization quality estimation, there exist two ways
of sampling: The same sampling with the main tasks and the uniform sampling by manually
augmenting the ground-truth. The first method of sampling is simple but inconsistent for the task
of quality estimation. The second method of uniform sampling contains all IoU level distributions
but is more complex and difficult for training. In this paper, we propose an H+L-Sampling strategy,
selecting the high and low IoU samples simultaneously, to effectively and simply train the branch of
quality estimation. This strategy inherits the effectiveness of consistent sampling and reduces the
training difficulty of uniform sampling. Finally, we introduce accurate detection confidence, which
combines the classification probability and the localization accuracy, as the ranking keyword of NMS.
Extensive experiments show the effectiveness of our method in solving the misalignment between
classification confidence and localization accuracy and improving the detection performance.

Keywords: object detection; R-CNN; IoU regression; detection confidence; Non-Maximum Suppression

1. Introduction

Object detection is one of the most fundamental and challenging problems in computer
vision. It serves as a prerequisite for a wide range of downstream applications, such as
instance segmentation [1], pose estimation [2], surveillance [3], and autonomous driving [4].
With the development of deep learning, remarkable progress in object detection has been
made in recent years. Single-stage frameworks, such as RetinaNet [5] and Fcos [6], and two-
stage frameworks, such as Faster R-CNN [7] and Cascade R-CNN [8], have substantially
pushed forward the state of the art. Despite the apparent differences in the frameworks,
object detection is usually formulated as two main tasks: One is a classification task to
distinguish foreground from background and determine which category the object belongs
to; the other is a localization task to regress a set of coefficients that localize the object
as accurately as possible. For the duplicated detections matched with the same object,
only the one with the highest score is considered true positive, others are considered
false positive. However, in traditional Non-Maximum Suppression (NMS) to remove
duplicated detections, the classification score is used as the ranking keyword, leading to a
misalignment between the classification score and the localization accuracy. In this case,
more accurately localized bounding boxes could be suppressed by less accurate ones but
with higher classification scores.

Recently, a localization quality estimation branch, which is usually paralleled with the
main branches of classification and bounding box regression, is introduced and leads to an
encouraging advancement in the field of object detection. Fcos [6] and IoU-Net [9] predict
the centerness score and the Intersection-over-Union (IoU) value, respectively, to estimate
the localization quality. There are some differences between the two estimation scores. For
the centerness score, it is used in anchor-free detectors to filter out the low-quality bounding
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boxes predicted by a location far from the center of an object. For the IoU value, it is used
in anchor-based detectors to solve the misalignment between classification confidence and
localization accuracy. At inference, the IoU is predicted on the detected bounding boxes,
while the centerness is performed on each location irrelevant to the detected boxes. Thus,
the IoU value between the detected bounding box and the match ground-truth is more
correlated with the localization accuracy. In this paper, we focus on the estimation of IoU
value and mainly study the sampling strategy for an estimation branch of IoU regression.

Currently, there exist two sampling strategies to train the IoU regression branch.
First, ref. [10] uses the same training samples with the main branches of classification and
bounding box regression. All three branches take samples from pre-defined anchor boxes.
Second, ref. [9] adopts a uniform sampling w.r.t the IoU by manually augmenting the
ground-truth to generate samples. The IoU branch and the two main branches are trained
independently. For the existing strategies, we observe the following problems.

In the first case, the distributions of training and inference are consistent for the
main branches but inconsistent for the IoU branch. In training, for each location on
the feature map, the pre-defined anchor boxes are selected as training samples for the
three branches. At inference, the three branches play different parts in the object detection
pipeline. Specifically, given a set of anchors, the bounding box regression branch transforms
the anchors to best fit the ground-truth; the classification branch distinguishes the categories
of anchors through the probabilities for each class label; the IoU estimation branch predicts
the quality of the detected bounding boxes. For classification and bounding box regression,
there is consistency between training and inference distributions, which are all performed
on the anchors. The consistency of distributions is a common paradigm in deep learning,
which is a simple yet effective training strategy empirically. Following this paradigm, the
consistency of distributions enables the network to efficiently learn good representations of
a specific distribution consistent with inference. However, there is a discrepancy between
training and inference distributions for the IoU regression branch which is performed on
the detected bounding boxes at inference but trained on the anchors. This inconsistency
inevitably induces ineffective learning.

In the second case, Ref. [9] first generates candidate samples by manually augmenting
the ground-truth, and then it uniformly samples training examples from this candidate
set w.r.t all IoU levels (>0.5). The manual augmentation assembles enough training ex-
amples for the uniform sampling. Compared with the uniform sampling from manual
augmentation, the main tasks of classification and bounding box regression adopt random
sampling from the Region Proposal Network (RPN) proposals. There is a dilemma that
the training samples are generated by manually augmenting the ground-truth rather than
using the RPN proposals. This brings three drawbacks: (1) The breaking of the unified
training samples. The RPN proposals are used for both classification and bounding box
regression, while extra samples are manually generated for training the IoU regression.
(2) The ineffective learning of outlier. When all levels of samples are selected for the IoU
regression, the samples of outliers, which are not consistent with the inference distribu-
tion, will lead to ineffective learning. (3) The increasing of learning difficulty. Ideally, the
IoU regressor, based on the uniform sampling, is expected to be optimal at all IoU levels.
However, the ideal regressor inevitably enhances the difficulty of learning.

One question is whether uniform sampling is necessary to train an IoU regressor.
We analyze this question from two perspectives: (1) The intent of the IoU regression task.
Different from the intent of bounding box regression which aims to be infinitely close to
the target box, the objective of the IoU value is to distinguish which has more accurate
localization for the two overlapping bounding boxes in the NMS procedure. In other words,
rather than the accurate IoU value, the IoU regressor is intent to have the characteristic of
distinction between two overlapping boxes. (2) The effectiveness of a single IoU regressor
to all IoU levels. In Cascade R-CNN [8], it suggests that each bounding box regressor
performs best for the corresponding IoU level that the regressor was trained. A cascaded
regression is proposed, such that the regressors deeper into the cascade are sequentially



Sensors 2021, 21, 4433 3 of 16

optimized to higher IoU levels. Thus the difficulty of bounding box regression to different
IoU levels is decomposed into a sequence of stages. For a single regressor, the light head is
usually framed as two fully connected layers, resulting into that the capacity of learning
is limit. Compared with the cascaded bounding box regressors, the learning of good
representations for all IoU levels is more difficult for a single and light IoU regressor. In
conclusion, the easier task of IoU regression uses a more complex strategy of uniform
sampling. For the single IoU regressor, it is uncertain whether the uniform sampling leads
to effective learning for all IoU levels.

In this work, we aim to improve the performance of the two-stage Faster R-CNN
by an additional IoU regression task and solve the mentioned sampling problems for the
IoU regression branch. To distinguish from the two main tasks, the IoU regression task
is also called the auxiliary task. Based on the fact that the IoU regressor is operated on
the detected bounding boxes (the RPN proposals after regressed) at inference, sampling
from the regressed RPN proposals can guarantee the consistent distributions for training
and inference. Thus, we can solve the inconsistency in the first sampling case. It is worth
noting that the regressed RPN proposals are heavily titled toward high IoU levels and the
RPN proposals toward low IoU levels. When sampling from the regressed RPN proposals,
the IoU regressor can learn good representations for high IoU distribution consistent with
inference. Ideally, the IoU regressor should be optimal at all IoU levels. However, the
uniform sampling by manually augmenting the ground-truth, which inevitably enhances
the difficulty of learning, is uncertainly effective to all IoU levels. A compromise of uniform
sampling is selecting low IoU samples and high IoU samples to train the branch of IoU
regressor, resulting in an IoU regressor that is optimal at not only high IoU levels but also
low IoU levels in a single structure. In this manner, we can reduce the learning difficulty in
the second case.

In this paper, we introduce an auxiliary IoU regression branch based on Faster R-CNN,
which is called IoU-Aware R-CNN. We propose an H+L-Sampling strategy to select the
high and low IoU samples simultaneously, in which the low IoU samples are selected from
the RPN proposals and the high IoU samples are obtained by transforming the low IoU
samples. The high IoU samples satisfy the consistent sampling. On the basis of the consis-
tent samples, adding the existing low IoU samples brings negligible computation burden
and can still substantially improve the performance and robustness. This strategy inherits
the effectiveness of consistent sampling and reduces the difficulty of uniform sampling,
resulting in an IoU regressor that is optimal at both low and high IoU levels. This simple
but powerful branch demonstrates significant improvement in detection performance. Our
IoU regression is still powerful when trained on few samples, which requires few compu-
tational resources and more compatible with real-world applications. The probabilities
of categories reflect classification confidence, and the predicted IoU values between the
detected bounding boxes and the ground-truth reflect localization confidence. Finally, We
combine the predicted IoU with the probability as the final detection confidence for the
rank process of NMS, removing duplicated bounding boxes and preserving accurately
localized bounding boxes.

In summary, the main contributions of this paper are listed as follows:

• We propose an H+L-Sampling strategy, which satisfies the consistency of distributions
and the low difficulty of learning, to train an additional IoU regression branch in our
IoU-Aware R-CNN. For the auxiliary task, our sampling is simple and effective to
estimate the localization accuracy.

• In the whole of our IoU-Aware detector, we have a unified structure in both training
and inference. Rather than manually augmenting the ground-truth, all three branches
take samples from the RPN proposals in training. In the post-process of NMS, the
detection confidence is proposed, which encodes the probability of that class appearing
in the box and the accuracy of the predicted box localizing the object, simultaneously.

• Extensive experiments show the effectiveness of our sampling strategy to solve the
problem of absent localization accuracy, as well as its simplicity but competitive-
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ness even compared with several state-of-the-art object detectors. Due to its effec-
tiveness and simplicity, our IoU regression branch can be compatible with most
two-stage detectors.

2. Related Work
2.1. The Consistent Sampling on Reference Boxes or Points in Object Detection

Object detection deals with detecting multi-scale objects of a certain class in an image.
In modern deep learning based detectors, the key idea is to pre-define a set of reference
boxes at different locations of the image. The novel anchor box was firstly introduced in the
two-stage Faster R-CNN [7] serving as reference boxes at multiple scales and aspect ratios
on the single-scale feature map. The concept of anchor box is adopted in many subsequent
detectors, such as FPN [11], SSD [12], DSSD [13], YOLO9000 [14], and RetinaNet [5], in
which the anchor boxes are defined on the feature pyramid. Instead of using anchor
boxes, YOLO [15] predicts bounding boxes at the grid cells near the center of objects. In
YOLO, the grid cells are viewed as reference boxes with respect to objects. Recently, many
anchor-free detectors [6,16–18] are proposed to eliminate the pre-defined set of anchor
boxes. In these methods, rather than using the anchor boxes or the grid cells, the detectors
directly predict bounding boxes at each location of the convolutional feature in different
ways. At each location, CornerNet [16] detects a pair of corners of a bounding box and
groups them to form the final detected, and Fcos [6] directly predicts the bounding boxes.
For the all mentioned detectors, there is a similarity that the references of boxes or points
are pre-defined to locate the objects.

In the one-stage detectors, the main branches of classification and bounding box
regression take training samples from the references of boxes or points, and the two main
branches are performed on the consistent references during inference. The difference of
two-stage detectors is that a second stage further refines the RPN proposals and satisfies
consistent sampling during training and inference. For the two main branches, the most
popular sampling strategy is random sampling with a fixed positive-to-negative ratio.
Besides, more effective methods are proposed. The hard mining of OHEM [19], Libra
R-CNN [20], and RetinaNet [5] select hard samples. PISA [21] indicates that prime samples,
the positive samples with the highest IoUs and the negative samples with the highest scores,
are important for training an object detector. Regardless of sampling strategies, there is a
consistency between training and inference distributions, which enables the detector to
effectively learn good representations of a specific distribution consistent with inference.

2.2. The Estimation of Localization Quality

In NMS with absent localization accuracy, the score of localization is determined by
the classification score to rank all detections, suppressing the highly overlapping detections
with a low score. The absence of localization accuracy leads to accurately localized boxes
being suppressed by less accurate ones. A recent trend of object detectors is to introduce
an additional branch to estimate the quality of localization, which brings significant im-
provements in detection accuracy. Fcos [6] predicts the centerness score to filter out the
low-quality bounding boxes which are far from the center of an object. In [9,10,22], the
IoU between the detected bounding box and the corresponding ground-truth is used to
estimate the localization quality. In Mask Scoring R-CNN [23], a MaskIoU branch is added
to predict the IoU between the predicted mask and the ground-truth mask. Thus the quality
estimation can be combined with classification score as more accurate detection confidence
for the rank process of NMS, preserving more accurately localized boxes.

In the one-stage Fcos [6], the quality estimation branch is trained and tested on the
reference points, the locations of the convolutional feature. However, in [10], the estimation
branch is trained on the anchors but is performed on the detected bounding boxes in
inference, leading to a discrepancy between training and inference distributions. In the
training of the MaskIoU branch [23], it takes training samples from RPN proposals, and
the concatenation of the feature from RoIAlign layer and the final predicted mask is used
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as the input of MaskIoU head. Thus the MaskIoU head merges the information of the
predicted mask together to regress its IoU with the ground-truth mask. In IoU-Net [9],
the training examples are manually generated by augmenting the ground-truth, instead
of taking from RPN proposals. Specifically, it utilizes a set of randomized parameters to
transform all ground-truth bounding boxes, resulting in a candidate bounding box set. In
order to be robust to the change of the input distributions with different detectors, [9] takes
uniform samples w.r.t all IoU (>0.5), which makes it difficult to train the IoU branch that
can be effective to all distributions. Different from the above methods, our H+L-Sampling
has consistent distinctions between training and inference for the IoU branch. Compared
with the manually uniform sampling, our IoU regressor, which is optimal at high and low
IoU levels, is trained in a more simple way.

3. Proposed Method

In this section, we propose the IoU-Aware R-CNN, adding an auxiliary branch of
IoU regression based on Faster R-CNN, as shown in Figure 1. The auxiliary branch of
IoU regression is paralleled from the main branches of classification and bounding box
regression. The three branches play different parts in the two-stage detection pipeline.
Specifically, given a set of RPN proposals {boxrpn}, the bounding box regressor transforms
the RPN proposals to best fit the ground-truth; the classifier distinguishes the categories of
the RPN proposals through the softmax probabilities for each class label; different from
the main branches which are performed on the RPN proposals, the IoU regressor predicts
the quality of the detected bounding boxes {boxdet}. Thus, for each detected bounding
box, there are two confidences to reflect the performance of detection: The classification
score (clsscore) indicates the probability of which category the bounding box belongs to;
the localization IoU (lociou) with the corresponding ground-truth indicates the localization
accuracy of the bounding box. The multiplication of the two confidences is used as the
final detection confidence (detcon f idence) for the rank process of NMS during inference. In
the following, we show the details of our method.

conv layers

Input Image Convolution

RPN

Feature Maps

Transform

{𝒃𝒐𝒙𝒓𝒑𝒏} {𝒃𝒐𝒙𝒅𝒆𝒕}

RoI Align

RoI Align

Classification

(𝒄𝒍𝒔𝒔𝒄𝒐𝒓𝒆)

Bounding Box 

Regression

IoU Regression

(𝒍𝒐𝒄𝒊𝒐𝒖)

𝒅𝒆𝒕𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

The main branches

The auxiliary branch

Figure 1. The framework of IoU-aware R-CNN. The main branches and the auxiliary branch are
performed on {boxrpn} and {boxdet}, respectively. The auxiliary branch estimates the localization
quality and almost does not affect the original network of Faster R-CNN, which only changes the
ranking confidence of the NMS process. Unless otherwise stated, we use class-agnostic IoU regression
in a simple manner.

3.1. Separate Sampling for the Main and Auxiliary Branches

In our IoU-Aware R-CNN, the sampling of the auxiliary branch of IoU regression
is separate from the sampling of the two main branches, shown in Figure 2. There are
two reasons for this design: (1) The most widely adopted sampling method for the two
main branches is the random sampling with a fixed positive-to-negative ratio, like in Faster
R-CNN [24]. Besides, more efficient sampling strategies are proposed to improve the
performance. One popular idea is hard mining to select hard samples, such as OHEM [19],
Libra R-CNN [20], and RetinaNet [5]. Recently PISA [21] focus on the prime samples which
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have a greater influence on the performance of object detection. Using separate sampling
for IoU regression makes the auxiliary branch more compatible with these detectors that
adopt the mentioned sampling strategies for the main branches. (2) When using the
separate sampling, it is convenient for us to study the ablation experiments and design a
simple sampling only focusing on the positive for IoU regression task.

All RPN 

Proposals

{𝒃𝒐𝒙𝒓𝒑𝒏}

Samples

L-Samples

H-Samples

Transform

{𝒃𝒐𝒙𝒎𝒂𝒊𝒏}

{𝒃𝒐𝒙𝑳}

{𝒃𝒐𝒙𝑯}

Bounding Box 

Regressor

Classifier

IoU Regressor

random sampling

random sampling

only for positive

Sampling for the main branches

L+H-Sampling for the auxiliary branch

Figure 2. For the main branches and the auxiliary branch, we separately take samples from the RPN
proposals boxrpn, adopting different sampling strategies. Note that the Transform refers to using the
bounding box regressor in the main branches to refine the L-Samples and obtain the H-Samples.

For the main branches of classification and bounding box regression, we adopt the
random sampling following Faster R-CNN. For all RPN proposals, they highly overlap
with each other. Before sampling, the NMS with a fixed IoU threshold of 0.7 is adopted to
reduce redundancy, getting the set of RPN proposals {boxrpn} in Figure 2. Note that the
IoU regression branch also selects samples from the same candidate set {boxrpn}. For each
boxrpn, if the IoU with the ground-truth is greater than 0.5, we assign a positive label to
boxrpn. Otherwise, we assign a negative label. Finally, we randomly select positive and
negative samples {boxmain} with a fixed positive-to-negative ratio.

For the auxiliary branch of IoU regressor, it is operated on the detected bounding box
to predict its IoU value with the corresponding ground-truth at inference. Corresponding
to Figure 1, given the set of RPN proposals {boxrpn}, the detected bounding boxes {boxdet}
can be computed by:

boxdet = trans f orm(boxrpn, c), (1)

where trans f orm is the bounding box regressor taking c as parameters. The core idea of a
bounding box regressor is that a network directly learns to transform a bounding box to its
designated target. Inspired by the observation in Cascade R-CNN [8] that the output IoU
of a bounding box regressor is almost invariably higher than the input IoU, the regressed
boxdet would have a higher IoU level than boxrpn. We show some qualitative results of the
head-to-head comparison in Figure 3.

Figure 3. boxrpn (top) vs. boxdet (bottom). The distributions of samples are intuitively different, and
the regressed boxdet have higher IoU with objects than boxrpn.
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For the IoU regression task, we propose a simple and effective strategy in Figure 2,
H+L-Sampling, to select high and low IoU samples simultaneously and train a single
IoU regressor. First, we adopt the mentioned random sampling to only select positive
samples from {boxrpn} and obtain the samples with low IoU {boxL}. Then Equation (1)
is performed on {boxL} to get the high IoU samples {boxH} which is a small part of
{boxdet}, satisfying the distribution consistency between training and inference for IoU
regression. Finally, the two sets of samples are used to train a single IoU regressor. Note
that multi-stage IoU regressors like cascaded structure in [9] are unavailable for the task of
IoU evaluation. Because, even if cascaded IoU regressors are separately trained by {boxL}
and {boxH}, the IoU evaluation is performed on the final detections {boxdet} and the same
cascade procedure is inapplicable at inference.

We analyze the effectiveness of our proposed H+L-Sampling strategy: (1) {boxL} is
the most convenient and straight samples focusing on the low IoU distribution. While there
is a small discrepancy between training and inference distributions, {boxL} are feasible to
train the IoU regressor in a simple manner. (2) {boxH} focuses on high IoU distribution
which is consistent with inference. This sampling guarantees the effective learning of a
specific distribution consistent with inference. It is worth noting that the consistency means
that the input distributions of both training and inference tend toward a specific IoU level
but there might exist lower or higher IoU examples. Under the same number of samples,
the consistent samples of {boxH} is a better choice. (3) {boxL}+ {boxH} can be regarded
as adding low IoU distribution on the basis of the consistent distribution, resulting in
the diversity of samples. Ideally, the complete samples of training should include all
IoU levels that maybe appear at inference. However, training samples are more, more
difficult for learning. It is a trade-off between the diversity of samples and the difficulty of
learning. Our H+L-Sampling, which selects the more effective samples {boxH} and takes
full advantage of the existing samples {boxL}, is simple and effective.

Compared with the manually uniform sampling in [9,22], our proposed sampling
differs from it in that: (1) In uniform sampling, manually augmenting the ground-truth is
used to generate enough samples for each IoU interval. In our method, we take samples
from the RPN proposals as same as the two main branches, resulting in a more unified
sampling for the detector. (2) In the manual samples, the number of outliers that are not
consistent with the inference distributions is more than the RPN proposals. While the RPN
proposals are not completely consistent, the distribution difference between training and
inference is smaller compared with the manual samples. (3) For the uniform sampling
in [22], it divides the IoU into 4 intervals, and each ground-truth keeps 64 samples for
each IoU interval. Given an image with K annotated ground-truths, the overall number of
training samples is K ∗ 4 ∗ 64. However, in default settings of our sampling, the number of
RPN proposals and regressed RPN proposals is 2 ∗ 64, which are much fewer samples to
train the IoU branch. The corresponding difficulty of learning is much reduced. (4) For
our H+L-Sampling, it can be seen as two intervals: Low IoU level and high IoU level.
For each interval, the only difference between the uniform sampling and the proposed
sampling is the number of samples (K ∗ 64 vs. 64). In our sampling, it is interesting to
observe that when changing the sample number (64) to 32 or 128, it just has a difference
of 0.1, which suggests that the IoU evaluation task, aimed to distinguish the localization
accuracy of two overlapping bounding boxes, is insensitive to the number of samples. The
insensitivity reflects that the dense samples (K ∗ 64) for each interval in uniform sampling
are unnecessary for IoU regression.

3.2. Loss Function

For the two main branches, the classifier h(x) assigns the candidate bounding box
x to one of the categories including background and the regressor f (x) regresses the
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parameterized coordinates of the target bounding box associated with the candidate. Given
the training set {x, p∗, t∗}, the loss function for the main branches follows Fast R-CNN [24]:

Lmain(x, p∗, t∗) = ∑
i

(
Lcls(h(xi), p∗i ) + Lreg( f (xi), t∗i )

)
. (2)

Here, i is the index of a training sample in a mini-batch, p∗i is the class label of x, and
t∗i is the 4 parameterized coordinates of the ground-truth. The classification loss Lcls is
the cross-entropy loss CE(p, p∗) = −∑k p∗k log(pk), where k is the index of categories. The
regression loss Lreg uses the L1 loss following the default setting in mmdetection [25].

For the auxiliary branch, the regressor g(x) regresses the target IoU value between
the candidate bounding box x and the corresponding ground-truth. Given the low IoU
training set {xL, u∗L} and the high IoU set {xH , u∗H}, the loss function is defined as:

Laux(xL, xH , u∗L, u∗H) = ∑
j

(
Lreg(g(xL,j), u∗L,j) + λLreg(g(xH,j), u∗H,j)

)
. (3)

Here, j is the index of a training sample in a mini-batch, u∗L,j and u∗H,j are the target
IoU of xL,j and xH,j, respectively. Note that two training sets are used to optimize a single
regressor. The losses of low and high IoU samples are weighted by a balancing parameter λ.
By default we set λ = 2, focusing more on the consistent samples which are more effective.

Overall, we use a multi-task loss to jointly train the main and auxiliary branches:

L = Lmain + Laux. (4)

For bounding box regression, the numerical value of t∗i can be very small, and t∗i is
usually normalized by its mean and variance to improve the effectiveness of learning. For
IoU regression, we note that the normalization is not required and could be simplified.
The loss of Lmain to Laux ratio is roughly 4:1. Due to the small weight of Laux, the auxiliary
branch almost does not affect the original outputs of the detector, which is more compatible
with practical applications.

3.3. Detection Confidence for NMS

At inference, the overall pipeline of our two-stage detector of IoU-Aware R-CNN
is shown in Figure 4. In the first stage of RPN, each anchor generates an RPN proposal
with a foreground score ( f gscore), and NMS based on the f gscore is performed on all RPN
proposals to choose top-N RPN proposals for detection. In the second stage of R-CNN, the
top-N RPN proposals are refined by the four parameterized coordinates and generate N
detected boxes with K classification scores (clsscore) for each box. Then the IoU estimation
is performed on the N detected boxes to predict their localization IoU (lociou) with the
corresponding ground-truth. If the IoU regressor is class-agnostic, the K classes correspond
to the same lociou; if class-aware, each of the K classes corresponds to its own lociou. For
the N detected boxes with K classes, the detector finally outputs N × K(1000× 80 = 80,000)
detections with the classification confidence clsscore and the localization confidence lociou.
Note that if the bounding box regressor is class-aware, each of the K classes gets its own
coordinates and the corresponding parameterized coordinates for each class are used to
refine the RPN proposal, generating N × K detected boxes of which the difference between
classes is slight. If we perform the IoU estimation on the N× K detected boxes, it will bring
significant computation cost. So the IoU estimation is on the N detected boxes with the
maximum classes score, which almost has no influence on the detection performance.
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R-CNN
𝐾 classes and 1 background scores

score-thr to remove detections with 𝑐𝑙𝑠𝑠𝑐𝑜𝑟𝑒 lower than it  

Detections by NMS
with 𝑐𝑙𝑠𝑠𝑐𝑜𝑟𝑒 and 𝑙𝑜𝑐𝑖𝑜𝑢

IoU Estimation {1 iou value  if class-agnostic

𝐾 iou values  if class-aware

𝑁 ∗ 𝐾 Detections
with 𝑐𝑙𝑠𝑠𝑐𝑜𝑟𝑒 and 𝑙𝑜𝑐𝑖𝑜𝑢

NMS based on 𝑑𝑒𝑡𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑐𝑙𝑠𝑠𝑐𝑜𝑟𝑒 ∗ 𝑙𝑜𝑐𝑖𝑜𝑢)
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Figure 4. The overall pipeline of our two-stage detector of IoU-Aware R-CNN. We change the way to
choose the top-N detections. This simple but powerful branch demonstrates significant improvement
in detection performance.

The post-processor of NMS aims to remove duplicated detections and choose the
top-100 final detections which are used to evaluate the detection performance. Before NMS,
a threshold of score_thr is usually used to remove detections with scores lower than it.
Note that there still exist a lot of detections with relatively low clsscore, which cannot be
distinguished only by the lociou. So we define detection confidence as:

detcon f idence = clsscore ∗ lociou, (5)

which encodes both the probability of that class appearing in the predicted bounding box
and how well the bounding box fits the object. The detection confidence detcon f idence is
used as the metric for ranking detections, and the suppression of duplicated detections is
aware of the localization accuracy and the classification probability. Finally, NMS based on
the ranking keyword of detcon f idence is used to choose the top-100 detections, preserving
detections with a more accurate localization. The difference of soft-NMS is replacing box
elimination by the decrement of confidence. So the detcon f idence is also suitable for soft-NMS
and we show consistent improvements by experiments.

4. Experiments
4.1. Datasets

We adopt MS COCO 2017 [26] as the primary benchmark for all experiments since it
is the most widely used dataset for object detection. In MS COCO, it contains objects at a
wide range of scales, including a high percentage of small objects. Objects are less iconic
and amid clutter or heavy occlusion, which is more challenging. We perform training on
the 118 k images of the COCO 2017 train set. In ablation, evaluation is done on the 5 k
images of the COCO 2017 validation set. We report the results on the 20 k images of the
COCO 2017 test-dev set (without public labels). To demonstrate the generalization ability,
we also show the results on PASCAL VOC [27]. In PASCAL VOC, the union of VOC 2007
trainval and VOC 2012 trainval are used for training, and the results are evaluated on
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VOC 2007 test. For all experiments, we report average precision (AP) over multiple IoU
thresholds (from 0.5 to 0.95) to measure the detection performance.

4.2. Implementation Details

All experiments are implemented on MMdetection [25], an object detection toolbox
that provides a flexible toolkit to reimplement existing methods and develop our own
detectors. If not otherwise specified, we use the following settings. The input images
are resized to a maximum scale of 1333 × 800 without changing the aspect ratio. We use
4 TITAN X GPUs for training with a total batch size of 8 (2 images for GPU). There is no
data augmentation to optimize the overall objective. In our experiments, two training
schedules are adopted: “1x” and “2x”, which means 12 epochs and 24 epochs, respectively,
in training. In “1x”, the learning rate is dropped 10 times at the 8th and 11th epochs. In
“2x”, the learning rate is dropped at 16th and 22th epochs. The learning rate is initialized to
0.01, the weight decay and momentum to 0.0001 and 0.9, respectively. Unless otherwise
stated, we adopt the “1x” training schedule for most of the following studies. We set
score_thr to 0.05 following the default hyper-parameter in MMDetection. All samples for
the three branches are from the RPN proposals without manual augmentation from the
ground-truth. The branches of classification and localization sample the RPN proposals
following Faster R-CNN, in which 512 proposals are selected including foreground and
background. For the IoU branch, {boxL} are selected from positive RPN proposals, and
{boxH} are obtained by transforming {boxH}. For the two sets, we set the default number
of samples to 64.

4.3. Ablation Study

All the ablation study experiments are based on ResNet-50 [28] backbone. Class-
agnostic IoU regressor is used in a simple manner.

(1) The Choices of Training Samples: Table 1 summarizes the performance of different
samples for IoU regression. The simplest sampling of {boxL} directly takes samples from
the RPN proposals and brings improvements from 37.7 (baseline FPN) to 38.5. It suggests
that the samples RPN proposals are also feasible to train the IoU predictor in a simple
manner. However, there is a small problem that the IoU predictor is performed on the
detected bounding boxes rather than RPN proposals in inference. This discrepancy between
training and inference distributions inevitably induces ineffective learning. We address this
problem by selecting {boxH} which is obtained by transforming {boxL} and has consistent
distribution with the detected bounding boxes. In this manner, a further gain of 0.3 point is
attained, proving that consistent sampling is a simple yet effective strategy for the training
process. The distributions of {boxL} and {boxH} are heavily titled toward low IoU level
and high IoU level, respectively. The corresponding IoU regressors are optimal at the
corresponding IoU levels. When the low and high samples are simultaneously used to
train the IoU regressor, the H+L-Sampling strategy further improves the performance by
0.2 point and achieves the best result of 39.0 AP.

Table 1. Results of selecting different training samples for IoU regression. Quantitative results show
that our H+L-Sampling strategy is effective to resolve the misalignment problem.

Method AP AP50 AP60 AP70 AP80 AP90

Baseline FPN 37.7 58.5 54.2 46.4 33.2 11.1

{boxL} 38.5 57.7 53.4 46.9 35.4 14.5

{boxH} 38.8 57.9 53.7 47.1 35.5 15.2

{boxL}+ {boxH} 39.0 57.8 53.6 47.2 36.1 15.5

(2) Number of Samples: The impact of the number of samples for IoU regression is
summarized in Table 2. We can reach 39.0 Ap in the default setting 64. As we increase
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the number to 128 or decrease to 32, it just has a difference of 0.1 which is not significant,
shown that our IoU regression branch is insensitive to the number of samples. Our
IoU regression is still powerful when trained on few samples (32), which requires few
computational resources.

Table 2. The impact of the number of samples for IoU regression.

Numbers AP AP50 AP60 AP70 AP80 AP90

32 38.9 57.8 53.5 47.1 36.1 15.3

64 39.0 57.8 53.6 47.2 36.1 15.5

128 39.1 57.9 53.8 47.2 36.4 15.5

We analyze this insensitivity from two aspects: (a) The H+L-Sampling Strategy. In
this manner, we select the high and low IoU level samples to train the IoU regressor. The
operation of selecting the high IoU samples is aimed to satisfy the condition of consistent
distributions between training and inference. Meanwhile, this operation could increase
the number of training samples. (b) The Intent of Task. For the task of IoU regression,
the predicted IoU, an interpretable indicator of the localization quality on each bounding
box, is used to distinguish which has more accurate localization for two overlapping
bounding boxes. It is unnecessary to be infinitely close to target as the task of bounding box
regression. In conclusion, the H+L-Samples can implicitly increase samples and the task of
IoU regression is intent to have the characteristic of distinction between two overlapping
detected boxes, resulting in the insensitivity of IoU regression.

4.4. Main Results

We report our results on different backbones to prove the effectiveness of our method.
All settings are as above.

(1) Detection Performance and Inference Speed: The IoU-aware R-CNN based on three
popular backbones are compared in Table 3. For the baseline FPN, it uses a classification
score (clsscore) to rank all detected bounding boxes in NMS. Compared with FPN, when
our IoU-aware R-CNN also uses clsscore as the ranking keyword, there is just a difference
of 0.1~0.2. This slight difference indicates that our auxiliary IoU regression branch has
little influence on the main branches, which makes the auxiliary branch more likely to
be compatible with other detectors. When using the introduced detection confidence
(detcon f idence), the IoU-Aware R-CNN improves on these FPN baselines consistently by
1.3~1.6 points. These results suggest that our IoU-Aware R-CNN is widely applicable
across light or deep backbones.

Table 3. Detailed comparison of NMS with different confidences of scorecls and detcon f idence on
multiple popular backbones.

Backbone Method NMS_clsscore NMS_detcon f idence AP AP50 AP60 AP70 AP80 AP90

R-50

FPN 3 37.7 58.5 54.2 46.4 33.2 11.1

IoU-aware
R-CNN

3 37.6 58.2 53.6 46.2 33.4 11.7
3 39.0 57.8 53.6 47.2 36.1 15.5

R-101

FPN 3 39.4 60.1 55.6 48.3 35.6 12.9

IoU-aware
R-CNN

3 39.6 60.0 55.6 48.3 36.1 13.6
3 41.0 59.7 55.5 49.2 38.8 17.7

X-101-32x4d

FPN 3 41.2 62.2 57.8 50.6 37.8 14.6

IoU-aware
R-CNN

3 41.3 62.0 57.6 50.4 38.3 14.9
3 42.6 61.6 57.3 51.2 40.4 19.1
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At inference, the IoU branch predicts the IoU between the detected bounding box
and the ground-truth, then using the combination of clsscore and lociou defines detcon f idence
to rank all detections in the NMS procedure. For the auxiliary branch based on the three
backbones, the computational cost is small, as shown in Table 4.

Table 4. Inference speed of different backbones on a single TITAN X GPU.

Backbone R-50 R-101 X-101-32x4d

IoU regression 7 3 7 3 7 3

Speed (sec./image) 0.114 0.134 0.149 0.175 0.185 0.213

(2) The effect on soft-NMS: The only difference between NMS and soft-NMS is replac-
ing the box elimination with the decay of score. Our introduced confidence of detcon f idence
is also suitable for soft-NMS and Table 5 shows consistent improvements on the baseline
FPN by 1.3~1.5 points. Compared with NMS, when detcon f idence is used in soft-NMS, the
gains slightly decrease on the whole of three backbones. To explain the phenomenon, we
detailedly review which boxes are preserved after NMS and soft-NMS in the following.

Table 5. The effect of detection confidence on soft-NMS.

Backbone R-50 R-101 X-101-32x4d

IoU regression 7 3 7 3 7 3

NMS 37.7 39.0 (↑1.3) 39.4 41.0 (↑1.6) 41.2 42.6 (↑1.4)

soft-NMS 38.3 39.6 (↑1.3) 40.1 41.6 (↑1.5) 42.0 43.3 (↑1.3)

NMS starts with detection boxes B with scores S. After selecting the detection M
which has the maximum score, it removes any neighboring box b with an overlap greater
than a fixed threshold with M. In the soft-NMS procedure, decaying the scores leads to
preserving two kinds of more boxes: the first kind is that b contains an object not covered by
M, which would decrease the miss-rate of detection; the second kind is that b is duplicated
box and cover the same object with M. For the duplicate box b, if the ranking is correct
and M has more accurate localization than b, it would generate a false positive. Actually,
the classification score cannot correctly reflect the accuracy of localization, and if b is more
accurate than M, it will not lead to a miss at a higher detection threshold. Specifically, We
hypothesis that M reaches the level metrics of APk, which means that the IoU between
M and the ground-truth is higher than k and lower than the next level. If the duplicate
box b has lower localization accuracy than M, it will be considered as false positive for the
metric of APk and the lower metrics. If b has higher accuracy of localization, it may be true
positive for the metrics higher than APk. Soft-NMS could preserve the detected bounding
boxes with a low classification score but high accurate localization, which is helpful to
measure AP over multiple overlapping thresholds. By preserving more detections, the
soft-NMS solves the problem of absent localization accuracy to some extent. When using
detcon f idence in both NMS and soft-NMS, this confidence is helpful for selecting the high
accurate bounding boxes, resulting in that the improvement of soft-NMS slightly decreases.

(3) Results on PASCAL VOC: We further experiment on the PASCAL VOC dataset fol-
lowing the default setting of mmdetection. The training differences with the COCO dataset
are that the learning rate is initialized to 0.005 and dropped at 9th epoch. The detection
results in Table 6 show that the IoU-Aware R-CNN also has significant improvements over
multiple backbones on PASCAL VOC. On this relatively easy dataset, it is more necessary
to choosing the top-N detections using the ranking confidence aware of localization.
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Table 6. Detection results on PASCAL VOC 2007 test.

Backbone IoU Regression Speed (sec./Image) AP AP50 AP60 AP70 AP80 AP90

R-50
7 0.079 50.4 80.1 74.5 64.3 43.0 11.2
3 0.102 54.1 80.5 76.0 66.1 48.9 18.6

R-101
7 0.102 54.3 82.1 77.8 67.9 48.1 16.1
3 0.125 56.8 81.3 77.4 68.8 53.3 23.2

4.5. Comparison with Other Methods

For better performance, we adopt “2x” training schedule and class-aware IoU regressor
for the following experiments.

(1) Comparison with IoU-Net [9]: In [9], the IoU regressor is independent of specific
detectors. When cooperates with different detectors, the IoU predictor should be robust to
the change of the input distributions. For this purpose, [9] first uses manually augmenting
the ground-truth to generate candidate samples and then adopts uniform sampling w.r.t
the IoU to select training data from this candidate set. Based on this manner of training, it
is expected that the IoU predictor is effective to all IoU levels, which inevitably enhances
the difficulty to train the IoU regression branch. Different from [9], the IoU predictor of our
method is dependent on specific detectors without the change of the input distribution. Our
H+L-Samping only selects the high IoU samples and the low IoU samples, which reduces
the degree of difficulty to train the IoU regression branch. Table 7 indicates that our method
can effectively solve the misalignment of classification confidence and localization accuracy.
Compared with the 2.1% improvement on IoU-Net (with a bounding box refinement), our
method, based on a stronger FPN, can achieve a 2.2% improvement. When setting the
score_thr from 0.05 to 0.001, more detection boxes are in the candidate list of NMS. Our
method further improves the performance by 0.4 point, reaching the best result of 42.0 AP.

Table 7. Comparison with IoU-Net [9] on MS COCO validation. Ours+ means that the result is
evaluated on a smaller score_thr of 0.001, resulting in more detection boxes in the candidate list
of NMS.

Method AP AP50 AP60 AP70 AP80 AP90

FPN [9] 38.5 60.3 55.5 47.6 33.8 11.3
IoU-Net [9] 40.6 59.0 55.2 49.0 38.0 17.1

FPN 39.4 60.1 55.6 48.3 35.6 12.9
Ours 41.6 59.9 55.8 49.5 39.3 19.6

Ours+ 42.0 60.7 56.6 50.0 39.5 19.6

(2) Comparisons on COCO test-dev: In Table 8, we present comparisons of our
detection method, adding an auxiliary branch of IoU regression on FPN, with existing
detectors on MS COCO test-dev. The first group of detectors in Table 8 are the one-stage,
the second group is the two-stage, and the last group is our method on different backbones.
It is noted that all detectors of our method use the single-scale training strategy, while
most recently one-stage methods adopt the multi-scale training for better performance.
Our method with ResNet-101 achieves 42.3 Ap, which is superior to most of the existing
detectors with the same backbone, including the one-stage methods of FSAF (40.9), FCOS
(41.5), FoveaBox (40.8), and the two-stage of Libra R-CNN (41.1),Grid R-CNN (41.5).
Compared with Cascade R-CNN and TridentNet (MStrain) which have more complex head
structures, there is just a difference less than 0.5. Based on the backbone of ResNeXt [29],
our method obtains 43.4 AP, which has better performance than PISA (42.3). Further,
when soft-NMS is employed and trainval dataset is used to train the detector, IoU-Aware
R-CNN∗ can obtain our best performance of 44.3 AP in the case of single-scale training and
inference. Compared with LTM and ATSS adopting multi-scale training, the difference
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with our best performance on single-scale training is less than 0.8 point. Consider the
simplicity of our auxiliary branch, it also shows the effectiveness of our method.

Table 8. Comparisons with other detectors on MS COCO test-dev. “MStrain” denotes multi-scale
training, otherwise using single-scale training. All experiments of our method set score_thr to 0.001,
which slightly improves detection performance without a speed reduction. IoU-Aware R-CNN∗

means that trainval dataset is used to train the detector and soft-NMS is employed at inference.

Method Backbone MStrain AP AP50 AP75 APS APM APL

one-stage detectors

SSD [12] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RefineDet [30] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
RetinaNet [5] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

FSAF [17] ResNet-101 3 40.9 61.5 44.0 24.0 44.2 51.3
FSAF [17] ResNeXt-101-64x4d 3 42.9 63.8 46.3 26.6 46.2 52.7
FCOS [6] ResNet-101 3 41.5 60.7 45.0 24.4 44.8 51.6
FCOS [6] ResNeXt-101-64x4d 3 44.7 64.1 48.4 27.6 47.5 55.6

FoveaBox [31] ResNet-101 3 40.8 61.4 44.0 24.1 45.3 53.2
FoveaBox [31] ResNeXt-101 3 42.3 62.9 45.4 25.3 46.8 55.0

LTM [32] ResNeXt-101-64x4d 3 44.9 64.7 48.3 26.9 47.8 55.8
ATSS [33] ResNeXt-101-32x8d 3 45.1 63.9 49.1 27.9 48.2 54.6

two-stage detectors

Faster R-CNN [7] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w/FPN [11] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN [34] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2
Libra R-CNN [20] ResNet-101 41.1 62.1 44.7 23.4 43.7 52.5
Libra R-CNN [20] ResNeXt-101-64x4d 43.0 64.0 47.0 25.3 45.6 54.6
Grid R-CNN [35] ResNet-101 41.5 60.9 44.5 23.3 44.9 53.1

Faster R-CNN w/ PISA [21] ResNeXt-101 42.3 62.9 46.8 24.8 45.5 53.1
Cascade R-CNN [8] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

TridentNet [36] ResNet-101 3 42.7 63.6 46.5 23.9 46.6 56.6

IoU-Aware R-CNN ResNet-50 40.7 59.8 44.0 22.9 43.5 51.2
IoU-Aware R-CNN ResNet-101 42.3 61.3 45.7 23.3 45.5 54.5
IoU-Aware R-CNN ResNeXt-101-32x4d 43.4 62.8 46.8 24.7 46.7 55.1
IoU-Aware R-CNN∗ ResNeXt-101-32x4d 44.3 62.9 48.3 25.6 47.5 56.5

5. Conclusions

In this paper, we propose an H+L-Sampling strategy, including high and low IoU sam-
ples, to effectively train the IoU regression branch for accurate ranking confidence of NMS.
Based on the fact that the IoU regressor is operated on the detected bounding boxes rather
than the RPN proposals, the high IoU samples enable a consistent distribution between
training and inference. For the low IoU samples, although there is a small discrepancy
between training and inference distributions, it is feasible to train the IoU regressor in a
simple manner. The H+L-Sampling can be regarded as adding low IoU samples on the
basis of the consistent high IoU samples, which brings negligible computation burden
and results in a more effective way of training. Compared with the uniform sampling
w.r.t all IoU levels, our method reduces the degree of training difficulty and completes the
objective that the predicted IoU is enabled to distinguish the localization accuracy of two
overlapping bounding boxes. Finally, we introduce the detection confidence encoding the
classification probability and localization accuracy simultaneously. Extensive experiments
on different architectures have shown that our method can substantially improve detection
performance, especially under high IoU metrics.
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