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ABSTRACT
Mobile cloud offloading that migrates heavy computation
from mobile devices to powerful cloud servers through com-
munication networks can alleviate the hardware limitations
of mobile devices for higher performance and energy saving.
Different applications usually give different relative impor-
tance to the factors of response time and energy consump-
tion. In this paper, we investigate two types of delayed off-
loading policies, the partial model where jobs can leave from
the slow phase of the offloading process and then executed
locally on the mobile device, and the full offloading model,
where jobs can abandon the WiFi Queue and then offloaded
via the Cellular Queue. In both models we minimise the
Energy-Response time Weighted Product (ERWP) metric.
We find that jobs abandon the queue very often especially
when the availability ratio (AR) of the WiFi network is rel-
atively small. We can optimally choose the reneging dead-
line to achieve different energy-performance tradeoff by op-
timizing the ERWP metric. The amount of delay a job can
tolerate closely depends on the application type and the po-
tential energy saving for the mobile device. In general one
can say that for delay-sensitive applications, the partial off-
loading model is preferred when having a suitable reneging
rate, while for delay-tolerant applications, the full offloading
model shows very good results and outperforms the other
offloading models when setting the deadline a large value.

CCS Concepts
•Networks → Cloud computing; Mobile networks;
•Mathematics of computing → Mathematical analysis;
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Energy-performance tradeoff; queueing model; offloading poli-
cies; heterogeneous networks; mobile cloud computing

1. INTRODUCTION
Besides light-weight Internet applications, there is still

an increasing demand from mobile users for computation-
heavy and energy-hungry applications that are being de-
ployed to mobile devices. Running complex applications on
such devices is however challenging due to the strict con-
straints on their resources, e.g., the limited computational
capacity, battery lifetime and network connectivity. Mobile
cloud computing aims at combining the strength of cloud
computing and the convenience of mobile terminals. Off-
loading computation-intensive tasks from mobile devices to
a capable cloud server via wireless networks is an effective
way to alleviate a tussle between resource-constrained mo-
bile devices and resource-hungry mobile applications, and
thus boosts the device’s performance.

Potential benefits obtained from offloading include response
time shortening and energy saving. However, different appli-
cations usually have relative energy and performance impor-
tance. For delay-tolerant applications (e.g., iCloud, Drop-
box, RSS feeds and participatory sensing), response time
is less critical and optimising energy usage is more rele-
vant. Some information is not time-critical and its submis-
sion to the server may be delayed until the device enters an
energy-efficient network [1]. For delay-sensitive applications
(e.g., speed chess game, face recognition, video conferencing
and vehicular communications), fast response time is of pri-
mary concern while energy consumption is less important.
The offloading scheme in which cloud services are available
with short network latencies (e.g., WiFi networks) can serve
in a better way by providing high responsiveness. Thus,
there exists a fundamental tradeoff between mean energy
consumption and mean response time in expecting applica-
tions [2]. Since performance can be defined as the inverse of
the mean response time [3], the energy-performance trade-
off has been studied in [4, 5] by deciding whether or not
and by means of which communication interface to offload
a whole application. Instead, an application can consist of
several components (or jobs), and offloading decisions should
be made for each. Seamless offloading operation by switch-
ing between several transmission technologies has been pro-
posed in [6]. In addition, they examined the tradeoff be-
tween energy consumption for WiFi search and transmis-
sion rate when the WiFi network was intermittently avail-
able. Energy-efficient delayed network selection has been
suggested in [2] to optimise the tradeoff between energy us-
age and delay in data transmission by intentionally deferring
data transmission until the device meets an energy-efficient
network. Researchers have further suggested the use of “de-
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layed offloading”: if no WiFi connection is available, (some)
traffic can be delayed up to a given deadline, or until WiFi
becomes available [7].

Mobile devices usually have multiple radio interfaces for
data transfer, such as 3G/4G and WiFi with different avail-
abilities, delays and energy costs. Thus, there are several
ways to offload tasks to the cloud, e.g., via a costly cellular
connection or via intermittently available WiFi [8, 9]. By
delaying offloading until WiFi becomes available, there are
opportunities to reduce the transmission time while in the
meantime bringing extra waiting time. The reduced trans-
mission time is directly translated into battery power saving
for the mobile device [7]. However, the delayed offloading is
still a matter of debate, since it is not know what extent users
would be willing to delay a transmission [10]. In this paper,
we try to give an overall guidance of how to balance the
time and energy saving for different types of scenarios like
delay-tolerant and delay-sensitive applications.We develop
a theoretical framework to capture the energy-performance
tradeoff by using queueing models with impatient jobs and
service interruptions. The models can be used to predict
the average performance and energy consumption of mobile
offloading under a given network environment deployment
condition. The main contributions are as follows:

• Proposing two types of queueing models for delayed
mobile cloud offloading systems: the partial offloading
model and the full offloading model. A non-delayed
offloading model [10] is also introduced here as a com-
parison.

• Developing an analytical framework for analyzing queue-
ing models with reneging and service interruptions.
We obtain closed-form formulas for key performance
metrics in the delayed offloading system such as Energy-
Response time Weighted Product (ERWP), which com-
bines the advantages of other previously studied met-
rics.

• Trying to answer the following questions: (i) Given
a deadline, what are the expected response time and
expected energy consumption as a function of net-
work parameters and the job arrival rate? (ii) How
should the deadlines be optimally chosen in order to
achieve different energy-delay tradeoffs for specific ap-
plications? (iii) Among different offloading models,
how to choose the optimal one that achieves the most
performance gains based on the ERWP metric.

The remainder of this paper is as follows. In Section 2, we
introduce the delayed offloading system and the queueing
model as well as the considered metric. In Section 3, we
analyse the partial offloading model based on the ERWP
metric. The full offloading model is proposed and analysed
in Section 4. Section 5 evaluates metrics and models using
numerical examples. The paper is concluded in Section 6.

2. SYSTEM OVERVIEW
In delayed offloading, each data transfer is associated with

a deadline, and the data transfer is resumed whenever get-
ting in the coverage of WiFi until the transfer is completed
[7]. If the transfer does not finish within its deadline, the
task will either be executed locally or the cellular networks
will finally complete the transfer.

We consider a queueing system for the delayed offloading.
The mobile device, the cloud and the wireless networks are
represented as queueing nodes to capture the resource con-
tention and delay on the system. The mobile device executes
an application with offloadable jobs that can be processed
either locally on the processor of the mobile device, or re-
motely in a cloud infrastructure through offloading. The
mobile device, the cellular and WiFi connections are mod-
elled as M/M/1-FCFS queues, and the remote cloud is mod-
eled as an M/M/∞ queue, i.e., as a delay center. We de-
note 1/µm and 1/µr the expected execution time of jobs
on the mobile device and the cloud, respectively. The ex-
pected rates to transfer data to the cloud over the cellular
network and WiFi are µc and µw, respectively. The total
cost, in terms of energy or response time for processing all
the offloadable jobs, is composed of the remote cost (sending
some jobs to the cloud and waiting for the cloud to complete
them), and the local cost (processing the remaining jobs lo-
cally on the mobile device). Our objective is to minimise
the mean energy consumption and the mean response time.

The delayed offloading systems involve queueing with reneg-
ing and service interruptions. In queueing, reneging means
that a job will leave the queue and join another queue after
the deadline expires. Service interruption literally means un-
willing discontinuity of service in the queue, and this models
connection and disconnection periods of a mobile device to
WiFi networks in the system [11].

2.1 The WiFi Model
To facilitate the analysis of the mobile offloading systems,

we assume that a cellular network is available to mobile users
all the time while the availability of a WiFi network depends
on the location. Mobile users move in and out of a WiFi cov-
erage area. We model this time variation of the WiFi con-
nection state by the ON-OFF alternating renewal process(
T

(i)
ON, T

(i)
OFF

)
, i ≥ 1, as shown in Fig. 1. The ON periods

represent the presence of the WiFi connectivity, while the
OFF periods denote the interruption of the WiFi connectiv-
ity. During the latter periods data is either not transmitted
(the interface is idle) or it is transmitted only through the

cellular network. The duration of each ON period T
(i)
ON, is

assumed to be an exponentially distributed random variable
and independent of the duration of other ON or OFF peri-
ods [10]. Further, the WiFi availability ratio (AR) can be

defined as AR = E[TON]
E[TON]+E[TOFF]

.

ON

OFF
WiFi

Idle/ 
Cellular

TON TOFF
Figure 1: The WiFi network availability model [12]

2.2 Delayed Offloading Models
Accordingly, we build two types of delayed offloading mod-

els based on the WiFi network availability model as follows:

• Partial Offloading Model: we employ a single queue
with two phases (the fast phase with WiFi network and
the slow phase with cellular network) to offload jobs
to the cloud server. When there is a WiFi connection



available, all the offloadable jobs are sent over the WiFi
network; otherwise, they are sent over the cellular in-
terface as the cellular network is always available. We
set a reneging deadline in the cellular network, if the
deadline expires before the job switched over to some
WiFi AP, then it is executed locally on the mobile de-
vice rather than remotely on the cloud [7]. By doing
this, we have partial jobs offloaded to the cloud and
the remaining ones processed locally.

• Full Offloading Model: when there is a WiFi con-
nection available, all the offloadable jobs are sent over
the WiFi network; otherwise, they can be delayed up to
a given deadline, or until WiFi becomes available [12].
If the deadline expires before the job can be transmit-
ted over some WiFi AP, then it is offloaded through
the cellular network. In this way, we have all the off-
loadable jobs offloaded to the cloud via the cellular or
WiFi network.

2.3 The ERWP Metric
The general cost metric includes energy consumption re-

lated costs in addition to the usual performance metrics such
as the response time [13]. The response time is the time
between the arrival of a job until it completes service and
departs. The energy consumption is the energy spent on the
mobile device in that period.

We use queueing theory to model the offloading systems
according to a new metric named Energy-Response time
Weighted Product (ERWP), which is defined as:

ERWP = E[E ]ω · E[T ]1−ω, (1)

where E[T ] and E[E ] are the mean response time and mean
energy consumption, respectively. ω (ranging between 0
and 1) is a weighting parameter that represents the rela-
tive significance of energy consumption and response time
for the mobile device. Large ω favors energy consumption
while small ω favors response time. Specifically, to focus on
performance, ω should be less than 0.5; to focus on power
consumption, ω should be greater than 0.5. In some special
cases performance can be traded for power consumption and
vice versa, therefore we can use the ω parameter to express
such special cases preferences for different applications.

We obtain tight optimality results by deriving explicit
expressions in mobile cloud offloading systems to capture
energy-performance tradeoffs.

3. PARTIAL OFFLOADING MODEL
Figure 2 depicts a delayed offloading model based on the

WiFi network availability model [1]. We consider anM/M/1
modulated queue in a two-phase (fast and slow) Markovian
random environment, with impatient jobs. The jobs are off-
loaded either via a cellular connection or a WiFi network to
the cloud. The single-server queuing system that oscillates
between two feasible phases is denoted by fON and fOFF.
The persistence of the system at any phase is governed by a
random mechanism: if the system functions at phase fON it
tends ‘to jump’ to the other phase with Poisson intensity ξ
and if the system functions at phase fOFF it tends ‘to jump’
to the other phase with Poisson intensity η [14].

We assume that offloading jobs arrive at the system ac-
cording to a Poisson process with rate λ, and the modulating

µ( f )

WiFiCellular

Remote

η

ξ

Offload

fOFF fON

Local

µr

λm µm , pm

λ

Figure 2: Partial offloading model with cellular and
WiFi networks

process f ∈ {fON, fOFF} determines the service rates:

µ(f) =

{
µc, if f = fOFF

µw, if f = fON
. (2)

The average job size is E[X], the transmission speed of the
fast phase (WiFi network) is sw with service rate µw =
sw/E[X], and its operating power is pw when serving jobs
and zero whenever idle. Similarly, the corresponding speed
for the slow phase (cellular network) is sc with service rate
µc = sc/E[X] (µc ≤ µw), and its operating power is pc.

When in the slow phase, jobs become impatient. A reneg-
ing deadline Td, is associated with each job in this phase.
That is, each job, upon arrival, activates an individual ‘im-
patience timer’, exponentially distributed with an reneging
rate R. If the system does not change its environment from
the slow phase to the fast phase before the deadline expires,
the job will be removed from the Offload Queue and is as-
sumed to be executed locally on the mobile device rather
than offloaded to the cloud [15]. Thus, Fig. 2 demonstrates
that the delayed offloading model consists of an Offload
Queue (with two alternating phases of cellular and WiFi),
a Local Queue denoting the local processing on the mobile
device and a Remote Queue representing the remote pro-
cessing on the cloud server.

The Offload Queue alternates its service by means of mu-
tual resets according to the availability of WiFi, which is
governed by an interrupted Poisson Process (IPP) with ex-
ponentially distributed ON-OFF periods. We model the in-
termittent availability of WiFi hotspots as a FCFS queue
with occasional server break-down [8], either in ON-state
where the WiFi network is processing the existing jobs, or in
the OFF-state during which the job is serving by the cellular
network (the cellular connectivity is assumed to be always
available). However, when the job stays in cellular network
for too long time, it abandons the Offload Queue and is then
processed locally on the mobile device. We assume that the
sojourn time in a hotspot and the time to move from one
hotspot to another are exponentially distributed with pa-
rameters ξ (failure rate), and η (recovery rate), respectively.
If the job in the Offload Queue is completely transmitted be-
fore the assigned deadline has expired, we say that the job
is successfully offloaded. If offloading fails, the job leaves
the Offload Queue and join the Local Queue on the mobile
device for immediate local processing. We call such an event
a reneging event [11].

Since there is no waiting time before entering service, the
M/M/∞ queue of the Cloud is occasionally referred to as a
delay (sometimes pure delay) station, the probability distri-



bution of the delay being that of the service time.

3.1 Queueing Analysis
We use queueing analysis to derive formulas for the av-

erage number of jobs for an M/M/1 queue operating in a
2-phase network environment. Given the previously stated
assumptions, the partial offloading model can be modeled
with a 2D Markov chain, as shown in Fig. 3.

w, 0 w, 1 w, i-1 w, i w, i+1

c, 0 c, 1 c, 2 c, i c, i+1

ξ ξ ξ ξ ξη ηηηη

µw

λ λ λλλ

λ λ λ λ λ

µw µwµwµw

µc + R µc + 2R µc + 3R µc + i ⋅R µc + (i +1)R

Figure 3: The 2D Markov chain for the partial off-
loading model with cellular and WiFi networks

The states with cellular network are denoted with {c, i},
and the states with WiFi connectivity are denoted with
{w, i}. i corresponds to the number of jobs in the system
(queuing and in service). During the WiFi phase, the system
empties at rate µw and during the cellular phase, the sys-
tem empties at rate µc + i ·R since any of the i queued jobs
can abandon the Offload Queue [12]. Writing the balance
equations for the cellular and WiFi phases gives:

(λ+ η)πc,0 = (µc +R)πc,1 + ξπw,0 (3a)

(λ+ η + µc + iR)πc,i = λπc,i−1 +
(
µc + (i+ 1)R

)
πc,i+1

+ξπw,i (3b)

(λ+ ξ)πw,0 = µwπw,1 + ηπc,0 (3c)

(λ+ ξ + µw)πw,i = λπw,i−1 + µwπw,i+1 + ηπc,i (3d)

The steady-state probability of finding the offloading system
in some region with WiFi unavailability (with only cellular

access) is πc = E[TOFF]
E[TON]+E[TOFF]

= ξ
η+ξ

. Similarly, the steady-

state probability for the periods with WiFi availability is

πw = E[TON]
E[TON]+E[TOFF]

= η
η+ξ

, which equals to the availability

ratio AR. The probability generating functions for both
cellular and WiFi states are defined as:

Gc(z) =

∞∑
i=0

πc,iz
i and Gw(z) =

∞∑
i=0

πw,iz
i, |z| ≤ 1. (4)

After some calculation and algebraic manipulations, we ob-
tain:

Gw(z)β(z) = ηzGc(z)− µw(1− z)πw,0,

where β(z) = (λz − µw)(1 − z) + ξz. The roots z1, z2 of
the quadratic polynomial β(z) = −λ(z − z1)(z − z2) are

z1,2 =
λ+µw+ξ∓

√
(λ+µw+ξ)2−4λµw

2λ
[15].

3.1.1 General Case
Assume the reneging rate R 6= 0, we have the partial

offloading model as depicted in Fig. 2. According to [15], we
obtain:

πc,0 =
RSξκ2(1)

µc(ξ + η)(SV − TU)
, (5)

πw,0 = − RTκ2(1)

µw(ξ + η)(SV − TU)
, (6)

where we define S =
∫ z1
0

κ1(x)
β(x)

dx, T =
∫ z1
0

κ1(x)
x

dx, U =∫ 1

z1

κ2(x)
β(x)

dx and V =
∫ 1

z1

κ2(x)
x

dx. Accordingly, κ1(z) and

κ2(z) are represented as follows:

κ1(z) = e−
λz
R z

µc
R (z1 − z)

ηz1(z2−1)
R(z2−z1) (z2 − z)

− ηz2(z1−1)
R(z2−z1) , z ≤ z1,

κ2(z) = e−
λz
R z

µc
R (z − z1)

ηz1(z2−1)
R(z2−z1) (z2 − z)

− ηz2(z1−1)
R(z2−z1) , z ≥ z1.

By the definitions of κ1(z), κ2(z) and β(z), it follows that
T,U, V > 0 and S < 0. Therefore, πc,0 and πw,0 are posi-
tive. One can show formally that the system is ergodic. In-
tuitively, we indicate that the system is always stable since,
with any set of parameters λ ≥ 0, µc ≥ 0, µw > 0, ξ > 0,
η > 0 and R > 0, the abandonment process, whose overall
rate increases with the number of jobs, prevents explosion
[15]. Alternatively, the system is stable if and only if πc,0
and πw,0 are positive, which always holds for the above set
of parameters.

Let µ be defined as: µ = πc · µc + πw · µw. According to
[15], we obtain:

E[Nc] =
λ− µ+ µcπc,0 + µwπw,0

R
, (7)

E[Nw] =
η(λ− µ) +R(λ− µw)πw

ξR
+

ηµcπc,0 + µw(η +R)πw,0
ξR

. (8)

From Fig. 3, the expected number of jobs served per unit
of time in the slow and fast phases are µc(πc − πc,0) and
µw(πw−πw,0), respectively [16]. Therefore, the rate of aban-
donment due to impatience in the slow phase, λaband, is
given by:

λaband = λ− µc(πc − πc,0)− µw(πw − πw,0)

= λ− µ+ µcπc,0 + µwπw,0

= R · E[Nc], (9)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the cellular phase.

The rate λm that jobs are executed locally on the mobile
device must be equal to the abandonment rate, i.e., λm =
λaband. The probability that an arbitrary job arriving to the
Offload Queue will leave and join the Local Queue, i.e., it
will be executed locally and will never be offloaded again, is
defined as:

Pr{abandon} =
λaband

λ
=
λ− µ+ µcπc,0 + µwπw,0

λ
, (10)

where Pr denotes the probability operation.

3.1.2 Extreme Case
Assume the reneging rate R → 0, the partial offloading

model as shown in Fig. 2 reduces to a non-delayed offloading
model (or on-the-spot offloading [7]), which is depicted in
Fig. 4. Since the reneging rate is zero, there will be no Local
Queue in this model. We use this model as a reference case
for comparison purpose with the delayed offloading models.

After solving the balanced equations when setting R = 0,
we have [17]:

g(z)Gc(z) = πw,0ξµwz+πc,0µc
[
ξz+λz(1− z)−µw(1− z)

]
,
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Figure 4: Non-delayed offloading model with cellular
and WiFi networks

where g(z) = λ2z3−λ(η+ξ+λ+µc+µw)z2 +(ηµw+ξµc+
µcµw + λ(µc + µw))z− µcµw, and it is proven that g(z) has
only one root z0 in the interval (0, 1).

After some algebraic manipulations, we obtain:

πc,0 =
ξ(µ− λ)z0

µc(1− z0)(µw − λz0)
, (11)

πw,0 =
η(µ− λ)z0

µw(1− z0)(µc − λz0)
. (12)

Once the values of πc,0 and πw,0 have been established, ac-
cording to Eq. (4), the probability generating functions can
be calculated as:

Gc(z) =
ξ(µ− λ)z + πc,0µc(1− z)(λz − µw)

g(z)
, (13)

Gw(z) =
η(µ− λ)z + πw,0µw(1− z)(λz − µw)

g(z)
. (14)

By using E[Nc] =
∑∞
i=0 iπc,i = dGc(z)/dz|z=1 and E[Nw] =∑∞

i=0 iπw,i = dGw(z)/dz|z=1, we get the average number of
jobs in the system [17]:

E[N ] = E[Nc] + E[Nw]

=
λ

µ− λ +
µc(µw − λ)πc,0 + µw(µc − λ)πw,0

(ξ + η)(µ− λ)
−

(µc − λ)(µw − λ)

(ξ + η)(µ− λ)
. (15)

3.2 Metric-Based Analysis
The total cost for offloading a job is composed of the cost

for sending the job to the cloud and idly waiting for the
cloud to complete the job. By Little’s Law, E[N ] = λE[T ],
the mean response time can be calculated as:

E[T ] = E
[
E[Ti]

]
=

∑
i∈{c,w,m,r}

λi
λ
E[Ti]

=
1

λ

∑
i∈{c,w,m,r}

E[Ni], (16)

where i ∈ {c, w,m, r} represents the cellular phase, the WiFi
phase, the mobile device and the remote cloud, respectively.
E[Nc] and E[Nw] are the average number of jobs in the cel-
lular network and WiFi network as obtained in Eqs. (7) and
(8), respectively.

For the local processing, since the arrival rate to the Local
Queue equals to the abandonment rate of the Offload Queue,
we have λm = R ·E[Nc]. The work load, i.e., the fraction of
time when the server is busy, is denoted as: ρm = λm/µm.
For an ordinary M/M/1-FCFS queue, the average number
of jobs on the mobile device is E[Nm] = ρm/(1− ρm).

Since there is no waiting time before entering into remote
service in the cloud, for an M/M/∞ queue, the average

number of jobs in the Remote Queue is E[Nr] = λr/µr,
where λr = λ− λm is the arrival rate to the Remote Queue.

A key assumption in our work is that each service operates
at a constant power pi,

(
i ∈ {c, w,m}

)
whenever it is busy,

i.e., the mobile device consumes energy only when there are
jobs in the system. Since E[P ] = λE[E ] is the mean power
consumption, we can calculate the mean energy consump-
tion for the partial offloading model as:

E[E ] = E
[
E[Ei]

]
=

∑
i∈{c,w,m}

λi
λ
E[Ei] =

1

λ

∑
i∈{c,w,m}

E[Pi]. (17)

Since some jobs are remotely executed on the cloud server
rather than on the mobile device, we do not need to include
such energy consumption. For i ∈ {c, w,m}, the correspond-
ing average power consumption can be calculated as:

E[Pi] = pi · Pr{Ni > 0} = pi · ρi. (18)

Since the utilization of the queue is the probability that
the server is busy, we have Pr{Ni > 0} = ρi [18], i.e., the
energy cost is only incurred during the fraction of the time
the server is busy.

The energy consumed due to local execution depends on
the processing speed of the mobile device. Since the service
on mobile device is always available, we have:

E[Pm] = pm · Pr{Nm > 0} = pm · ρm. (19)

The mean energy consumed due to offloading via cellular or
WiFi network depends on the transmission power and speed.
We have:

E[Pc] = pc · Pr{Nc > 0} = pc · ρc, (20)

E[Pw] = pw · Pr{Nw > 0} = pw · ρw, (21)

where ρc and ρw are the utilizations of the cellular and WiFi
networks, which are equal to the probability that the corre-
sponding network is busy. According to Fig. 3, they can be
separately calculated as: ρc = πc−πc,0 and ρw = πw−πw,0.

Further, by substituting Eqs. (16) and (17) into Eq. (1),
we can formulate the explicit expressions and the optimiza-
tion problem of the ERWP metric for the offloading assign-
ment as:

R∗ = arg min
R

ERWP, (22)

we seek the reneging rate R∗ such that ERWP is minimised.

4. FULL OFFLOADING MODEL
Figure 5 depicts another delayed offloading model based

on the WiFi network availability model. All jobs arriving
to the system are by default sent to the WiFi interface for
offloading. When a job is offloaded to the cloud via a WiFi
network, there is queueing due to the transmission speed
of the WiFi link. We model the intermittent availability
of hotspots as a FCFS queue with occasional server break-
down. The server availability is governed by an IPP with
exponentially distributed ON-OFF periods. Specifically, the
server is either in ON-state processing the existing jobs, or in
OFF-state during which no job receives service. We assume
the jobs will abandon the queue during periods without WiFi
connectivity.

We assign a reneging deadline for each job (drawn from
an exponential distribution). Jobs are serviced in the FCFS
order depending on their remaining deadlines (either while
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Figure 5: Full offloading model with cellular and
WiFi networks

queued or while at the head of the queue, but waiting for
WiFi). A job can be served only via WiFi before its deadline.
As the queueing system is continuous, it handles transmis-
sion at the bit level so that assigning a deadline to a job
is equivalent to assigning the same deadline to each bit of
the job [7]. When in the OFF-state, jobs become impa-
tient. That is, each job, upon arrival, activates an individ-
ual timer, exponentially distributed with an reneging rate
R. If the network does not change its environment from the
OFF-state to the ON-state before the deadline expires, the
job abandons the WiFi Queue, and instead, to be offloaded
via a cellular network [12]. If the job in the WiFi Queue is
completely transmitted through WiFi networks before the
assigned deadline has expired, we say that the job is success-
fully offloaded. If offloading fails, the job leaves the WiFi
Queue and join the Cellular Queue in the mobile device for
immediate transmission through cellular networks. We call
such an event a reneging event.

When the job is offloaded to the cloud via a cellular net-
work, there is queueing due to the transmission speed of
the cellular link. Costs arise in terms of transmission de-
lays (queueing and actual transmission time) and transmis-
sion energy consumption. Service is always available since
the cellular connection is always on. Similarly, the Remote
Queue is a pure delay station at which jobs spend an ex-
ponentially distributed amount of time with mean equal to
1/µr time units.

4.1 Queueing Analysis
The WiFi Queue refers to offloading jobs from the mobile

device to the cloud via a WLAN network, which is modeled
as an M/M/1-FCFS queue with intermittently available ser-
vice. When a server recovers, it continues to serve the job
whose service has been interrupted, i.e., the work already
completed is not lost (cf. data transfers with resume) [8].

ON, 0 ON, 1 ON, 2 ON, i ON, i+1

OFF, 0 OFF, 1 OFF, 2 OFF, i OFF, i+1

ξ ξ ξ ξ ξη ηηηη
2R 3RR

λ λ

λ λ λ λ

λ λ λ

λ

µw µw µw µw µw

(i+1)Ri ⋅R

Figure 6: The 2D Markov chain for the WiFi queue

We assume that the service fails from time to time and
resumes its operation after a random time. The Markov
chain for the WiFi Queue is depicted in Fig. 6, which is
equivalent to assuming that µc = 0, πON = πw and πOFF =

πc in Fig. 3. The states with WiFi connectivity are denoted
with {ON, i}, and the states with WiFi unconnectivity are
denoted with {OFF, i}. i corresponds to the number of jobs
in the system (queuing and in service). During the ON-state,
the system empties at rate µw and during the OFF-state,
the system empties at rate i · R since any of the i queued
jobs can abandon the WiFi Queue [12]. Writing the balance
equations for this chain gives:

(λ+ η)πOFF,0 = ξπON,0 +RπOFF,1 (23a)

(λ+ η + iR)πOFF,i = λπOFF,i−1 + (i+ 1)RπOFF,i+1

+ξπON,i (23b)

(λ+ ξ)πON,0 = ηπOFF,0 + µwπON,1 (23c)

(λ+ ξ + µw)πON,i = λπON,i−1 + µwπON,i+1 + ηπOFF,i (23d)

After substituting µc = 0 into κ1(z) and κ2(z), yields:

κ1(z) = e−
λz
R (z1 − z)

η
R
z1(z2−1)
z2−z1 (z2 − z)−

η
R
z2(z1−1)
z2−z1 , z ≤ z1,

κ2(z) = e−
λz
R (z − z1)

η
R
z1(z2−1)
z2−z1 (z2 − z)−

η
R
z2(z1−1)
z2−z1 , z ≥ z1.

According to [12], we obtain:

πOFF,0 = − Sξκ2(1)

(ξ + η)Uκ1(0)
, (24)

πON,0 =
Rκ2(1)

µw(ξ + η)U
. (25)

We further have µ = πc · µc + πw · µw = πONµw. After
substituting the above values in Eqs. (7) and (8), we derive
the mean number of jobs in WiFi Queue as:

E[NOFF] =
λ− µw(πON − πON,0)

R
,

E[NON] =
ηλ− µw(η +R)(πON − πON,0) + λRπON

ξR
.

Therefore, the average number of jobs in the WiFi Queue
can be calculated as:

E[Nw] = E[NOFF] + E[NON]. (26)

As shown in Fig. 6, the expected number of jobs served
per unit of time in the WiFi Queue is µw(πON − πON,0).
Therefore, the rate of abandonment due to impatience in
the OFF periods, λaband, is given by:

λaband = λ− µw(πON − πON,0) = R · E[NOFF]. (27)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the OFF-state.

The rate of jobs sent back to the cellular network λc must
be equal to the abandonment rate, i.e., λc = λaband. The
probability that an arbitrary job arriving to the WiFi Queue
will abandon, i.e., it will be offloaded over a Cellular Queue,
is defined as:

Pr{renege} =
λaband

λ
=
λ− µw(πON − πON,0)

λ
. (28)

4.2 Metric-Based Analysis
By Little’s Law, E[N ] = λE[T ], the mean response time

can be calculated as:

E[T ] = E
[
E[Ti]

]
=

∑
i∈{c,w,r}

λi
λ
E[Ti]

=
1

λ

∑
i∈{c,w,r}

E[Ni], (29)



where E[Nw] is the average number of jobs in the WiFi
Queue as obtained in Eq. (26).

The Celluar Queue refers to offloading jobs from the mo-
bile device to the cloud via a cellular network, which is mod-
eled as an M/M/1-FCFS queue. Since the arrival rate to the
Celluar Queue equals to the abandonment rate of the WiFi
Queue, i.e., λc = R · E[NOFF]. The average number of jobs
in this queue is given by:

E[Nc] =
ρc

1− ρc
, (30)

where ρc = λc/µc is the probability that the Cellular Queue
is busy.

Since all the jobs are offloaded to the remote server in the
cloud, for an M/M/∞ queue, the average number of jobs in
the cloud server can be calculated as: E[Nr] = λ/µr.

The mean energy consumption can be calculated as:

E[E ] = E
[
E[Ei|i]

]
=

∑
i∈{w,c}

1

λ
E[Pi]

=
1

λ

∑
i∈{w,c}

pi · Pr{Ni > 0} =
1

λ

∑
i∈{w,c}

pi · ρi, (31)

where ρw is the fraction of time that WiFi is available to
process jobs, and it can be calculated as: ρw = πON−πON,0,
as the recovery rate η →∞, the availability of WiFi πON =
AR = η

ξ+η
tends to be 1.

Further, by substituting Eqs. (29) and (31) into Eq. (1),
we can formulate the optimization of the ERWP metric for
the offloading assignment as:

R∗ = arg min
R

ERWP, (32)

we also seek to find the reneging rate R∗ such that ERWP
is minimised.

5. PERFORMANCE EVALUATION
We consider here a simple scenario where the transmission

rate of the cellular network is smaller than that of WiFi,
i.e., sc < sw and the power consumption when transmitting
jobs via the cellular link is larger than the WiFi link, i.e.,
pc > pw. Using measurements from real traces collected by
[7], the average data rates of the cellular and WiFi networks
are set as sc = 200 Kbps and sw = 2 Mbps, respectively.
The average duration of WiFi availability period is 52 min
(ξ = 1/52 min−1), while the average duration with only cel-
lular network coverage is 25.4 min (η = 1/25.4 min−1). The
availability ratio is thus 67%. The mean job size is assumed
to be 10 MB. According to the power models developed by
[19], we set the power coefficients pc = 2.5 W, pw = 0.7 W
and pm = 2 W, respectively. Besides, suppose that the total
job arrival rate is λ = 0.5 packet/min, the mobile service
rate µm = 0.2 and the cloud service rate µr = 1.

An availability ratio of 11% has been reported in [20]. In
Fig. 7 as the availability ratio (AR) of the WiFi network in-
creases, the percentage of jobs abandon the Offload Queue
(for the partial offloading model, refer to Fig. 7(a)) or the
WiFi Queue (for the full offloading model, refer to Fig. 7(b))
declines rapidly. However, the full offloading model has
much higher reneging probability than the partial one under
the same deadline Td. That’s because the partial offloading
model can use the cellular network to transmit data, and
thus the number of jobs waiting in the Offload Queue is

reduced. On the other hand, as the reneging deadline in-
creases from 60 min to 120 min, jobs have more chance to
be offloaded via the WiFi network, and therefore the reneg-
ing probability decreases at the lower level of arrival rates.
However, at high arrival rates, the reneging probability stays
the same under different deadline.

The partial offloading model in Fig. 8(a) has the lowest av-
erage response time, since it takes full use of the slow phase
of the cellular network during the WiFi is in the unavailable
period. For the lower deadlines (Td < 40 min), the mean re-
sponse time decreases as the deadline arises, since jobs with
higher deadlines has more chance to transmit with the fast
WiFi network, leading to smaller response time. However,
the mean response time increases for higher deadlines, since
jobs with lower deadlines leave the queue earlier, leading to
smaller queueing delays. From Fig. 8(b), when the reneging
deadline is small, the non-delayed offloading model achieves
the lowest mean energy consumption among the three mod-
els, but as the deadline increases, the full offloading model
is much more preferred. This is due to the fact that the
WiFi network is much more fast and energy-efficient than
the cellular network. The reduced serving time can cause
less energy consumption on the mobile device.

We fix the reneging deadline as 120 min. In Fig. 9(a),
the mean response time arises with the increase of job ar-
rival rate λ due to the queueing effects. The partial off-
loading model performs much better than the other two
models since it fully uses the unavailable periods of WiFi
by offloading jobs with a cellular network, which in turn
brings huge energy consumption as shown in Fig. 9(b). The
full offloading model is much more energy-efficient than the
non-dealyed offloading model at low λ, while at high λ, the
non-delayed offloading model saves much more energy. This
can be drawn from Fig. 7(b) that as λ increases, more jobs
are abandoned from the WiFi Queue and are then offloaded
via costly cellular network, which result in more energy con-
sumption.

We use the ERWP metric to compare different offloading
models. It can be observed from Fig. 10(a) that when ω
is small, the partial offloading model can achieve the small-
est ERWP value by optimally choosing the reneging rate R,
which indicates that when considering response time more
important (for delay-sensitive applications), it is better to
use the partial offloading model. Otherwise, when consider-
ing energy consumption more important than response time
(for delay-tolerance applications), the full offloading model
is much more preferred, which translates the reduced trans-
mission time from the fast WiFi network into battery power
saving for the mobile device. As shown in Fig. 10(b), when
the weighting parameter ω is small, as the arrival rate of the
offloadable jobs λ increases, all the three offloading models
perform worse. However, the non-delayed offloading model
is more sensitive to the arrival job rates. The partial off-
loading model can always achieve the smallest ERWP value,
which that when considering response time more important,
it is better to use the partial offloading model. Otherwise,
when considering energy consumption more important than
response time, the full offloading model is much more pre-
ferred at lower λ. While at higher rate, the non-delayed
offloading model is preferred.

6. CONCLUSIONS
In this paper, we have developed queueing analytic models
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(b) Full offloading model

Figure 7: The reneging probabilities for the delayed offloading models
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Figure 8: Comparison of the offloading models under different deadlines
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Figure 9: Comparison of the offloading models under different arrival rates

for delayed mobile cloud offloading to leverage the comple-
mentary strength of WiFi and cellular networks by choosing
heterogeneous wireless interfaces for offloading. We have
carried out optimality analysis of the energy-performance
tradeoff for mobile cloud offloading systems based on the
ERWP metric, which captures both energy and performance
metrics and also intermittently available access links.

When the availability ratio (AR) of the WiFi network is
relatively small, the percentage of jobs abandon the queue is
also very high. We can optimally choose the reneging dead-
line to achieve different energy-performance tradeoff by op-
timizing the ERWP metric. We find that for delay-sensitive

applications, the partial offloading model is preferred when
setting a middle deadline, while for delay-tolerant applica-
tions, the full model shows very good results and outper-
forms the other offloading models when setting the deadline
a large value. In general one can say that the partial off-
loading policy is faster, while the full policy uses less energy.
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