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ABSTRACT

Mobile offloading migrates heavy computation from mobile de-
vices to powerful cloud servers. It is a promising technique that
can save energy of the mobile device while keeping job comple-
tion time low when cloud servers are available and accessible.
The benefit obtained by offloading greatly depends on whether
it is applied at the right time in the right way. In this paper, we
use queueing models to minimize a weighted sum of energy con-
sumption and performance expressed in the Energy-Response
time Weighted Sum (ERWS) metric. We consider different of-
floading policies (static and dynamic), where arriving jobs are
processed either locally or remotely in the cloud. Offloading
can be performed via WLAN or via a cellular network. The
transmission techniques differ in energy requirement and speed.
We find that the dynamic offloading policy derived from the
tradeoff offloading policy (TOP) outperforms other policies like
the random selection of transmission channel by a significant
margin. This is because the dynamic offloading policy consid-
ers the increase in each queue and the change in metric that
newly arriving jobs bring in should they be assigned to that
queue. The ERWS metric can be reduced more by considering
either energy consumption or response time and it is minimal
when optimising only energy consumption.
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1. INTRODUCTION

Mobile cloud computing aims at combining the strength of
cloud computing and the convenience of mobile terminals. How-
ever, mobile devices have to master many challenges in order
to effectively use cloud resources. Limited radio resources or
limitations of other communication channels as well as lack
of sufficient battery power may significantly impede the im-
provement of service quality [1] anticipated by using cloud
services. Nonetheless computation offloading, which migrates
computation-intensive tasks from mobile devices to a remote
cloud infrastructure via a network is a popular approach to alle-
viate the burden of resource-constrained mobile devices. Since
offloading an application to the cloud is not always possible
or effective, one may consider sometimes executing a program
locally and to offload only when available networks seem favor-
able to the desired metric.
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A typical objective of computation offloading is to minimize the
application response time (i.e., latency or delay). Mobile de-
vices usually have multiple wireless interfaces for data transfer,
such as 3G/EDGE and WiFi with different performance and
energy consumption. Recently, in addition to response time,
energy consumption of mobile devices has become an impor-
tant criterion for network selection. Rahmati et al. [2] sug-
gested on-the-spot network selection by examining the tradeoff
between energy consumption for WiFi search and transmission
efficiency when a WiFi network was intermittently available. A
stochastic model for that matter has been developed in [3] using
various performance metrics and also intermittently available
access links. Some studies [4], [5] suggested energy-efficient de-
layed network selection to optimise the tradeoff between trans-
mission power of heterogeneous network interfaces (e.g., 3G,
WiF1i) and transmission delay.

While we have previously studied the delay-energy tradeoff by
deciding whether or not and how to offload entire applications
[6], in this paper we assume that an application can consist of
several components, or jobs, that are treated separately, and
thus offloading decisions should be made for every job. The
general cost metric includes energy consumption related costs
in addition to the usual performance metrics such as the re-
sponse time. We use queueing theory to model the offload-
ing systems and employ the Energy-Response time Weighted
Sum (ERWS) as metric to capture energy-performance trade-
offs. The ERWS metric has the advantage of being analytically
tractable since the expectation is additive over time [7]. It has
the disadvantage of a linear combination of two metrics on dif-
ferent scales and as a consequence it is always beneficial to the
metric to concentrate efforts on reducing energy consumption.

Our queueing model is a fork-join model, similar to the one
formulated in [8] for minimising subtask dispersion. However,
in this paper we only analyse a submodel and do not exploit
the fork-join structure.

The remainder of this paper is as follows. In Section 2, we
introduce a queueing model for classic offloading systems and
define an ERWS metric. Static and dynamic offloading policies
under the ERWS metric are proposed in Section 3. Section
4 gives some numerical examples. And finally, the paper is
concluded in Section 5.

2. SYSTEM OVERVIEW
2.1 The Queueing Model

We consider a queueing model for mobile cloud offloading sys-
tems as depicted in Fig.1. The mobile device, the cloud and the
wireless networks are represented as queueing nodes to capture
the resource contention and delay on these systems. The mo-
bile device executes an application with different types of jobs
that can be classified into the following two classes. Each time



a job is executed, a decision must be taken into which class it
belongs:

e Unoffloadable: some jobs should be unconditionally
processed locally in the mobile device, either because
transferring the relevant information would take more
time and energy or because these tasks must access lo-
cal devices (e.g., sensors, user interface, etc.) [9]. Local
processing consumes battery power of the mobile device.
Luckily, there are no communication costs or delays.

e Offloadable: some jobs are flexible tasks that can be
processed either locally in the processor of the mobile de-
vice, or remotely in a cloud infrastructure through com-
putation offloading. Many tasks fall into this category,
and the offloading decision depends on whether the com-
munication costs outweigh the local processing costs [10].

The problem of taking offloading decisions correctly does not
exist for unoffloadable jobs. However, for offloadable ones, the
mobile device should judiciously make decisions that optimise
the considered metric.
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Figure 1: A queueing model for mobile cloud offloading
systems

As depicted in Fig.1, job arrivals in the mobile device are as-
sumed to follow a Poisson process with an average arrival rate
of A + Xo. The arrival rate is based on the behavior of the
application. The unoffloadable jobs with arrival rate Ao are
unconditionally executed locally. As for the offloadable ones
with arrival rate A, the mobile device chooses to offload each
job with probability m. As in [11], jobs are offloaded to the
cloud following a Poisson process with an average arrival rate
of m - A\, which is called the offloading rate. There may be sev-
eral ways to offload computation to the cloud, e.g., via a costly
cellular connection (2G or 3G), or via intermittently available
WLAN hotspots. The cellular interface can provide a ubig-
uitous coverage for mobile devices in a wide area, but it has
lower data transmission rate and needs more transmission en-
ergy than the WiFi interface. The mobile device, the cellular
and WLAN connections are modeled as M/G/1-FCFS queues,
and the remote cloud is modeled as an M/G /oo queue, i.e., as
a delay center [12]. We denote 1/pm and 1/p. the expected
execution time of jobs on the mobile device and the cloud, re-
spectively. The expected rates to transfer data to the cloud
over the cellular network and WLAN are p1 and p2, respec-
tively.

2.2 Objectives

As shown in Fig.1, there are two dispatchers: «; is used to al-
locate the offloadable jobs either to the cloud or to the mobile
device, while as is to offload jobs either via a cellular con-
nection or a WLAN network to the cloud. The total cost for
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offloading a job is composed of the cost for sending the job
to the cloud, idly waiting for the cloud to complete the job,
and receiving the result back from the cloud. Since the delay
caused by the transmission in the uplink usually dominates the
total cost, our analysis focuses on the dispatcher inside the red
dotted block, which is responsible for selecting the best trans-
mission channel. It is a fork-join queue where incoming jobs
are split on arrival for service by two servers and joined before
departure. Only when all the jobs are transmitted and have
rejoined can the cloud processing start.

The objective is to minimize a weighted sum of the mean energy
consumption and response time under the assumption that the
dispatcher is aware of the remaining service time of each job
in the system, including that of the arriving job [13].

2.3 Metrics

Energy consumption and response time are two primary as-
pects for mobile cloud systems that must be considered when
making offloading decisions. The response time is the time be-
tween arrival of a job until it completes service and departs.
The energy consumption is the energy spent on the mobile de-
vice in that period. We study the tradeoff between the mean
energy consumption and mean response time, which is a non-
trivial multi-objective optimization problem. It is addressed by
setting the cost function as the weighted sum of both average
values, i.e., the ERWS metric:

ERWS = wE[£] + (1 — w)E[T] (1)

where E[T7] is the mean response time, E[£] is the mean energy
consumption, and 0 < w < 1 is a weighting parameter used to
share relative importance between the mean energy consump-
tion and mean response time.

For (1), the mean time and energy are additive terms over time,
and thus we can optimize the ERWS metric via Markov Deci-
sion Processes [7]. From the view of minimization, this metric
allows comparing arbitrary offloading policies to the optimal
offloading policy in our work.

Since the consumed power is P = A\ [14], and by Little’s Law,
E[N] = AE[T], the objective of optimizing the ERWS metric
in (1) can be more conveniently expressed as:

PQWS = %{W]E[P} + (1 — w)E[N]} (2)

where N is the number of jobs in the queueing system.

Thus, to analyze the energy-performance tradeoff, instead of
optimizing the ERWS metric directly, we can also minimize a
Power-Queue length Weighted Sum (PQWS) metric as shown
in (2), which is a weighted sum of the mean power consump-
tion and mean queue length (or average number of jobs) in a
queueing system.

3. OFFLOADING POLICIES

In this section, we derive three offloading policies under the
ERWS metric, defining different strategies to determine A; and
A2, i.e., to assign jobs upon arrival to one of two parallel queues
which describe cellular or WLAN transmission.

3.1 Model and Problem Formulation

The interface selection problem in offloading systems is mod-
eled as the decision to which queue an arriving job should be
assigned. In this decision the offloading dispatcher takes both,
performance and energy costs, into account. This seems nat-
ural for heterogeneous servers where a job needs a different



amount of energy and time to be served by different servers
[15]. For example, whereas assigning each job to a low power
server would be beneficial from the energy consumption per-
spective at low loads, such a policy may end up in difficulties at
higher loads as the response time increases rapidly [13]. Indeed,
the energy-performance tradeoff takes on different explicit ex-
pressions and under different offloading policies. Our objective
is to minimize the ERWS metric under static and dynamic
offloading policies.

As shown in Fig.2, we consider a queuing model that consists of
two parallel queues of cellular and WLAN with work conserving
queuing disciplines. A\; and A2 are the mean rates of jobs into
Queue 1 and Queue 2. Since the original offloading jobs arrive
at the system according to a Poisson process with rate A\ =
7 - A\, one policy would be random assignment into Queue
(i € {1,2}), which results in independent Poisson processes
with rate \;, and we have \; + A2 = A..
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Figure 2: A queueing model for offloading assignment
decisions
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The two queues have the following behavior:

e Queue 1: When a job is offloaded to the cloud via a
cellular network (2G/3G), there is queueing due to the
transmission speed of the cellular link. Costs arise in
terms of transmission delays (queueing and actual trans-
mission time) and transmission energy consumption. We
assume that the service speed (or transmission rate) is s1,
and the operating power for Server 1 is p1 when serving
jobs and zero whenever idle. Further, Server 1 is always
available since the cellular connection is always on.

e Queue 2: When a job is offloaded to the cloud via a
WLAN network, there is queueing due to the transmis-
sion speed of the WLAN link. We assume that Server
2 runs at speed s, and its operating power is p» when
serving jobs and zero whenever idle. We model the inter-
mittent availability of hotspots as a FCFS queue with oc-
casional server break-down [3]. The availability of Server
2 is governed by an interrupted Poisson Process (IPP)
with exponentially distributed ON-OFF periods. Specif-
ically, the server is either in ON-state processing the ex-
isting jobs, or in OFF-state during which no job receives
service. We assume that the sojourn time in a hotspot
and the time to move from one hotspot to another are ex-
ponentially distributed with parameters £ (failure rate),
and 7 (recovery rate), respectively.

Different wireless network interfaces vary in many ways, which
we have to capture in simplified form in just few parameters.
Cellular networks such as EDGE and 3G, usually have much
higher availability than WiFi, but the transmission rate of
WiF1i is higher (we do not consider 4G LTE networks here,
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which can achieve much faster speed than common WiFi router,
but are still not widely available). Cellular networks transmit
at hundreds of Kbps for EDGE to a few Mbps for 3G, WiFi at
ten or more Mbps. Besides, the WiF1i interface is more energy-
efficient than the cellular interface [5]. These imply that Queue
2 is usually much faster and more energy-efficient than Queue
1 for transmitting the same quantity of data. Therefore, we
just assume that Queue 1 has lower service rate and higher
energy consumption than Queue 2, i.e., s1 < s2 and p1 > po.

In minimizing the ERWS metric, it seems favorable to assign
jobs to Queue 2 rather than to Queue 1. However, when tak-
ing the WLAN link’s intermittent availability in Queue 2 into
account, the optimal assignment has to be reconsidered.

Upon arrival of a job an assignment decision is made and the
job is placed into the corresponding queue according to the
ERWS metric denoted as:
2
1
BRWS =33 MBI+ (1-wET]} ()
where A, is the total job arrival rate for offloading, \; is the
mean rate of jobs into Queue ¢, E[&;] and E[T;] are the mean

energy consumption and the mean response time in Queue i,
respectively.

A key assumption in our work is that each server operates at
a constant power p; whenever the server is busy. Since P; =
Xi&; is the consumed power, further by Little’s Law, E[N;] =
MNE[T;], the ERWS metric in (3) can be more conveniently
expressed by the PQWS metric:

1

PQWS =13 {wIE[Pi] +(1- w)]E[Ni}}

- Ai S {wm Pr{Ni > 0,e = 1} + (L= BN} (@)

where Pr is the probability operation, e; = 1 indicates that
Server i is available and N; is the number of jobs in Queue 1.

Since the number of jobs in Queue ¢ can be dependent of the
state of Server i, we have:

Pr{N; > 0,e; = 1} = Pr{N; > Ole; = 1} - Pr{e; = 1}. ()

Further, since Server 1 is always available, we have Pr{e; =
1} =1 and Pr{N; > 0Ole; = 1} = Pr{N1 > 0}. The fraction of
time that Server 2 is available to process jobs is:

Pr{es =1} = 2 0l (6)

where as the recovery rate n — oo, the availability of Server 2
tends to be 1.

Since the probability that the corresponding server is busy is
equal to the work load [14], we have:

Pr{N; > 0} = p; (7)

where p; is the work load of Queue 1.

We can further formulate the optimization of the PQWS metric
for the offloading assignment as:

\; = arg min PQW S
A,

i

and we find the arrival rate A\ to Queue i such that PQWS is
minimised when both queues are in operation.

(8)



3.2 Static Offloading Policy

The static offloading policy is to assign arriving jobs using the
optimal assignment scheme which corresponds to the small-
est possible cost in the PQWS metric. We always assign the
offloading jobs according to that scheme.

The expected number of jobs in Queue 1 is given by the Pollaczek-
Khinchine formula:

27 @2
e ®
p1)
Note, that a job of size X served at speed s will be completed at
time X/s. Since E[S;] = E[X/s;] = E[X]/s;, the work load for
Queue 1 during the busy period is p1 = ME[S1] = ME[X]/s1.
Especially, if the job size X is exponentially distributed, ac-
cording to E[X?] = 2E*[X] and E[S?] = E[(X/s:)?] = E[X?]/sZ,
we further have:

E[N1] = ME[S1] +

2ME?[X] /s

E[N1] 2(1—p1)

)\1]E[X]/81 +

2t

Pt 2(1—p1)
P1

T (10)
Similarly, if the server in Queue 2 is always available like Queue
1, we can have Pr{Ns > Olez = 1} = XE[S2] = AE[X]/s2.
However, Queue 2 refers to offloading jobs from the mobile
device to the cloud via a WLAN network, which is modelled
as an M/G/1-FCFS queue with intermittently available ser-
vice. When a server recovers, it continues to serve the customer
whose service has been interrupted, i.e., the work already com-
pleted is not lost (cf. data transfers with resume). The mean
response time for Queue 2 is then given by [3]:

B = Bly]+ 5oe L SRRy
where k = -, E[Y] = E[S:]/v and E[Y?] = E[S3]/+* +
2¢/1°E[S2)].

Similarly, the work load for Queue 2 during the busy period
is p2 £ ME[Y] = A2E[S2]/7. Since we require p < 1 for the
queue to be stable, it yields: A\oE[S2] < 7.

According to Little’s Law, the expected number of jobs in
Queue 2 is E[N2] = A2E[T3]. Especially, if X is exponentially
distributed, E[X?] = 2E?[X], we further have:
ME[Y?] | k(X2 +A3/n)
2(1— p2) 14+ Aok
L ME[S] 25 A3E[Sy]
P (T =) T 2T p2)
ONE2[X])/s2 e MEX]/s2 k(O + AZ/n)
2v2(1 — p2) 1—p2 14 A2k
p3 EVEX] | RQa+A3/m)
1—p2  n2s2(1— p2) 1+ X2k
ENE[X] (A2 + A3 /n)
n2s2(1 — p2) 14 Xk

+

E[Nz] )\QIE[Y] +

(A2 4+ A3 /n)
14+ X2k

- 2

p2 +

P2
1—p2

(12)

After substituting (5), (10) and (12) into (8), we obtain a
new offloading policy called Tradeoff Offloading Policy, and
we bring in two previous policies named Random Offloading
Policy and Load-balanced Offloading Policy as a comparison.
All the three offloading policies used in our analysis are listed
as follows:
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e Random Offloading Policy (ROP): arriving jobs are
randomly assigned to the two queues (Bernoulli split),
assuming that each queue has the same probability of
being chosen. Therefore, for the queueing model in Fig.
2, we have job arrival rate A1 = X2 = A./2. This is
a static policy that randomly chooses the transmission
channel.

e Load-balanced Offloading Policy (LOP): since the
service rate in Queue 2 is much faster than that in Queue
1, more jobs can be served in Queue 2 in the same time.
However, since Server 2 is sometimes unavailable, the ac-
tual service rate could in fact be lower. When considering
the service rate and the availability of servers in different
queues, jobs are allocated to Queue ¢ in a Poisson pro-
cess with parameters \;y = —L—)\. and \y = 527
. . s1+s27 s1+s2y
Thus, under this policy all the queue loads are equal and
given by p1 = p2 = ;\l‘ﬂﬂ This is a static policy that
balances the load across the queues.

c-

e Tradeoff Offloading Policy (TOP): arriving jobs are
assigned to Queue 1 and Queue 2 according to the opti-
mized objective of the PQWS metric defined in (8), min-
imizing the weighted sum of mean energy consumption
and mean response time. This is the proposed static pol-
icy that considers the tradeoff between energy consump-
tion and performance according to the ERWS metric.

3.3 Dynamic Offloading Policy

The dynamic offloading policy inserts a newly arriving job ten-
tatively into each of the queues and chooses the one corre-
sponding to the smallest increase in the PQWS metric when
also counting the jobs that have been already in the system.
We adopt a value function defined in [16] to assign jobs dy-
namically.

We assume a size-aware system, where the service time of jobs
becomes known upon arrival. Let A;l) denote the remaining
service time of job j (j = 1,2,--- ,n) in Queue i (i € {1,2}),
where jobs are ordered such that job 1 receives service first,
then job 2, and so forth. The state of the server is known.
Since Server 1 is always available, the state of Queue 1 can be
denoted by vector 7.

20 = (A, A, AP e =1). (13)
Similarly, the state of Queue 2 is denoted by vector Z2):
2(2> = (A?),Af), 7A£L2>| e € {071}) (14)

The backlog, i.e., the amount of service time for unfinished jobs
in Queue i, is denoted by U.) = 37, A;”, and the cumula-
tive response time during time interval (0,¢) [17] is expressed
as:

Vi (1) 2 /0 Neo (r)dr (15)

where N_¢)(t) is the number of jobs in Queue ¢ at time ¢.
The relative value is the expected difference in the cumulative
costs between a system initially in state Z and a system initially

in equilibrium [17]:

vz 2 tli{gc]E[‘/z(i) (t) = E[Ny»] 't] (16)

According to (4), the cumulative cost of the PQWS metric in



Queue 1 is:

wpi PNy > 0, = 1} + (1 - w)E[Na0]  (17)

where the first term corresponds to the mean energy consump-
tion and the second corresponds to the mean response time.

The difference z* — Z that characterizes the expected difference
in the future costs between states zZ* and Z is the quantity on
which job assignment is based. When a new job is admitted
to one of the two queues, it tends to increase the total cost of
the PQWS metric. The complete understanding of the future
costs is summarized in the relative value vz. For a fixed policy
resulting in a stable system, the relative value vz — vy gives the
expected difference in the infinite horizon of cumulative costs
between an arbitrary state 2, and an empty system initially in
state 0 with no jobs.

PROPOSITION 1. For Queue i, the difference of relative val-
ues with respect to the weighted sum of the energy consumption
and response time in (17) can be calculated by:

- véz(i)) +(1- w)(vz.ﬂ(i) (18)

E T
Vz(i) — V5G) = w(vz—m - U5<z>)4

ProOF. The difference of relative values with respect to the
weighted sum of the energy consumption and response time

can be decomposed into:
B
— w)v;(,i)] — [wva(l) +(1-
E E T T
= w(vz — v ) + (1 —w) (v — v50)

from which the result follows directly. []

E
V) — Vg = (W + (1 w)vg(i)]

It can be seen from (18) that the difference of relative values
with respect to the PQWS metric in state Z can be decomposed
into the difference of relative values with respect to energy
consumption and the difference of relative values with respect
to response time, which can be treated separately as follows.

PROPOSITION 2. For Queue i with a work conserving queu-
ing discipline, the difference of relative values with respect to
energy consumption can be calculated as [15]:

vfm - véE(,v) =Pr{e; =1} - piU.sy. (19)

Proor. We assume identical arrivals to a single-server sys-
tem initially in state z and to an empty single-server reference
system. When all the initial work Uy in the queue i is served,
both systems are empty. Thus, the difference of energy con-
sumption between the two systems is p;Uq), which is simply
the difference in the energy needed to serve the initial work in
the systems. Further, since energy is consumed only when the
server is available, we derive (19). [J

According to Proposition 2, since Server 1 is always avail-
able, the difference of relative values with respect to energy
consumption is given by:

vEny —viy =Pr{er =1} - p1Uza) = piUzy. (20)

Similarly, since Server 2 is intermittently available, the differ-

ence of relative values with respect to energy consumption is
given by:

iz — Vg = Pr{es = 1} - polUse) = v - p2Usny. (21
PROPOSITION 3. For the stable M/G/1-FCFS Queue 1, the
difference of relative values with respect to response time is
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given by [16]:

/\an(1>

A(l)
1 — p1

+Z (n+1-—

j=1

T T
Vz1) — Vga) = (22)

And for the stable M/G/1-FCFS Queue 2 with intermittently
available service, the difference of relative values with respect
to the response time is given by [3]:

T T ’\2U§(2> IR 1 NAR)
Vz2) — Vg2) = me;Z(nJr —7)A;
=1
ylze [ AUz } (23)
U V(1 = p2)

From (23), we note that the terms with (1 —e2) as factor corre-
spond to an additional penalty due to the currently unavailable
Server 2.

According to Proposition 1, after substituting (20-23) into
(18), we can get the differences of relative values with respect
to the PQWS metric for Queue 1 and Queue 2 as follows, re-
spectively:

)[ MUZs)

2(1=p1)

+ i(n +1-)aP] @4

j=1

Vz1) — Vg = wp1Uz~<1) + (1 —w

A2U2)
27%(1 — p2)

i} @

We assume that n jobs have already arrived to the queuing
system, for a newly arriving job of size z* with index (n +

V) — V52) = wyp2Uye) + (1 — W){

+= Z(n+1

A(Q) 1-e {n +
n

1), the service time of the new job An+1 = 2" /s; is inserted

according to the queuing discipline used in Queue i. Therefore,

the mean additional increase in future costs to assign the new
PO ONG

new n+

jobis v FONREOP where , is the new state

if the arriving job with service time An+1 is added to Queue 7.

PROPOSITION 4. The relative increment of the PQWS met-
ric with the admission cost of a job with service time Aﬁj)ﬂ mn
Queue i 1s as follows:

v.) = Vs) = wP1An+1
MA (2U—(1) + Al 1
1— n+1 n+1 . A( ) 2
+ ( UJ) 2(1 _ Pl) + Uz(l) + n+1 ( 6)

Aiﬂl (2Uz(2) + Agﬁl)
272(1 = p2)
A (2)

20
(1= ;2)] } @)

V(2) — Ugz) = w’Yp2A(+1 +(1-

Znew

I

1—
( #(2) +An+1) 7762 [1 +

1
+7
Y

ProOF. According to (24) and (25), we have the relative



values of the PQWS metric in the new state Z}(,Qw:
1
v = vg = wpr(Uza) + Al)

AUz + Agil ’
2(1 - p1

n+1

+Z (n+2—

(- w)[ HAP] (28)

Vo) — Vg = wyp2 (Usey + AZ)))

Ao (Usy + A2 )2 1] @
1— —Z " - 2 — A
+( w){ 2v2(1 — p2) 7;”*

X2 (Vs +AS)) ] } (29)

’Y(l - P2)

+1762

[n-l—l-i—

The relative increment of the PQWS metric can be decomposed
into the difference of relative values as:

v — vz = [V —vgw] = [V —vgo ] (30)

After substituting (24) and (28) into (30), we can derive (26),
and then after substituting (25) and (29) into (30), we further
derive (27). O

According to (26) and (27), we obtain the dynamic offloading
assignment policy that assigns the newly arriving job to Queue
1" according to:

Vz(4) }
4. NUMERICAL EXAMPLES

In this section we evaluate the assignment policies defined in
the previous sections using the model with two queues to repre-
sent the offloading scheme. We set the parameters for Server 1
to s1 = 400K bps, p1 = 4W and for Server 2 to s2 = 600K bps,
p2 = 2W. This seems reasonable since the transmission rate of
the cellular network is smaller than that of WLAN, i.e., s1 < s2
and the power consumption when transmitting jobs via the cel-
lular link is larger than the WLAN link, i.e., p1 > p2. Besides,
suppose that the total job arrival rate for offloading is A = 1
packet/s, both the failure rate £ and recovery rate n of Server
2 are equal to 1, and the packet sizes are exponentially dis-
tributed with X ~ Exp(100) Kb.

(31)

i = arg min{v_u) —
i Znew

One can see in Fig.3(a) that the proposed tradeoff offloading
policy (TOP) performs significantly better than the random
offloading policy (ROP) and the load-balanced offloading pol-
icy (LOP). Interestingly, all three policies achieve the same
minimum value of the PQWS metric when w = 0.5, where the
mean energy consumption and mean response time are equally
important. At low values of w, the response time is always
more important than the energy consumption and dominates
the queue selection. At high values, the energy consumption
component becomes the decisive factor. The smallest PQWS
metric is obtained when w = 1 and the TOP assignment is
used. This shows that TOP outperforms other policies most
in the case when only the energy consumption is considered in
the offloading system.

The corresponding assignments under different policies are de-
picted in Fig.3(b). For the ROP and LOP schemes, the assign-
ment is insensitive to the weight parameter w. As expected, the
random policy assigns half of the jobs to either queue. How-
ever, for the TOP scheme, at low values of w, all the jobs are
directed to Queue 1, and as w increases, slowly more and more
jobs are assigned to Queue 2 to balance the tradeoff between
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Figure 3: Comparison of different static offloading
policies

energy consumption and performance.

The impact of the total job arrival rate A. is shown in Fig.4(a),
where we only use the static offloading policy TOP. The effect
mentioned above, that optimising one element of the combined
metric minimises PQWS holds for different values of the arrival
rate, but is much more pronounced at high load. In fact, for
high load focussing on energy consumption (w = 1) gives much
lower PQWS than only regarding the job response time (w =
0). The corresponding assignment results under different A.
are depicted in Fig.4(b). It should be noted that for higher
load the point where jobs are assigned to both queues in equal
shares is when w > 0.5, i.e., when energy cost are weighed more
than response time in the metric.

In Fig.5 we study the recovery rate of Server 2. Obviously, the
faster recovery is, the lower becomes the PQWS metric under
TOP policy. This is because as 7 — oo, Server 2 is always
available and then the preferred scheduling target.

To illustrate the dynamic offloading policy, we assume that
the length of a newly arriving job is * = 100Kb. As shown
in Fig.6, the axes represent the existing work Uu) in Queue ¢,
the coloured lines denote the threshold under different w where
the arriving job has equal probability to join both queues. The
areas above the thresholds refer to choosing Queue 1, while
the areas under the threshold refer to choosing Queue 2 for the
new job.

We dynamically assign the job into one of the two queues based
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Figure 5: The proposed tradeoff offloading policy
(TOP) under different n (recovery rate of Server 2)

on the three static policies. In Fig.6, the left side is the situa-
tion when Server 2 is available (e2 = 1), and on the right side
it is unavailable (e2 = 0). Obviously, the areas that correspond
to assignment of new jobs to Queue 2 when Server 2 is available
are much larger compared to the cases when it is unavailable.
For the ROP and LOP policies, the thresholds are always par-
allel under different values of w € [0, 1]. Whereas assigning the
job to a low power server (Queue 1) would be beneficial from
the energy consumption perspective at low loads, such a policy
may end up in difficulties at higher loads as the response time
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Figure 6: Dynamical dispatching decisions to choose
Queue i under different static offloading policies

grows quickly. However, for the TOP scheme, the assignment
thresholds cross under different w. That is because the TOP
scheme tries to dynamically balance the allocated jobs in order
to minimize the objective value of the PQWS metric.

Fig.7(a) compares the dynamic offloading schemes and the dif-
ferent static policies. The dynamic offloading scheme under the
TOP policy achieves the best performance, while the ROP- and
LOP-based schemes have almost the same PQWS value when
jobs are dynamically assigned to the two queues. Further, the
TOP-based dynamic offloading scheme yields a gain over the
schemes where only the static policies are adopted, e.g., they
are up to 70% better than the static policy of ROP. This is
because the dynamic offloading policy considers effectively the
dynamic increase in each queue that newly arriving jobs bring
in. As shown in Fig.7(b), for the TOP-based dynamic offload-
ing scheme, there exists a turning point in the middle where
allocating the jobs to Queue 2 begins to outweigh Queue 1.
There is a leap when w = 1, since Uy < Uz1) at that point,
the new arrival jobs are always assigned to Queue 2.
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Figure 7: Comparison of different static and dynamic
offloading policies

S. CONCLUSIONS

This paper addresses the optimality analysis of the energy-
performance tradeoff for mobile cloud offloading systems based
on a queueing model, which captures both energy and perfor-
mance metrics and also intermittently available access links.
The optimal assignment policy can find an appropriate tradeoff
between the minimising energy costs and minimising delay. In
the numerical experiments, the proposed dynamic policy com-
bined with the tradeoff offloading policy (TOP) shows very
good results and outperforms other policies by a significant
margin.

This simple queueing model can be used to describe the com-
plex real offloading system. Although our derivation of the
results are based on the assumption that arriving jobs to the
system following a Poisson process and the job sizes are ex-
ponentially distributed, the approach can be adjusted to other
arrival processes with arbitrary distributions of the job sizes.

In the future we may use general fork-join models to analyse
mobile offloading systems and we will derive policies based on
the Energy-Response time Product (ERP) [7] to see whether
this metric will be symmetric across the weighting factor, i.e.,
whether it will give equal importance to both contributing met-
rics, energy consumption and delay.
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