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Abstract—In the beyond 5G (B5G)/6G era, to achieve ultra-
dense and ultra-large-capacity intelligent connection of all things,
an intelligent wideband spectrum sensing technology is par-
ticularly important. However, in an extremely wide frequency
range, it is still a challenge to achieve high-precision and
high-reconstruction-capability wideband spectrum sensing (WSS)
under a very low SNR. We propose a Time-Frequency-Fused
adjustable Deep Convolutional Neural Network (TFF aDCNN).
Meanwhile, a novel TFF aDCNN-based sensing framework is
also proposed. In this framework, we can obtain a pre-trained
base model with a single distribution by training TFF aDCNN.
Then, for the sensing task in the actual environment, we use the
base model for transfer learning, so that a newly trained sensing
model can be obtained very quickly (i.e. fine-tuned model). In
the TFF aDCNN, we design a main network and an adjustable
auxiliary network, where the former learns complex and abstract
signal features, while the latter assists the main network in
learning different data distribution patterns during the training
process and regulates the focus direction of the main network
during the perception process. Simulation results show that
TFF aDCNN can significantly reduce hardware cost and improve
reconstruction accuracy and reconstruction capability, when
compared with SOMP and SwSOMP-based WSS algorithms,
single-dimensional deep learning spectrum sensing method, and
deep learning-based WSS (DLWSS), especially at very low SNRs.

Index Terms—Deep Convolutional Neural Network, Modulated
Wideband Converter, Spectrum Sensing, Time-Frequency corre-
lation, PCA

I. INTRODUCTION

SPECTRUM is an important and scarce strategic resource.
With the rapid development of next-generation wireless

communication technologies and the Internet of Things (IoT),
the types and numbers of devices accessing wireless net-
works are exploding [1]. Therefore, to meet the spectrum
requirements of various wideband devices, the future 6G
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communication technology will inevitably move into the ultra-
wide spectrum range of millimeter wave and terahertz [2],
[3]. However, the current static spectrum allocation strategy
has made the contradiction increasingly acute between the low
utilization of spectrum resources and the shortage of spectrum
resources [4]. In the complex electromagnetic environment,
the traditional Wideband Spectrum Sensing(WSS) method
based on cognitive radio (CR) [5] is difficult to meet future
performance requirements. Wideband spectrum sensing faces
several challenges that narrowband spectrum sensing doesn’t
have. First of all, a wide range of spectrum requires super high-
speed ADC to sample. Secondly, wideband spectrum sensing
needs a large storage room for data. Although some methods
can be used to achieve sub-Nyquist sampling, the signal
will be contaminated with critical aliasing. Using sub-Nyquist
sampling can reduce the requirement of a high-speed ADC, but
the sampled signal is difficult to process. However, with the
rapid development of artificial intelligence (AI) technology, it
is a feasible solution to realize smart spectrum sensing in a
very wide spectral range with the help of AI [6].

Spectrum sensing allows secondary users (SUs) to sense
the spectrum occupancy state of authorized primary users
(PUs) in the surrounding complex radio environment. SUs
use spectrum sensing technology to discover spectrum holes
[7], and then access them to realize spectrum sharing, which
can greatly improve spectrum utilization and alleviate the
scarcity problem of high-quality spectrum resources. Most of
the existing traditional spectrum sensing methods based on
sub-Nyquist sampling do not determine whether there is a
PU in the spectrum, and directly reconstruct the support set,
resulting in a higher false alarm rate and computational cost.

With the computational power substantially increased, deep
learning has exerted a powerful capability. Deep learning
methods are able to find out the mapping model of signal
to support set in a complex radio environment and do not
need to extract features manually. Convolutional neural net-
works (CNN) have become the fundamental feature extraction
network in image processing due to their excellent feature
extraction ability. There are a number of studies that have
attempted to take advantage of deep learning for spectrum
sensing.

Unfortunately, previous studies (regardless of using tradi-
tional or deep learning-based spectrum sensing approaches)
still suffer from the following three problems:

• The relationship between the PUs’ activity habits and
the time period is often ignored. So that an effective
and reasonable way is needed to fuse the time and the
frequency, which can achieve the purpose of improving
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perception accuracy.
• Under a low signal-to-noise ratio (SNR) environment,

the existing modulated wideband converter (MWC)-based
wideband spectrum sensing (WSS) algorithms need more
parallel channels to ensure the support set reconstruction
probability. Thus, a WSS method that can reduce hard-
ware costs and improve reconstruction capability while
keeping the same accuracy is needed.

• The reconstruction ability of existing schemes under a
low SNR environment is also greatly limited. Therefore,
an effective method is needed to denoise the sampling
results and reduce the influence of noise on the model
reconstruction ability.

To solve the above-mentioned challenges, a complete smart
WSS framework is proposed in this paper. The framework
consists of one preparation stage and three implementation
stages. In the preparation stage, a time-frequency relationship
model is constructed using PUs’ spectrum usage habits in
different time periods. Then, a sparse wideband signal is
obtained based on this model and the signal generation model.
The implementation stages include: (i) MWC wideband com-
pressed sampling stage; (ii) Data pre-processing stage; (iii)
End-to-end smart WSS stage based on time-frequency fusion.
In the second stage, the estimated original signal is denoised
by PCA after compressed sampling, and one-hot encoding is
used to construct time dimension information. In the third
stage, the denoised signal and time dimension information are
used as training samples to train a new smart WSS model.
Our specific contributions are as follows:

• A time-frequency-fused adjustable deep convolutional
neural network (TFF aDCNN) is innovatively proposed.
TFF aDCNN consists of a main network and an adjust-
ment network. The former is mainly used for learning
complex and abstract signal features, and the latter is
mainly used to assist the main network in learning the
current data distribution patterns.

• A pre-trained base model is obtained by training
TFF aDCNN. Then, we can perform transfer learning
based on the base model to obtain a new wideband
spectrum sensing model in different electromagnetic en-
vironments (also called a fine-tuned model).

• We reasonably assume that the usage habits of the autho-
rized PUs obey a regular pattern according to the time
period. By mathematically modeling these assumptions,
a time-frequency correlation model is constructed to
facilitate the simulation experiments.

• A novel noise reduction operation is carried out in pre-
processing. That is, we first obtain the estimated original
signal sampled at two consecutive times. Then, the two
estimated signals are expanded into two one-dimensional
column vectors and stacked along the column direction
to form a two-dimensional matrix. Finally, the formed
matrix signal is denoised by principal component analysis
(PCA).

The rest of the paper is organized as follows: Section II
investigates the related work from the aspects of traditional
spectrum sensing approaches and deep learning-based spec-
trum sensing approaches. Section III models the smart WSS

system, where the characteristics of the spectrum being oc-
cupied are related to the time, and also introduces the MWC
model, the PCA denoising model, and the data pre-processing
model. Section IV carries out the problem formulation and
further describes TFF aDCNN network in detail. Section V
evaluates the performance of the whole framework through
simulation results. Finally, Section VI concludes the whole
paper and further points out future directions.

II. RELATED WORK

A. Traditional Spectrum Sensing Approaches
In traditional approaches, WSS methods can sense spectrum

occupancy state over an extremely wide frequency range at
a time, giving SUs more access opportunities compared to
narrowband spectrum sensing methods [8]–[12]. The spectrum
occupancy is usually sparse in time, frequency and space
due to the underutilization of the allocated spectrum [13].
Therefore, multiband sparse signals are usually a common
form of signal in practical communications. For such signals,
a low-speed analog-to-digital converter can be used for high-
speed sampling [14]–[16], and the signals can be recovered
from a small number of linear random measurements. Modu-
lated wideband converter (MWC) [14] is a typical method to
achieve sub-Nyquist sampling using multiple parallel channels
and is frequently used in conventional wideband compressed
spectrum sensing algorithms.

Hu et al. [17] proposed a SwSOMP algorithm based on
MWC, which uses a stage-wise weak selection strategy in
simultaneous orthogonal matching pursuit (SOMP) [18]. The
algorithm can effectively improve the reconstruction accuracy
of the wideband spectrum support set and reduce the com-
putational cost under the Gaussian noise interference. The
noise intensity and signal sparsity can be estimated using
singular value decomposition. Based on that, an adaptive and
blind reduced Multiple Measurement Vectors (MMV) boost
(ABRMB) framework [19] was proposed. The framework can
adaptively process multiband signals using the estimated noise
intensity and signal sparsity, and can improve the support set
reconstruction probability. Using the approximate linear char-
acteristics of the sparse multi-band signal tail singular value
and the progressive support selection strategy, an progressive
support selection-based self-adaptive distributed MWC sensing
scheme (PSS-SaDMWC) [20] was proposed. When there
are fewer cooperative SUs, the reconstruction probability of
the support set can be significantly improved. The machine
learning-based WSS scheme [21] used MWC to obtain sam-
pling results and then used sparse Bayesian learning to extract
information directly from the sampling results to estimate the
support set. The scheme reduces computational complexity by
removing the continuous-to-finite (CTF) block and the pseudo-
inversion operation. A reconstruction algorithm called nearest
orthogonal matching pursuit (N-OMP) based on MWC was
proposed [22]. After the occupied sub-bands are detected,
the correlation coefficients between the residual vectors and
the corresponding column vectors of the two adjacent sub-
bands are calculated. The occupancy state of the adjacent
sub-bands can be directly determined according to correlation
coefficients.
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In order to reduce the higher false alarm rate and compu-
tational cost in existing spectrum sensing methods, a pairwise
channel energy ratio (PCER) detector algorithm was proposed
[23]. Before the signal support set reconstruction is performed,
the MWC sampling result is used to determine whether
PUs exist in the wideband spectrum. The signal support set
reconstruction algorithm is performed only after the PUs exist
in the wideband spectrum. The algorithm is robust to different
SNRs and does not require prior knowledge of PU signals.
However, to achieve the support set reconstruction probability
greater than 90% in the traditional single-node compressed
sensing method, it needs to be in a high SNR environment or
increase hardware overhead. This requirement is difficult to
meet in actual deployment applications.

B. Deep Learning-based Narrowband Spectrum Sensing
Methods

Narrowband spectrum sensing can also take advantage of
deep learning for classification accuracy improvement. Firstly,
the convolutional, long short-term memory, fully connected
deep neural networks (CLDNN) in deep learning [24] were
applied to solve the narrowband spectrum sensing problem
[25], which can classify the state of narrowband signals effec-
tively. Secondly, Gao et al. [26] used an improved CLDNN,
which fuses the input with the first three convolution layers’
output as the input of long short-term memory (LSTM) for
spectrum sensing. Because some information is lost after
multi-layer convolution operation, the structure [26] ensures
that the data input to the LSTM network retains all features of
the original data. The activity pattern aware spectrum sensing
(APASS) algorithm [27] was proposed considering the PUs’
activity patterns. The algorithm simultaneously takes in the
present sensing data and historical sensing data, with which
the inherent PU activity pattern can be learned to benefit
the detection of PU activity. However, the algorithm needs
to retain and feed a large amount of historical information
into the trained network each time, which increases the com-
putational complexity. All of the above methods are based
on a combination of narrowband spectrum sensing and deep
learning.

C. Deep Learning-based Wideband Spectrum Sensing Meth-
ods

Wideband spectrum sensing faces several challenges that
narrowband spectrum sensing doesn’t have. First of all, a wide
range of spectrum requires super high-speed ADC to sample.
Secondly, wideband spectrum sensing needs a large storage
room for data. Although some methods can be used to achieve
sub-Nyquist sampling, the signal will be contaminated with
critical aliasing. Using sub-Nyquist sampling can reduce the
requirement of a high-speed ADC, but the sampled signal is
difficult to process. Research combining wideband compressed
sensing and deep learning has also been carried out. Firstly,
sampling results are obtained by sub-Nyquist sample methods,
and the obtained estimated original signal is input to a deep
compressed spectrum sensing generative adversarial network
(DCSS-GAN) [28] to reconstruct the original signal spectrum.

Then, DCSS-GAN uses a reconstructed spectrum to classify
the PUs’ band occupancy state as a multi-label classification
problem. In addition, chandhok et al. [29] proposed a deep
learning-based wideband spectrum sensing (DLWSS) method
by utilizing MWC for WSS. The estimated original signal is
fed into a three-layer CNN, and the band occupancy state is
determined by outputting the predicted value on each band
through the fully connected layer. Subsequently, considering
the relationship between spectrum and space, a CNN-based
cooperative spectrum sensing model [30] was proposed. The
sensing results are arranged into a two-dimensional matrix
in spatial order in the fusion center. The sensing results are
obtained by each SU through energy detection and the CNN
improves reconstruction probability by learning the correlation
between space and frequency band.

D. Related Work on Spectrum Distribution in Time Domain

In the research of spectrum sensing, studies considering both
spatial-temporal correlations [31]–[33] and space-frequency
correlation [34] have been reported, and these works have
obtained an improvement in sensing performance. However,
it is still an innovative work to use the information of time-
frequency correlation modeling as the prior input for deep
learning-based wideband spectrum sensing models. In fact,
for a specific important application scenario in the same
region, the occupancy of the spectrum by the primary user
has a regular distribution in the time domain [35]–[37]. The
related research on spectrum utilization shows that although
the average utilization rate of high-quality frequency bands
is higher than that of the non-high-quality spectrum, the
absolute utilization rate is still very low. Therefore, we have
sufficient reasons to assume that the idleness of the spectrum
has a certain distribution relationship with time [38]–[40]. The
research and analysis results of relevant literature can also
prove that our hypothesis is reasonable and reliable.

III. SYSTEM MODELING AND COMPRESSED SAMPLING

A. System Modeling

As shown in Fig. 1, we consider a wideband spectrum over
1 GHz and a WSS part in a region where there are several
PUs and a SU. According to reality, PUs use different devices
at different time periods, then the spectrum occupancy under
different time periods in the region has regularity.

Assuming that a very wide band of width Bw is divided
into L consecutive non-overlapping narrow bands of width
B with band indexes 1, 2, · · · , L. The PUs in the system are
allowed to use at most a total of N (N < L) consecutive
non-overlapping narrow bands of width B at the same time.
We divide the day into z time periods, and the state of the
k-th band in time period Tj ∈ {T1, T2, · · · , Tz} is denoted
as Sk ∈ {0, 1}. Sk = 1 means that the k-th band is being
used, and Sk = 0 means that the k-th band is idle. PUs do
not occupy all available bands, at which point the SU is able
to sense the state Bstate = {S1, S2, · · · , SL} of each band
in the range Bw. We define the set consisting of the occupied
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Fig. 1: A spectrum sensing system with the usage habits of
the authorized PUs in different time periods obeys a regular
pattern.

bands’ indexes M belonging to the time period Tj as the signal
support set, defined as:

Λ = {M1,M2, · · · ,MN} . (1)

Sparse multi-band signal is a type of signal often encoun-
tered in cognitive radio communication. We assume that the re-
ceived signal x(t) is a sparse band-pass analog signal with the
frequency spectrum distributed in Bw = [−fnyq/2 , fnyq/2 ],
and fnyq is the Nyquist sampling rate of the signal. The
received signal is as follows:

x (t) = p (t) + w (t) . (2)

where w(t) is the additive white noise that obeys the Gaussian
distribution, p(t) is the superposition of the signals from the
active PUs at time t in the area, the maximum bandwidth of
the signal from PUs is Bmax, and the signal energy is E =
[E1, · · · , EN ].

Considering the fact that the activeness of PUs in an area
is closely related to the time period, the occupied frequency
band has different distributions in different time periods. For
example, at around 8: 00 in the morning, the frequency band
used by navigation begins to be active, and at around 9: 00,
the frequency band used by operators is very active. After 24
o’clock in the evening, there is no particularly active frequency
band, but there are still PUs occupying the spectrum randomly.
In each time period, except for some specific active frequency
bands, other frequency bands will also be randomly occupied
by PUs, which is very similar to the characteristics of normal
distribution.

Therefore, we assume that the carrier frequency fc (Tj) in
daytime signal p(t) obeys the normal distribution with mean
value µ (Tj) = {µ (T1) , · · · , µ (Tz)} and standard deviation
σ (Tj) = {σ (T1) , · · · , σ (Tz)} as follows:

fc (Tj) ∼ N
(
µ (Tj) , σ

2 (Tj)
)
. (3)

After 24 o’clock at night, the spectrum occupation is
random, and the carrier frequency of p(t) obeys uniform
distribution:

fc (Tj) ∼ U (−fnyq/2, fnyq/2) . (4)

B. Compressed Sampling Process Using MWC

The MWC algorithm is a method of sub-Nyquist sampling.
Assuming that the number of parallel sampling channels is
m, and on a certain channel g, the signal x(t) is multiplied
by a set of ±1 randomly alternating waveforms Cg (t) , g ∈
{1, 2, · · · ,m} with a period of Tp = 1/fp to realize the
shift of the signal spectrum X(f). Then pass a low-pass filter
with a frequency of 1/2Ts to obtain a baseband signal with
a frequency range of Fs = [−fs/2, fs/2]. Let fp = fs, so
that the signal obtained by the sampling after the low-pass
filter contains all the characteristics of the received signal x(t).
According to Fourier Transform (FT) and related knowledge
of signal, the spectrum of the signal obtained on channel g
can be easily obtained:

X̂g (f) =

∞∑
l=−∞

cglX (f − lfp) s.t. f ∈ Fs, (5)

where cgl is the coefficient of the Fourier series expansion of
the signal Cg (t), which is also the spectrum of Cg (t). l is the
coefficient of the original spectrum X(f) shift. The spectrum
of a wideband sparse signal is finite, so the number of shifts
l is not infinite. Assuming fp = fs, the number of shifts L0

can therefore be determined:

L0 =

⌈
(fs + fnyq)

2fp

⌉
− 1. (6)

The relationship between the number of frequency band
slices L and L0 in the system model is L = 2L0 + 1, which
can be rewritten as:

X̂g (f) =

L0∑
l=−L0

cglX (f − lfp), f ∈ Fs. (7)

The frequency spectrum of the compressed sampling result
Y(n) is expressed as Y (f), which can be written in the form
of a matrix:

Y (f) = ΦZ (f) . (8)


y1 (f)
y2 (f)

...
ym (f)

 =


c1,−L0 · · · c1,L0

c2,−L0 · · · c2,L0

...
cm,−L0 · · · cm,L0




X (f + L0fp)
...

X (f)
...

X (f − L0fp)


(9)
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where the observation matrix Φ is composed of a row vector
c of weighting coefficients of m sampling channels, and the
size is (m,L). Z (f) is a matrix composed of signals on L
frequency bands, the size is (L, d), where d is the number of
samples per channel.

C. Data Preprocessing

It can be seen from Eq. (8) that the estimated spectrum of
the original signal Z̃ (n) can be obtained from the compressed
sampling result Y (n) as:

Z̃ (n) = Φ†Y (n) , (10)

whereΦ† is the pseudo inverse of the observation matrix, from
which the estimated original signal with noise and aliasing
signal superimposed can be obtained.

PCA algorithm is a common method of data dimension-
ality reduction. It finds the direction with a large variance
according to the data, projects the high-dimensional features
to the direction with a large variance, and retains most of the
information to complete the dimensionality reduction. When
only the features of the main components are retained, the
noise with a smaller variance will be filtered.

In other words, in noise reduction processing, the PCA
algorithm is usually used to find the major component of the
two-dimensional matrix, i.e., the part dominated by the signal
energy, while discarding the minor component, i.e., the part
dominated by the noise energy, which can then achieve the
goal of denoising.

Perform MWC twice in succession, and the estimated signal
obtained according to Eq. (10) is transformed into the size
of (L× d, 1) and expanded into a matrix D of (L× d, 2)
according to the column direction:

D =
[
Z̃1 (n) , Z̃2 (n)

]
. (11)

Find the covariance matrix C of D:

C =
1

2− 1
DDT. (12)

Then the eigenvalues and eigenvectors of the covariance
matrix C are obtained. Arrange the eigenvalues from large
to small, and take the dimension that represents the feature
of the data best, that is, the direction of the eigenvectors
corresponding to the maximum eigenvalues. The original
signal is projected to the new dimension to obtain the data.
The horizontal axis of D represents features, and the vertical
axis represents samples. The results of the two samplings are
regarded as two dimensions of one signal. Both dimensions
represent the same estimated signals, and both dimensions are
affected by Gaussian white noise. Using PCA to reduce the
two dimensions to one dimension can get the most represen-
tative feature of the original signal. Since the direction of the
new coordinate axis found by PCA has the largest variance
and is most representative of the original signal, the other
dimension is discarded containing most of the white Gaussian
noise, PCA removes part of the white Gaussian noise by
reducing it to one dimension.

Data Z̃ [n] after PCA denoising needs to use Discrete-
time Fourier Transform (DTFT) to obtain spectrum estimation
signal Z̃ (f):

Z̃ (f) = DTFT
(
Z̃ [n]

)
. (13)

And then, we transform the DTFT result into the original
size of (L× d, 1). After separating the real and imaginary
parts of Z̃ (f), we stack them as two signal features in the
third dimension to become an input signal I of size (L, d, 2).

D. Network Design

The proposed model consists of a main network and an
adjustable network to achieve spectrum sensing. For the main
network, we just hope to extract features of the input signal and
the output of the adjustable network, so we stack several CNNs
to achieve extracting features. However, for the adjustable net-
work, inspired by Conditional Generative Adversarial Network
(CGAN), which uses extra conditional input to adjust the
network to generate specific output, we want the adjustable
network to be a ”dictionary like” module to generate the
”modification signal” according to the extra conditional input.
Then the features from the input signal and the features
from the ”modification signal” are concatenated together. After
extracting features from concatenated information, a fully
connected layer is used to classify the output value.

IV. PROPOSED FRAMEWORK

A. Problem Formulation

Traditional compressed sensing methods use the results of
MWC to select the most relevant element for the signal or
residual by a greedy algorithm in each iteration. Then run
multiple iterations to restore the support set:

jk = argmax
j

|⟨rk−1, vj⟩| ,Λk = Λk−1 ∪ {jk} , (14)

where jk is the column index most associated with the residual
vector rk−1 in the dictionary matrix V, and Λk is the support
set, which is updated through iteration.

The deep learning method also uses the MWC results to
reconstruct the support set. Considering that in our proposed
model, the frequency bands occupied by PUs are related to
the time period, we add information about the time dimension.
Therefore, we propose a system framework as shown in Fig. 2
to map the signal to the spectrum state. The one-hot encoding
uses c state representation bits to represent z time periods, and
each bit represents a time period. The bit value is 0 or 1, where
1 represents that the current state is valid. The pre-processed
data I and the one-hot encoding H ∈ ℜz of the time dimension
obtained by artificially dividing the time period are sent to the
TFF aDCNN network, and the estimated signal is mapped to
the frequency band state Bstate using the TFF aDCNN model
ψ, which can be formulated as:

Bstate = ψ (I|H,θ) , (15)

where θ represents the parameters of the network. Meanwhile,
deep learning transforms the original support set reconstruc-
tion problem into a multi-label classification problem. Only by
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Fig. 2: System network framework.

judging the state of all frequency bands, the final frequency
band state can be obtained. The multi-label classification
problem continues to be transformed into multiple single-label
binary classification problems. Finally, the Sigmoid activation
function is used to solve the binary classification problem of
judging L spectrum states.

B. Proposed TFF aDCNN Model
A dual-input convolutional neural network is proposed. The

two inputs of the network represent the signal dimension
and the time dimension respectively. For the time dimension
input, when a certain H is selected, the specific status bit is
one, and the other status bits are zeros. The output of the
fully connected layer in the adjustment network will only be
affected by the current status bit being one, and the status bit
of zero cannot affect the output of the fully connected network.
During detection, the main network is regulated for spectrum
sensing of specific data distribution by inputting specific one-
hot encoding. Then the training set of the network can be
defined as:

χ =
{[(

I(1),H(1)
)
,y(1)

]
, · · · ,

[(
I(w),H(w)

)
,y(w)

]}
,

(16)
where w represents the number of samples in the training set.
The input of each sample is composed of input signal I ∈
ℜL×d×2, one-hot encoding H ∈ ℜ1×z and labels y ∈ ℜL.

Assume that the network parameters are θ, and the
TFF aDCNN model is ψ. We use supervised training, the
output is activated by the Sigmoid function, and the value
range is limited to (0,1). The cross-entropy loss function ℓ
is:

ℓ =
1

w

n=w∑
n=1

n=L∑
i=1

ℓni

=
1

w

n=w∑
n=1

i=L∑
i=1

[
y
(n)
i · log

(
ψi

(
I(n) | H(n),θ

))
+
(
1− y(n)i

)
· log

(
1− ψi

(
I(n) | H(n),θ

))]
, (17)

where y(n)i is the value of the i-th spectrum slice in the n-
th training label, with band occupied as 1 and band idle as
0. ψi

(
I(n)|H(n),θ

)
represents the output of the network to

the i-th spectrum slice state of the n-th training sample, and
predicts the probability of band occupied in the form of 0 to 1.
The training of the TFF aDCNN network is mainly driven by
data. During training, the TFF aDCNN network is optimized
by the Adaptive Moment Estimation (Adam) optimizer.

When the one-hot encoding representing a certain time
period is input to the adjustment network, the data with the
distribution characteristics of the current time period are input
to the main network at the same time. After training, the loss
of the network under the current input combination (the one-
hot encoding of the current time period and the data that obeys
the current time period distribution characteristics) is reduced.
Under the current one-hot encoding input, the main network
passively learns the distribution characteristics of the input
data. When a conditional input H is selected for training, the
adjustment network is able to update the parameters connected
to the status bit 1 of one-hot encoding by backpropagation.
A large amount of training makes the main network more
sensitive to the data distribution in the current time period
when the one-hot encoding of the current time period is input
into the adjustment network.

After training, by inputting the one-hot encoding repre-
senting different time periods into the adjustment network,
the focus of the TFF aDCNN main network detection is
actively adjusted. Therefore, under a low SNR, the network
can still perform spectrum sensing that focuses on the current
data distribution by inputting the one-hot encoding to achieve
performance improvement. The training of the network can be
regarded as an optimization problem:

θ = argmin
θ

ℓ (χ,θ) . (18)

The algorithm flow is shown in ALGORITHM 1.
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Algorithm 1 Training and application of TFF aDCNN.
Input: Training dataset χ ={[(

I(1),H(1)
)
,y(1)

]
, · · · ,

[(
I(w1),H(w1)

)
,y(w1)

]}
; Test

dataset χ̃ =
{(

Ĩ(1), H̃(1)
)
,
(
Ĩ(2), H̃(2)

)
, · · · ,

(
Ĩ(w2), H̃(w2)

)}
;

Number of epochs Eep; Batch Size EB ; Learning rates αl.
Output: Sensing result Bstate

1: Initialization:
2: Randomly initialize parameter θ : θ ← random.
3: Training:
4: for i = 1, 2, · · · , Eep do
5: for j = 1, 2, · · · , ⌊W/EB⌋ do
6: Choose EB data from training dataset χ without

replacement
7: Calculate gradient:grad← ∇θℓ (χ,θ)
8: Update the θ by Adam with learning rate αl: θ ←
Adam (αl, grad,θ)

9: Application:
10: begin
11: Get TFF aDCNN’s parameters θ
12: Input test dataset χ̃ into TFF aDCNN
13: Get sensing result Bstate = ψ (χ̃,θ)
14: return result

C. Structure of TFF aDCNN

As shown in Fig. 2, the proposed network model consists
of two parts: the main network and the adjustment network.
The main network is composed of a convolution part and
a fully connected part. The convolution part includes four
convolution units. Each convolution unit is composed of a
convolutional layer with strides 1, a batch normalization layer
and a ReLU layer. The fully connected part is composed of
a fully connected neural network of L neurons, and uses the
Sigmoid activation function to limit the output range to (0,1)
to represent the frequency band state.

Connect the input data I of the main network with the
convolution part. After the data passes through the first convo-
lution unit with a (1, 21) filter K1, 16 channels, the effective
information is extracted and the first feature map is obtained:

R1 =
[
R1

1, · · · ,R1
i , · · · ,R1

16

]
,R1

i ∈ ℜa×b. (19)

Since the filter is set to 16 channels, the output has 16
matrices from R1

1 to R1
16, and each matrix is as follows:

R1
i =

 Ri
1,1 · · · Ri

1,d−20
... Ri

a,b

...
Ri

L,1 · · · Ri
L,d−20

 . (20)

The value in the matrix is obtained by the convolution of
the input matrix and the convolution filter:

Ra,b = ξ(I ∗K1 +W)a,b

= ξ

 1∑
i=1

21∑
j=1

2∑
l=1

Ia+i−1,b+j−1,lKi,j,l︸ ︷︷ ︸
I∗K1

+ wa,b,l︸ ︷︷ ︸
W

 ,
(21)

where ξ () represents the ReLU activation function. With the
subscripts a and b, it represents the value of a row and b

column in a certain channel of the feature map, W is bias
matrix. Because the size of the input data I is (L, d, 2) and
L is the number of spectrum slices, the first dimension of the
input data has the structure and position information of the
spectrum slices. In order to ensure that the information of the
data is not lost, the first dimension of the filter is 1. In the
output feature map of each subsequent convolution unit, the
first dimension remains L unchanged.

The adjustment network consists of a fully-connected part
and a convolution part. Considering that 16-channel feature
maps with the same dimension and shape are required for fea-
ture concatenation, the fully connected part consists of a fully
connected layer with L×(d− 20) neurons. The parameters are
not only set to satisfy the subsequent feature concatenation, but
also map the low-dimensional temporal information to higher
dimensions, increase the learnable parameters of the network,
and improve the learning ability of the network.

The convolution part consists of two convolution units,
each consisting of a convolutional layer with a (1, 21, 16)
filter, the same padding, a batch normalization layer and an
activation layer using the ReLU activation function. The one-
hot encoding representing the time dimension information
is connected to the fully connected part of the adjustment
network. The data after the added dimension cannot be directly
input to the convolution part, so the fully connected output data
is reshaped into a two-dimensional matrix, and then connected
to the convolutional layers. The convolutional layers finally
output a feature map with temporal information R2, which
will be concatenated with the feature map R1 containing the
input data information on the channel dimension to form a
new feature map with a channel number of 32:

Rconcatenate = concatenate

 R1︸︷︷︸
signal−part

, R2︸︷︷︸
time−part

 , (22)

where concatenate[] denotes concatenation on channel dimen-
sion. The concatenated feature map Rconcatenate is input to
the rest of the main network. The feature map output by
the convolution part is connected to the fully connected part
through a flatten layer. The fully connected part obtains the
scores of L spectrum slices through the Sigmoid activation
function. In order not to lose information, no pooling layer
is used in the convolution unit, and in order to reduce the
parameters, the convolution filter and the number of channels
are designed according to input data. The final layer of
convolution outputs a feature map of size (L, 1, 32).

D. Transfer Learning Description of the Base Model

According to the literature on spectrum measurement [35]–
[39], we know that the spectrum usage patterns of different
cities are different, and even the same frequency band has
different activity patterns in different regions. Therefore, it is
difficult to have a general model that can learn the regularity
of spectrum usage everywhere.

The model obtained by training TFF aDCNN is to explore
the effectiveness of the proposed spectrum sensing framework
and use it as a pre-trained base model. Obviously, this base
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model cannot be used as a general and specific deep learning
model, and it cannot cope with wideband spectrum sensing
tasks in all electromagnetic environments.

In practical applications, for a specific task, spectrum mea-
surement is first performed on the spot for at least one day,
and the distribution law of the authorized spectrum is found
according to the results of the spectrum measurement. Then,
the distribution is modeled to produce a sizable amount of
training set data through simulation. Next, the training set is
used for transfer learning based on the pre-trained base model.
In the process of transfer learning, we freeze the main network
in the pre-trained base model, and only activate the adjustable
auxiliary sub-network, so that we can quickly train to obtain
a new and practical model suitable for new scenarios, that is,
we can quickly adapt to local spectrum usage patterns.

V. PERFORMANCE EVALUATION

In this section, we consider a single SU to realize spec-
trum sensing as mentioned in System Modeling. Because of
the hardware limitation, our simulations are conducted on a
computer including signal simulation, MWC downsampling,
data preprocessing and model evaluation. To evaluate the
performance of our proposed model, a Gaussian channel is
used. Additive White Gaussian Noise (AWGN) is added to
PUs signal to simulate the contaminated signal received by
the receiver.

A. Parameter Settings

1) MWC Parameter Settings and Dataset: Table I lists the
values of the parameters used in the MWC experiments and
their meanings. According to the origin MWC paper [14], they
generate PUs’ signals by formula:

p (t) =

N∑
i=1

√
EiBmax sinc (Bmax (t− τi)) cos (2πfci (t− τi)),

(23)
where sinc (x) = sin (πx) /πx, and other variables can be
found in Table I. We also use this formula to simulate the
PUs’ signals and AWGN is added. To simplify the experi-
ment, the day is divided into z = 5 time periods and we
randomly generate the PUs’ signal frequency fci obeying
z = 5 specific Gaussian distribution with mean µ(considering
the max frequency is 1) and variance σi. When we get the
frequency fci, the occupied bands’ index is represented as
one-hot training label. After that, using MWC to implement
compressed sampling with parameters in Table I.

2) Data Preprocessing: Z̃ (n) = Φ†Y (n) is used to
get the estimated data. After two successive estimated data
are obtained, PCA is used to reduce dimension to get one
estimated data like in Section III Data Preprocessing. The
scikit-learn package is used for implementing PCA, and we
reserve one main component to realize dimension reduction,
which means setting the parameter n components equal to 1 in
function PCA(). Since spectrum information is more intuitive,
we use FFT to get signals’ spectrum as a training dataset.

The software environment for the simulation experiments is
as follows: 64-bit Win10 operating system, MATLAB 2018a,

TensorFlow 1.15.5, Cuda11.4. The hardware environment is
as follows: 6-core Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz, RAM 15GB, NVIDIA GeForce GTX 1080 Ti.

B. Support Set Reconstruction Performance under Different
SNRs

The comparison of model performance with different
SNRs is performed. The data are denoised by PCA
first. The SNR of the received signal x(t) is SNR =
{−10,−8,−6,−4,−2, 0}dB, and other conditions are the
same as the simulation settings. Under each SNR condition,
the training set has 8,500 pieces of data, and the test set has
1,500 pieces of data. Each set is divided into 5 groups, and
each group of data obeys a specific distribution. Experiments
are conducted using the proposed TFF aDCNN network, the
TFF aDCNN network without an adjustment network, the
SwSOMP [17], the SOMP [18], and DWLSS [29].

The ablation experimental results are as shown in
Fig. 3. When m = 25, N = 6, SNR =
{−10,−8,−6,−4,−2, 0}dB, the average reconstruction prob-
ability of the proposed model is 3.5% higher than that of
the TFF aDCNN model without the adjustment network. The
DLWSS [29] performance is similar to that of TFF aDCNN
without adjustment network. Compared with traditional meth-
ods such as SOMP and SwSOMP, the proposed model has
an average improvement of 65% and 69%, respectively. The
results also prove that the TFF aDCNN can learn the data
characteristics of each time period, so that under low SNR,
the model can also use the input one-hot encoding to obtain a
higher support set reconstruction probability. Meanwhile, we
set the standard deviation condition of the data distribution
to σ2 = [0.04, 0.04, 0.04, 0.04] and conduct the support set
reconstruction probability experiment with m = 20 and
N = 6. From Fig. 3, when the data standard deviation is
set to σ2, the network performance is better, which indicates
that the more obvious the usage pattern of the main user in the
current time period, the more the network can find the pattern
and learn the data distribution characteristics.
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Fig. 3: Comparison of recovery probabilities of support set
under different channel conditions.
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TABLE I: Settings of simulation parameters.

Symbols Value Meanings

N 6 Number of sub-bands with energy
m [15, 35] Number of parallel sampling channels
Ei {1, 2, 3} Energy coefficient of the ith sub-band
Bmax 50MHz Maximal width within sub-bands
τi {0.4, 0.7, 0.2} Time offset of the ith sub-band
fnyq 10GHz Nyquist rate
L 195 Aliasing rate, or the spectrum slice number
fp 51.28MHz Spectral slice width, fp = fnyq/L
fs 51.28MHz Sampling rate at each channel, fs = qfp, with odd q
µ {0.2, 0.4, 0.6, 0.8} The mean of normal distribution
σ1 {0.1, 0.1, 0.1, 0.1} The variance of normal distribution
σ2 {0.04, 0.04, 0.04, 0.04} The variance of normal distribution
d 101 The number of downsample points

w(t) w(t) Gaussian White Noise

PCA denoising makes the TFF aDCNN network have a
great performance improvement. As shown in Fig. 4, we
compared the networks’ support set reconstruction probabil-
ity performance with and without PCA processing data in
m = 20, N = 6, σ1. When the SNR is very low, PCA cannot
effectively remove noise. However, as the SNR increases,
TFF aDCNN network performs better with the data after
PCA denoising. Compared with using data that have not been
processed by PCA, denoising can improve the performance
of the network’s support set reconstruction, especially when
SNR = −2dB, the support set reconstruction rate is increased
by 24.66%.
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Fig. 4: Comparison of recovery probabilities of support set
between the data with and without PCA denoising (m = 20).

Then, the estimated signals without PCA denoising are fed
into the TFF aDCNN network and the DLWSS [29] network
for support set reconstruction performance comparison. The
data without PCA denoising contains more Gaussian white
noise, which is more able to show the performance of the
model itself for low SNR conditions. Since DLWSS [29]
is also designed for specific MWC parameters, we adapt

the convolution filter size in the DLWSS [29] network to
our dataset and reproduce the network in line with the idea
in the original paper [29]. At N = 6, m = 20, σ1 and
SNR = {−10,−8,−6,−4,−2, 0}dB, the experimental re-
sults are shown in the Fig. 5. The experiment proves, without
PCA denoising, our proposed TFF aDCNN network support
set reconstruction probability is on average 9.73% higher than
the DLWSS [29] at SNR = {−10,−8,−6,−4,−2, 0}dB,
just in terms of the performance of the network itself in a low
SNR environment. The data after PCA denoising improves
the SNR, while the data without PCA processing can better
reflect the performance of the network itself, which strongly
demonstrates that the TFF aDCNN network successfully fuses
the time of the inputs. It can also show that the TFF aDCNN
is able to learn the data distribution characteristics at each H
input and use the learned data distribution to assist the network
for spectrum sensing under a low SNR.
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Fig. 5: Comparison of recovery probabilities of support set
between DLWSS [29] and TFF aDCNN by using data without
PCA processing (m = 20 and N = 6).
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C. Performance under Different Numbers of Parallel Channels

The more channels the MWC has, the better the model
performs. We investigate the performance of the TFF aDCNN
network when the number of channels is taken in steps of 2
between the interval [15, 35] for N = 6, σ1, SNR = −6dB
and SNR = −8dB, using the data after PCA denoising and
the data without PCA.
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Fig. 6: Support set reconstruction probability of TFF aDCNN
with different numbers of channels.

After comparison, it is found that the TFF aDCNN network
is able to obtain a high support set reconstruction probability
under the conditions of low channel number and low SNR.
While, the conventional method SwSOMP reconstruction ac-
curacy is less than 20%. From Fig. 6, the TFF aDCNN
reconstruction probability reaches more than 90% under the
SNR = −6dB, N = 35, which is a high probability re-
construction performance. This reduces the hardware require-
ments(MWC parallel channels) for WSS, making the network
more suitable for deployment, less hardware consumption, and
greener.

Importantly, as shown in Fig. 6, the TFF aDCNN network
and the DLWSS network [29] are also compared with respect
to the reconstruction accuracy of the support set. When the
number of parallel channels is close to the theoretical lower
limit (i.e., m = 15 and the theoretical limit is 2N + 1 =
13 [14], [41]), the performance improvement of TFF aDCNN
compared to DLWSS is not very obvious. However, as the
number of channels m is raised (i.e., m > 15), the perfor-
mance of TFF aDCNN has a very large improvement. When
m > 27 and SNR = −6dB, the performance improvement
of TFF aDCNN tends to level off compared to DLWSS, and
its average performance improvement can reach 22.1%.

Also, using the data without PCA denoising, the per-
formance is decreased for both TFF aDCNN and DLWSS.
However, no matter what data we use(with or without PCA),
our proposed network outperform DLWSS under each channel.

Therefore, the TFF aDCNN model has better reconfigu-
ration performance than the same type of models and con-

ventional optimization models at low SNR and low hardware
complexity.
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Fig. 7: The performance of the network under different SNRs
and different signal frequency bands.

D. Performance under Different Signal Frequency Bands

The influence of different N on the support set reconstruc-
tion ability of TFF aDCNN network support set is investi-
gated. Considering the symmetrical frequency bands, the value
of the number of frequency bands must be an even number, so
we create a new dataset with N=2, 4, and 6, the dataset size
is the same as that in Subsection V-B. We use PCA to denoise
the signal. The value of SNR is {−10,−8,−6,−4,−2, 0}dB,
the number of parallel MWC channels is m = 20, and other
parameters are the same as in the simulation settings. As
shown in Fig. 7, as the number of signal frequency bands
increases, the performance of the network under low SNR is
severely degraded.

When N = 2 and the number of channels m = 20, the
support set reconstruction rate is still close to 90% when
SNR = −10dB. When N = 4 and the number of channels
m = 20, the performance drops more severely than when
N = 2, but the support set reconstruction rate can still reach
90% when SNR = 0dB. When N = 6 and the number of
channels m = 20, the performance is further degraded, and it
is impossible to obtain a high reconstruction probability lower
than SNR = 0dB. The number of signal frequency bands
greatly affects the performance of TFF aDCNN.

E. TFF aDCNN Structure Discussion

In order to discuss the rationality of the network structure,
we compare the structure of two different adjustment networks
and compare the performance of the two structures in terms
of reconstruction ability, we use the data after PCA denoising
with the number of parallel channels m = 25, σ1 and N = 6.

The experimental results are shown in Table II, from which
we can find that when using two layers CNN in our proposed
TFF aDCNN structure as the adjustment network, it has
advantages compared with the adjustment network using only
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TABLE II: Performance of the two adjustment network structures (σ1, m = 25 and N = 6).

Structure -10 -8 -6 -4 -2 0

2-layer-CNN 36.4% 62.73% 79.26% 83.20% 90.13% 88.73%
1-layer-CNN 33.6% 57.00% 77.20% 82.06% 84.60% 85.06%

TABLE III: Performance of three kinds of models (σ1, m = 20 and N = 6).

Models -10 -8 -6 -4 -2 0

Pre-trained base model 23.7% 51.9% 59.8% 62.2% 72.2 77.8%
Training from scratch (norm+norm) 22.3% 47.6% 60.7% 62.2% 69.1% 78.9%

Fine-tuned model (norm+norm) 20.4% 47.0% 56.5% 60.4% 71.8% 77.6%

one layer CNN. Considering the number of parameters and
the support set reconstruction probability of the frequency
band, our proposed TFF aDCNN network has an appropriate
number of parameters and an advantageous performance.

F. TFF aDCNN Classification Capability

For the classification ability of TFF aDCNN, we use Re-
ceiver Operating Characteristic (ROC) curve and confusion
matrix to evaluate it. The confusion matrix is a matrix that
reflects the classification ability of the model, and since we
use a binary classification approach to determine the spectrum
state, we get a matrix of size (2,2), as shown in Fig. 12. The
vertical 0 and 1 denote the true label, and the horizontal 0 and
1 denote the predicted label by the model, then the significance
of the four regions is defined as: True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN).

Since the frequency spectrum is sparse, the positive and
negative samples are out of proportion. Recall and precision
are needed to describe the model’s ability to judge positive
examples.

Recall = TP/(TP + FN), (24)
Precision = TP/(TP + FP ), (25)

where Recall in Eq. (24) reflects the sensitivity of the model
to positive cases, while Precision in Eq. (25) reflects the
accuracy of the model in judging positive cases. However, the
precision rate is not as important as the recall rate in spectrum
sensing. When the false alarm rate of the network is high, the
reconstructed support set is likely to contain the true support
set, which also does not affect the use of the network by the
PUs. Conversely, when the recall rate is low, the reconstructed
support set lacks the truly occupied frequency bands, which
will greatly affect the normal communication of the PUs.

The dataset in Subsection V-B is used to perform the recall
and precision calculations with N = 6 and σ1. Looking at the
recall images in Fig. 8, we can find that the recall rates of the
two models are similar when the SNR < −4dB, while our
proposed TFF aDCNN network can show better performance
at lower SNRs. It indicates that the TFF aDCNN network can
be more sensitive to band occupancy at low SNRs and can
capture the band being occupied with a higher probability at
low SNRs.

The TFF aDCNN can judge PUs’ state more accurately for
the number of channels m = 25 according to the precision rate
figure. With m = 20, the precision rate performs worse com-
pared to the TFF aDCNN without the adjustment network,
however, TFF aDCNN is able to obtain a higher support set
reconstruction probability at a worse precision rate, indicating
that after reducing the channel number, TFF aDCNN is still
able to use the learned relationship between the band occu-
pancy characteristic and the input H to assist the main network
in determining the spectrum state correctly. The experiments
demonstrate that the existence of the adjustment network is
necessary.

Since the author of DCSS-GAN did not release their code,
we reproduce the model and conduct the experiment with
our model. A new dataset is generated because of the model
difference. The dataset consists of 0dB and 20dB data with
σ1, m = 20 and N = 6, processed by PCA. The results in
Table IV shows that our model performs better in recovering
probability, precision and recall.

The ROC can reflect the classification ability of the model.
We treat the spectrum sensing problem as a binary classifi-
cation problem for each frequency band, so using the ROC
curve shown in Fig. 9 can reflect the classification ability of
the model. We use the data under SNR = −10dB, m = 20
and N = 6 for the classification test and the first four-time
periods obey a normal distribution with standard deviation
σ1 = [0.1, 0.1, 0.1, 0.1]. The results show that our network
has improved band state classification ability compared to the
TFF aDCNN without the adjustment network. We also use
reproduced DCSS-GAN model to present in ROC curve in
Figs. 10 and 11. It is found that 20dB is so high that our
model almost can classify each band state.

Through the experiment of the confusion matrix in Fig. 12,
we can clearly find that the TFF aDCNN network can predict
more positive classes correctly under low SNR, and the recall
rate and precision rate are higher than the TFF aDCNN with-
out the adjustment network. The TFF aDCNN model correctly
predicted 738 more positive cases than the TFF aDCNN
model without the adjustment network.

G. Model Transferability

To validate the transferability of our proposed pre-trained
base model, we produced a new dataset for a new electro-
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Fig. 8: The recall and precision performance of TFF aDCNN model for the cases of m = 20 and m = 25.

TABLE IV: Spectrum recovery performance of TFF aDCNN
and DCSS-GAN using new made dataset.

channel Metrics SNR TFF aDCNN DCSS-GAN

m=15

Recovery
probability

0dB 44.6% 1.9%
10dB 76.2% 9.4%
20dB 81.4% 10.9%

Precision
0dB 96.96% 77.69%

10dB 99.08% 87.17%
20dB 99.32% 88.14%

Recall
0dB 89.47% 50.72%

10dB 96.31% 77.64%
20dB 97.10% 79.72%

m=20

Recovery
probability

0dB 81.2% 6.1%
10dB 89.7% 22.2%
20dB 93.4% 25.4%

Precision
0dB 96.97% 79.62%

10dB 99.67% 91.85%
20dB 99.11% 90.36%

Recall
0dB 99.61% 83.70%

10dB 98.41% 89.21%
20dB 99.77% 90.16%

m=25

Recovery
probability

0dB 85.1% 11.4%
10dB 92.7% 23.0%
20dB 94.1% 30.6%

Precision
0dB 99.74% 89.29%

10dB 99.72% 90.8%
20dB 99.84% 94.56%

Recall
0dB 97.54% 78.22%

10dB 99.09% 88.03%
20dB 99.16% 89.15%

magnetic environment. The parameters were set as SNR =
[−10,−8,−6,−4,−2, 0]dB, m = 20 and N = 6.

The pre-trained base model assumes that the sub-bands’
activity in each time period exhibits normal distributed. By
changing the distribution of the spectrum, we also simulated an
unfamiliar electromagnetic environment, that is, we changed

 
 

Fig. 9: ROC curve reflecting the classification ability of the
model (SNR = −10dB, σ1, m = 20 and N = 6).

from a single normal distribution for each time period to
two normal distributions for each time. After loading the
pre-trained base model, the trained main network is frozen
and only the model parameters of the adjustable network
are trained. Therefore, we can obtain a wideband spectrum
sensing fine-tuned model that can be adapted to the new
electromagnetic distribution environment by transfer learning.

Table III shows that the pre-trained base model performs
well in a single-distributed electromagnetic environment. For
sensing tasks in a complex electromagnetic environment, we
use the pre-trained base model for transfer learning, during
which only the adjustable sub-network is retrained. From Table
III, we can know that the fine-tuned model also has good
performance. Compared with the fully trained model from
scratch, we can conclude that the fine-tuned model can adapt
to different electromagnetic environments. Meanwhile, the pre-
trained base model has the ability of transfer learning.
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Fig. 10: ROC curve reflecting the classification ability of the
model (SNR = 0dB, σ1, m = 20 and N = 6).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1-Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

ROC curve for wideband spectrum sensing

TFF_aDCNN, SNR=20dB
DCSS-GAN, SNR=20dB

Fig. 11: ROC curve reflecting the classification ability of the
model (SNR = 20dB, σ1, m = 20 and N = 6).

H. Complexity and Time Overhead

Considering that the spectrum sensing task requires real-
time performance, we conduct a complexity analysis of the
model. The model is mainly composed of CNN and a fully
connected layer, where the complexity of CNN is:

O (Mh ·Mw ·Kh ·Kw · Cin · Cout) , (26)

where Mh and Mw represent the height and width of the
output feature map, respectively, Kh and Kw represent the
height and width of the kernel, respectively, and Cin and
Cout are the number of input channels and output channels,
respectively.

The complexity of a fully connected layer is:

O (Din ·Dout) (27)

where Din is the input dimension and Dout is the output
dimension.

TABLE V: Time cost analysis with m = 25 and 100 iterations.

N MWC Data
Preprocess TFF aDCNN

2 0.3740s 0.0226s 0.0702s
4 0.3698s 0.0212s 0.0701s
6 0.3689s 0.0328s 0.0701s

TABLE VI: Time cost analysis for 50 epochs training.

Fully trained model from
scratch Fine-tuned model

571.2s 471.9s

In our model, Mh = L, Kh = 1. The complexity of the
adjustable network is expressed as:

O


z︸︷︷︸

Din

L (d−Kw + 1)︸ ︷︷ ︸
Dout

+ L︸︷︷︸
Mh

(d−Kw + 1)︸ ︷︷ ︸
Mw

Kw · 2︸︷︷︸
Cin

Cout

+ L︸︷︷︸
Mh

(d−Kw + 1)︸ ︷︷ ︸
Mw

Kw C2
out︸︷︷︸

Cin,Cout


(28)

where z is the number of time periods, and d is the number
of sample points by MWC.

The complexity of the main network is expressed as:

O


2L (d−Kw + 1)KwCout + L (d− 2Kw + 2)KwC

2
out+

L (d− 3Kw − 7) (Kw + 10)C2
out+

L (d− 4Kw − 16) (Kw + 10)C2
out+

2L2 (d− 4Kw − 16)Cout


(29)

The overhead of the whole system framework is simply
estimated. The whole system can be divided into an MWC
sampling stage, a data preprocessing stage and a TFF aDCNN
network stage. We use MWC to sample a signal 100 times
and calculate the average time. Then, record the time of data
preprocessing. Finally, the trained model is used for predicting
and the time is recorded. The tensor of the prediction results
is obtained.

Through experiment results in Table V, we find that the
time cost of MWC is the highest, followed by TFF aDCNN
network, and finally, the data preprocessing part. In order
to denoise the signal during data preprocessing, we use two
MWC samples, which consume some time, but the time is
traded for a higher probability of support set reconstruction.
It is worth noting that the IEEE802.22 standard has proposed
two sensing methods, fast sensing and fine sensing for the
PUs’ service. The spectrum uses a band space that varies on a
larger time scale, and the real-time requirements of the sensing
cycle are not as stringent.

It can be seen from Table VI that the transfer learning
way based on the pre-trained base model can obtain a faster
training speed, which also verifies the correctness of the
theoretical analysis of the TFF aDCNN model. Therefore,
in practical application deployment, the grounded wideband
spectrum sensing model can be obtained at a fast speed.
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(a) TFF aDCNN without the adjustment network.

 
 

(b) TFF aDCNN.

Fig. 12: Confusion matrix of the TFF aDCNN (SNR = −10dB, m = 20 and σ1).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel intelligent WSS frame-
work based on TFF aDCNN model. TFF aDCNN can learn
the data distribution features in different time periods during
training and use these features as auxiliary information to
assist in determining the current spectrum state. By training
TFF aDCNN in this framework we can obtain a pre-trained
base model under a simple distribution pattern. Then, in the
actual specific application scenario, transfer learning was per-
formed on the basis of the base model to obtain an intelligent
wideband spectrum sensing model, that is, a fine-tuned model.
The fine-tuned model obtained after transfer learning has
adapted to the actual electromagnetic environment. Experi-
mental results showed the proposed sensing framework can
achieve better sensing performance than other models under
very low SNR and a few sampling channels.

In the future, we can use cooperative spectrum sensing
based on TFF aDCNN to obtain better performance. If we
consider the space and time relationship and combine the fre-
quency relationship, we can further improve the performance
of the single-node WSS network. At present, Transformer
performs very well in the field of natural language processing.
Many works use the multi-head attention mechanism, position
vector embedding mechanism and multilayer perceptron of
the Transformer model to replace the LSTM structure and
the CNN structure. The transformer model has a powerful
ability to extract the potential relationship among all inputs,
which may improve the support set reconstruction probability
of WSS based on the time-frequency-related model proposed
in this paper.
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