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Abstract—A wide variety of Mobile Devices (MDs) are adopted in Internet of Things (IoT) environments, resulting in a dramatic
increase in the volume of task data and greenhouse gas emissions. However, due to the limited battery power and computing
resources of MD, it is critical to process more data with less energy. This paper studies the Wireless Power Transfer-based Mobile
Edge Computing (WPT-MEC) network system assisted by Intelligent Reflective Surface (IRS) to enhance communication performance
while improving the battery life of MD. In order to maximize the Computation Energy Efficiency (CEE) of the system and reduce the
carbon footprint of the MEC server, we jointly optimize the CPU frequencies of MDs and MEC server, the transmit power of Power
Beacon (PB), the processing time of MEC server, the offloading time and the energy harvesting time of MDs, the local processing time
and the offloading power of MD and the phase shift coefficient matrix of Intelligent Reflecting Surface (IRS). Moreover, we transform
this joint optimization problem into a fractional programming problem. We then propose the Dinkelbach Iterative Algorithm with
Gradient Updates (DIA-GU) to solve this problem effectively. With the help of convex optimization theory, we can obtain closed-form
solutions, revealing the correlation between different variables. Compared to other algorithms, the DIA-GU algorithm not only exhibits
superior performance in enhancing the system’s CEE but also demonstrates significant reductions in carbon emissions.

Index Terms—Mobile Edge Computing, Intelligent Reflective Surface, Wireless Power Transfer, Energy Efficiency, Carbon Emission
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1 INTRODUCTION

THe rise of the Internet of Things (IoT) has led to the
deployment of a large number of MDs, including smart-

phones, wearables, and sensors, in various environments.
For instance, smart home devices can be used to perform
daily tasks, while robots deployed in factories can efficiently
handle manufacturing operations. However, due to the lim-
itations of their battery power [1], [2] and computing ca-
pacities [3], these MDs may not be able to provide adequate
services in complex scenarios, such as Deep Neural Network
(DNN) inference [4], [5]. In addition, how to alleviate the
computing pressure on these devices and meet the stringent
delay requirements of mobile users in harsh communication
environments is increasingly challenging [6]. This is particu-
larly crucial for delay-sensitive applications, e.g., intelligent
manufacturing, fault diagnosis, smart supply chain, Cogni-
tive Internet of Vehicles (CIoV) [7], big data analytics, Vir-
tual Reality (VR) and Augmented Reality (AR). Achieving
low-latency, high-bandwidth, and reliable communication
is critical for these applications, and it requires innovative
solutions that leverage edge computing, cloud computing,
and wireless communication technologies.
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Mobile Edge Computing (MEC) and Wireless Power
Transfer (WPT) are emerging as promising techniques that
can address the aforementioned challenges to a certain
extent [8]–[10]. WPT is a non-wire contact-based technology
that enables the charging of devices using clean energy
sources such as solar and wind energy, and uses physical
space energy carriers such as electromagnetic waves and
microwaves to transmit electrical energy from the power
supply side to the load side. WPT has several advantages,
including the ability to charge devices anytime without
plugging or unplugging, no electrical contact, support for
simultaneous charging of multiple devices, and the elimina-
tion of cables, increasing the convenience and flexibility of
supplying power to electrical equipment. Therefore, WPT
technology can help address the issue of limited battery
power of many MDs. Moreover, in the face of the dilemma
of insufficient computing resources for numerous devices,
MEC can effectively provide services with large bandwidth,
low latency and high computing capacity. By deploying
different MEC nodes, tasks that cannot be handled by a
single device or cannot be processed in a timely manner
are offloaded to resource-rich MEC nodes. However, the
widespread deployment of MEC servers using brown en-
ergy can result in significant carbon emissions. Therefore,
it is imperative to prioritize the optimization of computing
resources in MEC servers within MEC scenarios to minimize
the carbon emissions they generate. This field of research
and practice, commonly referred to as Carbon Edge Com-
puting or Carbon-Neutral Computing [11], aims to achieve
the utmost reduction in carbon emissions from MEC servers.
Moreover, there is also a need to optimize the throughput
of entire systems and individual servers under energy and
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reliability constraints [12].
In addition, it is essential to address the challenges posed

by the complex communication environment in reality. In re-
cent years, both large-scale Multiple-Input Multiple-Output
(MIMO) [13] and Millimeter-Wave (MMW) communications
have provided ideas for improving spectral efficiency. The
former involves transmitting and receiving signals through
multiple antennas at the transmitter and receiver to en-
hance communication quality, while the latter has a wide
bandwidth but faces challenges in passing through obstacles
such as buildings, and requires a large number of antennas
due to the limited number of propagation paths. However,
both technologies require a significant investment in terms
of cost and energy consumption [14]. Therefore, there is a
need to enhance communication performance with less cost
and energy consumption.

Intelligent Reflective Surface (IRS) is a cutting-edge tech-
nology that can significantly improve the performance of
wireless communication systems by intelligently adjusting
the reflective elements on their surface. An IRS is essentially
a two-dimensional super surface comprised of a large num-
ber of passive reflective elements, with each element capable
of imposing a certain phase shift on the input signal. The
communication environment can be improved by adjusting
the angles of different reflective elements [15], thereby di-
recting the signal to the intended receiver and mitigating
interference from other sources. Compared to other com-
munication technologies, the most significant advantage of
IRS technology is that it does not require complicated signal
processing operations, but simply relies on the reflection of
signals to enhance its performance, resulting in lower hard-
ware cost and computational complexity. Moreover, due to
its passive nature, IRS technology is highly energy-efficient,
making it a promising candidate for energy-constrained IoT
applications.

In this paper, we propose the integration of WPT and IRS
technologies with MEC to enhance the performance of the
overall system. The objective of this approach is to minimize
the carbon emissions that arise from MEC servers while
simultaneously maximizing the energy efficiency of system
computing in obstructed communication environments. The
main contributions of this work are three-fold:

• Problem Formulation: We propose IRS technology into
the WPT-MEC network to improve system perfor-
mance in complex communication environments. We
formulate the CEE maximization problem by jointly
optimizing the CPU frequency of MD, the CPU
frequency of MEC server, the processing time on
MEC server, the offloading time of MD, the energy
harvesting time of MD, the local processing time of
MD, the offloading power of MD, the transmit power
of PB and the phase shift coefficient matrix of IRS.

• Algorithm Design: In order to solve the objective
joint fractional optimization problem, we propose the
Dinkelbach Iterative Algorithm with Gradient Up-
dates (DIA-GU). The proposed DIA-GU can achieve
superior CEE performance and low system energy
consumption.

• Theoretical Analysis and Experimental Verification: We
can see that the system CEE is inversely proportional

to the CPU frequency of each MD and MEC server.
Therefore, in order to improve the CEE of the system,
we should appropriately reduce the CPU frequency
of both. We can also get that the energy power of PB
is inversely proportional to the CEE of the system, so
appropriately reducing the transmit power of PB can
also improve the CEE of the system. For each time
block, MD needs to process tasks in the whole time
block to increase the CEE of the whole system.

The remainder of this paper is structured as follows. In
Section 2, we provide an overview of related work in this
field, while Section 3 introduces the system model. Section
4 formulates the problem of maximizing the CEE of the
system. Section 5 provides the algorithm design to obtain
the optimal solutions. Simulation results are provided in
Section 6. Section 7 concludes this paper and highlights
future directions.

2 RELATED WORK

Due to the advantages of IRS and WPT, there have been
many studies integrating them into MEC to improve the
performance of their models. Table 1 identifies and com-
pares the main elements of related works with our proposed
work in terms of Optimize computation rate, Reduce energy
consumption, Enhance communication and Allocate computing
resources.

There are many researchers who have incorporated WPT
technology into their work. Zeng et al. [25] introduced WPT
technology and adopted a completely binary strategy to
jointly optimize the mode selection (local or offload), the
time allocation of energy transfer and information transfer,
and the local computing speed or transmission power level
to maximize the total computing rate of all users. Bi et al. [16]
also combined the WPT technology and MEC technology.
It adopts a completely binary strategy to maximize the
(weighted sum) computing rate of all MD in the network by
jointly optimizing single computing mode selection (local
or offload) and system transmission time allocation. Huang
et al. [18] used a completely binary strategy and deep re-
inforcement learning to make task offloading decisions and
radio resource allocation best adapt to time-varying wireless
channel conditions.

As for IRS technology, there are also many studies that
introduce it into the research of MEC. For instance, Souto
et al. [19] proposed a new method based on Particle Swarm
Optimization (PSO) technology to optimize beamforming
at Base Station (BS) and IRS by minimizing transmission
power without Channel State Information (CSI). Yang et
al. [20] maximized the downlink achievable rate of the user
by alternately optimizing the transmit power allocation at
the BS and the passive array reflection coefficient at the IRS
in an iterative manner. Zhang et al. [21] jointly optimized the
reflection coefficient and transmit covariance matrix of the
IRS to maximize the capacity of a point-to-point IRS-assisted
MIMO system with multiple antennas at the transmitter and
receiver. Huang et al. [26] jointly optimized the phase-shift
coefficient and the transmit power in sequential time slots
to maximize the long-term energy consumption for all MDs
while ensuring queue stability. Wu et al. [27] jointly opti-
mized the transmit beamforming by active antenna array at
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TABLE 1: The qualitative comparison of the current literature. The symbol ”✓” means that the factor is taken into account,
and the symbol ”✗” means not taking this factor into account

Model Optimize computation rate Reduce energy consumption Enhance communication Allocate computing resources
Bi et al. [16] ✓ ✗ ✗ ✓

Zhang et al. [17] ✓ ✗ ✗ ✗
Huang et al. [18] ✓ ✗ ✗ ✗
Souto et al. [19] ✗ ✓ ✓ ✗
Yang et al. [20] ✓ ✗ ✓ ✓

Zhang et al. [21] ✓ ✗ ✓ ✗
Yang et al. [22] ✗ ✓ ✓ ✓
Sun et al. [23] ✗ ✓ ✓ ✓

Chen et al. [24] ✓ ✗ ✓ ✓
This work ✓ ✓ ✓ ✓

the AP and reflect beamforming by passive phase shifters at
the IRS to minimize the total transmit power at the AP.

Unfortunately, most of the above studies assume that the
computing resources of the MEC server are very large, so
they all omit the computing time of data tasks on the MEC
server. However, in realistic environments, MEC server does
not have unlimited computing resources, and the processing
time of tasks on it cannot be simply ignored. In this paper,
these two points are brought into the category of model
consideration for optimization. In addition, most previous
literature either considers the computation bits of the system
and regards the energy consumption of the system as an
additional constraint, or considers the energy consumption
of the system and regards the computation bits of the system
as an additional constraint.

Unlike the previous works, this paper focuses on com-
munication performance and energy consumption and pro-
poses an IRS-assisted WPT-MEC network structure, which is
more suitable for mobile scenarios. In order to evaluate the
trade-off between computation bits and energy consump-
tion, we adopt a popular performance metric called Com-
putation Energy Efficiency (CEE) [28]–[33], which is defined
as the ratio of computation bits to energy consumption for
communication and computation. The uniqueness of our
proposed DIA-GU method is that it not only optimizes the
computation rate and reduces energy consumption, but also
improves the communication efficiency when computing
resource allocation is considered.

3 SYSTEM MODEL

In this section, we present an overview of the proposed sys-
tem, and then provide details in the following subsections.

3.1 System Overview

As shown in Fig. 1, we consider a WPT-MEC network based
on an IRS-assisted scenario, which consists of an Access
Point (AP) with one MEC server, one PB, and K MDs, where
each MD is equipped with a rechargeable battery and a
transmittable antenna.

In this paper, we employ Time Division Multiple Ac-
cess (TDMA) for each time block to divide it into several
different phases. Each MD first harvests energy from the
energy signal emitted by the PB, and then uses the harvested
energy for task offloading and local processing. Meanwhile,
we assume that the energy used by each MD for offloading
and local processing in each time block does not exceed

Fig. 1: An overall WPT-MEC network structure assisted by
IRS.

the energy collected in each time block, so as to avoid the
problem of insufficient energy in a certain time block. Many
previous task offloading models are completely binary, but
in this paper, we use a partial binary offloading scheme, so
we assume that task data is bit-independent.

In essence, a task offloading process can be treated as
a sequence of intermittent movements of task-related data
across the network. As shown in Fig. 2, for any time block,
there are four phases, namely, energy harvesting, task offload-
ing, task processing and download. In the energy harvesting
phase, each MD receives the energy signal transmitted from
the PB and collects energy from it. In the task offloading
phase, each MD offloads partial tasks to the MEC server
for processing. Then, in the task processing phase, the task
is executed on the MEC server. Finally, in the download
phase, MEC servers typically possess robust computing
capabilities, and the size of the calculation result data tends
to be smaller than the task data. As a result, this paper
ignores the delay involved in the MEC server transmitting
the calculation results back to the MDs. During these four
parts, each MD can process a part of the task data locally in
each time block to improve the overall performance of the
system and provide better service to the users themselves.
The main notations used in this paper are summarized in
Table 2.

3.2 Energy Harvesting Phase

In this phase, the PB transmits the energy signal to each MD.
The energy power received by the k-th MD is as follows:

P k
h = γPBhk,B , (1)
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Fig. 2: Allocation of each time block.

TABLE 2: Notations and Their Definitions

Notitations Definitions

PB The transmit power of PB
γ The energy conversion efficiency
Pk
h The energy power that can be harvested of the k-th MD

θN Phase shift coefficient of the N -th reflective element
hr,k The k-th MD to IRS link channel
ha,r The IRS to AP link channel
hk,B The k-th MD to PB link channel
θ The phase shift coefficient matrix of IRS
hk The link channel from the k-th MD to the AP
j The imaginary unit
τe The energy harvesting time of MD
τo The offloading time of MD
τc The processing time of MEC server
τk The local processing time of k-th MD
fm The CPU frequency on the MEC server
fk The CPU frequency on k-th MD processor
pk The offloading power of k-th MD
T The entire time block
B The communication bandwidth
K The number of MDs
N The number of IRS reflective elements
η1 The learning rate
Cm

cpu The number of CPU cycles for one bit data (MEC)
Ck

cpu The number of CPU cycles for one bit data (MD)
εk The ECC for the k-th MD
εm The ECC for the MEC server
fk
max The maximum CPU frequency of the k-th MD

fmax The maximum CPU frequency of the MEC server
Qmin The minimum amount of computational data
Cl The carbon intensity at MEC server
Ce The largest carbon footprint of the MEC server

where PB is the transmit power of PB and γ is the energy
conversion efficiency, hk,B is the channel gain between PB
and k-th MD.

Therefore, the energy that can be collected from the k-th
MD in the energy harvesting part is P k

h τe. And the energy
consumed by PB at this phase is PBτe.

3.3 Task Offloading Phase
In this phase, since there are obstacles between MDs and
AP, MDs can not communicate with AP directly or the
communication efficiency between them is very low, so we
can enhance the communication performance between MDs
and AP by deploying IRS with N reflective elements.

The channel states between AP to IRS and MDs to
IRS are modeled as quasi-stationary states, i.e., the chan-
nel states within a single time block remain unchanged,
however, they may vary between different time blocks.
hr,k ∈ CN×1 and ha,r ∈ CN×1 represent the k-th MD
to IRS and IRS to AP link channels, respectively. Since
the channels are both modeled as quasi-stationary states,

they remain invariant and can be estimated within each
time block. The phase shift coefficient matrix of IRS is
θ = diag

{
ejθ1 , ejθ2 , ejθ3 , · · · , ejθN

}
, where the only phase

shift is considered (we assume that the amplitude reflection
coefficient is 1 for all reflective elements [34]). Thus, accord-
ing to [35], the link channel from the k-th MD to the AP is
calculated by:

hk = (ha,r)
Hθhr,k. (2)

Then, we employ Orthogonal Frequency Division Mul-
tiple Access (OFDM), where all MDs communicate on dif-
ferent orthogonal frequency bands of the same size, so the
amount of communicable data between the k-th MD and the
MEC server Qk is:

Qk = τoB log

(
1 +

pk|hk|2

σ2

)
, (3)

where B is the channel bandwidth of the sub-band, σ2

represents the variance of the complex Gaussian channel
noise, and pk represents the data transmission power of the
k-th MD.

3.4 Task Processing Phase

Within the allocated data processing time, the amount of
data that the MEC server can process at this phase is as
follows:

Qm =
τcfm
Cm

cpu

, (4)

where fm represents the Central Processing Unit (CPU)
frequency on the MEC server, Cm

cpu represents the number
of CPU cycles required to compute one bit of data on the
MEC server.

For ease of analysis, let Q represent the number of
effective computed bits on the MEC server. Since we set not
only the offloading time of the MD, but also the computation
time of the MEC server, Q depends not only on the total
achievable data transfer amount of all the MDs, but also on
the maximum amount of data that can be processed on the
MEC server, that is:

Q = min

{
Qm,

K∑
k

Qk

}
. (5)

At any time in each time block, MD can process some
task data locally. The k-th MD can process the amount of
data as follows:

Qloc =
τkfk
Ck

cpu

, (6)
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where fk represents the CPU frequency on the k-th MD local
processor, and Ck

cpu represents the number of CPU cycles
required to compute one bit of data at the k-th MD local
processor.

The energy consumption of MEC server at this phase is
obtained by the following formula [36]:

Em = εmf3
mτc, (7)

where εm is the Energy Consumption Coefficient (ECC) of
the processor chip on the MEC server, which depends on
the chip structure [37].

And we also consider the carbon footprint of the MEC
server, which is related to the energy consumption of the
MEC server, which is expressed as EmCl [38].

Meanwhile, the energy consumption generated by each
MD during local processing is:

Ek = εkf
3
k τk, (8)

where εk is the ECC of the processor chip on the k-th MD.

4 PROBLEM FORMULATION

In this section, we first formulate the joint optimization
problem, and then transform it into a convex optimization
problem for simplification.

4.1 Problem Definition

The CEE of the whole system is defined as the ratio between
the total data throughput and the total system energy con-
sumption.

• Total system throughput The total system through-
put consists of two main components: i) the data
processed locally by MD is

∑K
k=1

τkfk
Ck

cpu
; ii) the tasks

of MD is offloaded to the MEC server, and the MEC
server can process part of the amount of data is
min

{
τcfm
Cm

cpu
,
∑K

k=1 τoBlog2

(
1 + pk|hk|2

σ2

)}
;

• Total system energy consumption The total energy
consumption of the system consists mainly of three
parts: i) the energy consumption of PB is PBτe; ii) the
energy consumption of the MEC server is εmf3

mτc;
iii) MD’s local energy consumption is

∑K
k=1 εkf

3
kτk+∑K

k=1 pkτo −
∑K

k=1 γPBhk,Bτe.

Then, the system CEE can be formulated as:

q (fk, fm, τe, τo, τc, τk, pk, PB , θ)

=

min

{
τcfm
Cm

cpu
,

K∑
k=1

τoBlog2

(
1 + pk|hk|2

σ2

)}
+

K∑
k=1

τkfk
Ck

cpu

PBτe + εmf3
mτc +

K∑
k=1

εkf3
kτk +

K∑
k=1

pkτo −
K∑

k=1

γPBhk,Bτe

.

(9)

In this paper, we jointly optimize the CPU frequency of
the MD, the CPU frequency of the MEC server, the energy
harvesting time of the MD, the offloading time of MD,
the MEC server task processing time, the MD’s local task
processing time, the offloading power of MD, the transmit
power of the PB, along with the scattering coefficient matrix

of the IRS to maximize the CEE of the entire system. There-
fore, the optimization objective function and the problem to
be optimized in this article can be expressed as P0:

P0 : max
{fk}K

k=1,fm,τe,τo,τc,

{τk}K
k=1,{pk}K

k=1,PB ,θ

q (10)

s.t. min

{
τcfm
Cm

cpu

,
K∑

k=1

τoBlog2

(
1 +

pk|hk|2

σ2

)}

+
K∑

k=1

τkfk
Ck

cpu

≥ Qmin, (10a)

pkτo + εkf
3
kτk ≤ γPBhk,Bτe, ∀k, (10b)

τe + τo + τc ≤ T, (10c)
0 ≤ τk ≤ T, ∀k, (10d)
0 ≤ fm ≤ fmax, (10e)

0 ≤ fk ≤ fk
max, ∀k, (10f)

0 ≤ pk ≤ pkmax,∀k, (10g)
0 ≤ PB ≤ Pmax, (10h)
τe, τo, τc ≥ 0, (10i)

εmf3
mτcCl ≤ Ce. (10j)

where Qmin represents the minimum amount of calculation
data required by all MD in the current time block, fmax and
fk
max represent the maximum CPU frequency of the MEC

server and the local maximum CPU frequency of the k-
th MD, Pmax and pkmax represent the maximum transmit
power of PB and the local maximum offloading power of
the k-th MD. Constraint (10a) is to ensure that the required
amount of calculation data is completed in a time block.
Constraint (10b) is to ensure that the energy consumed by
the k-th MD in a time block does not exceed the harvested
energy. Constraint (10c) is to ensure that the whole process
of offloading to MEC server does not exceed the length of
one-time block. Constraint (10d) is to ensure that the time
length of local processing of the k-th MD does not exceed
the length of one-time block. Constraints (10e) and (10f) are
used to limit the CPU frequency of MEC server and the k-th
MD, respectively, and constraints (10g) and (10h) are used
to limit the offloading power of each MD and the transmit
power of PB. Constraint (10i) means that each phase is
non-zero in length. Constraint (10j) is to limit the carbon
footprint of MEC server.

It can be seen that P0 is a non-convex optimization
problem, which is difficult to optimize because of the cou-
pling relationship between different parameters. Next, we
will further simplify the problem.

4.2 Problem Transformation

To eliminate the coupling between MD offloading power pk
and MD data offloading length τo, we divide the molecular
denominator of the objective function in problem P0 by τo
at the same time, so the original problem P0 can be trans-
formed into problem P1, where we let τe/τo = te, τc/τo =

tc, τk/τo = tk, 1/τo = to.
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P1 : max
{fk}Kk=1,fm,te,to,tc,

{tk}Kk=1,{pk}
K
k=1,PB ,θ

q

=

min

{
tcfm
Cm

cpu
,

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)}
+

K∑
k=1

tkfk
Ck

cpu

PBte + εmf3
mtc +

K∑
k=1

εkf3
k tk +

K∑
k=1

pk −
K∑

k=1

γPBhk,Bte

(11)

s.t. min

{
tcfm
Cm

cpu

,

K∑
k=1

Blog2

(
1 +

pk|hk|2

σ2

)}

+

K∑
k=1

tkfk
Ck

cpu

≥ Qminto, (11a)

pk + εkf
3
k tk ≤ γPBhk,Bte, ∀k, (11b)

te + 1 + tc ≤ Tto, (11c)
0 ≤ tk ≤ Tto, ∀k, (11d)
Constraints (10e)− (10h),

te, to, tc ≥ 0, (11e)

εmf3
mtcCl ≤ Ceto. (11f)

In order to eliminate the influence of the min
function in the objective function, we present a re-
laxation variable λ (λ > 0) in problem P1, let λ =

min

{
tcfm
Cm

cpu
,

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)}
, and introduce two

new constraints to get problem P2:

P2 : max
{fk}Kk=1,fm,te,to,tc,

{tk}Kk=1,{pk}
K
k=1,PB ,θ,λ

q

=

λ+
K∑

k=1

tkfk
Ck

cpu

PBte + εmf3
mtc +

K∑
k=1

εkf3
k tk +

K∑
k=1

pk −
K∑

k=1

γPBhk,Bte

(12)

s.t. λ+

K∑
k=1

tkfk
Ck

cpu

≥ Qminto, (12a)

Constraints (11b)− (11f),

tcfm
Cm

cpu

≥ λ, (12b)

K∑
k=1

Blog2

(
1 +

pk|hk|2

σ2

)
≥ λ. (12c)

It is evident that P2 remains a challenging nonconvex
optimization problem and even worse, a difficult fractional
optimization problem. To address this, we can convert P2

into a subtraction problem, which is prone to optimization
using Dinkelbach’s method [39].

Proposition 1. If {f∗
k} , {f∗

m} , τ∗
e , τ

∗
o , τ

∗
c , {τ∗

k } , {p∗k} , P ∗
B , λ

∗ rep-
resents the optimal solution to problem P2, and q∗ is the optimal

CEE, then the following equations must hold:

max
{fk}Kk=1,fm,te,to,tc,

{tk}Kk=1,{pk}
K
k=1,PB ,θ,λ

λ+

K∑
k=1

tkfk
Ck

cpu

− q∗
(
PBte + εmf3

mtc +

K∑
k=1

εkf
3
k tk +

K∑
k=1

pk −
K∑

k=1

γPBhk,Bte

)

= λ∗ +

K∑
k=1

t∗kf
∗
k

Ck
cpu

− q∗
(
P ∗
Bt

∗
e + εm(f∗

m)
3
t∗c +

K∑
k=1

εk(f
∗
k )

3
t∗k

+

K∑
k=1

p∗k −
K∑

k=1

γP ∗
Bhk,Bt

∗
e

)
(13)

Proof: To provide a detailed proof of the Dinkelbach
transformation, we refer to [40]. In Proposition 1, it is worth
noting that the optimal parameter is identical in both P1

and P2 under the condition that the target function on the
molecule exhibits concavity, while the target function in the
denominator demonstrates convexity. In order to establish
the concavity of the objective function in the molecular de-
nominator, we will provide a rigorous proof by performing
variable substitutions involving various parameters.

According to Proposition 1, the optimal solution can
be obtained by using Dinkelbach iterative algorithm. The
general Dinkelbach iterative algorithm determines the value
of each parameter by initializing and updating the value of
q, and finally ends the iteration by giving a limit on the error
range. The detailed algorithmic process is summarized in
Algorithm 1.

Algorithm 1 Dinkelbach iterative algorithm (DIA) for P2.

1: Initialize q and set the maximum error tolerance ε;
2: while true do
3: Calculate the optimal value of fk, fm, τc, τo, τe, τk, pk,

PB with q value;
4: Calculate a new CEE q∗;
5: if |q − q∗| < ε then
6: Take the obtained parameter value as the optimal

value;
7: end if
8: if q∗ > q then
9: Let q = q∗

10: end if
11: end while

In order to deal with the coupling relationship between
different parameters, we make xm = tcfm, xk = tkfk and
ym = tcf

3
m, yk = tkf

3
k . In this case, P2 can be further

transformed into P3:

P3 : max
{xk}Kk=1,xm,te,to,

{yk}Kk=1,ym,{pk}Kk=1,PB ,θ,λ

λ+

K∑
k=1

xk

Ck
cpu

− q
(
PBte

+ εmym +

K∑
k=1

εkyk +

K∑
k=1

pk −
K∑

k=1

γPBhk,Bte
)

(14)
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s.t. λ+

K∑
k=1

xk

Ck
cpu

≥ Qminto, (14a)

pk + εkyk ≤ γPBhk,Bτe,∀k, (14b)

te + 1 +

√
x3
m

ym
≤ Tto, (14c)

0 ≤

√
x3
k

yk
≤ Tto; ∀k, (14d)

0 ≤ ym ≤ (fmax)
2xm, (14e)

0 ≤ yk ≤
(
fk
max

)2
xk, ∀k, (14f)

0 ≤ yk ≤ xk(f
k
max)

2, ∀k, (14g)
Constraints (10h)− (10i), (11g),
xm

Cm
cpu

≥ λ, (14h)

K∑
k=1

Blog2

(
1 +

pk|hk|2

σ2

)
≥ λ, (14i)

εmymCl ≤ Ceto. (14j)

Theorem 1. The P3 is a convex optimization problem.

Proof: We can easily see that the objective function
and the constraints (14a)-(14b) and (14e)-(14h) are convex
functions and convex constraints. The convex properties of
(14c), (14d), (14i) and (14j) are shown below.

For constraints (14c) and (14d)), let the function
H(x, y) =

√
x3/y, we need to prove that the function

H(x, y) is convex with respect to x, y, so we find the
second-order partial derivative of the function with re-
spect to x, y, and we can get the Hessian matrix as: 3

4
1√
xy − 3

4

√
x
y3

− 3
4

√
x
y3

3
4

√
x3

y5

 .
We can easily get that the Hessian matrix of function

H(x, y) is a semi-positive definite matrix, so the function
H (x, y) is a convex function, so the constraints (14c) and
(14d) are both convex constraints.

For (14i), what we need to prove is that
K∑

k=1
Blog2

(
1 + pk|hk|2

σ2

)
is concave with respect to pk, θ,

we abstract it into a function F
(
{pk}Kk=1 , {|hk|}Kk=1

)
=

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)
, and first prove that F is concave

with respect to {pk}Kk=1 , {|hk|}Kk=1, and then proving that
|hk| is concave with respect to θ.

According to the additivity of convex functions, to
prove the convexity of function F

(
{pk}Kk=1 , {|hk|}Kk=1

)
=

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)
, i.e., to prove the convexity of

function F (pk, |hk|) = Blog2

(
1 + pk|hk|2

σ2

)
, we abstract

it into mathematical function f (x, y) = ln
(
1 + xy2

)
,

where x = pk/σ
2 and y = |hk|. We find the

second-order partial derivation of function f (x, y) =
ln
(
1 + xy2

)
about x and y, and get the Hessian matrix as:[

−y4/
(
1 + xy2

)2
2y/

(
1 + xy2

)2
2y/

(
1 + xy2

)2
(2x− 2x2y2)/

(
1 + xy2

)2
]
.

What we can see is that when xy2 ≤ 2, the hessian
matrix is a semi-negative definite matrix, i.e., pk|hk|2

σ2 ≤ 2,
and since |hk| ≤ 1, we ignore the noise power. Thus, as long
as pk ≤ 2 satisfies, then the hessian matrix is a semi-negative
definite matrix. And in the experimental part, by adjusting
the maximum power, we can see that the condition is
certain, so the function f (x, y) = ln

(
1 + xy2

)
is a concave

function that satisfies.
Below we prove that the convexity of |hk| with re-

spect to θ. According to the previous formula, we know
|hk| =

∣∣hH
a,rθhr,k

∣∣ =
∣∣hH

a,rdiag
(
ejθ1 , ejθ2 , · · · , ejθN

)
hr,k

∣∣,
and for ease of proof let hH

a,r = (a1, a2, · · · , aN ), hr,k =

(b1, b2, · · · , bN )
H , then we can get:

|hk| =
∣∣∣(a1, · · · , aN ) diag

(
ejθ1 , ejθ2 , · · · , ejθN

)
(b1, · · · , bN )H

∣∣∣
=

∣∣∣∣ (a1, · · · , aN ) diag (cos θ1, · · · , cos θN ) (b1, · · · , bN )H

+j (a1, · · · , aN ) diag (sin θ1, · · · , sin θN ) (b1, · · · , bN )H

∣∣∣∣
=

∣∣∣∣ (a1b1 cos θ1 + a2b2 cos θ2 + · · ·+ aNbN cos θN )2

+(a1b1 sin θ1 + a2b2 sin θ2 + · · ·+ aNbN sin θN )2

∣∣∣∣ 12 .
(16)

To better solve for the concavity of |hk| about θ, we set
the function h (θ) and prove its concavity as follows:

h (θ) = (a1b1 cos θ1 + a2b2 cos θ2 + · · ·+ aNbN cos θN )2

+ (a1b1 sin θ1 + a2b2 sin θ2 + · · ·+ aNbN sin θN )2

=
∑
i ̸=j

(2aibi cos θiajbj cos θj + 2aibisinθiajbj sin θj) + C

=
∑
i ̸=j

(2aibiajbj cos (θi − θj)) + C, (17)

where C is a constant, let function hij (θ) = cos (θi − θj),
get the second-order derivative of function hij (θ) about θi
and θj , and get its Hessian matrix H as follows:

0
. . .

− cos (θi − θj) · · · cos (θi − θj)
...

...
cos (θi − θj) · · · − cos (θi − θj)

. . .
0


From the definition of a semi-negative definite matrix,

we can easily get that for any non-zero vector x, there is
xTHx ≤ 0. We can obtain that the matrix is a semi-negative
definite matrix. So the function hij (θ) is a concave function,
according to the additivity of the concave function, we can
get that the function h (θ) is a concave function, and because
for the function x

1
2 , we can easily get this function about x

being a concave function, So we can get that |hk| about θ is
concave.

In summary, this theorem is proved.

5 PROPOSED SOLUTIONS

5.1 Problem Solving

Theorem 2. Given non-negative Lagrangian factor α, β, M , H ,
N1, N2, N3 we can obtain the expression of the optimal value of
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some parameters by solving the following Lagrangian function L
as shown in Eq. (15).

By making the partial derivative of each parameter equal
to zero, we can derive the optimal solution for some of the
parameter variables, as follows [41]:

f∗
k =


3βk

2
(

α0+1
Ck

cpu
+Mk

(
fk
max

)2)

+

=


 βk

2
(
qεk + αkεk +Mk

)
 1

3


+

,

(18)

f∗
m =


3β0

2

(
M0f2

max + N1
Cm

cpu

)

+

=

⌈(
β0

2 (qεm +M0 +N3εmCl)

) 1
3

⌉+

,

(19)

where ⌈x⌉+ = max {x, 0}. For the purpose of reducing the
number of parameters, according to the above two formulas,
we can obtain:

β0 =

√√√√ 4
(
M0f2

max + N1
Cm

cpu

)3
27 (qεm +M0 +N3εmCl)

, (20)

βk =

√√√√4
(

α0+1
Ck

cpu
+Mk(fk

max)
2
)3

27 (qεk + αkεk +Mk)
, (21)

Then by partial derivation of the remaining parameters,
we can also get:

t∗e =
H0

q
K∑

k=1

γhk,B +
K∑

k=1

αkγhk,B − q

= h, (22)

P ∗
B =


β0

q
K∑

k=1

γhk,B +
K∑

k=1

αkγhk,B − q


+

, (23)

p∗k =

⌈
N2B

ln 2 (q + αk +Hk)
− σ2

h2
k

⌉+
, (24)

And we can also get: 1 + α0 = N1 +N2.

Theorem 3. In fact, in order to get a larger system CEE, the two
terms represented by

λ = min

{
tcfm
Cm

cpu

,
K∑

k=1

Blog2

(
1 +

pk|hk|2

σ2

)}

should be equal, for all the tasks offloaded to the MEC server, the
MEC server can process them.

Proof: Suppose {f∗
k} , {f∗

m} , t∗e, t∗o, t∗c , {t∗k} , {P ∗
k } , q∗, |h∗

k|
are the optimal solution to the original prob-
lem, because the two terms represented by

λ = min

{
tcfm
Cm

cpu
,

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)}
are not equal,

so we may as well make the former term greater than the

latter term, that is t∗cf
∗
m

Cm
cpu

>
K∑

k=1
Blog2

(
1 +

p∗
k|h

∗
k|

2

σ2

)
.

Since q∗ represents the optimal solution of the system

CEE, we can get t∗cf
∗
m

Cm
cpu

>
K∑

k=1
Blog2

(
1 +

p∗
k|h

∗
k|

2

σ2

)
. In con-

trast, we can set up another set of solutions f ,
k = f∗

k , t
,
e =

t∗e, t
,
o = t∗o, t

,
c = t∗c , t

,
k = t∗k, P

,
k = P ∗

k , |h
,
k| = |h∗

k|, and we

set t,mf ,
m

Cm
cpu

=
K∑
k
Blog2

(
1 +

P ,
k|h,

k|2
σ2

)
, then we can get t,mf ,

m

Cm
cpu

=

K∑
k
Blog2

(
1 +

P ,
k|h,

k|2
σ2

)
=

K∑
k
Blog2

(
1 +

P∗
k |h∗

k|
2

σ2

)
<

t∗mf∗
m

Cm
cpu

,

then we can also get f ,
m < f∗

m.
From Eq. (19), we know that the value of q is inversely

proportional to fm, so the new set of solutions q, is greater
than the optimal solution q∗, resulting in a contradiction.
Therefore, we can draw the conclusion that q is large when

the two terms of λ = min

{
tcfm
Cm

cpu
,

K∑
k=1

Blog2

(
1 + pk|hk|2

σ2

)}
are equal.

By proving Theorem 3, we can derive the optimal solu-
tion for the MEC server processing time τc:

τ∗c =
τ∗oBlog2(1 +

P∗
k h2

k

σ2 )

f∗
m

. (25)

Secondly, when β is greater than zero, according to the
Slater condition, we can obtain the following conclusion:{

τ∗k = T
τ∗e + τ∗o + τ∗c = T

(26)

From the above equation and Theorem 3, we can get:

τ∗c = T − (h+ 1) τ∗o , (27)

τ∗c f
∗
m

Cm
cpu

=
K∑

k=1

τ∗oBlog2

(
1 +

p∗k|h∗
k|

2

σ2

)
, (28)

L = λ+
K∑

k=1

xk

Ck
cpu

− q

(
PBte + εmym +

K∑
k=1

εkyk +
K∑

k=1

pk −
K∑

k=1

γPBhk,Bte

)
+ α0

(
λ+

K∑
k=1

xk

Ck
cpu

−Qminto

)

+
K∑

k=1

αk (γPBhk,Bte − pk − εkyk) + β0

(
Tto − te − 1−

√
x3
m

ym

)
+

K∑
k=1

βk

Tto −

√
x3
k

yk

+M0

(
(fmax)

2
xm − ym

)

+
K∑

k=1

Mk

((
fk
max

)2
xk − yk

)
+

K∑
k=1

Hk

(
pkmax − pk

)
+H0 (Pmax − PB) +N1

(
xm

Cm
cpu

− λ

)

+N2

(
K∑

k=1

Blog2

(
1 +

pk|hk|2

σ2

)
− λ

)
+N3(Ceto − εmymCl)

(15)
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So we can get the following solutions:

τ∗o =

Tf∗
m

Cm
cpu

(h+1)f∗
m

Cm
cpu

+
K∑

k=1
Blog2

(
1 +

p∗
k|h∗

k|2
σ2

) , (29)

τ∗e = T − τ∗o − τ∗c . (30)

Remark: Through Eqs. (18) and (19), we can see that the
system CEE is inversely proportional to the CPU frequency
of each MD and MEC server. Therefore, in order to improve
the CEE of the system, we should appropriately reduce
the CPU frequency of both. As can be seen from Eq. (23),
we can also get that the energy power of PB is inversely
proportional to the CEE of the system, so appropriately
reducing the transmit power of PB can also improve the
CEE of the system. As can be seen from Eq. (24), only when
the state of the channel is better, MD will choose to carry out
data offloading. As can be seen from Eq. (26), for each time
block, MD needs to process tasks in the whole time block
to increase the CEE of the whole system. Without the loss
of generality, we assume that each MD can perform local
execution in the whole time block [16], [18], in the numerical
experiment part, we will also prove the rationality of the
formula through experiments.

5.2 DIA-GU Algorithm

In this paper, we propose a novel DIA-GU algorithm that
builds upon the Dinkelbach general iterative algorithm, in-
corporating the concept of alternating iterations through the
utilization of the Lagrange multiplier method. In addition
to updating the q value with the optimal value of each pa-
rameter variable, we also iteratively update the Lagrangian
factor within each cycle to enhance the system’s overall
performance. By integrating these techniques, we attain the
optimal value of the objective optimization function.

First and foremost, it is important to note that the reflec-
tion coefficient vector of the IRS serves as a parameter solely
linked to the data throughput of the system. Therefore,
our optimization efforts can focus exclusively on enhancing
the data throughput by optimizing the reflection coefficient
vector of the IRS. Moreover, according to Eq. (9), we can
deduce that the data throughput of the system is directly
proportional to the magnitude of the channel coefficient
|hk| when other parameters are held constant. Furthermore,
Eq. (17) indicates that to maximize |hk|, it is optimal to set
the reflection angles of all the IRS elements to be equal.
This configuration enables the attainment of the maximum
achievable data throughput.

It is essential to note that these conclusions are applicable
specifically to the scenario described in this paper, wherein
the channel states between the MD and IRS, as well as
between the IRS and MEC server, are known in each time
slot. In such a case, obtaining the optimal IRS reflection
coefficient vector is relatively straightforward. Similarly, this
conclusion can be extended to cases involving a direct link
between the MD and MEC servers, where the attestation
process follows a similar structure to that of Eq. (17).

The detailed process of the proposed algorithm is as
described in Algorithm 2. In each iteration, we can calculate
the optimal values of fk, fm, τc, τo, τe, τk, pk, PB with

q value, then we fix these parameters and do a gradient
update on Lagrangian factor, and then we can obtain new
q∗ value from these optimal values. We continue the above
steps with q∗ instead of q value until the algorithm con-
verges.

Algorithm 2 Dinkelbach iterative algorithm with Gradient
updates (DIA-GU) for P3

1: Initialize q, θ (θ1 = θ2 = ... = θN ), Lagrangian factors
and learning rate η1, and set the maximum error toler-
ance ε;

2: while true do
3: Fixed the Lagrange factor, and calculate the optimal

value of fk, fm, τc, τo, τe, τk, pk, PB with q value;
4: Based on the new parameter values already obtained

in the above steps, we can calculate a new CEE q∗;
5: if q∗ > q then
6: Let q = q∗;
7: end if
8: Keep q unchanged, only update the Lagrange factor:
9: α = α− η1 ∗ ∂L

∂α ,M = M − η1 ∗ ∂L
∂M ,M0 = M0 − η1 ∗

∂L
∂M0

, β = β − η1 ∗ ∂L
∂β ;

10: N1 = N1 − η1 ∗ ∂L
∂N1

, N2 = N2 − η1 ∗ ∂L
∂N2

, H = H −
η1 ∗ ∂L

∂H , N3 = N3 − η1 ∗ ∂L
∂N1

;
11: if |q − q∗| < ε then
12: Take the obtained parameter value as the optimal

value;
13: end if
14: end while

5.2.1 Complexity Analysis
The algorithm proposed in this paper is comprised of a loop
iteration. Specifically, the variable I1 represents the number
of loops. Therefore, the computational complexity of the
proposed algorithm can be expressed as O (I1).

5.2.2 Convergence Analysis
Let Q (A,B) denote the value of the target function,
where A = {fk, fm, τc, τo, τe, τk, pk, PB}, and B =
{α, β,M,H,N1, N2, N3}. In the i-th iteration, we can ob-
tain:

Q
(
Ai, Bi

) (a)
≤ Q

(
Ai+1, Bi

) (b)
≤ Q

(
Ai+1, Bi+1

)
. (31)

where inequality (a) holds true as the proposed algorithm
obtains the optimal value for each parameter in every it-
eration, ensuring that it does not decrease throughout the
iterative process. Inequality (b) arises from the utilization of
gradient updates to modify each Lagrangian factor, thereby
bringing the objective function’s value closer to its optimal
state. Consequently, the proposed algorithm gradually ap-
proaches the optimal value of the objective function and
achieves convergence during the iterative process.

6 PERFORMANCE EVALUATION

In this section, we demonstrate the superiority of the pro-
posed algorithm by conducting a large number of single-
machine simulation experiments through Python.
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6.1 Parameter Settings

Unless otherwise specified, the basic simulation parameters
are given as shown in Table 3, and for hr,k ∈ CN×1, we set
it to 0.2. For ha,r ∈ CN×1 and hk,B ∈ CK×1 , we set them to
0.2.

TABLE 3: Parameter Settings

Parameter Description Value

T The entire time block 1 second
B The communication bandwidth 1 MHz
ε The maximum error tolerance 0.01
Pmax The PB’s maximum transmit power 5.0 W
pkmax The k-th MD’s maximum offload power 0.02 W
γ The energy conversion efficiency 0.1
K No. of MDs 4
N No. of IRS reflective elements 12
η1 Learning rate 0.001
εk The ECC of the k-th MD 10−26

εm The ECC of MEC server 10−28

fk
max Maximum CPU frequency of k-th MD 5× 108 Hz

fmax Maximum CPU frequency of MEC server 1010 Hz
Qmin The minimum computation bits 5 ×105 bit
Cm

cpu, Ck
cpu No. of CPU cycles for one bit data 1000 cycles/bit

Cl The carbon intensity at MEC server 300 g/kWh
Ce The largest carbon footprint of the MEC server 7× 10−3 g

6.2 Baselines

We compare the other iterative algorithms in system CEE,
mainly by comparing the following four algorithms:

• Dinkelbach Iterative Algorithm with Gradient Updates
(DIA-GU): The iterative algorithm proposed in this
paper leverages the characteristics of both the
Dinkelbach algorithm and the Lagrange multiplier
method.

• 0.5*T local computing: The local processing time of the
algorithm is 0.5 time slots.

• MAX computing: The maximum calculation fre-
quency of the MD is directly obtained in each time
slot.

• to random computing: The duration of offloading time
in each time slot is determined randomly.

• tc random computing: The processing time of the MEC
server in each time slot is randomly determined.

6.3 Experimental Analysis

As shown in Fig. 3, we conduct a comparison between
the system’s data throughput under equal IRS reflectance
coefficients and unequal IRS reflectance coefficients. The
experimental results demonstrate that utilizing equal IRS
reflection coefficients leads to higher system data through-
put. This outcome serves as empirical evidence that corrob-
orates the validity of the aforementioned theoretical proof.
Furthermore, we perform experiments with different angles
while employing equal IRS reflection coefficients. Notably,
the results reveal that, in the presence of equal IRS reflection
coefficients, the data throughput remains consistent across
varying angles. This finding further affirms the accuracy of
the earlier theoretical proof.

As shown in Fig. 4, by comparing the trend of system
CEE under different fk

max, we can see that as the maximum
computational frequency of the local processor increases,
the system CEE increases. By Eq. (18), we can implicitly

Fig. 3: System data throughput under different IRS re-
flectance coefficient

get this conclusion. First, we get from the closed solution
of the optimal calculation frequency of the local processor:
the denominator in the optimal solution of the parameter
variable is related to fk

max, note that the fk
max in the denom-

inator is inversely proportional to the optimal calculation
frequency of the local processor, and in the second equation
of this equation we can get that the q value is also inversely
proportional to the optimal calculation frequency of the
local processor. Therefore, we can simply conclude that for
the increase of fk

max, since the optimal solution for fk is
non-additive, the consequent increase in the CEE of the
system is the same as our simulation results. Therefore, in
the deployment of real scenarios, under the same conditions,
we can appropriately increase the maximum computing
frequency of the local processor to obtain better system
performance.

Fig. 4: System CEE under different fk
max

As shown in Fig. 5, we study the trend of system CEE
under different numbers of MDs. The results demonstrate a
positive correlation, indicating that as the number of MDs
increases, the CEE of the entire system also increases. This
observation aligns with our intuitive understanding and
underscores the scalability of the scenario investigated in
this paper.

By analyzing the trend of the system’s CEE across differ-
ent Pmax, as depicted in Fig. 6, we can draw the conclusion
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Fig. 5: System CEE under different number of MDs

Fig. 6: System CEE under different Pmax

Fig. 7: System energy consumption under different Pmax

that as the maximum transmit power of PB increases, the
system CEE decreases. This observation can be explained
both theoretically and experimentally.

• From a theoretical standpoint, we can attribute this
phenomenon to the non-subtractive nature of the
optimal transmit power of the PB. According to
Eq. (23), an inverse relationship exists between the q
value and the optimal transmission power of the PB.
Therefore, as Pmax increases, the q value decreases.

• From an experimental perspective, we observe that

the optimal transmission power of the PB is non-
subtractive, leading to an increase in PB’s energy
consumption. Consequently, the total energy con-
sumption of the system also rises, as evidenced in
Fig. 7. With the increase in Pmax, a clear upward trend
in total energy consumption is evident.

For data throughput, as shown in Fig. 8, we can see that
with the increase of Pmax, the data throughput is decreas-
ing accordingly. Combining the results of the aforemen-
tioned experiments, where the numerator (data through-
put) decreases and the denominator (energy consumption)
increases, we can infer a decline in system performance,
specifically a decrease in the q value.

Fig. 8: System data throughput under different Pmax

As shown in Fig. 9, we investigated the correlation be-
tween εm/εk (m/k) and the system’s CEE. We can conclude
that as εm/εk increases, the performance of the entire sys-
tem declines. In the case of ECC, this ratio can be perceived
as an indicator of the energy efficiency of the processor
itself. Alternatively, we can examine this phenomenon from
a different perspective. As the ratio increases, if the ECC of
the MEC server remains the same, it implies a reduction in
the ECC of the MEC server. In other words, when the ECC
of the MD decreases, it indicates that the MD consumes less
energy under the same conditions. To illustrate this point
further, let’s consider an extreme scenario where the ratio
equals 1, signifying an equal energy performance between
the two entities. In this case, for a given task and calculation
frequency, the energy consumed by both the MD and the
MEC server is the same. However, opting to offload the task
to the MEC server incurs additional energy consumption
due to the data transmission process. Consequently, the
system gradually leans toward local task processing to con-
serve energy. However, we are aware that local processing
capacity is limited, leading to a decline in the overall system
performance. Through this experiment, we can infer that
εm/εk effectively represents the energy performance of both
the MEC server and the MD device to a certain extent. When
the performance gap between the two entities becomes too
narrow, it results in a deterioration of the overall system
performance.

We also study the trend of system CEE under different
EH factor γ, as shown in Fig. 10, we can clearly see that with
the growth of EH factor, system CEE also grows, we can get

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2023.3298822

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 27,2023 at 01:37:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. , NO. , 2023 12

Fig. 9: System CEE under different εm/εk (m/k)

Fig. 10: System CEE under different EH factor γ

this conclusion through the expression of system CEE. The
EH factor affects the energy that can be obtained by MD in
each time slot, and under other conditions being equal, as
the energy obtained in each time slot increases, the energy
consumed by the entire system is decreasing, and finally, the
CEE of the system is increasing.

Fig. 11: System CEE under different proportions of local
processing time

As shown in Fig. 11, we study the change of system
CEE under different proportions of local processing time,
and we see that as the local processing time increases, the

system CEE also increases, and the experiment proves that
we directly use the entire time slot as the local optimal
processing time.

Fig. 12: Carbon emissions from MEC server under different
proportions of local processing time

As shown in Fig. 12, we not only compare the system
performance changes caused by different local processing
durations, but also analyze the carbon emissions caused
by MEC servers under different local processing durations.
The result shows that using the entire time slot as the local
processing time can effectively reduce the carbon emission
of the MEC server, because the increase of local processing
time makes the MEC server need to process fewer tasks,
which naturally reduces carbon emissions, so from the per-
spective of reducing carbon emissions, the validity of the
previous theory can also be proved.

Fig. 13: System CEE under different algorithms

Fig. 13 illustrates the comparison between our DAI-
GU algorithm and four baseline algorithms. The scenario
described in this paper necessitates a minimum amount of
processed data per time slot, making local processing alone
inadequate. Consequently, the baseline algorithms do not
include a complete local processing algorithm for compar-
ison. However, we introduce a local algorithm that serves
as the benchmark, with a local processing time of only
0.5 time slots. Additionally, we compare the MEC server
processing time random algorithm, the task offloading time
random algorithm, and an algorithm that utilizes maximum
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computing resources. To provide a comprehensive analysis,
we conduct detailed experiments separately. Through these
experiments, we observe the superior performance of the
proposed algorithm in enhancing the system’s CEE.

As depicted in Fig. 14, we also compare the system
throughput among different algorithms. Through simula-
tion experiments, it is evident that the proposed algorithm
achieves the maximum data throughput, on par with the
MAX computing algorithm. Furthermore, in comparison to
the MAX computing algorithm, the proposed algorithm
demonstrates the capability to achieve approximately 80%
of its maximum data throughput.

Fig. 14: System data throughput under different algorithms

Fig. 15: System energy consumption under different algo-
rithms

In Fig. 15, we conducted a comparative analysis of the
system’s energy consumption. Initially, we observed that
the energy consumption exhibited significant oscillations
and was excessively high due to the tc random computing
algorithm. The results revealed that the 0.5*T local computing
algorithm yielded the lowest system energy consumption.
Comparatively, this algorithm only increased energy con-
sumption by a modest 20% when compared to the algorithm
proposed in this paper. Furthermore, when compared to the
MAX computing algorithm, the proposed algorithm reduced
energy consumption by an impressive 35%. Consequently,
it can be concluded that the algorithm proposed in this
paper effectively combines the objectives of enhancing data

throughput and reducing system energy consumption. This
amalgamation results in improved system performance,
offering a compelling solution for optimizing energy con-
sumption while maintaining or enhancing data throughput.

Fig. 16: Carbon emissions of MEC server under different
algorithms

As shown in Fig. 16, we present a comparison of the
carbon emissions of MEC servers across various algorithms.
In contrast to the MAX computing algorithm, the proposed
algorithm exhibits a noteworthy reduction in carbon emis-
sions of approximately 30%. On the other hand, when
compared to the to random computing algorithm, which
demonstrates the lowest carbon emissions, the proposed
algorithm only marginally increases carbon emissions by
less than 40%. However, it is important to note that this
increase in carbon emissions is accompanied by a significant
improvement in system performance.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we studied the maximization of CEE of the
WPT-MEC network assisted by IRS. We jointly optimized
the CPU frequency of MD, the CPU frequency of the MEC
server, the transmit power of PB, the processing time on
the MEC server, the offloading time of MD, the energy
harvesting time of MD, the local processing time of MD,
the offloading power of MD and the phase shift coeffi-
cient matrix of IRS. In order to solve the problem of joint
optimization fraction, we proposed an iterative algorithm
based on Dinkelbach theory and improved the algorithm
to make it more suitable for the application scenario. In
order to further improve the performance of the system,
we proposed the DIA-GU algorithm. Compared with other
algorithms, the DIA-GU algorithm can not only perform
better in improving the CEE of the system, but also in
reducing carbon emissions. Moreover, we can get many
beneficial insights from the closed-form solution of each
parameter. For instance, the system CEE increases as the
MD local processor and the CPU frequency of the MEC
server decrease, and the total amount of data offloaded from
all MDs should be equal to the maximum amount of data
that the MEC server can process during the MEC server
processing phase, and each MD should use the maximum
allowable time to process the local task data.
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In future work, it would be beneficial to incorporate the
consumption of stored energy per time slot to enhance the
performance of the model. For the communication model,
the OFDM communication model is selected, and in the
future, communication models such as NOMA that save
spectrum resources can also be considered. In addition,
it is worth emphasizing that the relationship between the
two distinct channel states and the IRS reflection angle is
interconnected. The current scenario is based on a quasi-
stationary channel model for solving, and future research
will explore more intricate scenarios, e.g., the correlation
model between the two channel states and the IRS reflection
angle.
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