
DDPQN: An Efficient DNN Offloading Strategy in
Local-Edge-Cloud Collaborative Environments

Min Xue, Huaming Wu ,Member, IEEE, Guang Peng , and Katinka Wolter

Abstract—With the rapid development of the Internet of Things (IoT) and communication technology, DeepNeural Network (DNN)

applications like computer vision, can nowbewidely used in IoT devices. However, due to the insufficientmemory, lowcomputing capacity, and

low battery capacity of IoT devices, it is difficult to support the high-efficiencyDNN inference andmeet users’ requirements for Quality of

Service (QoS).Worse still, offloading failuresmay occur during themassiveDNNdata transmission due to the intermittent wireless

connectivity between IoT devices and the cloud. In order to fill this gap, we consider the partitioning and offloading of theDNNmodel, and

design a novel optimizationmethod for parallel offloading of large-scale DNNmodels in a local-edge-cloud collaborative environment with

limited resources. Combinedwith the coupling coordination degreeandnode balance degree, an improvedDoubleDuelingPrioritized deepQ-

Network (DDPQN) algorithm is proposed to obtain theDNNoffloading strategy. Comparedwith existing algorithms, theDDPQNalgorithm can

obtain an efficient DNNoffloading strategywith lowdelay, lowenergy consumption, and lowcost under the premise of ensuring “delay-energy-

cost” coordination and reasonable allocation of computing resources in a local-edge-cloud collaborative environment.

Index Terms—Mobile edge computing, cloud computing, QoS, computation offloading, DNN partition

Ç

1 INTRODUCTION

DEEP learning technologies, especially Deep Neural Net-
works (DNN), break through the bottleneck of tradi-

tional machine learning and have been widely applied in
mobile applications and services, ranging from natural lan-
guage processing, autonomous driving, biomedicine to
image processing. More and more Artificial Intelligence
(AI) applications, e.g., face recognition, Virtual Reality (VR),
and Augmented Reality (AR), are being deployed on mobile
and Internet of Things (IoT) devices, which poses many new
challenges to mobile systems. The most obvious one is the
contradiction between the limited computing capacity of
IoT devices and running complex DNN inference, which
cannot be solved in a short time due to the slow hardware
development in small-sized equipment.

Computation offloading determines which subtasks
should be offloaded to cloud servers or edge servers for execu-
tion, and which subtasks need to be processed locally [1]. It
can effectively solve the deficiencies in computing capacity,
storage, and energy consumption for clients. Deep Reinforce-
ment Learning (DRL) can achieve efficient offloading perfor-
mance in computation offloading [2]. The DRL algorithm

combines the perception ability of deep learning and the deci-
sion-making ability of reinforcement learning, using the
agents to continuously interact with the environment to learn
the optimal actions to take in different states to maximize
rewards. This high-dimensional search algorithm for maxi-
mizing rewards is suitable for computation offloading [3].

Facing the challenge that the constrained computing
resources of mobile devices are insufficient to support com-
plex DNN inferences, the traditional approach is to offload
part of the DNNmodel to cloud servers, so as to alleviate the
computing pressure of clients. Cloud computing [4] can pro-
vide users with abundant computing resources and storage
resources. However, cloud servers are generally far away
from mobile devices, and the massive data transmission
between the device and cloud is easily affected by factors,
e.g., network bandwidth, data volume, central computing
capacity, and transmission delay [5]. This brings a huge
squeezing force to the network bandwidth, which can easily
cause excessive delay and fails to meet the user’s require-
ments for Quality of Service (QoS). Along with the rapid
development of edge computing technology, DNN applica-
tions can also be deployed on edge servers. Compared with
cloud servers, edge servers are closer to the data source,
which can greatly reduce the pressure on network band-
width while improving the efficiency of DNNprocessing [6].
Nevertheless, edge servers still have shortcomings, e.g., lim-
ited computing power and insufficient memory [7].

In recent years, the research on DNN partitioning and
offloading in the cloud/edge computing environments has
attracted more and more attention, providing several solu-
tions in different directions. First, the client still suffers from
high transmission delay when communicating with distant
cloud servers, while edge servers have lower transmission
delay, but their computing capability is not scalable. Most
studies [8], [9], [10] have not considered how to implement

� Min Xue and Huaming Wu are with the Center for Applied Mathematics,
Tianjin University, Tianjin 300072, China. E-mail: {xm_17, whming}
@tju.edu.cn.

� Guang Peng and Katinka Wolter are with the Institut f€ur Informatik, Freie
Universit€at Berlin, 14195 Berlin, Germany. E-mail: {guang.peng,
katinka.wolter}@fu-berlin.de.

Manuscript received 30Mar. 2021; revised 10 Aug. 2021; accepted 27 Sept. 2021.
Date of publication 30 Sept. 2021; date of current version 8 Apr. 2022.
This work was supported by the National Natural Science Foundation of
China under Grants 62071327 and 61801325 and the Research and Innova-
tion Project for Postgraduates in Tianjin (Artificial Intelligence) under Grant
2020YJSZXS27.
(Corresponding author: Huaming Wu.)
Digital Object Identifier no. 10.1109/TSC.2021.3116597

640 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

1939-1374 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0003-3514-0815
https://orcid.org/0000-0003-3514-0815
https://orcid.org/0000-0003-3514-0815
https://orcid.org/0000-0003-3514-0815
https://orcid.org/0000-0003-3514-0815
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
mailto:xm_17@tju.edu.cn
mailto:whming@tju.edu.cn
mailto:guang.peng@fu-berlin.de
mailto:katinka.wolter@fu-berlin.de

DNN offloading in a local-edge-cloud collaborative environ-
ment where the computing resources of IoT devices are lim-
ited. Moreover, most research conducted on DNN off-
loading is focusing on reducing delay and saving energy
consumption of IoT devices, while neglecting to minimize
the cost. Lastly but most importantly, researchers have
ignored the problems caused by the incoordination between
delay, energy consumption, and cost, as well as the unrea-
sonable allocation of resources. The details are as follows: i)
In some cases, the system evaluation performance is very
good, but one of the evaluation indicators, e.g., delay, energy
consumption, and cost, is too high or too low. ii) It often hap-
pens that the user enters the environment first occupies all
the computing resources of some servers, and the user enters
the environment later cannot use the above-mentioned serv-
ers, resulting in unreasonable resource allocation.

To address the above challenges, we consider achieving
the goals of low delay, low energy consumption, and low
cost in a local-edge-cloud collaborative environment with
limited resources. A novel Double Dueling Prioritized deep
Q-Network (DDPQN) algorithm is proposed to obtain the
optimal DNN offloading strategy. In addition, we consider
the queuing time caused by the offloading of large-scale
DNN models in a resource-constrained environment. Then
we introduce the coupling coordination indicator and node
balance indicator to optimize the coordination of delay,
energy, and cost, and the rationality of resource allocation,
so as to achieve an efficient DNN offloading strategy and
meet QoS requirements. To the best of our knowledge,
DDPQN is the first work to formally model the rational allo-
cation problem of computing resources and the coordina-
tion optimization problem between delay, energy, and cost,
which realizes the efficient partitioning and offloading of
large-scale DNN models based on the DRL algorithm. The
main contributions of this paper can be summarized as
follows:

� A comprehensive DNN partitioning and offloading
strategy for IoT systems is designed, which takes the
coordination between delay, energy consumption,
and cost into account. The setting of the coupling
coordination degree can effectively reduce the phe-
nomenon that the system of multiple indicators is
excellent but the individual indicators differ greatly.

� Considering the unreasonable distribution of comput-
ing resources causedby someusers greedily occupying
the server resources, we effectively improve the utiliza-
tion of computing resources by optimizing the balance
of the DNN layer distribution in the local-edge-cloud
collaborative environment, i.e., node balance.

� Considering the parallel offloading of large-scale
DNN models, we propose a DDPQN algorithm in a
local-edge-cloud collaborative environment under
the constraints of parallel pools, which obtains an
efficient DNN offloading strategy with low delay,
low cost, and low energy consumption.

2 RELATED WORK

In recent years, more and more attention has been paid to
the research of efficient DNN offloading, aimed at finding

the optimal offloading strategy with low delay or energy
consumption. Scholars have conducted in-depth research
on DNN partitioning and offloading, and proposed feasibil-
ity studies from various aspects.

2.1 Edge/Fog/Cloud-Based DNN Offloading

Jeong et al. [11] applied the shortest path and penalty factor
to divide and offload the DNN model from a single client to
a single edge server. Li et al. [12] joined DNN partition and
DNN right-sizing to maximize precision, while ensuring
application delay requirements. Qi et al. [13] proposed a
model scheduling algorithm that adaptively selects the
cloud or mobile terminal according to the terminal status
and network status. Yu et al. [14] applied deep imitation
learning based on mobile edge computing (MEC) to mini-
mize offloading costs. Hu et al. [15] designed a Dynamic
Adaptive DNN Surgery (DADS) scheme to segment the
DNN model and accelerate DNN inference. Kang et al. [16]
considered how to effectively leverage the cloud and client
cycle acquisition DNN partitioning strategy in the cloud
computing environment to achieve low delay, low energy
consumption, and high data throughput for the application.
Considering DNN partitioning optimization, Wang et al.
[17] proposed an adaptive distributed scheme to accelerate
DNN inference, which can realize dynamic offloading of
DNN according to the edge computing environment. Tang
et al. [18] introduced an Iterative Alternating Optimization
(IAO) algorithm, which considers the relationship between
DNN partitioning and resource allocation under limited
resource conditions. Ju et al. [19] proposed a DeepSave
scheme in the hope of saving more frames for DNN infer-
ence during switching. Mohammed et al. [20] considered a
distributed offloading scheme (DINA) based on the match-
ing game method for DNN partition and offloading in a fog
environment.

2.2 Local-Edge-Cloud Collaborative DNN Offloading

Teerapittayanon et al. [21] proposed a distributed DNN over
the client, edge server, and cloud server. This method can
not only perform DNN inference on the cloud, but also use
the shallow layer of neural networks to perform fast local
inference on the edge and clients. Ren et al. [22] considered
a collaborative object recognition solution for mobile Web
AR based on the edge, and explored more fine-grained
DNN partitions under the mobile web browser, cloud, and
edge. Chen et al. [23] proposed a method based on the
greedy and genetic algorithm to optimize the average
response time of multi-task parallel scheduling. Ding et al.
[24] used CloudCNN to assist in training EdgeCNN so that
it could provide persistent and rapid response cognitive
services. Pachecom et al. [25] accelerated DNN inference by
dividing DNN between edge server and cloud server to
support high-response programs. In addition, combining
edge and cloud computing resources, network bandwidth,
and inherent data parameters, a DNN partitioning optimi-
zation solution is proposed. Considering that the mobility
of mobile devices is prone to computing offload failure, Tian
et al. [26] proposed to offload part of the DNN model to the
edge/cloud to realize the cooperative execution between
the mobile device, edge server, and cloud server. Based on

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 641

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

this, a DNN partition offloading algorithm (MDPO) for
mobile users is developed, which can reduce the total delay
of the DNN model to the greatest extent when users are
moving.

2.3 A Qualitative Comparison

We briefly analyze the problems that existed in the previous
work in the above environment. Then, in view of the short-
comings of the existing work, improvement measures are
proposed.

To optimize the delay or energy consumption of DNN
inference, most of the previous work is to offload the DNN
model in an edge/fog/cloud computing environment or a
local-edge-cloud computing environment with a single
edge server and a single cloud server. First, In the above
computing environment, computing resources are usually
limited, which is not suitable for offloading large-scale
DNN models. In addition, researchers also ignore the queu-
ing time caused by limited computing resources. Second,
the methods in the previous work are usually suitable for
successively implementing DNN offloading, which cannot
achieve parallel offloading of DNN models and is inappro-
priate for large-scale DNN parallel offloading. Third, when
multiple factors of delay, energy consumption, and cost are
used as optimization targets, the coordination among multi-
ple factors is usually ignored. In other words, the system of
multiple factors is optimized, but one of the factors is opti-
mized too high, and one of the factors is optimized too low.
Finally, we find that the previous work rarely considered
the unreasonable allocation of computing resources caused
by users first enter the computing environment occupies all
resources of some servers.

In this paper, we propose to achieve the goals of low
delay, low energy consumption, and low cost. First, com-
pared with existing work, we consider a local-edge-cloud
collaborative environment with multiple edge servers and
cloud servers, which is suitable for large-scale DNN model
offloading. We also consider the queuing time caused by
the limited resources of the computing environment when
offloading the large-scale DNN model. Second, combined
with the DRL algorithm, we develop theDDPQN algorithm,
which is a high-dimensional search algorithm for maximiz-
ing rewards and is suitable for parallel offloading of large-
scale DNNmodels. Third, to avoid the problem of excessive
differences in the optimization of various indicators, we
introduce the coupling coordination indicator to realize the
coordinated optimization of delay, energy consumption,
and cost. Finally, considering the unreasonable allocation of
computing resources, we propose to use the node balance
indicator to optimize the above problem.

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we first propose two-step offloading strategy to
meet the offloading requirements of the chain type DNN
model and the topology type DNN model containing the
Inception Module. Then we introduce the local-edge-cloud
collaborative environment and formulate the DNN offload-
ing model. The generation of the DNN offloading strategy
is shown in Fig. 1. In addition, taking into account the

dimensions of different indicators, we standardize the data
before the start of the offloading plan.

3.1 DNN Model Preprocessing

For the offloading of the Inception Module, our principle is
to treat the layer with the same input as a whole. We elabo-
rate on two types of Inception modules in Fig. 2. The two-
step offloading strategy for the Inception Module is conducted
as follows:

� Initial offloading: we regard the Inception Module as
one layer in the DNN model, and perform a prelimi-
nary partitioning and offloading of the DNN model.
After initial offloading, we can get the offloading posi-
tion of the input layer and output layer of the Incep-
tion Module.

� Secondary offloading: Based on initial offloading, we
divide the Inception Module and offload each branch
of the Inception Module separately. At this time, we
note that the final offloading delay of the Inception
Module is the branch that takes the longest time, and
the energy consumption and cost are the sums of all
branches, respectively.

3.2 System Overview

We design a local-edge-cloud collaborative environment
with multiple edge servers and multiple cloud servers. The
client has problems such as insufficient resources and poor
device performance. Therefore, we combine the advantages
of cloud servers with scalable computing capabilities and
edge servers with low transmission delay to support effi-
cient offloading of complex DNN applications [27].

The local-edge-cloud collaborative environment hL;E;Ci
is composed of client, edge and cloud, where L ¼ fL1g con-
sists of one client, E ¼ fE1; E2; . . . ; En; . . . ; Ebg consists of b
edge servers, and C ¼ fC1; C2; . . . ; Cm; . . . ; Cdg consists of d
cloud servers. The environment can also be described asM ¼
fM1;M2; . . . ;Ms; . . . ;Mð1þbþdÞg; s 2 ½1; 1þ bþ d�. Among
them, M1 is the client L, fM2;M3; . . . ;Mð1þbÞg is the edge E,

Fig. 1. A DNN offloading strategy in a local-edge-cloud collaborative envi-
ronment. �1 indicates input DNN task parameters and local-edge-cloud
collaborative environment parameters, �2 represents that the secondary
offloading will start after the initial offloading is completed,�3 indicates the
generation of DNN offloading strategy, and�4 denotes offloading the DNN
partitions to the local-edge-cloud collaborative environment.

642 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

and fMð2þbÞ;Mð3þbÞ; . . . ;Mð1þbþdÞg is the cloud C. Then, we
define the server type bb ¼ fb0; b1; b2g, where b0 represents the
client, b1 is the edge server, and b2 is the cloud server.

The DNN set is denoted by D ¼ fD1; D2; . . . ; Di; . . .g, i 2
½1;a�, where the DNN model Di is treated as a task, and a

indicates the number of tasks. In the Initial offloading, each
DNN task can be expressed as Di ¼ fDi1; Di2; . . . ; Dij; . . .g;
j 2 ½1;bi�, where we define the jth layer under the ith DNN
as a subtask Dij, and bi refers to the number of subtasks
under the task Di. In the Secondary offloading, some subtasks
Dij are Inception Modules in the task Di. We define the
DNN layer under the Inception Module as Dyw

ij� , where y is
the total number of branches in all Inception Modules, w
represents the number of layers in each branch of the Incep-
tion Module, j� indicates that the jth layer in the subtask
Dij is the Inception Module.

3.3 System Delay of Subtask

3.3.1 Execution Delay

In a local-edge-cloud collaborative environment, the sub-
task Dij may be offloaded to the edge server, cloud server,
or directly executed locally. We define an indicative func-
tion 1s, where s represents the offloading location of the
subtask Dij in the environment M. For instance, for the
indicative function 1s2½2;1þb�, assuming that the actual off-
loading location of Dij is Ms, when s ¼ 1 or s > 1þ b,
1s2½2;1þb� ¼ 0, otherwise, 1s2½2;1þb� ¼ 1. After the input data
required by the subtask Dij is transmitted to the remote
server, the subtask starts to execute, and its execution delay
t1ij can be defined as [28]:

t1ij ¼
wij

QL
ij

1s¼1 þ wij

QE
ij

1s2½2;1þb� þ wij

QC
ij

1s2½2þb;1þbþd�; (1)

where QL
ij 2 fQL

1 g, QE
ij 2 fQE

1 ; . . . ; Q
E
n ; . . . ; Q

E
b g, QC

ij 2
fQC

1 ; . . . ; Q
C
m; . . . ; Q

C
d g. QL

ij, Q
E
ij and QC

ij indicate the comput-
ing power of the client, edge server and cloud server where
the subtask Dijis located, respectively. Q

L
1 , Q

E
n and QC

m rep-
resent the computing power of the client L1, edge server En

and cloud server Cm, respectively. wij is the number of CPU
cycles required to complete the subtaskDij.

3.3.2 Transmission Delay

Since the DNN task Di is a serial task, the subtasks are exe-
cuted in sequence. We assume that the uplink data rate is

the same as the downlink data rate. Based on Shannon’s for-
mula, the data transmission rate vuðaaÞ under the server u
can be calculated as follows [29]:

vuðaaÞ ¼ vlog 2

�
1þ qugu;r

$0 þ
P

�n2Unfug:a�n¼au
q�ng�n;r

�
; (2)

where v represents the bandwidth of the channel, qu indi-
cates the server transmission power, gu;r represents the
channel gain between the server u and the base station r,$0

denotes the background noise power, U ¼ f1; 2; . . . ; Ug
denotes the set of server u. For all servers, the decision pro-
file aa ¼ fa1; a2; . . . ; au; . . . ; aUg, where au is the offloading
decision under the server u. au 2 f0g [F, where f0g indi-
cates that data transmission will be suspended, F ¼
f1; 2; . . . ; Fg represents the set of wireless channels.

We consider the transmission delay caused by data trans-
mission between different servers. The data transmission
delay between subtasksDij�1 andDij can be defined as [30]:

t2ij ¼
gij
vij

; (3)

where gij is the input data size of subtask Dij. Then we cal-
culate the transmission rate according to Eq. (2), let vij
denote the data transmission rate between the servers
where the subtask Dij�1 and the subtask Dij are located
respectively.

3.3.3 Queuing Time

The parallel pool represents the maximum number of sub-
tasks that each remote server can run simultaneously. We
assume that the number of pools of each server is limited,
that is, computing resources are limited. Therefore, when
offloading large-scale DNN models in parallel, it is neces-
sary to consider the queuing time caused by the limited par-
allel pool. Let xpl

s represent the number of parallel pools
under the serverMs, x

run
s represents the number of subtasks

running on the server Ms, and xst
s represent the number of

subtasks to be run under the server Ms. Obviously, we
know that xrun

s 4xpl
s . In addition, if xst

s 4xpls , the waiting time
is 0. If xst

s > xpl
s , we calculate the time difference Iij between

the complete execution time of subtask being executed and
the start execution time of subtask being queued. If Iij > 0,
indicating that the subtask needs to wait, and the waiting
time zij ¼ Iij. If Iij40, indicating that the subtask does not

Fig. 2. Types of inception module.

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 643

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

need to wait, then the waiting time zij ¼ 0. The queuing
time t3ij can be expressed as:

t3ij ¼ zij1s¼1 þ zij1s2½2;1þb� þ zij1s2½2þb;1þbþd�; (4)

where Iij ¼ t2i0j0 þ t1i0j0 þ zi0j0 � t2ij þ ðt̂i0j0 � t̂ijÞ, the waiting
time of subtasks Dij and Di0j0 can be expressed as zij and

zi0j0 , respectively, where zij ¼ 0; xst
s 4xpl

s

maxf0; Iijg; xsts > xpl
s

�
. t2ij

and t2i0j0 denote the data transmission delay of subtasks Dij

and Di0j0 , respectively. t
1
i0j0 is the execution delay of the sub-

task Di0j0 , t̂ij and t̂i0j0 indicate the time to start transmitting

the input data of the subtaskDij andDi0j0 , respectively.

3.3.4 Total Delay

The total delay of the subtask Dij can be expressed as fol-
lows:

Tij ¼ t1ij þ t2ij þ t3ij; (5)

where Tij is the sum of execution delay t1ij, transmission
delay t2ij and queueing time t3ij.

3.4 Energy Consumption of Subtask

3.4.1 Execution Energy Consumption

For clients and remote servers, the execution energy con-
sumption can be expressed as follows [31]:

e1ij ¼ PL
ij t

1
ij1s¼1 þ P 0

ijt
1
ij1s2½2;1þb� þ P 0

ijt
1
ij1s2½2þb;1þbþd�;

where PL
ij denotes the power of the client when computing

subtask Dij locally, P
0
ij represents the idle power of the cli-

ent when the subtaskDij is executed on the edge/cloud.

3.4.2 Transmission Energy Consumption

We consider the transmission energy consumption during
the data transmission process, which can be calculated
as [31]:

e2ij ¼ Pt
ijt

2
ij;

where Pt
ij is the transmission power from the client to the

edge/cloud server where the subtaskDij is located.

3.4.3 Total Energy Consumption

The total energy consumption of DNN subtask Dij under
each server is generated by data transmission and execution
calculation. Therefore, the total energy consumption can be
expressed as:

Eij ¼ e1ij þ e2ij: (6)

3.5 Calculation Cost of Subtask

3.5.1 Execution Cost

The execution cost of the subtask Dij can be obtained as fol-
lows [32]:

u1
ij ¼ t1ijq

L
ij1s¼1 þ t1ijq

E
ij1s2½2;1þb� þ t1ijq

C
ij1s2½2þb;1þbþd�; (7)

where qLij 2 fqL1 g, qEij 2 fqE1 ; . . . ; qEn ; . . . ; qEb g, qCij 2
fqC1 ; . . . ; qCm; . . . ; qCd g. qLij, qEij and qCij refers to the running cost

per unit time of the client, edge server and cloud server

where the subtask Dij is located, respectively. q
L
1 , q

E
n and qCm

represent the running cost per unit time of the client L1,

edge server En and cloud server Cm, respectively.

3.5.2 Transmission Cost

We consider the cost generated by data transmission, and
the transmission cost between subtasks Dij�1 and Dij is as
follows [33]:

u2
ij ¼ gij � yij: (8)

where gij represents the transmission data from the subtask
Dij�1 to the subtask Dij, yij denotes the transmission cost
per unit data between the servers where the subtask Dij�1

and the subtaskDij are located respectively.

3.5.3 Total Cost

We consider that the total cost of subtaskDij is generated by
data transmission and task execution, so the total cost Uij

can be expressed as:

Uij ¼ u1
ij þ u2

ij: (9)

3.6 Coupling Coordination and Node Balance

3.6.1 Coupling Coordination Degree

The coupling coordination degree is regarded as an impor-
tant indicator to measure the coordination status of different
indicators. We define the coupling coordination degree as a
measurement indicator, which can more objectively and
comprehensively measure the overall coordination level of
”delay-energy-cost” system, reflecting the coordination
effect of delay, energy consumption, and cost. The coupling
coordination degree Hij, the coupling degree Cij and the
comprehensive coordination indicator Yij of subtask
Dij [34], [35] can be expressed as follows, respectively:

Hij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cij � Yij

p
; (10)

Cij ¼ 3� ffiffi½p
3� Tij�Eij�Uij

ðTijþEijþUijÞ3
;

Yij ¼ �1Tij þ �2Eij þ �3Uij;

(
(11)

where Hij 2 ½0; 1�, which is the higher the better. �1, �2 and
�3 are weighting coefficients.

3.6.2 Node Balance Degree

In the real-world offloading scenario, the number of clients
changes dynamically, and new users will continue to enter
the local-edge-cloud collaborative environment. When the
user enters the environment first has occupied all the com-
puting resources of the server Ms0 , if the user enters the
environment later wants to offload the subtasks to the
server Ms0 , restrictions will occur. In order to improve the
resource utilization of servers and achieve a balanced distri-
bution of subtasks in the computing environment, the node
balance is defined as:

644 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

Zij ¼ 1

2

X1þb

s0;s00¼2

jBs0
ij �Bs00

ij j þ
1

2

X1þbþd

s0;s00¼2þb

jBs0
ij �Bs00

ij j; (12)

where 1
2

P1þb
s0;s00¼2 jBs0

ij �Bs00
ij j represents the node balance

degree at the edge, 1
2

P1þbþd
s0;s00¼2þb jBs0

ij �Bs00
ij j represents the

node balance degree at the cloud, Zij indicates the node bal-
ance degree after offloading the subtask Dij in the local-
edge-cloud collaborative environment, Bs0

ij and Bs00
ij respec-

tively denote the number of subtasks on servers Ms0 and
Ms00 after the subtask Dij is offloaded. In addition, since
there is an absolute value in Eq. (12), jBs0

ij �Bs00
ij j ¼

jBs00
ij �Bs0

ijj is equal to the subtask difference calculated
twice, so divide it by two.

3.7 Problem Formulation

In order to achieve “delay-energy-cost” optimization under
the premise of multi-task parallel scheduling, DNN offload-
ing in the local-edge-cloud collaborative environment can
be regarded as an optimization problem. We are committed
to finding the DNN offloading strategy with low delay, low
energy consumption and low cost in a local-edge-cloud col-
laborative environment, while trying to optimize node bal-
ance degree and coupling coordination degree. In order to
adapt to DNN offloading of chain type DNN model and
topology type DNN model, we propose two-step offloading
strategy, the details are described as follows:

3.7.1 Initial Offloading

In the first step of two-step offloading strategy, we take the
Inception module as a whole and offload the overall DNN
model. Then, we introduce a system utility QðSS;AA; xxÞ
defined as follows:

QðSS;AA; xxÞ ¼
X
i

X
j

fðuTij þ #Eij þ hUijÞ � ’Hij þ �Zij;

where xx ¼ fxrun
s js ¼ 1; 2; . . . ; 1þ bþ dg. AA is the set of Ai

j, A
i
j

denotes the offloading action of the subtask Dij. SS is the set
of states Si

j, S
i
j includes the number of CPU cycles required

to complete the subtask Dij, the transmission data between
the subtasks Dij�1 and Dij and the action information Ai

j. In
addition, Ai

j can determine to which server the subtask Dij

will be offloaded, so that the server parameters can be
obtained. Ai

j�1 and Ai
j can determine the server, where the

subtasks Dij�1 and Dij are located, and then obtain the
transmission rate between the two servers. For an environ-
ment with eleven servers, the offloading action of the sub-
task Dij can be expressed as Ai

j 2 f1; 2; 3; 4; 5; 6; 7; 8;
9; 10; 11g, where each number represents a server.

Then, we formulate an optimization problem (P1) to min-
imize QðSS;AA; xxÞ by jointly optimizing the offloading deci-
sion and the pool allocation, which is expressed as follows:

ðP1Þ : Q�ðSSÞ ¼ min
AA;xx

QðSS;AA; xxÞ; (13)

s.t. : xrun
s 4xpls ; (14)

04u; #; h41; (15)

04f;’; �41; (16)

u þ #þ h ¼ 1; (17)

fþ ’þ � ¼ 1: (18)

Considering the user’s demand, we set the weights of delay,
energy consumption, and cost to u, #, and h, respectively. In
addition, we also set the weights of “delay-energy-cost” sys-
tem score (SC), coupling coordination, and node balance to
f, ’, and �, respectively. For different task sizes, task num-
bers, and offloading environments, users usually have dif-
ferent offloading requirements:

� The choice of u, #, and h depends more on the user’s
offloading demands. For example, if the user
urgently needs to obtain the DNN inference results,
the importance of the delay far exceeds the energy
consumption and cost, so choosing a larger delay
weight u is a better choice.

� The choice of f, ’, and � depends more on environ-
mental characteristics and task characteristics. For an
offloading environment with sufficient computing
resources, we can choose to ignore coupling coordi-
nation and node balance (’ ¼ � ¼ 0). For environ-
ments where computing resources are scarce, node
balance degree and coupling coordination degree
will be important, and ’ and � can be set to higher
values.

Although task optimization can be achieved objectively,
in most cases, we still need to consider the subjective
demands of users. The user comprehensively considers the
size of the task, the number of tasks, and the offloading
environment to set the corresponding weight, which is suit-
able for flexibly offloading tasks in different offloading
environments.

3.7.2 Secondary Offloading

After Initial Offloading, we can know the offloading location
of the input layer and output layer of the Inception module.
On this basis, we divide and offload the Inception module.
We need to note that the delay of the Inception module is
the single branch with the longest delay, while the energy
consumption and cost are the sums of all branches. On the
basis of the initial offloading, we can obtain the system utility
QðS0S0; A0A0; xxÞ for the secondary offloading:

QðS0S0; A0A0; xxÞ ¼ f
X
u

n
max
j�

X
w

uTuw
ij�

o
þ
X
y

X
w

f
�
#Eyw

ij�

þ hUyw
ij�

�� ’Hyw
ij� þ �Zyw

ij� ;

(19)

where S0S0 denotes the set of states Siyw
j0 , Siyw

j0 includes the
number of CPU cycles required to complete the subtask
Dyw

ij� , the transmission data between the subtasks Dyw�1
ij� and

Dyw
ij� and the action information. xx ¼ fxrun

s js ¼ 1; 2; . . . ; 1þ
bþ dg. A0A0 is the set of Aiyw

j� , and Aiyw
j� refers to the offloading

position of the subtask Dyw
ij� . In addition, the calculation for-

mulas of Tuw
ij� , E

yw
ij� , U

yw
ij� , H

yw
ij� , and Zyw

ij� are the same as the
calculation formulas of Tij, Eij, Uij,Hij, and Zij. u is the total
number of Inception Modules, y is the total number of
branches in all Inception Modules, w represents the number

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 645

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

of layers in each branch of the Inception Module, j� indi-
cates that the jth layer in the subtask Dij is the Inception
Module.

Q�ðS0S0Þ ¼ min
A0A0;xx

QðS0S0; A0A0; xxÞ; (20)

where the constrained conditions of Q�ðS0S0Þ is the same as
Eqs. (1) and (2).

4 DNN OFFLOADING USING DEEP

REINFORCEMENT LEARNING

Traditional algorithms usually perform continuous itera-
tions to adjust the offloading strategy, but it is difficult to
deal with high-complexity problems. DRL algorithm com-
bines the perception ability of deep learning with the deci-
sion-making ability of reinforcement learning, and can
directly learn control strategies from high-dimensional raw
data. In order to solve the complexity problem, we propose
an improved DDPQN algorithm based on the DRL algo-
rithm, which can obtain an efficient DNN offloading strat-
egy. In addition, in order to explain more concisely, we
mainly discuss Eq. (3) in initial offloading. (Inception Module
offloading in secondary offloading is the same as the initial off-
loading except for the difference of the reward function).

4.1 Modeling the DNN Offloading Process

In order to achieve low delay, low energy consumption, and
low cost, we model the DNN offloading process as a Mar-
kov Decision Process (MDP). Our goal is to find an offload-
ing function f to generate the optimal offloading strategy
A�A� for (P1), which can be expressed as:

f : SS ! A�A�; (21)

where SS represents the state, including the task calculation
amount, transmission data, and action information. For
instance, for a DNN tasks, each task Di has bi subtasks, and
there are eleven servers in the offloading environment.
Then A�A� 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g

Pa

i¼1
bi , the size of the

offloading decision set fAAg is 11
Pa

i¼1
bi .

The designed DDPQN algorithm can learn the strategy
function f step by step from experience. The details are
described as follows:

4.1.1 Simplification of Offloading Problem

In the kth epoch, for state SkSk, a candidate offloading deci-
sion AtAt will be generated.

fk : SkSk ! AtAt; (22)

where AtAt 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g
Pa

i¼1
bi indicates the

candidate offloading decision in the kth epoch.
We all know that P1 is a non-convex problem of mixed

integer programming. If AtAt is given, P1 will be simplified
into a convex problem. At the same time, the original opti-
mization problem (P1) becomes a pool allocation problem
(P2), as shown in the following:

ðP2Þ : Q�ðSS;AAÞ ¼ min
xx

QðSS;AA; xxÞ (23)

s.t. : xrun
s 4xpl

s ;

04u; #; h41;
(24)

04f;’; �41; (25)

u þ #þ h ¼ 1; (26)

fþ ’þ � ¼ 1: (27)

The main requirement of (P1) is how to solve the prob-
lem of the DNN offloading strategy. For each input SkSk, a
candidate offloading decision AtAt is generated. Once the off-
loading decision AtAt is given, the original optimization prob-
lem (P1) becomes a parallel pool allocation problem (P2).
Then, select the lowest Q�ðSkSk; AtAtÞ offloading decision
among all candidates, such as:

A�
kA�
k ¼ argmin

AtAt2FkFk

Q�ðSkSk; AtAtÞ; (28)

where A�
kA�
k is the optimal offloading action in the kth epoch,

SkSk denotes the state. FkFk ¼ fAtAtjt ¼ 1; 2; . . . ; Bg indicates the
candidate action generated in the kth epoch, and B is the
number of candidate offloading decisions.

4.1.2 Generation of Offloading Actions

DNN offloading in the local-edge-cloud collaborative envi-
ronment is a dynamic system, in which each step of deci-
sion-making not only affects the current immediate
rewards, but also the subsequent status and future rewards.
In order to combine deep reinforcement learning with the
DNN offloading problem, we model the DNN offloading
process in the local-edge-cloud collaborative environment
as a MDP and use the offloading environment as a training
environment for the agent to perform reinforcement learn-
ing. Specifically, the basic elements for the MDP are defined
as follows:

State: In order to comprehensively consider the character-
istics between subtasks and servers, we define the state
space at the jth step as:

Si
j ¼ ½Ai

j�1; G
i
j�1;j;W

i
j ; A

i
j; G

i
j;jþ1; . . . ; G

i
bi�1;bi

;Wi
bi
�;

where Ai
j denotes the offloading action of the subtask Dij,

Gi
j�1;j indicates the transmission data between subtasks

Dij�1 and Dij, and Wi
j denotes the number of CPU cycles

required to complete the subtask Dij. In addition, Ai
j can

determine which server the subtask Dij will be offloaded to,
so that server parameters can be obtained. Ai

j�1 and Ai
j can

determine the server where the subtasks Dij�1 and Dij are
located, and then obtain the transmission rate between the
two servers.

Action. The agent interacts with the environment and
observes the state characteristics of the environment. We
choose an offloading action of the subtaskDij as A

i
j 2 AA and

then offload it to the appropriate server.
Reward. The agent observes the environment and chooses

action Ai
j according to the characteristic expression of the

environment state Si
j, and then the agent receives a reward

646 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

Rijþ1 2 R and enters a new state Si
jþ1. The objective is to

minimize the overall result of the “delay-energy-cost” sys-
tem in DNN offloading, given by Eq. (19). In order to
achieve this goal, we define the reward score of the agent
after each action as follows:

Rij ¼ fðuTij þ #Eij þ hUijÞ � ’Hij þ �Zij:

4.1.3 Offloading Policy Update

Based on the traditional Deep Q-learning (DQN) algorithms,
we design a DDPQN algorithm to optimize the evaluation
metric of “delay-energy-cost” in the local-edge-cloud collab-
orative environment. We know that the algorithm saves a
large amount of historical experience sample data, and each
experience sample data is stored in a five-tuple
< s; a; r; s0; T >; meaning that the agent executes the action
a in the state s, reaches the new state s0, and obtains the corre-
sponding reward r. Then the DQN algorithm according to
the new state s0 selects action a0, where T is a Boolean value
type, indicatingwhether the new state s0 is a terminal state.

Neural Network Structure:We consider a more realistic sit-
uation where the size of the value function is independent
of the action. For this reason, it is not necessary to estimate
the Q value of each action. Combining the operation of the
Dueling DQN [36], we divide the Q value update into two
parts: the state value function V ðsÞ and the action advantage
function LðaÞ. Different from the traditional fully connected
layer, our network has two estimation streams, one is the
state value estimation, and the other is the action advantage
function estimation. The two together become the output of
the Q-network.

Qðs; a; c1; c2Þ ¼ V ðs; c2Þ þ Lðs; a; c1Þ � 1

jLj
X
a0

Lðs; a0; c1Þ;

where c1 and c2 are two parameters for estimating the
stream network layer.

Experience Replay: For DQN random experience replay,
we apply the prioritized replay mechanism from Prioritize-
dReplay DQN [37] to give different sample importance,
improve the convergence speed, and avoid unnecessary
redundant iterations, thereby optimizing the learning effi-
ciency. We ensure that during the sampling process, the
higher the priority, the higher the probability of being sam-
pled, and the memory with the lowest priority also has a
certain non-zero probability of being sampled. Specifically,
we define the probability pij as:

jRi
jþ1 þ gijþ1 max

a0
Q0ðSi

jþ1; a
0Þ �QðSi

j; A
i
jÞjv;

where v indicates the hyperparameter that determines the
shape of the distribution.

Parameter Update: Although the traditional DQN [38] algo-
rithm can quicklymake theQ value closer to the possible opti-
mization goal, if we regard the maximum estimated value as
an estimate of the maximum value of the true value, it will
produce a positivemaximization deviation. By separating the
two steps of selecting the action corresponding to theQ value
and evaluating the Q value corresponding to the action, the
overestimation caused by the greedy algorithm is eliminated,

and a more accurate Q value estimation is obtained, thereby
making the learning more stable and reliable. The DDPQN
algorithm is based on two neural networks [39] and uses gra-
dient descent to update the parameters, so as to achieve the
target value of parameter updateLi

j:

h
Rijþ1 þ gijþ1Q

0ðSi
jþ1;max

a0
QðSi

jþ1; a
0ÞÞ �QðSi

j;A
i
jÞ
i2
;

where gijþ1 2 ½0; 1� refers to the discount factor.

Algorithm 1. DDPQN Algorithm

Input: The parameters of the DNN model Di and the local-
edge-cloud collaborative environmentMs.

Output: Delay, energy consumption, cost, coupling coordi-
nation degree and node balance degree of subtask
Dij, DNN offloading strategy.

1 Preprocessing: The DDPQN algorithm is used to obtain the
current optimal offloading decision and the historical off-
loading allocation plan, and then update the algorithm
parameters.

2 Initialize DNN parameters under DDPQN.
3 Initialize empty memory poolXX.
4 Initialize state SS.
5 for episode k ¼ 1 ! N do
6 for task i ¼ 1 ! a do
7 for moment j ¼ 1 ! bi do
8 Input state Si

j to Q network to get Q values of all
actions.

9 Select action Ai
j using the �-greedy.

10 Execute action Ai
j in state Si

j.
11 Get new status Si

jþ1, reward Rij.
12 Put fSi

j; A
i
j; R

i
j; S

i
jþ1g to memory poolXX.

13 Sampling according to prioritized replay.
14 Qðs; a; c1; c2Þ ¼ V ðs; c2Þ þ Lðs; a; c1Þ � 1

jLj
P

a0 Lðs; a0; c1Þ.
15 if terminate then
16 zij ¼ Rijþ1 þ gQ0ðSi

jþ1;maxaQðSi
jþ1; a

0ÞÞ.
17 else
18 zij ¼ Rijþ1.
19 Update model parameters of loss function:
20 ½zij �QðSi

j; A
i
jÞ�2.

21 Reset Q0 ¼ Q per & step.
22 final
23 return the optimal offloading decision

4.2 DDPQN Algorithm

We present the overall design of the DDPQN algorithm as
shown in Algorithm 1, which mainly adapts to the state of
the environment through the deep learning, and then makes
reasonable decisions in each state based on reinforcement
learning, so as to select reasonable actions and determine
the offloading location of each subtask. At the same time,
every decision will get feedback rewards from the environ-
ment. This value is used to guide the agent’s learning, so
that the agent can explore the direction of reward maximi-
zation, thereby optimizing the offloading goal.

In order to achieve efficient offloading of DNN tasks, we
optimize the parameter update, experience replay, and neu-
ral network structure based on the original DQN algorithm
to improve the offloading efficiency. In the entire model
structure, we divide the DDPQN algorithm into two parts:

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 647

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

the state value function and the action advantage function,
and the value of Q is updated accordingly. DQN stores the
next state Si

jþ1 and reward Ri
jþ1, and stores quaternion

groups ðSi
j; A

i
j; R

i
j; S

i
jþ1Þ as an experience in the memory

pool, after update the DQN, the experience in the memory
pool will be selected according to the prioritized replay
mechanism, which can ensure effective learning of previous
experience and avoid the limitations brought by continuous
experience. In addition, the DDPQN algorithm uses another
network to generate the Q value in the training process. The
network structure is the same as the training neural network
and Q is kept consistent. After iterations, the parameters of
Q are copied to the target neural network Q0. Therefore, by
maintaining the difference of the two network parameters
for a period of time, the difference between the current Q
value and the Q0 value is used to calculate the loss function,
and then stochastic gradient descent can be used to
reversely update parameters of the network.

5 PERFORMANCE EVALUATION

In this section, we evaluate DNN offloading performance
based on the DDPQN algorithm.

5.1 Experimental Setup

We first establish a local-edge-cloud collaborative environ-
mentM ¼ fM1;M2; . . . ;M11g, where the servers fM1g belong
to the client, the server fM2;M3;M4;M5;M6g belong to the
edge, and the servers fM7;M8;M9;M10;M11g belong to the
cloud. We define the weights of delay, energy and cost as u ¼
0:5, # ¼ 0:3 and h ¼ 0:2, the weights of the “delay-energy-
cost” system score, the coupling coordination degree, and the
node balance degree are f ¼ 0:6, ’ ¼ 0:2, and � ¼ 0:2, respec-
tively. �1 ¼ �2 ¼ 0:33 and �3 ¼ 0:34.

We conduct experiments using four different DNNs, i.e.,
GoogleNet [40], ResNet [41], AlexNet [42] and VGG [43].
The basic structure, computational amount, and transmis-
sion data of DNN model come from file1. The environment

parameter settings [32], [44], [45] can be seen in Tables 2
and 3, where b0, b1 and b2 denote the client, the edge server
and the cloud server, respectively. This paper considers a
fully connected DNN composed of one input layer and two
hidden layers. The number of neurons in the two hidden
layers is 50 and 20, respectively. Then create a linear fully
connected layer of advantage function and value function,
the output number of the advantage layer is 11, and the out-
put number of the value layer is 1.

To reveal the advantages of the DDPQN algorithm in
solving the DNN offloading problem, we compare it with
commonly used computation offloading algorithms listed
as follows:

� DQN: On the basis of Q-learning, an experience
replay mechanism is introduced, and an offline and
online two-layer neural network is established to
improve training efficiency;

� Dueling DQN: The algorithm is improved by opti-
mizing the structure of the neural network. Its
network has two estimation streams, which esti-
mate the state value and the action advantage
function respectively;

� Double DQN: After training, the Double DQN makes
the current Q value infinitely close to the Qtarget
value, so that the error between the two tends to be
stable and close to 0;

� PrioritizedReplay DQN: The algorithm uses the priori-
tized replay mechanism to give samples different
importance, thereby speeding up convergence and
making learning more effective.

� DoublePr DQN: On the basis of Double DQN, a priori-
tized replay mechanism is added to speed up the
convergence efficiency of the algorithm by reducing
overestimation;

� DuelingPr DQN: Combine Dueling DQN with priori-
tized replay mechanism to improve high information
utilization and algorithm performance;

� Double Dueling DQN: Combine Dueling DQN with
Double DQN to get more useful information while
avoiding overestimation of value.

TABLE 2
Transmission Parameters Between Servers

bi bj bandwidth (MB/s) cost ($/GB) P(W)

b2 b2 5 0.4 �
b2 b1 0.5 0.8 �
b0 b2 0.5 0.8 0.2
b1 b1 10 0.16 �
b0 b1 10 0.16 0.2

TABLE 3
Server Parameters

bi cost/hour ($) CP (GHz) P (W)

b0 0 2.3 70
b1 2:10 	 2:43 4:2 	 18:3 10
b2 0:225 	 1:80 40 	 120 10

TABLE 1
Symbols and Definitions

Symbols Definitions

L Client
E Edge
C Cloud
M Local-edge-cloud collaborative environment
D DNNmodel collection
Dij The jth layer under the ith DNN
t1ij Execution delay
t2ij Transmission delay
t3ij Queuing Time
Tij Total Delay
e1ij Execution energy consumption
e2ij Transmission energy consumption
Eij Total energy consumption
u1
ij Execution cost

u2
ij Transmission cost

Uij Total cost
Hij Coupling coordination degree
Zij Node balance degree

1. https://github.com/LinBin403/dataset-for-our-research

648 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

� Greedy algorithm: This is a common method to find
the optimal offloading decision, which generally
divides the solution process into several steps, but
each step applies the greedy principle to select the
best choice in the current state and hopes to stack the
final results together.

� DDPQN: Based on traditional DQN, we have made
relevant improvements in experience replay, neural
network structure, and parameter update.

We consider the performance of the DDPQN algorithm in
different computing environments, such as the local-edge-
cloud collaborative environment (L-E-C), edge computing
environment (L-E), and cloud computing environment (L-C).
In addition, we record A as the “delay-energy-cost” system
score, B as the coupling coordination degree, and X as the
node balance degree. For example, A�B�X represents
when the DDPQN algorithm trains the “delay-energy-cost”
system, it considers the coupling coordination degree and
node balance degree. A�X represents when the DDPQN
algorithm trains the “delay-energy-cost” system, it only con-
siders the node balance degree.

5.2 Convergence Performance

We show the convergence performance of theDDPQN algo-
rithm under different hyperparameters. In Fig. 3, the
abscissa is the training step, and the ordinate is the loss of
the neural network.

Fig. 3a shows the convergence efficiency of the DDPQN
algorithm under different learning rates. When the learning
rate is too high or too low, a good convergence effect cannot
be obtained. When the learning rate is 0.001, we can obtain
the best convergence effect. Fig. 3b shows the convergence
effect of the algorithm under different �-greedy. We know
the explore and exploit are balanced by setting �-greedy.
The larger the value of �-greedy, the more inclined to choose
to maximize the current moment. For the action of expected
profit, it is found that when �-greedy is larger, the conver-
gence effect of the algorithm is better, so we determine
�-greedy=0.9 as the parameter used in subsequent experi-
ments. Fig. 3c shows the effect of sample batch size on con-
vergence performance. Obviously, smaller or larger sample
batches will bring poorer convergence effects. Thus, we set
the batch value as 256 in subsequent experiments. In
Fig. 3d, we can see the algorithm convergence at different
discount rates. The discount rate � determines the present
value of future earnings, when the discount rate approaches
0, the agent will only maximize the current rewards more.
In this experiment, if the discount rate is small, it will lead
to poor convergence, so the discount rate is set as � ¼ 0:8.

In addition, since the DDPQN algorithm adds the priori-
tized replay mechanism, the iteration starts from the time
when the first reward was originally obtained. We set the
network parameters to the target network every 100 steps,
and there will be fluctuations every 100 steps. It is mainly
due to the parameter freezing mechanism, and this opera-
tion will not affect the convergence of the model.

5.3 Convergence and Generalization

In this section, we discussed the advantages of the DDPQN
algorithm in convergence and generalization.

Figs. 4 compares the convergence of the DDPQN algo-
rithm and the existing DRL algorithm in a local-edge-cloud
collaborative environment. We find that the DDPQN algo-
rithm has better convergence performance. Besides, since
DDPQN, PrioritizedReplay DQN, DoublePr DQN, and Duel-
ingPr DQN consider the prioritized replay mechanism, iter-
ate after the first reward is completed.

Fig. 5 shows the performance of the DDPQN algorithm
and the existing DRL algorithm under various DNNmodels
with different structures. First, We find that the DDPQN
algorithm can efficiently converge to an excellent average
reward value whether it is in a chain DNNmodel with a rel-
atively simple structure such as the AlexNet or in a complex
topological DNN model such as the GoogleNet and the
ResNet. Second, compared with the existing DRL algorithm,
the DDPQN algorithm achieves the optimal average reward
value under various DNN models with different structures,
such as AlexNet, GoogleNet, and ResNet.

Fig. 3. Convergence performance under different parameters.

Fig. 4. Convergence performance under various algorithms.

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 649

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

In summary, we can ensure that theDDPQN algorithm is
suitable for realizing efficient partitioning and offloading of
various DNN models in the local-edge-cloud collaborative
environment.

5.4 The Impact of the Number of Tasks

In this part, we compare the performance of DDPQN, DQN
and greedy algorithms under different numbers of tasks.

It can be seen from Fig. 6 that the delay, energy consump-
tion, and cost of the above three algorithms all increase line-
arly with the increase of the number of tasks. Since delay is a
crucial factor in the task offloading process, we set the high-
est weight for the delay in the experiment. It can be observed
from Fig. 6a that theDDPQN algorithm can achieve the low-
est delay, and its delay growth trend tends to be slower as
the amount of tasks increases. Obviously, the DDPQN algo-
rithm is a more weight-sensitive algorithm and is more suit-
able for multi-index comprehensive offloading. In Fig. 6b,
the energy consumption of the DDPQN algorithm is the
highest. Due to the heavy weight of the delay indicator, for
DNN subtasks with a large amount of calculation, in order to
pursue the lower delay, the DNN subtasks are usually off-
loaded to the edge server, which generates high execution
energy consumption, resulting in high total energy con-
sumption. In Fig. 6c, the cost of the DDPQN algorithm is
close to that of the greedy algorithm, based on Eqs. (7) and (8),
which is mainly realized by low delay. All in all, theDDPQN
algorithm is suitable for large-scale DNN offloading.

5.5 The Impact of Weights

This section first introduces the specific performance of
delay, energy consumption, and cost under different

weights. Then we discuss the performance of the “delay-
energy-cost” system score (SC) (i.e., uTij þ #Eij þ hUij), cou-
pling coordination, and node balance under different
weights.

In Fig. 7a, the ordinate adopts the standardized value of
delay, energy consumption, and cost. The legend indicates
the weight ratio of delay, energy consumption, and cost,
that is, “u : # : h”. In the combination of various types of u :
: h (“7 : 2 : 1”, “1 : 7 : 2”, and “2 : 1 : 7”), the weight ratios
of delay, energy consumption, and cost are “7 : 1 : 2”,
“2 : 7 : 1”, and “1 : 2 : 7”, respectively. We find that the
greater the weight, the higher the degree of indicator opti-
mization, and the smaller the weight, the lower the degree
of indicator optimization. This means that delay, energy
consumption, and cost are closely related to the weight val-
ues. In addition, we know that delay, energy consumption,
and cost are highly correlated, and the level of one indicator
will have an impact on other indicators. For example, the
weight ratio of cost is ”1 : 2 : 7”, where the corresponding
cost value of ”1” is less than the cost value corresponding to
”2”, the reasons are as follows: First,the weight values of
”1” and ”2” are too small, so the influence on indicator opti-
mization is too low. Second, for ”1”, the proportion of delay
in “u : # : h ¼ 7 : 2 : 1” is too large, so the delay is low, based
on Eqs. (7) and (8), therefore the cost is low; on the contrary,
for ”2”, the proportion of delay in “u : # : h ¼ 1 : 7 : 2” is too
small, so the cost is very large.

In Fig. 7b, the ordinate adopts the standardized value of
SC, coupling coordination, and node balance. The legend
indicates the weight ratio of SC, coupling coordination, and
node balance, that is, ”f : ’ : �”. In the combination of vari-
ous types of u : # : h (“2 : 3 : 5”, “6 : 2 : 2” and “8 : 1 : 1”),
the weight ratios of SC, coupling coordination, and node

Fig. 5. The performance of the DDPQN algorithm under different types of DNN models.

Fig. 6. The impact of the number of tasks on different algorithms.

650 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

balance are “2 : 6 : 8”, “3 : 2 : 1”, and “5 : 2 : 1”, respec-
tively. Obviously, as the weight increases, the SC shows a
downward trend. In addition, we find that the SC and node
balance are negatively correlated with the weight, while
coupling coordination is positively correlated with the
weight. In other words, SC, coupling coordination, and
node balance are closely related to the weight.

5.6 The Impact of Coupling Coordination and Node
Balance

In this part, we show the performance of coupling coordina-
tion and node balance under different DNNmodels.

Fig. 8 shows the coupling coordination degree of the
DNN layer under different combinations of indicators,
where the abscissa represents the DNN layers, and the ordi-
nate represents the coupling coordination degree. Figs. 8a,
8c, and 8e show the coupling coordination performance of
the “delay-energy-cost” system after adding the coupling
coordination indicator B. It is found that the image area of
A-B is significantly better than that of A. In other words,
after adding B, A-B can achieve better coupling coordina-
tion performance than A. It can avoid the situation that the
system performance is very good, but one indicator is the
best and another indicator is extremely poor. Figs. 8b, 8d,
and 8f show the coupling coordination performance of the
“delay-energy-cost” system after adding the coupling coor-
dination indicator B and the node balance indicator X at the
same time. Obviously, by adding B and X, the coupling
coordination performance of the A-B-X is better than A-B.
This indicates that the node balance indicator has a benefi-
cial effect on the coupling coordination indicator.

Fig. 9 shows the total coupling coordination degree of the
DNN layer under A-B-X, A-B, A-X, and A. We can see that
after adding B, the coupling coordination performance of
the system has been greatly improved. In addition, we
observe that the node balance indicator also has a positive

impact on coupling coordination, and when the system
adds the node balance indicator and the coupling coordina-
tion indicator, the coupling coordination performance of A-
B-X is significantly better than that ofA, A-X andA-B. Com-
pared with A, the coupling coordination degree of A-B-X
under GoogleNet, ResNet, AlexNet, and VGG is optimized
by 44:29%, 59:13%, 117:53%, and 84:08%, respectively. This
shows that in the local-edge-cloud collaborative environ-
ment, adding the node balance indicator and coupling coor-
dination indicator will further improve the performance of
coupling coordination.

Fig. 10 shows the impact of node balance indicators on
subtask distribution status of GoogleNet, ResNet, AlexNet
and VGG under the combination of A-B-X, A-X, and A.
Each histogram consists of two parts, where the lower part
represents the node balance degrees in the edge, and the
upper part represents the node balance degrees in the cloud.
We can clearly see that after adding X, the node balance
value of A-X is significantly better than A. In addition, after
adding coupling coordination indicator and node balance
indicator, the node balance value of A-B-X achieves the
optimal performance. Compared with A, the node balance
degree of A-B-X under GoogleNet, ResNet, AlexNet, and
VGG is optimized by 11:82%, 9:77%, 13:70%, and 7:51%,
respectively. That is to say, the coupling coordination
degree and the node balance degree have a positive mutual
gain effect, which can effectively obtain a better DNN off-
loading strategy.

5.7 The Impact of Coordination and Balance on the
System

Fig. 11 shows the impact of coupling coordination degree
and node balance degree on delay, energy consumption,
and cost under different types of DNN models. Although
increasing the coupling coordination indicator or node bal-
ance indicator will optimize the system coordination and
subtask distribution balance, it will inevitably bring the
burden on delay, energy consumption, and cost. As shown
in Figs. 11a, 11b, and 11c, we obtain higher coupling coor-
dination degree and node balance degree by sacrificing
less delay, energy consumption, or cost, which is an ideal
situation. It can avoid the situation where the system eval-
uation result of “delay-energy-cost” is excellent, but the
difference of internal indicator optimization is too large. It
can also avoid premature saturation of some servers
because users who enter the environment first greedily
occupy server resources, making it difficult for users who
enter the environment later to obtain a reasonable alloca-
tion of computing resources in the local-edge-cloud collab-
orative environment.

5.8 The Impact of Various Environments

We considered the delay, energy consumption, and cost
performance of GoogleNet, ResNet, AlexNet, and VGG in a
local-edge-cloud collaborative environment, edge comput-
ing environment, and cloud computing environment,
respectively.

Fig. 12a shows the delay performance of the four DNN
tasks in the “delay-energy-cost” system under different
computing environments. We find that the delay

Fig. 7. The effect of weights on the optimization function.

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 651

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

performance is the best in the local-edge-cloud collaborative
environment and the worst in the cloud computing environ-
ment. This is because the cloud is too far away from the data

source, resulting in a higher transmission delay in the cloud
computing environment. In the edge computing environ-
ment, although the edge server is close to the data center,
the data transmission delay is low, but due to its limited

Fig. 8. The performance of coupling coordination degree under different indicator combinations.

Fig. 9. The performance of the total coupling coordination degree of dif-
ferent indicator combinations under GoogleNet, ResNet, AlexNet, and
VGG.

Fig. 10. The performance of the node balance degree of different indica-
tor combinations under GoogleNet, ResNet, AlexNet, and VGG.

652 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

computing power, it is difficult to support large-scale DNN
tasks. Therefore, offloading subtasks in a local-edge-cloud
collaborative environment that combines the advantages of
edge servers and cloud servers can achieve the best delay
performance.

Fig. 12b shows the performance of energy consumption
in the “delay-energy-cost” system. We find that there is a
trade-off between delay and energy consumption. The total
delay in the cloud computing environment is higher than
that in the edge computing environment. Compared with
edge servers, cloud servers usually have higher computing
power and lower execution delay. For the DNN tasks with a
large amount of calculation, considering the lower execu-
tion energy consumption in the cloud computing environ-
ment, lower total energy consumption can be obtained in
the cloud computing environment compared to the edge
computing environment. In a local-edge-cloud collaborative
environment, combining the respective advantages of the
cloud and the edge can optimize delay and energy con-
sumption at the same time.

Fig. 12c shows the cost performance of GoogleNet,
ResNet, AlexNet, and VGG in the “delay-energy-cost”

system. We hope to reduce the execution cost and transmis-
sion cost of the task on the basis of achieving low delay and
low energy consumption. As shown in Fig. 12c, compared
to the edge computing environment and the cloud comput-
ing environment, the system cost under the local-edge-
cloud collaborative environment is lower. We find that
cloud transmission costs are high, but execution costs are
low; edge transmission costs are low, but execution costs
are high. The local-edge-cloud collaborative environment
can combine the advantages of both edge and cloud, which
is more suitable for resource offloading.

5.9 Performance Under Different Server
Combinations

In this section, we will offload the DNN model in a local-
edge-cloud collaborative environment with different server
combinations.

In Figs. 13a and 13c, we find that as the number of edge
servers increases, the delay and cost become lower.However,
when the number of cloud servers is 0 and the edge servers
are limited, the delay and cost will be higher due to the

Fig. 11. The impact of coupling coordination degree and node balance degree on delay, energy, and cost.

Fig. 12. Comparison of delay, energy consumption and cost under different computing environments.

Fig. 13. The performance of delay, energy consumption, and cost in an offloading environment with various server combinations. b and d are the num-
bers of edge servers and cloud servers, respectively, b=d denotes the ratio between the edge servers and cloud servers, and inf denotes the number
of cloud servers is zero.

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 653

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

limitation of computing resources. From Figs. 13a and 13b,
we can clearly see that for DNN tasks with a large amount of
calculation, owing to the excessive weight of the delay, as the
number of edge servers increases, the subtasks will tend to be
offloaded to the edge servers to obtain the lower delay. At
this time, the execution energy consumption gradually
increases, so the total energy consumption also increases.

Furthermore, comparing the server ratio b=d 2 f0; 0:2; infg,
we find that when the server ratio b=d 2 f0:6; 1; 1:8g, by
appropriately increasing the edge servers, better offloading
performance can be achieved.

6 CONCLUSION

Based on the abundant resources of the cloud and the low
delay advantages of the edge, this paper studies the optimi-
zation of DNN partitioning and offloading in a local-edge-
cloud collaborative environment. In order to solve the prob-
lem of uncoordinated optimization of multiple indicators
and unreasonable allocation of computing resources, we
introduce coupling coordination indicator and node balance
indicator to achieve high-quality DNN partitioning and off-
loading. In this paper, the proposed DDPQN algorithm can
generate the optimal DNN task allocation with low energy
consumption, low delay, and low cost in a local-edge-cloud
collaborative environment, which effectively improves the
QoS. The experimental results show that the DDPQN algo-
rithm has better performance in optimizing DNN offloading
compared with the existing DRL algorithms. In future work,
we will consider a more realistic scenario, that is, imple-
menting dynamic offloading in a local-edge-cloud collabo-
rative environment. Besides, we will combine the Graph
Neural Network (GNN) for DNN offloading to further
accelerate DNN inference.

REFERENCES

[1] H. Wu, “Analysis of offloading decision making in mobile cloud
computing,” Ph.D. dissertation, Dept. Math. Comput. Sci., Freie
Universit€at Berlin, Berlin, Germany, 2015.

[2] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous con-
trol,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1329–1338.

[3] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation
in mobile-edge computation offloading: Completion time mini-
mization,” in Proc. IEEE Int. Symp. Inf. Theory, 2017, pp. 2513–2517.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Gener.
Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[5] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for block-
chain-enabled IoT-edge-cloud orchestrated computing,” IEEE
Internet Things J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[6] Q. Li, S. Wang, A. Zhou, X. Ma, fangchun yang, and A. X. Liu,
“QoS driven task offloading with statistical guarantee in mobile
edge computing,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2020.3004225.

[7] Q. Luo, C. Li, T. Luan, andW. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE
Trans. Services Comput., to be published, doi: 10.1109/
TSC.2021.3064579.

[8] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[9] D. Loghin, L. Ramapantulu, and Y. M. Teo, “Towards analyzing
the performance of hybrid edge-cloud processing,” in Proc. IEEE
Int. Conf. Edge Comput., 2019, pp. 87–94.

[10] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offload-
ing for mobile-edge computing with energy harvesting devices,”
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[11] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incre-
mental offloading of neural network computations from mobile
devices to edge servers,” in Proc. ACM Symp. Cloud Comput., 2018,
Art. no. 401–411.

[12] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accel-
erating deep neural network inference via edge computing,” IEEE
Trans Wireless Commun, vol. 19, no. 1, pp. 447–457, Jan. 2020.

[13] B. Qi, M. Wu, and L. Zhang, “A DNN-based object detection sys-
tem on mobile cloud computing,” in Proc. 17th Int. Symp. Commun.
Inf. Technologies, 2017, pp. 1–6.

[14] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computa-
tion offloading,” IEEEWireless Commun., vol. 27, no. 1, pp. 92–99, Feb.
2020.

[15] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1423–1431.

[16] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” SIGPLAN Not., vol. 52, no. 4, pp. 615–
629, Apr. 2017.

[17] H.Wang, G. Cai, Z. Huang, and F. Dong, “ADDA:Adaptive distrib-
uted DNN inference acceleration in edge computing environment,”
in Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst., 2019, pp. 438–445.

[18] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multiuser
dnn partitioning and computational resource allocation for collab-
orative edge intelligence,” IEEE Internet Things J., vol. 8, no. 12,
pp. 9511–9522, Jun. 2021.

[19] W. Ju, D. Yuan, W. Bao, L. Ge, and B. B. Zhou, “Deepsave: Saving
DNN inference during handovers on the edge,” in Proc. 4th ACM/
IEEE Symp. Edge Comput., 2019, pp. 166–178.

[20] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco,
“Distributed inference acceleration with adaptive DNN partition-
ing and offloading,” in Proc. Conf. Comput. Commun., 2020,
pp. 854–863.

[21] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 328–339.

[22] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed DNN collaborative computing approach for
mobile web augmented reality in 5G networks,” IEEE Netw.,
vol. 34, no. 2, pp. 254–261, Mar. 2020.

[23] Z. Chen, J. Hu, X. Chen, J. Hu, and G. Min, “Computation offload-
ing and task scheduling for DNN-based applications in cloud-
edge computing,” IEEE Access, vol. 8, pp. 115 537–115 547, 2020.

[24] C. Ding, A. Zhou, Y. Liu, R. Chang, and S. Wang, “A cloud-edge
collaboration framework for cognitive service,” IEEE Trans. Cloud
Comput., to be published, doi: 10.1109/TCC.2020.2997008.

[25] R. G. Pachecom and R. S. Couto, “Inference time optimization
using BranchyNet partitioning,” in Proc. IEEE Symp. Comput. Com-
mun., 2020, pp. 1–6.

[26] X. Tian, J. Zhu, T. Xu, and Y. Li, “Mobility-included DNN partition
offloading from mobile devices to edge clouds,” Sensors, vol. 21,
no. 1, Jan. 2021, Art. no. 229.

[27] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge
and cloud computing with distributed deep learning for smart city
internet of things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[28] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement
learning for stochastic computation offloading in digital twin
networks,” IEEE Trans. Ind. Inform., vol. 17, no. 7, pp. 4968–4977,
Jul. 2021.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[30] L. Huang, X. Feng, A. Feng, Y. Huang, and P. Qian, “Distributed
deep learning-based offloading for mobile edge computing
networks,” Mobile Netw. Appl., pp. 1–8, Nov. 2018, doi: 10.1007/
s11036-018-1177-x.

[31] X. Xu et al., “A computation offloading method over big data for
IoT-enabled cloud-edge computing,” Future Gener. Comput. Syst.,
vol. 95, pp. 522–533, Jun. 2019.

[32] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven
off-loading for DNN-based applications over cloud, edge, and
end devices,” IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5456–
5466, Aug. 2020.

654 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.3004225
http://dx.doi.org/10.1109/TSC.2021.3064579
http://dx.doi.org/10.1109/TSC.2021.3064579
http://dx.doi.org/10.1109/TCC.2020.2997008
http://dx.doi.org/10.1007/s11036-018-1177-x
http://dx.doi.org/10.1007/s11036-018-1177-x

[33] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3,
pp. 683–697,Mar. 2022.

[34] F. Dong andW. Li, “Research on the coupling coordination degree
of “upstream-midstream-downstream” of china’s wind power
industry chain,” J. Cleaner Prod., vol. 283, Feb. 2021, Art. no.
124633.

[35] D. Han, D. Yu, and Q. Cao, “Assessment on the features of cou-
pling interaction of the food-energy-water nexus in china,” J.
Cleaner Prod., vol. 249, 2019, Art. no. 119379.

[36] W. Ziyu, F. Nando, de, and L. Marc, “Dueling network architec-
tures for deep reinforcement learning,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1995–2003.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” in Proc. 4th Int. Conf. Learn. Representations, 2016.

[38] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep Q-learning mod-
el,” IEEE Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141, Jan.
2019.

[39] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforce-
ment learning-based task offloading framework for edge-cloud
computing,” IEEE Trans. Netw. Service Manag., vol. 18, no. 3,
pp. 3448–3459, Sep. 2021.

[40] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Commun. ACM,
vol. 60, no. 6, May 2017, Art. no. 84–90.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int. Conf.
Learn. Representations, 2015.

[44] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for
internet of things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9255–
9265, Oct. 2020.

[45] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iRAF: A
deep reinforcement learning approach for collaborative mobile
edge computing IoT networks,” IEEE Internet Things J., vol. 6, no.
4, pp. 7011–7024, Aug. 2019.

Min Xue received the bachelor’s degree from the
Qingdao University of Science and Technology,
Qingdao, China, in 2019. She is currently working
toward the master’s degree at the Center for
Applied Mathematics, Tianjin University, China.
Her research interests include deep learning,
deep reinforcement learning, cloud computing
and mobile edge computing.

Huaming Wu (Member, IEEE) received the BE
and MS degrees in electrical engineering from
the Harbin Institute of Technology, China, in 2009
and 2011, respectively, and the PhD degree with
the highest honor in computer science from Freie
Universit€at Berlin, Germany, in 2015. He is cur-
rently an associate professor with the Center for
Applied Mathematics, Tianjin University. His
research interests include model-based evalua-
tion, wireless and mobile network systems,
mobile cloud computing, edge computing and
complex networks.

Guang Peng received the BE and MS degrees in
electrical engineering from Xi’an Jiaotong Univer-
sity, China, in 2014 and 2016, respectively. He is
currently working toward the PhD degree at Freie
Universit€at Berlin, Germany. His research inter-
ests include intelligent computation, multi-objec-
tive optimization, mobile cloud/edge computing
and deep learning.

Katinka Wolter received the PhD degree from
Technische Universit€at Berlin, in 1999. She has
been assistant professor with Humboldt-Univer-
sity Berlin and lecturer with Newcastle University
before joining Freie Universit€at Berlin as a profes-
sor for dependable systems in 2012. Her
research interests include model-based evalua-
tion and improvement of dependability, security
and performance of distributed systems and net-
works. He is an associate member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XUE ETAL.: DDPQN: AN EFFICIENT DNN OFFLOADING STRATEGY IN LOCAL-EDGE-CLOUD COLLABORATIVE ENVIRONMENTS 655

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

