
An Efficient Application Partitioning
Algorithm in Mobile Environments

Huaming Wu ,Member, IEEE, William J. Knottenbelt , and Katinka Wolter

Abstract—Application partitioning that splits the executions into local and remote parts, plays a critical role in high-performancemobile

offloading systems. Optimal partitioning will allowmobile devices to obtain the highest benefit fromMobile Cloud Computing (MCC)

or Mobile EdgeComputing (MEC). Due to unstable resources in the wireless network (network disconnection, bandwidth fluctuation,

network latency, etc.) and at the service nodes (different speeds of mobile devices and cloud/edge servers, memory, etc.), static

partitioning solutions with fixed bandwidth and speed assumptions are unsuitable for offloading systems. In this paper, we study how

to dynamically partition a given application effectively into local and remote parts while reducing the total cost to the degree possible.

For general tasks (represented in arbitrary topological consumption graphs), we propose aMin-Cost Offloading Partitioning (MCOP)

algorithm that aims at finding the optimal partitioning plan (i.e., to determine which portions of the applicationmust run on themobile

device and which portions on cloud/edge servers) under different cost models andmobile environments. Simulation results show that the

MCOP algorithm provides a stable methodwith low time complexity which significantly reduces execution time and energy consumption

by optimally distributing tasks betweenmobile devices and servers, besides it adapts well to mobile environmental changes.

Index Terms—Mobile cloud computing, mobile edge computing, communication networks, offloading, application partitioning

Ç

1 INTRODUCTION

Alongwith the development ofMobile CloudComputing
(MCC) and Mobile Edge Computing (MEC) strategies

computation offloading is becoming a promising method to
reduce task execution time and prolong the battery life of
mobile devices.When comparing both, MEC can offer signifi-
cantly lower latency but has less computational and storage
resources than MCC [1]. The main idea of computation off-
loading is to migrate heavy computation frommobile devices
to resourceful cloud/edge servers from where the result are
then received viawireless networks. Offloading is an effective
way to overcome constraints in resources and functionalities
of mobile devices since it can release them from intensive
processing [2].

Offloading all computation components of an application
to the remote cloud or nearby edge server is not always neces-
sary or effective. Especially for some complex applications
(e.g., QR-code recognition, online social applications, health
monitoring using body sensor networks) that can be divided
into a set of independent parts, a mobile device should judi-
ciously determine whether to offload computation and which
portion of the application should be offloaded to the server.

Offloading decisions must be taken for all parts, and the deci-
sionmade for one part may depend on the one for other parts.
As mobile computing increasingly interacts with the cloud, a
number of approaches have been proposed, e.g., MAUI [3]
and CloneCloud [4], both systems that offload some parts of
the mobile application execution to the cloud. To achieve
good performance, they particularly focus on a specific appli-
cation partitioning problem, i.e., to decide which parts of an
application should be offloaded to powerful servers in a
remote cloud and which parts should be executed locally on
the mobile device such that the total execution cost is mini-
mized. Through partitioning, a mobile device can benefit
most from offloading. Thus, partitioning algorithms play a
critical role in high-performance offloading systems.

The main costs for mobile offloading systems are the
computational cost for local and remote execution, respec-
tively, and the communication cost due to the extra commu-
nication between the mobile device and the cloud/edge
server. Program execution can naturally be described as a
graph in which vertices represent computation that are
labeled with the computation costs and edges reflect the
sequence of computation labeled with communication costs
[5] when computation is carried out in different places. By
partitioning the vertices of a graph, the calculation can be
divided among processors of local mobile devices and serv-
ers. Traditional graph partitioning algorithms (e.g., [6], [7],
[8]) cannot be applied directly to the mobile offloading sys-
tems, because they only consider the weights on the edges of
the graph, neglecting the weight of each node. Our research
is situated in the context of resource-constrainedmobile devi-
ces, in which there are often multi-objective partitioning cost
functions subject to variable vertex cost, such as minimizing
the total response time or energy consumption on mobile

� H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China. E-mail: whming@tju.edu.cn.

� W.J. Knottenbelt is with the Department of Computing, Imperial College
London, London SW7 2AZ, United Kingdom. E-mail: wjk@doc.ic.ac.uk.

� K. Wolter is with the Institut f€ur Informatik, Freie Universit€at Berlin, Berlin
14195, Germany. E-mail: katinka.wolter@fu-berlin.de.

Manuscript received 21 May 2018; revised 19 Dec. 2018; accepted 1 Jan. 2019.
Date of publication 9 Jan. 2019; date of current version 12 June 2019.
(Corresponding author: Huaming Wu.)
Recommended for acceptance by D. Nikolopoulos.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2891695

1464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-8490-1011
https://orcid.org/0000-0002-8490-1011
https://orcid.org/0000-0002-8490-1011
https://orcid.org/0000-0002-8490-1011
https://orcid.org/0000-0002-8490-1011
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0002-8630-0869
mailto:
mailto:
mailto:

devices by offloading partial workloads to a server through
linkswith fluctuating reliability.

With respect to the conference paper [9], the main contri-
butions of this paper can be concluded as follows:

� We develop a dynamic version of the partitioning
algorithm, that is able to determine the optimal divi-
sion into the classes of jobs for remote and for local
execution fast and repeatedly whenever system
parameters change [10]. We further apply the pro-
posed MCOP algorithm to general topology either for
MCC-based offloading orMEC-based offloading.

� Offloading decisions are based on the resource con-
sumption (CPU speed, network bandwidth, transmis-
sion data size and speed of the cloud/edge server)
[11]. We construct a weighted resource consumption
graph (WCG) and further derive a novel min-cost
offloading partitioning (MCOP) algorithm designed
especially for mobile offloading systems.

� We include the developed algorithms into a workflow
of an environment-adaptive application partitioning
processes which considers network reliability, real-
time adaptability, and partitioning efficiency.

� We consider profiling for adaptive partitioning and
use our implementation for experiments. We provide
three profilers, a program profiler, a network profiler, and
an energy profiler to collect information about the
device and network characteristics, which are critical
parts of the partitioning algorithm.

The remainder of this paper is organized as follows. We
review related work in Section 2. Section 4 explores the par-
titioning challenges and processes, and describes profilers
that are used for information collection. Section 3 introduces
the partitioning models such as topology, optimization and
partitioning cost models. An optimal partitioning algorithm
for arbitrary topology is proposed and studied in Section 5.
Section 6 gives some evaluation and simulation results.
Finally, the paper is summarized in Section 7.

2 RELATED WORK

Offloading becomes an attractive solution for meeting
response time requirements and extending battery lifetime on
mobile systems as applications become increasingly complex
[12]. Karthik et al. [13] argued that offloading could poten-
tially save energy and reduce execution time for mobile users,
but not all applications are energy-efficient and time-saving
when they are migrated to the cloud. It depends on whether
the computation cost saved due to offloading outperforms the
extra communication cost. A large amount of communication
combinedwith a small amount of computation should prefer-
ably be performed locally on the mobile device, while a small
amount of communication with a large amount of computa-
tion should preferably be executed remotely.

Many research efforts have been devoted to computation
partitioning in mobile computing, in order to shorten
response time or to save energy.

Compared with offloading a whole application to the
cloud, a partitioning scheme is able to achieve a fine granular-
ity for computation offloading [14]. A partitioning algorithm
as introduced in [15] aims at reducing the response time of

tasks on mobile devices. It finds the offloading and integra-
tion points on a sequence of calls by depth-first search and a
linear time search scheme. It can achieve low user-perceived
latency while largely reducing the partitioning computation
on cloud. Some application partitioning solutions like [16],
[17] heavily depend upon programmers and middleware to
partition the applications, which limits their applicability.
Hence, automatic application partitioning like [18], [19]
attracts more attention. The offloading inference engine pro-
posed in [18] can adaptively make decisions at runtime,
dynamically partition an application and offload parts of the
application execution to a powerful nearby surrogate.

Partitioning technologies were adopted to identify off-
loaded parts for energy saving [3], [20], [21]. The energy cost
of each function of the application was profiled and accord-
ing to the profiling result a cost graph was constructed, in
which each node represents a function to be performed and
each edge indicated the data to be transmitted. Finally, the
server parts were executed on remote servers for reducing
the energy consumption. CloneCloud [4] uses a combination
of static analysis and dynamic profiling to partition applica-
tions automatically at a fine granularity while optimizing the
energy usage for a target computation and communication
environment. However, this approach only considers limited
input/environmental conditions in the offline pre-processing
and needs to be bootstrapped for every new application built
[22]. Due to frequent bandwidth fluctuations in the mobile
environment, static application partitioning like [23], [24]
cannot work well on mobile platforms. The availability of
resources may change at the service nodes (available CPU
power, memory, file cache, etc.) and at the wireless network
(bandwidth, network latency, etc.) [25]. Thus, optimal parti-
tioning decisions should be made dynamically at runtime to
adapt to different operating conditions. A framework was
designed in [26] for runtime computation repartitioning in
dynamic mobile cloud environments to solve the perfor-
mance degradation issue arising from dynamic network and
device status, however it neglects the energy consumption of
the mobile device. In [27], the offloading operation is mod-
eled via a cost graph, where finding the best solution for off-
loading is equivalent to finding the constrained shortest path
in this linear graph. Besides considering the linear call graph
for the program, a mobile application is modeled as a general
topology in [28], consisting of a set of fine-grained tasks. Each
task within the application can be either executed on the
mobile device or on the cloud. They tried to find the opti-
mized path that can obtainminimum energy or delay cost.

This work was motivated by the above work and we
investigate the partitioning problem in a dynamic environ-
ment, in which the network has disconnection and band-
width fluctuation, aiming at the different objectives, e.g.,
minimum response time, minimum energy consumption,
and minimum of the weighted sum of response time and
energy. We explicitly considered the mobile nature of both
user and application behaviors and consider how dynamic
partitioning can address these heterogeneity problems by
using the bandwidth as a variable. Thus, we have greatly
extended prior work by considering dynamic partitioning of
applications between weak devices and cloud/edge servers,
in order to better support applications running on diverse
devices in different environments.

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1465

3 SYSTEM MODEL

In this section, we will discuss the assumptions made in this
paper, how the weighted consumption graphs (WCGs) for
different types of applications are constructed and how cost
models are defined.

3.1 Classification of Topologies

Flexible partitioning granularity-based applications are not
limited to a specific form. Previous work considers applica-
tion partitioning at different levels of granularity: classes
[29], objects [30], methods [3], components [14], [31], and
threads [4].Without loss of generality, we refer to application
tasks in this paper. Application developers can choose the
appropriate partition granularity according to their different
applications.

The construction of WCGs is essential for application par-
titioning. A mobile application can be represented as a list of
fine-grained tasks, combined to build different topologies as
depicted in Fig. 1, where each node denotes an application
task, executed either locally at the mobile side or offloaded
onto the server side for remote execution, and each edge
denotes the data dependency between tasks [28]. Input/out-
put data of an application that is transferred between the
mobile device and the server includes relevant data and code
(e.g., application data like image/video data, mobile system
settings, parameters, program codes, intermediate states and
return values of method invocations) involved in the task.

a) Only one active node: representing an entire applica-
tion (without partitioning). Such a topology is often
adopted by previous full offloading schemes such as
[4], [32], [33], [34], which can also be viewed as an
example of Software as a Service. In this case the whole
application is migrated to a remote server involving
complete transfer of code and program state to the
server [35]. The main drawback of this solution
includes inflexibility and coarse granularity.

b) Linear topology: representing a sequential list of fine-
grained tasks [15]. Each task is sequentially executed,
with output data generated by one task as the input
of the next one [36].

c) Loop-based topology: a loop-based application is one in
which most of the functionality is given by iterating
an execution loop, such as all the online social appli-
cations, which we model with a graph that consists
of a cycle [37].

d) Tree-based topology: representing a tree-based hierar-
chy of tasks [35]. The node at the top of the tree is the
application entry node (i.e., the main module).

e) Mesh-based topology: representing a lattice-based topol-
ogy of tasks, e.g., a Java example of face recognition as
depicted in [30].

When compared with the scheme that offloads the whole
application (i.e., Fig. 1a) to the server, an application partition-
ing scheme is able to achieve a fine granularity for computa-
tion offloading. This is done by partitioning a topological
consumption graph (CG) between local and remote execu-
tion. Different partitions can lead to different costs, and the
total cost incurred due to offloading depends onmultiple fac-
tors, such as device platforms, networks, clouds, and work-
loads. Therefore, the application may have different optimal
partitions for different mobile environments and workloads.

3.2 Weighted Consumption Graphs

There are two types of cost in offloading systems: one is
computational cost of running an application tasks locally
or remotely (including memory cost, processing time cost
etc.) and the other is communication cost for the application
tasks’ interaction (associated with movement of data and
requisite messages). Even the same task can have different
costs on the mobile device and servers in terms of execution
time and energy consumption. As cloud/edge servers usu-
ally process much faster than mobile devices having a pow-
erful configuration, energy can be saved and performance
can be improved when offloading part of the computation
to remote servers [38]. However, when vertices are assigned
to different sides, the interaction between them leads to
extra communication costs. Therefore, we try to find the
optimal assignment of vertices for graph partitioning and
computation offloading by trading off the computational
cost against the communication cost.

Call graphs are widely used to describe data dependencies
within a computation, where each vertex represents a task
and each edge represents the calling relationship from the cal-
ler to the callee. Fig. 2a shows a CG example consisting of six
tasks [16]. The computation costs are represented by vertices,
while the communication costs are expressed by edges. We
depict the dependency of application tasks and their corre-
sponding costs as a directed acyclic graph G ¼ ðV;EÞ, where
the set of vertices V ¼ ðv1; v2; . . . ; vNÞ denotes N application
tasks and an edge eðvi; vjÞ 2 E represents the frequency of
invocation and data access between nodes vi and vj, where
vertices vi and vj are neighbors. Each task vi is characterized
by five parameters:

� type: offloadable or unoffloadable task.
� mi: thememory consumption of vi on amobile device

platform,
� ci: the size of the compiled code of vi,
� inij: the data size of input from vi to vj,
� outji: the data size of output from vj to vi.
We further construct a WCG as depicted in Fig. 2b depen-

ding on profiling techniques. Each vertex v 2 V is annotated

with two cost weights: wwðvÞ ¼< wmobileðvÞ; wserverðvÞ > ,

Fig. 1. Task-flow graphs for different topologies.

1466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

where wmobileðvÞ and wserverðvÞ represent the computation cost
of executing task v locally on the mobile device and remotely
on the server, respectively. Each vertex is assigned one of the
values in the tuple depending on the partitioning result of the
resulting application graph [39]. The edge setE � V � V rep-
resents the communication cost among tasks. The weight of
an edgewðeðvi; vjÞÞ is denoted as

wðeðvi; vjÞÞ ¼ inij

Bupload
þ outij
Bdownload

; (1)

which is the communication cost of transferring the input
and return states when the tasks vi and vj are executed on
different sides. The communication cost closely depends on
the network bandwidth (upload Bupload and download
Bdownload) and reliability as well as the amount of transferred
data.

A candidate offloading decision is described by one cut
in the WCG, which separates the vertices into two disjoint
sets, one representing tasks that are executed on the mobile
device and the other one implying tasks that are offloaded
to the remote server [40]. Hence, taking the optimal offload-
ing decision is equivalent to partitioning the WCG such that
an objective function is minimized.

The red dotted line in Fig. 2b is one possible partition-
ing cut, indicating the partitioning of computational
workload in the application between the mobile side and
the server side. Vm and Vs are sets of vertices, where Vm is
the mobile set in which tasks are executed locally at the
mobile side and Vs is the server set in which tasks
are directly offloaded to the server. We have Vm \ Vs ¼ ;
and Vm [Vs ¼ V . Further, Ecut is the edge set in which the
graph is cut into two parts.

3.3 Cost Models

Mobile application partitioning aims at finding the optimal
partitioning solution that leads to the minimum execution
cost in order to make the best tradeoff between time/energy
savings and transmission costs/delay.

The optimal partitioning decision depends on user
requirements/expectations, device information, network
bandwidth, and the application itself. Device information
includes the execution speed of the device and theworkloads
on it when the application is launched. If the device com-
putes very slowly and the aim is to reduce execution time, it

is better to offload more computation to the cloud/edge
server. However, network bandwidth affects data transmis-
sion for remote execution. If the bandwidth is very high, the
cost in terms of data transmission will be low. In this case, it
is better to offload more computation to the server.

The partitioning decision is made based on the cost esti-
mation (computational and communication costs) before
the program execution. On the basis of Fig. 2b, we can for-
mulate the partitioning problem as

Ctotal ¼
X
v2V

Iv � wmobileðvÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

mobile

þ
X
v2V

ð1� IvÞ � wserverðvÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

server

þ

X
eðvi;vjÞ2E

Ie � wðeðvi; vjÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

communication

;
(2)

where the total cost is the sum of computational costs
(mobile and server) and communication costs of cut affected
edges.

The server node and the mobile device node must belong
to different partitions. One possible solution for this parti-
tioning problem will give us an arbitrary tuple of partitions
from the vertices set < Vm; Vs > and the cut of edge set
Ecut in the following way:

Iv ¼ 1; if v 2 Vm

0; if v 2 Vs

�
and Ie ¼ 1; if e 2 Ecut

0; if e =2 Ecut
:

�
(3)

We seek to find an optimal cut: IImin ¼ �
Iv; IejIv; Ie 2

f0; 1g� in the WCG such that some application tasks are exe-
cuted on the mobile side and the remaining ones on the
cloud side, while satisfying the general goal of a partition:
IImin ¼ argminII CtotalðIIÞ. The optimal cut maximizes or min-
imizes an objective function and while satisfying the
resource constraints of a mobile device. The dynamic execu-
tion configuration of an elastic application can be decided
based on different objectives with respect to response time
and energy consumption which have been saved for parallel
use. Partitioning is performed only when it is beneficial, but
different partitionings are derived beforehand. For the over-
all cost estimate the cost estimation of running each applica-
tion task on the mobile device and edge/cloud server is
needed. Offloading makes sense only if the speedup of the
server covers the extra communication costs.

Fig. 2. Consumption Graph (CG) and Weighted Consumption Graph (WCG).

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1467

The communication time and energy costs for the mobile
device will vary according to the amount of data to be trans-
mitted and the wireless network conditions. According to (2)
the dynamic execution configuration of an elastic application
can be decided based on selecting on out of different objec-
tives with respect to response time and energy consumption
which have been saved. The offloading objectives of a task
may change due to a change in environmental conditions.

3.3.1 Minimum Response Time

The communication cost depends on the size of data trans-
fer and the network bandwidth, while the computation
time has an impact on the computation cost. If the minimum
response time is selected as objective function, we can calcu-
late the total time spent due to offloading as

TtotalðIIÞ ¼
X
v2V

Iv � Tm
v

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mobile

þ
X
v2V

ð1� IvÞ � Ts
v

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
server

þ
X
e2E

Ie � Ttr
e

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
communication

; (4)

where Tm
v ¼ F � Ts

v is the computation time of task v on the
mobile device when it is executed locally; F is the speedup
factor, which is the ratio of the execution speed of the server
with that of the mobile device (or the inverse ratio of their
mean task completion times). Usually, the computation
capacity of a server is higher than that of a mobile device and
we normally have F > 1; Ts

v is the computation time of task
v on the cloud/edge server when it is offloaded; Ttr

e ¼ Dtr
e =B

is the communication time between the mobile device and
the cloud; Dtr

e is the amount of data that is transmitted and
received; finally, B is the current wireless bandwidth
weighedwith the reliability of the network.

In this scenario, the offloading decision engine then selects
the best partitioning candidate that minimizes the total
response time. The aimof this costmodel is to find the optimal
application partitioning: IImin ¼ �

Iv; IejIv; Ie 2 f0; 1g�, which

satisfies IImin ¼ argminII TtotalðIIÞ. For a given application and
a mobile device the optimal partitioning result also changes
according to different wireless network bandwidth and
speedup factor of the server (i.e., different relative mean task
completion time ofmobile device and server).

The amount of response time which is saved by the parti-
tioning scheme compared to the computation without off-
loading is calculated as

TsaveðIIÞ ¼ Tmobile � TtotalðIIÞ
Tmobile

� 100%; (5)

where Tmobile ¼
P

v2V Tm
v is the local time cost when all the

application tasks are executed locally on the mobile device.

3.3.2 Minimum Energy Consumption

If the minimum energy consumption is chosen as the objec-
tive function, we can calculate the total energy consumed
with offloading as

EtotalðIIÞ ¼
X
v2V

Iv � Em
v

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mobile

þ
X
v2V

ð1� IvÞ � Ei
v

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
idle

þ
X
e2E

Ie � Etr
e

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
communication

; (6)

where Em
v ¼ pm � Tm

v is the energy consumed by task v on
the mobile device when it is executed locally; Ei

v ¼ pi � Tc
v is

the energy consumed by task v on the mobile device when
it is offloaded to the server; Ee ¼ ptr � Ttr

e is the energy spent
on the communication between the mobile device and the
server; pm, pi and ptr are the compute power of the mobile
device for computing while being idle and for data transfer,
respectively.

In this scenario the offloading decision engine then
selects the best partitioning plan that minimizes the parti-
tioning cost of energy. The aim is to find the optimal appli-
cation partitioning: IImin ¼ �

Iv; IejIv; Ie 2 f0; 1g�, which

satisfies: IImin ¼ argminII EtotalðIIÞ.
The saved energy when compared to the scheme without

offloading is

EsaveðIIÞ ¼ Emobile �EtotalðIIÞ
Emobile

� 100%; (7)

where Emobile ¼
P

v2V Em
v is the local energy cost when all

tasks are executed locally on the mobile device.

3.3.3 Minimum of the Weighted Sum of Time and

Energy

If we combine both the response time and energy consump-
tion [41], we can design the cost model for partitioning as
follows:

WtotalðIIÞ ¼ v � TtotalðIIÞ
Tmobile

þ ð1� vÞ � EtotalðIIÞ
Emobile

; (8)

where 0 � v � 1 is a weighting parameter used to share the
relative importance between the response time and energy
consumption. Large v favors response time while small v
favors energy consumption [42]. In some special cases perfor-
mance can be traded for power consumption and vice versa
[43], therefore we can use the v parameter to express prefer-
ences for different applications in such special cases. TtotalðIIÞ
and EtotalðIIÞ are the response time and energy consumption
with the partitioning solution II, respectively. To eliminate
the impact of different scales of time and energy, they are
divided by the local costs. If TtotalðIIÞ=Tmobile is less than 1, the
partitioning will increase the power consumption of the
application. Similarly, if EtotalðIIÞ=Emobile is less than 1, it will
reduce the performance of the application, i.e., increase the
response time of the application.

In this scenario, the offloading decision engine then selects
the best partition plan that minimizes the partitioning cost of
weighted sum of time and energy. Its aim is to find the opti-
mal application partitioning: IImin ¼

�
Iv; IejIv; Ie 2 f0; 1g�,

while satisfying: IImin ¼ argminII WtotalðIIÞ.
The saved weighted sum of time and energy in the parti-

tioning scheme compared to the scheme without offloading
is calculated as

WsaveðIIÞ ¼ v�Tmobile � TtotalðIIÞ
Tmobile

þ ð1� vÞ � Emobile � EtotalðIIÞ
Emobile

:

(9)

1468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

4 PARTITIONING PROBLEMS

Application partitioning is very important for designing an
adaptive, cost-effective, and efficient offloading system.
Some critical issues concerning the partitioning problem
include:

� Weighting: when choosing an application task to off-
load, we need to scale the weights of each application
task regarding its resource utilization, such as mem-
ory, processing time, and bandwidth utilization [44].
The weights can vary for different mobile devices and
in different execution environments. A communica-
tion overhead is introduced by the remote communi-
cation between a mobile device and a cloud/edge
server.

� Real-Time Adaptability: partitioning algorithms should
be adaptive to network and device changes. For
example, an optimal partition for a high-bandwidth
low-latency network and low-capacity client might
not be a good partition for a high-capacity client with
a bad network connection. Since the network condi-
tion is only measurable at runtime, the partitioning
algorithm should be a real-time online process [15].

� Partitioning Efficiency: making partitioning decisions
for simple applications (e.g., an alarm clock) at real-
time is not difficult, but for some complex applica-
tions (e.g., speech/face recognition) which contain a
large number of methods [15], a highly efficient algo-
rithm is required to perform real-time partitioning.

4.1 Classification of Application Tasks

Different applications emerge in a mobile device according
to some process and each consists of several tasks. Since not
all the application tasks are suitable for remote execution,
they need to be weighed and distinguished as:

� Unoffloadable Tasks: some tasks should be uncondi-
tionally executed locally on the mobile device, either
because transferring relevant information would take
tremendous time and energy or because these tasks
must access local components (e.g., camera, GPS,
user interface, accelerometer or other sensors) [3].
Tasks that might cause security issues when executed
in a different place should also not be offloaded (e.g.,
e-commerce). Local processing consumes the battery
power of the mobile device, but there are no commu-
nication costs or communication delays [45] involved.

� Offloadable Tasks: some application components are
flexible tasks that can be handled either locally on the
processor of themobile device, or on the remote cloud
server or nearby edge server. Many tasks fall into this
category, and the offloading decision depends on
whether the communication costs outweigh the dif-
ference between local and remote costs or not [12].

For this work we assume that tasks have been annotated
with their type by the programmer. For unoffloadable compo-
nents non offloading decisions must be taken. However, for
offloadable ones, since offloading all the application tasks to
the cloud/edge server is not necessary or effective under all
circumstances, it is worth considering what should be exe-
cuted locally on the mobile device and what should be

offloaded to the server for remote execution. This decision is
taken based on available networks, network response time or
energy consumption of the mobile device versus the remote
server. The mobile device has to take the offloading decision
based on the result of a dynamic optimization problem.

4.2 Profiling

Building the WCG (the weighted call graph) is actually the
most critical part of the whole technique. It closely depends
on profiling, i.e., the process of gathering the information
required to make good offloading decisions. Such informa-
tion may consist of the computation and communication
costs of the execution units (program profiler), the network
status (network profiler), and themobile device specific char-
acteristics such as energy consumption (energy profiler).
Profilers are needed to collect information about the device
and network characteristics, which is a critical part of the
partitioning algorithm: the more accurate and lightweight
they are, the more correct decisions can be made, and the
lower overhead is introduced [22].

4.2.1 Program Profiler

A program profiler (static or dynamic) collects characteris-
tics of applications, e.g., the execution time, the memory
usage and the size of data.

Static analysis obtains the control flow graph of an appli-
cation by analyzing the bytecode with nodes representing
objects and edges representing relations between objects.We
can get all the objects and the relations between them based
on method invocations by traversing the graph. Many tools
and frameworks have been developed to generate the call
graph of a given application, e.g., Spark [46], Cgc [7], and
Soot [47].

Dynamic profiling is adopted to obtain weights of the
nodes and edges. Since approximate information exists on the
execution time per bytecode instruction of a Java program
the execution time of objects can be estimated by the counting
the corresponding bytecode instructions [48]. Data transmis-
sion between tasks includes parameters and return values of
method invocations. Combining Java bytecode rewritingwith
pretreatment information, we can estimate the execution time
for each task (node weight) and the transmission time for
each invocation (edge weight). These weights can be dynami-
cally updated according to the varying processing capability
of the cloud/edge server and thewireless bandwidth.

4.2.2 Network Profiler

A network profiler collects information about the status and
bandwidth of the available wireless connections. It measures
the network characteristics upon initialization and continu-
ously monitors environmental changes. Network through-
put can be estimated by measuring the time duration for
sending a certain amount of data as in [4]. Due to the mobile
nature of the setup the status of a wireless connection could
frequently change (e.g., user moves to other location). Fresh
information about a wireless connection is critical for the
optimizer to take correct offloading decisions.

The profiler tracks several parameters for the WiFi and
3G interfaces, including the number of packets transmitted
and received per second, and receiving and sending data

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1469

rate [22]. These measurements enable better estimation of
the current network performance. We can use the tool
Speedtest1 to measure the mobile network bandwidth.

4.2.3 Energy Profiler

There are twoways to estimate energy consumption, namely,
software and hardware monitors. For example, MAUI [3]
uses a powermeter attached to the battery of a smartphone to
build an energy profile. Power Monitor (e.g., Monsoonmoni-
tor) is a device that measures energy consumption when data
is transmitted from the mobile device to the cloud/edge
server based on its power supply to the mobile device.

There are many powerful software-based tools to mea-
sure the energy consumption of mobile applications. For
example, PowerBooter [49], PowerTutor [50], AppScope
[51] or Trepn Profiler [52], which are application frame-
works that provide real-time power consumption estimates
for power-intensive hardware components including CPU
and LCD display as well as GPS, audio, WiFi and cellular
interfaces [53]. Although these frameworks do not give as
accurate results as a hardware power monitor, their results
are still reasonable and do provide useful values because
they provide detailed energy consumption information for
each hardware component.

4.3 Application Partitioning Processes

Under the the above mentioned challenges of dynamic
application, network and energy requirements the work-
flow of our environment-adaptive application partitioning
processes is shown in Fig. 3.

The workflow starts with profiling an application that
can be split into multiple tasks. Static analysis and dynamic
profiling are applied to the software [30]. We then construct
a WCG of the mobile application as shown in Fig. 2b. Based
on cost models, an elastic partitioning algorithm is pro-
posed to make a proper application partitioning.

By using an elastic partitioning algorithm we obtain pre-
liminary partitioning results for response time or energy

optimization. During the execution process of the applica-
tion, if the mobile environment changes, and these changes
meet or exceed a certain threshold, the application graphwill
be re-partitioned according to the newparameters. Therefore,
we can ultimately achieve the condition-aware and environ-
ment-adaptive elastic partitioning. In the context of a mobile
environment the decision process includes mobile comput-
ing resources inside the device, a battery level, CPU,memory,
etc., but also includes an external mobile environment, such
as the network connection and the server speed. After parti-
tioning our workflow then automatically offloads the distrib-
uted application tasks that require remote execution to a
cloud/edge server and executes the remaining tasks locally
on the mobile device according to the partitioning results.

5 THE PROPOSED PARTITIONING ALGORITHM FOR

OFFLOADING

In this section, we introduce themin-cost offloading partition-
ing algorithm for WCGs of arbitrary topology. The MCOP
algorithm is executed on the mobile device. It takes aWCG as
input which represents the operations/calculations of an
application as the nodes and the communication between
(e.g., function calls) them as the edges. Each node has two
costs: first, the cost of performing the operation locally (e.g.,
on the mobile device) and, second, the cost of performing it
elsewhere (e.g., on the edge/cloud server). The weight of the
edges is the communication cost to offload the computation.
It is assumed that the communication cost between operations
in the same location is negligible. The result contains informa-
tion about the costs and reports which operations should be
performed locally and which should be offloaded.

5.1 Algorithmic Process

The MCOP algorithmic process can be divided into the fol-
lowing two steps:

1) Unoffloadable Vertices Merging: An unoffloadable ver-
tex is the one that has special features making it
unable to be migrated outside of the mobile device
and thus it is located only in the unoffloadable parti-
tion. In addition to this, we can choose any task to be
executed locally according to our preferences or
other reasons. Then all vertices that are not going to
be migrated to the server are merged into one vertex
that is selected as the source vertex. By ‘merging’,
we mean that these nodes are coalesced into one,
whose weight is the sum of the weights of all merged
nodes. Let G represent the original graph after all the
unoffloadable vertices are merged.

2) Coarse Partitioning: The target of this step is to coarsen
G to the coarsest graph GjV j. To coarsen means to
merge two nodes and reduce the node count by one.
Therefore, the algorithm has jV j � 1 phases. In each
phase i (for 1 � i � jV j � 1), the cut value, i.e., the
partitioning cost in a graphGi ¼ ðVi; EiÞ is calculated.
Giþ1 arises from Gi by merging “suitable nodes”,
where G1 ¼ G. The partitioning result is the mini-
mum cut among all the cuts in an individual phase i
and the corresponding task lists for local and remote
execution. Furthermore, in each phase i of the coarse
partitioning five steps are performed:

Fig. 3. Flowchart of an application partitioning process.

1. A free connection analysis tool, which shows real-time download
and upload graphs, stores results both locally and on the Internet for
sharing, http://www.speedtest.net/

1470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

http://www.speedtest.net/

a) Start with A = {a}, where a is usually an unof-
floadable node in Gi.

b) Iteratively add the vertex to A that is the
most tightly connected to A.

c) Let s, t be the last two vertices (in order) added
to A.

d) The graph cut of phase i is (Vinftg; ftg).
e) Giþ1 arises from Gi by merging vertices s and t.

5.2 Merging Function

The merging function is used to merge two vertices into one
new vertex, which is implemented as in Algorithm 1. If
nodes s; t 2 V (s 6¼ t), then node s and node t can be merged
as follows:

1) Nodes s and t are replaced by a new node xs;t. All
edges that were previously incident to s or t are now
incident to xs;t (except the edge between nodes s and
twhen they are connected).

2) Multiple edges are resolved by adding edge weights.
The weights of the node xs;t are resolved by adding
the weights of s and t.

For example, we can merge nodes 2 and 4 in Fig. 4.

Algorithm 1. TheMerging Function

//This function takes s and t as vertices in the given graph and
merges them into one
Function: G0 =MergeðG;w; s; tÞ
Input: G: the given graph, G ¼ ðV;EÞ

w: the weights of edges and vertices
s; t: two vertices in previous graph that are to be merged

Output: G0: the new graph after merging two vertices
1: xs;t (s [t
2: for all nodes v 2 V do
3: if v 6¼ fs; tg then
4: wðeðxs;t; vÞÞ ¼ wðeðs; vÞÞ þ wðeðt; vÞÞ
5: //adding weights of edges
6: ½wmobileðxs;tÞ; wserverðxs;tÞ� ¼ ½wmobileðsÞ þ

mobileðtÞ; wserverðsÞ þ wserverðtÞ�
7: //adding weights of nodes
8: E (E [eðxs;t; vÞ //adding edges
9: end if
10: E0 (Enfeðs; vÞ; eðt; vÞg //deleting edges
11: end for
12: V 0 (V nfs; tg [xs;t

13: return G0 ¼ ðV 0; E0Þ

5.3 MinCutPhase Function

The MinCutPhase function is illustrated in Algorithm 2. The
contribution of this algorithm is to make it easy to select the

next vertex to be added to the set A, that isMost Tightly Con-
nected Vertex (MTCV), which is defined as the vertex whose
DðvÞ into A is maximal, where DðvÞ ¼ wðeðA; vÞÞ � ½wmobile

ðvÞ � wserverðvÞ�. The total cost from partitioning is

CcutðA�t;tÞ ¼ Cmobile �
h
wmobileðtÞ � wserverðtÞ

i

þ
X
v2Ant

wðeðt; vÞÞ; (10)

where Cmobile ¼ P
v2V wmobileðvÞ is the sum of all local costs

and the cut value CcutðA�t;tÞ is the partitioning cost,

wmobileðtÞ � wserverðtÞ is the gain of node t from offloading,
and

P
v2Ant wðeðt; vÞÞ is the sum of all extra communication

costs due to offloading.

Algorithm 2. TheMinCutPhase Function

//This function performs each phase of the partitioning
algorithm
Function: ½cutðA� t; tÞ; s; t�=MinCutPhaseðGi; wÞ
Input:Gi: the graph in Phase i, i.e., Gi ¼ ðVi; EiÞ

w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept
on one side of the cut

Output:s, t: the last two vertices that were added to A
cutðA� t; tÞ: the cut between fA� tg and ftg in phase i

1: a (arbitrary vertex of Gi

2: A (fag
3: while A 6¼ Vi do
4: max ¼ �1
5: vmax ¼ null
6: for v 2 Vi do
7: if v =2 A then
8: //Performance gain by offloading task v to the server
9: DðvÞ (wðeðA; vÞÞ � ½wmobileðvÞ � wserverðvÞ�
10: //Find the vertex most tightly connected to A
11: ifmax < DðvÞ then
12: max ¼ DðvÞ
13: vmax ¼ v
14: end if
15: end if
16: end for
17: A (A [fvmaxg
18: a (MergeðG;w; a; vmaxÞ
19: end while
20: t (the last vertex (in order) added to A
21: s (the second last vertex (in order) added to A
22: return cutðA� t; tÞ

Theorem 1. cutðA� t; tÞ is always a minimum s� t cut in the
current graph, where s and t are the last two vertices added in

Fig. 4. An example of merging two nodes.

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1471

this phase, the s� t cut separates nodes s and t to two different
sides.

The run of each MinCutPhase function orders the vertices
of the current graph linearly, starting with a and endingwith
s and t, according to the order of addition intoA. We want to
show thatCcutðA�t;tÞ � CcutðHÞ for any arbitrary s� t cutH.

Lemma 1. Define H as an arbitrary s� t cut, Av as a set of ver-
tices added to A before v, and Hv as a cut of Av [fvg induced
byH. For all active vertices v, we have CcutðAv; vÞ � CcutðHvÞ.

Proof. As shown in Fig. 5, we use induction on the number
of active vertices, k.

1) For k ¼ 1 the conjecture evaluates to true,
2) Assume the inequality holds true up to u, that is

CcutðAu; uÞ � CcutðHuÞ,
3) Suppose v is the first active vertex after u, accord-

ing to the assumption CcutðAu; uÞ � CcutðHuÞ, then
we have

CcutðAv; vÞ ¼ CcutðAu; vÞ þ CcutðAv �Au; vÞ
� CcutðAu; uÞ þ CcutðAv �Au; vÞ (u is MTCV)

� CcutðHuÞ þ CcutðAv �Au; vÞ
� CcutðHvÞ:

tu
Since t is always an active vertex with respect to H, by

Lemma 1 we can conclude that CcutðA�t;tÞ � CcutðHÞ which
means that the cost of cutðA� t; tÞ is at most as high as the
cost of cutðHÞ. This proves Theorem 1.

5.4 MinCut Function and Computational Complexity

The MinCut function is illustrated in Algorithm 3. In each
phase i it calls the MinCutPhase function as described in
Algorithm 2. Since some tasks have to be executed locally
we need to merge them into one node.

As the runtime of the algorithm MinCut is essentially
equal to the accumulated runtime of the jV j � 1 runs of the
MinCutPhase, which is called on graphs with decreasing
number of vertices and edges, it suffices to show that a sin-
gle MinCutPhase needs at most OðjV jlog jV j þ jEjÞ time. The
computational complexity of the MCOP algorithm can be

formulated as OðjV j2log jV j þ jV jjEjÞ.
As a comparison, linear programming (LP) solvers are

widely used in schemes like [3] and [4]. The LP solver is
based on branch and bound, which is an algorithm design
paradigm for discrete and combinatorial optimization prob-
lems, as well as general real valued problems [54]. The num-
ber of its optional solutions grows exponentially with the
number of tasks, which means it has higher time complexity
O 2jV j� �

. Some partitioning solutions such as MAUI [3] have
exponential time complexity because they use LP which is

not efficient when the number of tasks within the applica-
tion is large.

Algorithm 3. TheMinCut Function

//This function performs an optimal partitioning algorithm
Function:
½minCut;MinCutGroupsList� ¼ MinCutðG;w; SourceVerticesÞ
Input: G: the given graph, G ¼ ðV;EÞ

w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept
on one side of the cut

Output: minCut: the minimum sum of weights of edges and
vertices along the cut

MinCutGroupsList: two lists of vertices, one local list and
one remote list

1: wðminCutÞ (1
2: for i ¼ 1 : lengthðSourceVerticesÞ do
3: //Merge all the source vertices (unoffloadable) into one
4: ðG;wÞ ¼ MergeðG;w; SourceVerticesð1Þ; SourceVerticesðiÞÞ
5: end for
6: while jV j > 1 do
7: ½cutðA� t; tÞ; s; t� ¼ MinCutPhaseðG;wÞ
8: if wðcutðA� t; tÞÞ < wðminCutÞ then
9: minCut (cutðA� t; tÞ
10: end if
11: MergeðG;w; s; tÞ
12: //Merge the last two vertices (in order) into one
13: end while
14: returnminCut andMinCutGroupsList

In contrast, the MCOP algorithm only has low-order
polynomial runtime in the number of tasks. It is very effi-
cient on larger call graphs which demonstrates its advan-
tage over simple partitioning models as used in MAUI: it
can group tasks that process large amounts of data on one
side, either the server or the mobile side, depending on the
network condition.

5.5 Case Study and Discussion

Fig. 6 shows that node a is defined as the starting point
in which the corresponding task will always be com-
puted by the mobile device. We have s = d and t = f,
and the induced ordering a, c, b, e, d, f of the vertices.
Node f is cut off from the graph. The first cut-of-the-phase
corresponds to the partitions {a, c, b, e, d} and {f}. Since
the overall local cost is Cmobile ¼ P

v2V wmobileðvÞ ¼ 45,
we can calculate the cut cost by using (10) as:
CcutðA�f;fÞ ¼ 45� ð15� 5Þ þ 5 ¼ 40. At the end, we merge
nodes s = d and t = f into one.

From Figs. 7, 8, 9, and 10, we repeat the same process of
the MinCutPhase function as we did for the first phase in
Fig. 6. There are jV j � 1 ¼ 5 phases, and at the end, all nodes
are merged into one. Then, we compare all the cost values

Fig. 5. Illustration of the proof of Lemma 1.

1472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

Fig. 6. The 1st phase of MinCutPhase function. The induced ordering of the vertices is a, c, b, e, s, t, where s = d and t = f. The 1st cut-of-the-phase
corresponds to the partitions {a, c, b, e, d} and {f} with the cut value: CcutðA�f;fÞ ¼ 45� ð15� 5Þ þ 5 ¼ 40.

Fig. 7. The 2nd phase ofMinCutPhase function. The induced ordering of the vertices is a, c, b, s, t, where s = e and t = {df}. The 2nd cut-of-the-phase
corresponds to the partitions {a, c, b, e} and {d, f} with the cut value: CcutðA�fd;fg;fd;fgÞ ¼ 45� ð27� 9Þ þ ð1þ 3þ 4Þ ¼ 35.

Fig. 8. The 3rd phase of MinCutPhase function. The induced ordering of the vertices is a, c, s, t, where s = b and t = {def}. The 3rd cut-of-the-phase
corresponds to the partitions {a, b, c} and {d, e, f} with the cut value: Ccutðfa;b;cg;fd;e;fgÞ ¼ 45� ð33� 11Þ þ ð1þ 5Þ ¼ 29.

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1473

for the different cuts. The minimum value refers to the phase
which has the optimal partitioning cut. In this scenario, the
minimum cut of graph G is the fourth cut-of-the-phase.
The optimal cut is between {a, c} and {b, d, e, f} as depicted
in Fig. 11 with the minimum cost of Ccutðfa;cg;fb;d;e;fgÞ ¼
45� ð42� 14Þ þ ð4þ 1Þ ¼ 22. Here, tasks b, d, e, f are off-
loaded to the cloud/edge server while tasks a and c are
executed locally.

When the execution sequence of tasks of a mobile appli-
cation is not linear, i.e., it contains tasks that can execute in
parallel, the proposed MCOP algorithm can take advantage
of this parallelism. It can further reduce the response time
of the application or save energy in the mobile device, by
partitioning such tasks to different devices or to different
processing cores of a single device so that they can be exe-
cuted in parallel.

6 PERFORMANCE EVALUATION

The performance evaluation results encompass compari-
sons with other existing schemes, in contrast to the energy
conservation efficiency and execution time.

6.1 Setup

Static analysis and dynamic profiling can be combined to
construct the WCG of an application. We take a face recog-
nition application2 as an example. By analyzing this applica-
tion with Soot, the call graph can be constructed as the tree-
based topology shown in Fig. 12. We can obtain the remote
estimated execution time by dividing the local estimated
execution time by the speedup factor F . When offloading a
task to the server the communication cost incurred between
the mobile device and the server is computed as the data

transfer divided by the bandwidth. Finally, with remote
execution and transmission costs, we now have all informa-
tion to determine the WCG.

To evaluate the partitioning algorithm, we need to know
three different kinds of values:

� Fixed Values: set by the mobile application developer,
determined based on a large number of experiments.
For example, the power consumption values of Pm,
Pi, and Ptr are parameters specific to the mobile sys-
tem. We use the following values [13]: Pm 	 0:9 W,
Pi 	 0:3W, and Ptr 	 1:3W.

� Specific Values: such parameters represent some state
of a mobile device, e.g., the size of transferred data,
the current wireless bandwidth B (for convenience,
we assume Bupload ¼ Bdownload) and the speedup fac-
tor F which depends on the compute speed of the
current server and the mobile device.

� Calculated Values: these values cannot be determined
by application developers. For a given application,
the computation cost is affected by input parameters
and device characteristics, which can be measured
using a program profiler. The communication cost is
related to transmitting codes/data via wireless inter-
faces such as WiFi or 3G, which can be tracked by a
network profiler.

Fig. 10. The 5th phase ofMinCutPhasefunction. The induced ordering of the vertices is s, t, where s = a and t = {bcdef}. The 5th cut-of-the-phase cor-
responds to the partitions {a}, and {b, c, d, e, f} with cut value C

cutðfag;fb, c, d, e, fgÞ ¼ 45� ð45� 15Þ þ 12 ¼ 27.

Fig. 9. The 4th phase ofMinCutPhase function. The induced ordering of the vertices is a, s, t, where s = c and t = {bdef}. The 4th cut-of-the-phase cor-
responds to the partitions {a, c} and {b, d, e, f} with the cut value: C

cutðfa, cg;fb, d, e, fgÞ ¼ 45� �ð42� 14Þ � ð1þ 4Þ� ¼ 22.

Fig. 11. The optimal cut in phase 4.

2. The face recognition application is built using an open source
code http://darnok.org/programming/face-recognition/, which
implements the Eigenface face recognition algorithm.

1474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

http://darnok.org/programming/face-recognition/

We compare the partitioning results with two other intui-
tive strategies without partitioning and, for ease of refer-
ence, list all three kinds of offloading techniques:

� Non Offloading (Local Execution): all computation tasks
of an application run locally on the mobile device
and there is no communication cost. This may be
costly since the mobile device is limited in processing
speed and battery life as compared to the powerful
computing capability at the server side.

� Full Offloading (Remote Execution): all computation
tasks of mobile applications (except the unoffload-
able tasks) are moved from the mobile device to the
cloud/edge server for execution [28]. This may sig-
nificantly reduce the implementation complexity,
which makes the mobile devices lighter and smaller.
However, full offloading is not always the optimal
choice since different application tasks may have dif-
ferent characteristics that make them more or less
suitable for offloading [23].

� Partial Offloading (Flexible Execution): with help of the
MCOP algorithm all tasks including unoffloadable
and offloadable ones are partitioned into two sets,
one for local execution on the mobile device and the
other for remote execution on a server node. Before a
task is executed, it may require a certain amount of
data from other tasks. Thus, data migration via wire-
less networks is needed between tasks that are exe-
cuted at different sides.

We define the saved cost in the partial offloading scheme
compared to that in the no offloading scheme as Offloading

Gain, which can be formulated as

Offloading Gain ¼ 1� Partial Offloading Cost

Non Offloading Cost
� 100%: (11)

The offloading gain in terms of time, energy and the
weighted sum of time and energy is defined as (5), (7) and
(9), respectively.

6.2 Computational Complexity

We have implemented the MCOP algorithm in Java3 that
can serve to illustrate the theoretical results. As an example,
we partition the constructed weighted consumption graph
on the basis of Fig. 12 under the condition of the speedup
factor F ¼ 20 and the bandwidth B ¼ 10 MB/s, where the
main and submit methods are assumed as unoffloadable
nodes, since the task of the main method is the trigger of the
application that should be unconditionally executed locally
on the mobile device and the submit method is data-inten-
sive task that requires large data communication between
the mobile device and the server. Thus they can be both
treated as unoffloadable nodes. The optimal partitioning
result is depicted in Fig. 13. The red nodes represent the
application tasks that should be offloaded to the cloud/
edge server and the blue nodes are the tasks that are sup-
posed to be executed locally on the mobile device. The parti-
tioning results will change as B or F vary.

We compare partial offloading exploiting the proposed
MCOP algorithm with other partial offloading schemes.

Fig. 12. A call graph for the face recognition application constructed with Soot.

3. An optimal partitioning algorithm, the code can be found in
https://github.com/carlosmn/work-offload

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1475

https://github.com/carlosmn/work-offload

The runtime of the java implementation under a different
number of application tasks is depicted as Fig. 14. The over-
all complexity of the partitioning algorithm proposed in
[55] is OðjV j3Þ under the one-climb policy (i.e., the execution
only migrates once between the mobile device and the cloud
clone if ever) and OðjV j2log 2jV jÞ under the LARAC algo-
rithm [28]. Further, they are compared with the theoretic
computational complexity denoted as OðjV j2log jV j þ jV jjEjÞ
in Section 5.4.

From Fig. 14, we see that the MCOP algorithm has much
lower time complexity when compared to the existing algo-
rithms in [55] and [28]. It can achieve an optimal offloading
strategy in minimal time. We also find that both the simula-
tion and the theoretical results match well, which further
illustrates that our partitioning algorithm has much lower
time complexity than the LP solver which has exponential
time complexity.

6.3 Evaluation in Dynamic Conditions

We have built a graphical user interface (GUI) in MATLAB
as shown in Fig. 15. The GUI is responsible for user interac-
tion such as receiving input parameters and displaying the
application partitioning results.

The user first inputs or selects the relative parameters,
such as the Application Graph, theUnoffloadable Nodes and the
Optimization Model. We can either use the predefined appli-
cation graphs of “linear”, “loop”, “tree” and “mesh” or just
choose “user” to input any arbitrary consumption graph.
Then, by clicking the “Graph” button, a weighted consump-
tion graph will be constructed based on the above parame-
ters. Further, by clicking the “Start Partitioning” button the
partitioning process will begin by calling the partitioning
algorithm of MCOP. We can obtain the partitioning results
such as the Partial Offloading Cost, theNon offloading Cost, the
Full Offloading Cost and the Offloading Gain. For example, the
optimal partitioning graph will appear as shown in Fig. 16
for the case study in Section 5.5.

We perform a simple simulation using the WCG as
depicted in Fig. 4. We have received different results under
the different values of the speedup factor F and reliable
wireless bandwidth B. The partitioning results will change
as B or F vary.

In Fig. 17 the speedup factor is set to F ¼ 3. Since the low
bandwidth results inmuch higher cost for data transmission,
the full offloading scheme cannot benefit from offloading.
Given a relatively high bandwidth and stable network, the
response time or energy consumption obtained by the full
offloading scheme slowly approaches the partial offloading
scheme because the optimal partition includes more and

Fig. 13. The optimal partitioning result in the WCG when the speedup
factor F ¼ 20 and the bandwidth B ¼ 10MB/s.

Fig. 14. Comparison of running time for different partitioning algorithms
with the number of tasks.

Fig. 15. The user interface for demonstration.

Fig. 16. An optimal partitioning result with the MCOP algorithm.

1476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

more tasks running on the server side until all offloadable
tasks are offloaded to the server.With higher bandwidth and
amore stable network, they begin to coincidewith each other
and only decrease because all possible nodes are offloaded
and the transmission becomes faster. Both, response time
and energy consumption have the same trend as the wireless
bandwidth increases. Therefore, high bandwidth and net-
work reliability are crucial for offloading. The mobile system
can greatly benefit from offloading in a stable, high band-
width environment, while with low bandwidth and a fragile
network, the non offloading performs best.

In Fig. 18 the bandwidth is fixed to B ¼ 3 MB/s. It can be
seen that offloading benefits from higher speedup factors.
When F is very small, the full offloading scheme can reduce
energy consumption of the mobile device, however the
response time is much higher than in the non offloading
scheme. The partial offloading scheme that adopts theMCOP
algorithm can effectively reduce execution time and energy
consumption, while adapting to environmental changes.

From Figs. 17 and 18, we can see that the full offloading
scheme performs much better than the non offloading scheme
under certain adequate wireless network conditions, because
the execution cost of running methods on the cloud/edge
server is significantly lower than on the mobile device when
the speedup factor F is high. The partial offloading scheme

outperforms the non offloading and full offloading schemes and
significantly improves the application performance, since it
effectively avoids offloading tasks in the case of large com-
munication cost between consecutive tasks compared to the
full offloading scheme, and offloads more appropriate tasks
to the server. In other words, neither running all tasks locally
on the mobile terminal nor always offloading their execution
to a remote server can offer an efficient solution, but our par-
tial offloading scheme can do and thus ismuchmore flexible.

In Fig. 19a when the bandwidth is low, the offloading gain
for all three cost models is very small and almost identical.
That is because more time/energy will be spent in transfer-
ring the same amount of data due to the poor network and
low bandwidth, resulting in increased execution cost. As the
bandwidth increases, the offloading gain first rises drastically
and then the increase becomes slower. It can be concluded
that the optimal partitioning plan includes more and more
tasks running on the server side until all the tasks are off-
loaded to the server when the network condition and band-
width increases. In Fig. 19b when F is small, i.e., the mobile
device and the remote server are almost equally fast, the off-
loading gain for all three cost models is very low. As F
increases, the offloading gain first increases drastically and
then saturates. An investment in a server that is more than
eight times as fast as the mobile device does not pay off in the

Fig. 17. Comparisons of different schemes under different wireless bandwidth for speedup factor F ¼ 3.

Fig. 18. Comparisons of different schemes under different speedup factor when the bandwidth B ¼ 3MB/s.

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1477

offloading experiment because the communication overhead
dominates the benefit from offloading. We see from Fig. 19
that the proposed MCOP algorithm can reduce the energy
consumption as well as the execution time of an application.
Further, it can adapt to environmental changes to some extent
and avoid a sharp decline in application performance once
the network deteriorates and the bandwidth decreases.

7 CONCLUSION

To tackle the problem of dynamic application partitioning
in a mobile environment, we have proposed a novel off-
loading partitioning algorithm (MCOP algorithm) that
finds the optimal application partitioning under different
cost models and arrives at the best tradeoffs between saving
time/energy and minimizing transmission costs/delay.
This is achieved by constructing a weighted call graphs of
different topology for software applications under different
scenarios. In contrast to the traditional graph partitioning
problem our algorithm is not restricted to balanced par-
titions but takes the infrastructure heterogeneity into
account.

The MCOP algorithm possesses a stable quadratic run-
time complexity to determine which parts of an application
should be offloaded to the cloud/edge server and which
parts should be executed locally in order to minimize
the energy consumption on the mobile device or to reduce
the execution time of an application. Since the reliability of
wireless bandwidth can vary due to mobility and interfer-
ence it strongly affects the optimal partitioning result of the
application. Experimental results show that according to
environmental changes (e.g., network bandwidth and server
speed), the proposed algorithm can effectively achieve the
optimal partitioning result in terms of time and energy sav-
ing. Offloading benefits a lot from high bandwidths and
large speedup factors, while low bandwidth favors the non
offloading scheme.

In future studies, wewill offload several tasks in a simulta-
neous manner or parallelism way by partitioning such tasks
to different devices or processing cores of a single device. In
addition, we will build a cloud/edge-based mobile applica-
tion platform and evaluate the performance of our proposed
partitioning algorithm for real mobile applications.

ACKNOWLEDGMENTS

This work was supported by the the National Natural
Science Foundation of China (Grant Number: 61801325), the
Natural Science Foundation of Tianjin City (Grant Number:
18JCQNJC00600) and the Huawei Innovation Research
Program (Grant Number: HIRPO2017050307).

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surv.
Tut., vol. 19, no. 3, pp. 1628–1656, Jul.–Sep. 2017.

[2] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[3] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Serv.,
2010, pp. 49–62.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[5] B. Hendrickson and T. G. Kolda, “Graph partitioning models for
parallel computing,” Parallel Comput., vol. 26, no. 12, pp. 1519–1534,
2000.

[6] M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM,
vol. 44, no. 4, pp. 585–591, 1997.

[7] K. Ali and O. Lhot�ak, “Application-only call graph construction,”
in Proc. Eur. Conf. Object-Oriented Program., 2012, pp. 688–712.

[8] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[9] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An
optimal offloading partitioning algorithm in mobile cloud
computing,” in Proc. Int. Conf. Quantitative Eval. Syst., 2016,
pp. 311–328.

[10] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision
making for mobile cloud offloading,” IEEE Trans. Cloud Comput.,
vol. PP, no. 99, p. 1, 2018.

[11] Y. Liu and M. J. Lee, “An effective dynamic programming offload-
ing algorithm in mobile cloud computing system,” in Proc. IEEE
Wireless Commun. Netw. Conf., 2014, pp. 1868–1873.

[12] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of compu-
tation offloading for mobile systems,” Mobile Netw. Appl., vol. 18,
no. 1, pp. 129–140, 2013.

[13] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?,” Comput., vol. 43, no. 4,
pp. 51–56, 2010.

[14] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40,
no. 4, pp. 23–32, 2013.

Fig. 19. Offloading gains under different environment conditions when v ¼ 0:5.

1478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

[15] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload:
An efficient code partition algorithm formobile cloud computing,”
in Proc. IEEE 1st Int. Conf. CloudNetw., 2012, pp. 80–86.

[16] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: enabling mobile phones as interfaces to cloud
applications,” in Proc. ACM/IFIP/USENIX Int. Conf. Distrib. Syst.
Platforms Open Distrib. Process., 2009, pp. 83–102.

[17] D. Kovachev, “Framework for computation offloading in mobile
cloud computing,” Int. J. Interactive Multimedia Artif. Intell., vol. 1,
no. 7, pp. 6–15, 2012.

[18] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
“Adaptive offloading for pervasive computing,” IEEE Pervasive
Comput., vol. 3, no. 3, pp. 66–73, Jul.–Sep. 2004.

[19] L. Wang and M. Franz, “Automatic partitioning of object-oriented
programs for resource-constrained mobile devices with multiple
distribution objectives,” in Proc. 14th IEEE Int. Conf. Parallel Distrib.
Syst., 2008, pp. 369–376.

[20] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading
algorithm for mobile computing,” IEEE Trans. Wireless Commun.,
vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[21] Z. Li, C. Wang, and R. Xu, “Computation offloading to save
energy on handheld devices: A partition scheme,” in Proc. Int.
Conf. Compilers Archit. Synthesis Embedded Syst., 2001, pp. 238–246.

[22] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE Int. Conf. Comput. Commun.,
2012, pp. 945–953.

[23] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, “Challenges on
wireless heterogeneous networks for mobile cloud computing,”
IEEE Wireless Commun., vol. 20, no. 3, pp. 34–44, Jun. 2013.

[24] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3317–3329,
Dec. 2015.

[25] M. P. S. Nir, “Scalable resource augmentation for mobile devices,”
PhD thesis, Dept Syst. Comput. Eng., Carleton Univ., Ottawa,
ON, 2014.

[26] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri, “Run time application
repartitioning in dynamicmobile cloud environments,” IEEE Trans.
Cloud Comput., vol. 4, no. 3, pp. 336–348, Jul.–Sep. 2016.

[27] V. Haghighi and N. S. Moayedian, “An offloading strategy in
mobile cloud computing considering energy and delay con-
straints,” IEEE Access, vol. 6, pp. 11849–11861, 2018.

[28] W. Zhang and Y. Wen, “Energy-efficient task execution for appli-
cation as a general topology in mobile cloud computing,” IEEE
Trans. Cloud Comput., vol. 6, no. 3, pp. 708–719, Jul.–Sep. 2018.

[29] E. Abebe and C. Ryan, “Adaptive application offloading using
distributed abstract class graphs in mobile environments,” J. Syst.
Softw., vol. 85, no. 12, pp. 2755–2769, 2012.

[30] J. Niu, W. Song, and M. Atiquzzaman, “Bandwidth-adaptive
partitioning for distributed execution optimization of mobile
applications,” J. Netw. Comput. Appl., vol. 37, pp. 334–347, 2014.

[31] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph parti-
tioning algorithms for optimizing software deployment in mobile
cloud computing,” Future Generation Comput. Syst., vol. 29, no. 2,
pp. 451–459, 2013.

[32] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading sys-
tems,” in Proc. IEEE Int. Conf. Commun.Workshops, 2013, pp. 728–732.

[33] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Oct.–Dec. 2009.

[34] H. Wu, Q. Wang, and K. Wolter, “Optimal cloud-path selection in
mobile cloud offloading systems based on QoS criteria,” Int. J. Grid
High Perform. Comput., vol. 5, no. 4, pp. 30–47, 2013.

[35] V. Pandey, S. Singh, and S. Tapaswi, “Energy and time efficient
algorithm for cloud offloading using dynamic profiling,” Wireless
Pers. Commun., vol. 80, pp. 1–15, 2014.

[36] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2014,
pp. 352–357.

[37] A.-C. OLTEANU and N. Ţ�APUŞ, “Tools for empirical and opera-
tional analysis of mobile offloading in loop-based applications,”
Informatica Economica, vol. 17, no. 4, pp. 5–17, 2013.

[38] R. Niu, W. Song, and Y. Liu, “An energy-efficient multisite offload-
ing algorithm for mobile devices,” Int. J. Distrib. Sensor Netw.,
vol. 9, no. 3, pp. 1–6, 2013.

[39] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site
computation offloading,” in Proc. 11th IEEE/ACM Int. Symp. Cluster
Cloud Grid Comput., 2011, pp. 184–194.

[40] B. Y.-H. Kao and B. Krishnamachari, “Optimizing mobile computa-
tional offloading with delay constraints,” in Proc. Global Commun.
Conf., 2014, pp. 8–12.

[41] M.Goudarzi,M. Zamani, andA. T.Haghighat, “A fast hybridmulti-
site computation offloading for mobile cloud computing,” J. Netw.
Comput. Appl., vol. 80, pp. 219–231, 2017.

[42] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile off-
loading in heterogeneous networks,” IEEE Trans. Mobile Comput.,
vol. 17, no. 2, pp. 461–474, Feb. 2018.

[43] Y.-W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant
distributed mobile execution,” in Proc. IEEE 32nd Int. Conf. Distrib.
Comput. Syst., 2012, pp. 586–595.

[44] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint
partitioning algorithm for offloading in pervasive systems,” in
Proc. 4th Annu. IEEE Int. Conf. Pervasive Comput. Commun., 2006,
pp. 10–pp.

[45] E. Hyyti€a, T. Spyropoulos, and J. Ott, “Offload (only) the right
jobs: Robust offloading using the Markov decision processes,” in
Proc. IEEE 16th Int. Symp. World Wireless Mobile Multimedia Netw.,
2015, pp. 1–9.

[46] O. Lhot�ak and L. Hendren, “Scaling Java points-to analysis using
SPARK,” in Proc. 12th Int. Conf. Compiler Construction, 2003,
pp. 153–169.

[47] Soot: A framework for analyzing and transforming java and android
applications, [Online]. Available: http://sable.github.io/soot/

[48] W. Binder and J. Hulaas, “Using bytecode instruction counting as
portable cpu consumption metric,” Electron. Notes Theoretical Com-
put. Sci., vol. 153, no. 2, pp. 57–77, 2006.

[49] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardware/Software Codes. Syst.
Synthesis, 2010, pp. 105–114.

[50] Z. Yang, “PowerTutor: A power monitor for android-based mobile
platforms,” EECS,University ofMichigan, retrieved Sep. 2012. [Online].
Available: http://ziyang.eecs.umich.edu/projects/powertutor/

[51] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope:
Application energy metering framework for android smartphone
using Kernel activity monitoring.,” in Proc. USENIX Annu. Tech.
Conf., 2012, pp. 1–14.

[52] Qualcomm, “Trepn profiler,” 2014. [Online]. Available: https://
developer.qualcomm.com/trepn-profiler Accessed

[53] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption
of mobile devices,” ACM Comput. Surv., vol. 48, no. 3, pp. 1–40,
2016.

[54] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm
for feature subset selection,” IEEE Trans. Comput., vol. C-26, no. 9,
pp. 917–922, Sep. 1977.

[55] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution
in mobile cloud computing under a stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 81–93, Jan. 2015.

Huaming Wu received the BE and MS degrees
from the Harbin Institute of Technology, China, in
2009 and 2011, respectively, both in electrical
engineering, and the PhD degree with the highest
honor in computer science at Freie Universit€at
Berlin, Germany, in 2015. He is currently an assis-
tant professor with the Center for Applied Mathe-
matics, Tianjin University. His research interests
include model-based evaluation, wireless and
mobile network systems, mobile cloud computing
and deep learning. He is a member of the IEEE.

WU ET AL.: AN EFFICIENT APPLICATION PARTITIONING ALGORITHM IN MOBILE ENVIRONMENTS 1479

http://sable.github.io/soot/
http://ziyang.eecs.umich.edu/projects/powertutor/
https://developer.qualcomm.com/trepn-profiler Accessed
https://developer.qualcomm.com/trepn-profiler Accessed

William J. Knottenbelt is a professor in applied
performance modelling with the Department of
Computing, Imperial College London, where he
became a lecturer in 2000. His research work
focuses on the performance modelling of sys-
tems using high-level formalisms, with applica-
tions to real-world systems including databases,
healthcare systems and data storage infrastruc-
tures. His work has been supported by three
EPSRC research grants as Principal Investigator
and one as Co-Investigator.

Katinka Wolter received the PhD degree from
Technische Universit€at Berlin, in 1999. She has
been assistant professor at Humboldt-University
Berlin and lecturer at Newcastle University before
joining Freie Universit€at Berlin as a professor for
dependable systems, in 2012. Her research inter-
ests are model-based evaluation and improve-
ment of dependability, security and performance
of distributed systems and networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

