
3448 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

DMRO: A Deep Meta Reinforcement
Learning-Based Task Offloading Framework for

Edge-Cloud Computing
Guanjin Qu, Huaming Wu , Member, IEEE, Ruidong Li , Senior Member, IEEE, and Pengfei Jiao

Abstract—With the explosive growth of mobile data
and the unprecedented demand for computing power,
resource-constrained edge devices cannot effectively meet the
requirements of Internet of Things (IoT) applications and Deep
Neural Network (DNN) computing. As a distributed computing
paradigm, edge offloading that migrates complex tasks from IoT
devices to edge-cloud servers can break through the resource lim-
itation of IoT devices, reduce the computing burden and improve
the efficiency of task processing. However, the problem of optimal
offloading decision-making is NP-hard, traditional optimization
methods are difficult to achieve results efficiently. Besides, there
are still some shortcomings in existing deep learning methods,
e.g., the slow learning speed and the weak adaptability to new
environments. To tackle these challenges, we propose a Deep
Meta Reinforcement Learning-based Offloading (DMRO) algo-
rithm, which combines multiple parallel DNNs with Q-learning
to make fine-grained offloading decisions. By aggregating the
perceptive ability of deep learning, the decision-making ability
of reinforcement learning, and the rapid environment learning
ability of meta-learning, it is possible to quickly and flexibly
obtain the optimal offloading strategy from a dynamic environ-
ment. We evaluate the effectiveness of DMRO through several
simulation experiments, which demonstrate that when compared
with traditional Deep Reinforcement Learning (DRL) algorithms,
the offloading effect of DMRO can be improved by 17.6%. In
addition, the model has strong portability when making real-
time offloading decisions, and can fast adapt to a new MEC task
environment.

Index Terms—Internet of Things, edge computing, task
offloading, deep neural network, meta reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of Internet of Things (IoT)
and communication technologies, a large number of

computation-intensive tasks need to be transferred from IoT

Manuscript received February 28, 2021; revised May 30, 2021; accepted
June 3, 2021. Date of publication June 7, 2021; date of current version
September 9, 2021. This work was partly supported by the National Natural
Science Foundation of China under Grant No. 62071327 and 61801325,
Natural Science Foundation of Tianjin City under Grant No. 18JCQNJC00600
and JSPS KAKENHI under Grant No. JP19H04105. The associate editor
coordinating the review of this article and approving it for publication was
N. Kumar. (Corresponding author: Huaming Wu.)

Guanjin Qu and Huaming Wu are with the Center for Applied Mathematics,
Tianjin University, Tianjin 300072, China (e-mail: guanjinqu@tju.edu.cn;
whming@tju.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Pengfei Jiao is with the Center of Biosafety Research and Strategy, Law
School, Tianjin University, Tianjin 300350, China (e-mail: pjiao@tju.edu.cn).

Digital Object Identifier 10.1109/TNSM.2021.3087258

devices to the cloud server for execution [1]. However, the
task offloading process usually involves large amounts of data
transmission, which will result in high latency for IoT appli-
cations. The emergence of Mobile Edge Computing (MEC)
can effectively alleviate this challenge. As a distributed com-
puting paradigm, edge offloading that migrates complex tasks
from IoT devices to edge-cloud servers can provide com-
puting services for edge caching, edge training, and edge
inference [2]. Before the IoT application being offloaded to the
cloud server, it needs to pass through the edge server, such as
the base station. The edge server is closer to the device than
the cloud server, so it has greater bandwidth and response
time. By utilizing the computing and decision-making capa-
bilities of the edge server, the task computing of the device can
be offloaded to different servers, thereby reducing computing
latency and energy consumption [3].

The process of task offloading is generally affected by a
variety of factors in different areas, e.g., user preferences,
wireless communication channels, network connection quality,
mobility of IoT devices device and availability of edge/cloud
servers. Therefore, making the optimal decision is the most
critical issue for edge offloading. It needs to dynamically
decide whether the task should be offloaded to the edge server
or cloud server. If a large number of tasks are offloaded to
the cloud server, the bandwidth will be occupied, which will
greatly increase the transmission delay. Therefore, we need to
have a reasonable offloading decision scheme so that it can
reasonably allocate each task to the processing server. On the
one hand, there are a large number of repetitive or similar tasks
in the IoT environment, which often need to be retrained from
scratch, resulting in inefficient offloading decision-making; on
the other hand, some IoT dynamic scenarios have strict time
constraints on task decision-making, and the slow learning
speed of Convolutional Neural Network (CNN) is not suit-
able to meet the requirements of resource heterogeneity and
real-time in the MEC system.

Faced with the rapidly changing IoT application scenarios,
we cannot readjust the task offloading decision and wireless
resource allocation through recalculation every time the MEC
environment changes, otherwise, it will cause higher service
delay and cost [4]. Although some good results have been
achieved in offloading decision-making of MEC by intro-
ducing intelligent algorithms such as Reinforcement Learning
(DRL) [5], there are still challenges such as the slow learning
speed, and the failure of original network parameters when

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0003-1049-1002

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3449

the model environment changes. In practical dynamic scenar-
ios, the MEC environment is often affected by many factors
anytime and anywhere. Conventional intelligent algorithms
are usually based on neural networks. When the MEC envi-
ronment changes, its original parameters will all fail and a
large amount of training data is required to train from scratch,
which makes the learning efficiency low. Such repeated train-
ing will consume resources and weaken the performance of
the MEC system. At the same time, in order to improve effi-
ciency, high configuration equipment is also required to adapt
to high-intensity training.

Considering the delay and energy consumption of IoT,
offloading decisions can be made for a workflow with a
series of dependent tasks. However, this kind of problem is
generally NP-hard, traditional optimization methods are dif-
ficult to achieve results efficiently. One promising way of
addressing the above issue is to bring deep learning tech-
niques (especially DRL methods) into the computing paradigm
of edge-cloud collaboration. Unfortunately, conventional DRL
algorithms have the disadvantage of slower learning speed,
which is mainly due to the weak inductive bias. A learning pro-
cedure with weak inductive bias will be able to adapt to a wide
range of situations, however, it is generally less efficient [6].

To tackle the above challenges, we design an edge-cloud
offloading framework in this paper, where IoT devices can
choose to shift their computing tasks either to edge servers
or cloud servers. Edge servers make offloading decisions
based on task information for each device, reducing latency
and energy consumption. We propose an efficient offloading
decision-making method based on deep meta reinforcement
learning [7] that takes advantage of DRL and meta-learning.
To solve the problem of poor neural network portability, we
introduce meta-learning to ensure that the offloading decision
model can fast adapt to the new environment by learn-
ing the initial parameters of the neural network. The main
contributions of this work are summarized as follows.

• We convert the dynamic computation offloading problem
for dependent tasks under edge cloud computing into
a multi-objective optimization problem. To jointly mini-
mize the delay and energy consumption of IoT devices,
we propose an effective and efficient offloading frame-
work with intelligent decision-making capabilities.

• We design a novel Deep Meta Reinforcement learning-
based Offloading (DMRO) framework that combines
multiple parallel Deep Neural Networks (DNNs) and
deep Q-learning algorithms to make offloading deci-
sions. It includes an inner model and an outer model,
where the former uses distributed DRL to find the
optimal decision and the latter is trained with meta-
learning to provide warm-start initialization for the inner
model.

• Aiming at the change of MEC environments, an initial
parameter training algorithm based on meta-learning is
proposed, where meta-learning is applied to solve the
problem of poor portability of DNNs. We conduct simu-
lation experiments when considering different MEC task
scenarios/environments, by learning the initial parame-
ters of DNNs under various network environments, the

offloading decision model achieves fast adaptation to a
new MEC task environment.

The rest of the paper is organized as follows. In Section II,
we review the related work. The system model and problem
formulation are presented in Section III. The proposed
Deep Meta Reinforcement learning-based Offloading (DMRO)
framework is demonstrated in Section IV. Section V contains
the simulation and its results. Finally, Section VI concludes
the paper and draws future works.

II. RELATED WORK

MEC is an emerging computing paradigm, which can con-
nect IoT devices to cloud computing centers through edge
servers close to the device, thereby forming this task offloading
mode in the IoT-edge-cloud computing environment [8]. By
network functions virtualization and other means [9], the cloud
center is responsible for providing flexible and on-demand
computing resources for the execution of mobile applications,
and the edge server is responsible for deciding which comput-
ing tasks need to be offloaded and providing a limited amount
of computing resources. Thus, the energy consumption of the
device and computing delay of the application can be reduced.
In general, the task offloading process includes the following
key components.

• Application Partition: Since different tasks usually have
different amounts of computation and communication,
before performing task offloading operation, it is better
to divide the task into a workflow with multiple asso-
ciated subtasks or as a series of independent subtasks,
and then offload the subtasks separately. Among them,
some subtasks are executed on the IoT devices, the oth-
ers are executed on the relatively powerful server, making
full use of the server resources, thereby greatly reduc-
ing the load of the IoT devices and improving their
endurance [10].

• Resource Allocation: After the offloading decision is
made, resources need to be allocated, including com-
puting power, communication bandwidth, and energy
consumption.

At present, task offloading algorithms related to decision-
making can be divided into traditional methods and intelligent
algorithms using artificial intelligence [4].

A. Traditional Offloading Decision-Making

Due to the NP-hardness of offloading decision problems
in MEC, when the number of tasks increases, it is easy to
encounter problems such as computational explosion. A diver-
sity of platforms and frameworks like [11]–[14] have been
proposed to solve the optimization problems of offloading
binary decisions in edge-cloud environments.

A Lyapunov optimization framework was proposed in [15]
to utilize open Jackson queuing network to formulate this
joint optimization problem. eTime [16] was a cloud-to-
device energy-efficient data transmission strategy based on
Lyapunov-optimization, with more focus on data transmission
optimization. Other studies using Lyapunov optimization for
offloading decision-making can be found in [15], [17]–[19].

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

3450 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Markov processes and queueing models have been also
widely applied for making offloading decisions. The offloading
approach proposed in [20] supported two delayed offload-
ing policies, i.e., a partial offloading model where jobs can
leave the slow offloading to be executed locally, and a full
offloading model where jobs can be offloaded directly via
the cellular network. Besides, a computing offloading game
theory has been developed in [21], which proposed a fast
Stackelberg game algorithm called C-SGA and a complex
Stackelberg game algorithm called F-SGA to solve the deci-
sion problem of IoT-enabled cloud-edge computing. However,
these optimization-based offloading algorithms can only obtain
results after multiple iterations, which often involve too many
complex calculation operations.

Conventional task offloading techniques usually apply
some heuristic algorithms. A particle swarm optimization-
based offloading decision algorithm was given in [22].
Xu et al. [23] proposed a computation offloading method
called COM to solve the problem of computation offloading
decisions in IoT-enabled cloud-edge computing environments.
Goudarzi et al. [24] proposed a novel Memetic Algorithm
(MA)-based application placement technique that can solve the
task offloading problem in a multi-user multi-cloud multi-edge
environment. However, heuristic algorithms are still difficult to
solve complex problems that require a large amount of com-
putation, and additional computation is also introduced, which
results in high running time costs and energy consumption
spent on offloading decision-making.

B. Intelligent Offloading Decision-Making

With the rapid development of computer science and the
popularization of Artificial Intelligence (AI), deep learning
has begun to be applied to solve the problem of offloading
decision-making. Edge intelligence [2] or intelligent edge [25],
that is, the convergence of edge computing and AI, takes
advantage of both to achieve mutual benefit [26]. On the one
side, optimizing DNNs through task offloading has become a
new direction in edge intelligence research since edge com-
puting can offload complex computing tasks to edge/cloud
servers. On the other side, deep learning-driven approaches can
facilitate offloading decision making, dynamic resource allo-
cation and content caching, benefit in coping with the growth
in volumes of communication and computation for emerging
IoT applications [27].

Classic AI methods including deep learning and reinforce-
ment learning, can provide more reasonable and intelligent
solutions to solve the offloading decision problem in edge
computing. Deep learning methods refer to the classifica-
tion of the input task information through the multi-layer
neural network to determine the final offloading position.
Huang et al. [28] provided an algorithm that adopted dis-
tributed deep learning to solve the offloading problem of
mobile edge networks. It used parallel and distributed DNNs
to produce offloading decisions and achieved good results.
A hybrid offloading model with the collaboration of Mobile
Cloud Computing (MCC) and MEC was established in [29],
where a distributed deep learning-driven task offloading

(DDTO) algorithm was proposed to generate near-optimal
offloading decisions over the IoT devices, edge cloud server,
and central cloud server. Besides, Neurosurgeon [30] was a
fine-grained partitioning method that can find the optimal
dividing point in DNNs according to different factors, and
made full use of the resources of cloud servers and mobile
devices to minimize the computational delays or energy
consumption in IoT environments.

In some cases, however, it is still difficult to treat task
offloading decision-making as a classification problem to be
solved by using deep learning techniques, which are mostly
supervised learning. In addition, it is difficult to find labeled
training sets for training on offloading decision problems.
Reinforcement learning, as one of the paradigms of machine
learning, is used to solve the interaction between the agent
and the environment through learning, so as to achieve max-
imum return or specific goals. An edge-cloud task offloading
framework using Deep Imitation Learning (DIL) [31] was
proposed in [25], while training DNN model with DIL is still
computation-intensive. Deep Reinforcement Learning (DRL)
methods combined with neural network and reinforcement
learning can be used to solve the task offloading decision
problem in the MEC environment [32]. The final decision
is the maximum reward action under the interaction with
the environment. The premise of using DRL algorithms for
offloading decision-making is that it can be regarded as a
Markov process, in which three spaces named state, action,
and reward are established. Among them, the task information
is input into the state, and the offloading decision is located
in the action space. Zhang et al. [33] proposed an offload-
ing decision scheme based on the Actor-Critic algorithm.
In [5] and [34], task offloading decisions were made based on
DRL algorithms, e.g., Deep Q-Learning Network (DQN) and
Double Deep Q-learning Network (DDQN)-based algorithms,
however, the cloud server was not considered in the MEC envi-
ronment and they usually require to learn from scratch when
the environment changes.

Currently, the role of DRL is to choose an optimal edge
computing environment or location for the current task accord-
ing to its status and environment. However, each time the
IoT environment changes, the offloading decision has to be
recalculated, which leads to more service delays and higher
costs. In addition, DRL algorithms are still limited with slower
learning speed and are generally less efficient in solving
the offloading decision-making problem [6]. Table I shows
the comparison of the key parameters of the current rele-
vant unloading decision model. It can be seen that although
it uses different algorithms, it does not consider the adapt-
ability of the model when the scenario/environment varies.
Therefore, it is urgent to find an intelligent method that
can learn knowledge and quickly provide better offloading
decisions with the change of environment. Unlike traditional
machine learning that only trains a general learning model
for edge offloading, the goal of meta-learning is “learning
to learn fast”, that is, to make the model become a learner
and fit a new environment rapidly [35]–[37]. After complet-
ing multiple learning tasks, it can quickly learn new tasks by
learning prior knowledge or exploring learning strategies only

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3451

TABLE I
THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE

Fig. 1. System model of edge-cloud computing with multiple IoT devices.

with a few training examples [38], [39]. Therefore, it adapts to
complex and dynamic environments rapidly and can be used
to improve the robustness of task offloading decisions in IoT
environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we give an overview of the system model
and then define the delay model and energy consumption
model. On this basis, the optimization problem of computation
offloading is formulated.

A. System Model

The system model for task offloading in IoT-edge-cloud
computing environments is shown in Fig. 1. The proposed
framework is composed of a cloud server, an edge server, and
multiple IoT devices, where the IoT devices can either execute
locally or offload their workflow to the cloud server or edge
server.

In this framework, edge servers are distributed near the
devices and have high bandwidth. The edge server accepts
workflow information from the device and makes fine-grained
offloading decisions. The program for each device can be

divided into sequential workflows. We assume the x-th work-
flow is defined as follows:

Rx =
{
e0,1, v1, e1,2, v2, . . . , vi , ei,j , vj , . . . , en−1,n , vn , en+1

}
,

(1)

where vi denotes i-th task in the workflow, and ei ,j illustrates
the set of data flows between tasks vi and vj .

Each workflow x can determine whether to offload its task
vi or not, and the offloading decision is denoted by a Matrix
variable:

bx ,i ∈ (b0, b1, b2), (2)

where b0 = [1 0 0]T , b1 = [0 1 0]T and b2 =
[0 0 1]T denote the decision that workflow x to execute
its i-th task locally, offload i-th task to the edge server, and
offload i-th task to the cloud server, respectively.

B. Delay Model

The delay caused by computation offloading includes com-
putation delay and transmission delay. We do not consider
the delay incurred in offloading decision-making because the
time required to make the decision is short. Therefore, the
computational delay of task vi is calculated by:

T c
i =

⎧
⎨

⎩

vi
C0
, bx ,i = b0,

vi
C1
, bx ,i = b1,

vi
C2
, bx ,i = b2,

(3)

where C0, C1 and C2 stand for the computing power of
the IoT, the computing power of the edge server and the
computing power of the cloud server, respectively.

The transmission delay between tasks vi and vj is:

T t
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, bx ,i = bx ,j ,
ei,j
B0,1

, bx ,i = b0, bx ,j = b1 or bx ,i = b1, bx ,j = b0,
ei,j
B1,2

, bx ,i = b1, bx ,j = b2 or bx ,i = b2, bx ,j = b1,
ei,j
B0,2

, bx ,i = b0, bx ,j = b2 or bx ,i = b2, bx ,j = b0,

(4)

where B0,1 denotes the allocated bandwidth between the IoT
device and the edge server. B1,2 is the allocated bandwidth
between the cloud server and the edge server. Similarly, we

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

3452 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

denote B0,2 as the allocated bandwidth between the IoT device
and the cloud server.

The total delay for workflow x is calculated as:

Tx =

N∑

i=1

(
T c
i + T t

i ,i+1

)
, (5)

where the workflow x has N associated tasks.

C. Energy Consumption Model

The energy consumption model of workflow x can be
expressed as:

Ex = E local
x + αE edge

x + βE cloud
x , (6)

where α and β are weights of the energy consumption at the
edge server and at the cloud server, respectively. When α =
β = 0, we only consider the energy consumption at the IoT
device. For simplicity, we ignore the energy consumed during
task transmission.

The energy consumption of task v is calculated as:

Ei =

⎧
⎨

⎩

vi · dlocal, bx ,i = b0,
vi · dedge, bx ,i = b1,
vi · dcloud, bx ,i = b2,

(7)

where dlocal, dedge and dcloud denote the local energy con-
sumption per data bit, the edge energy consumption per data
bit and the cloud energy consumption per data bit, respectively.

Therefore, the energy consumption model of workflow x
can be expressed by:

Ex =

N∑

i=1

[Ei , αEi , βEi] · bx ,i . (8)

D. Problem Formulation

To minimize both the delay for completing all workflows
and the corresponding energy consumption simultaneously,
we first introduce a system utility Q(x, b), which is defined
as the weighted sum of energy consumption and workflow
completion delay, as follows:

Q(x , b) =

M∑

x=1

(Tx + δEx)

=

M∑

x=1

[
N∑

i=1

(
T c
i + T t

i,i+1

)
+ δ

N∑

i=1

[Ei , αEi , βEi]bx ,i

]

,

(9)

where there are M workflows in total, each workflow has
N associated tasks, and δ denotes the weight of energy
consumption and task completion time.

The optimization problem can be formulated as a
minimization problem P1 with a constraint, as follows:

(P1): min
b

Q(x , b), (10)

s.t.: bx ,i ∈
⎛

⎝

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦,

⎡

⎣
0
0
1

⎤

⎦

⎞

⎠. (11)

Fig. 2. The proposed deep meta reinforcement learning-based offloading
framework.

IV. DEEP META REINFORCEMENT LEARNING-BASED

OFFLOADING FRAMEWORK

To effectively solve the optimization problem defined in
(10), we then propose a Deep Meta Reinforcement learning-
based Offloading (DMRO) framework as shown in Fig. 2,
where a series of dependent tasks are considered compre-
hensively, in order to give a specific offloading decision for
each task. The proposed learning-driven offloading frame-
work contains a task offloading decision model based on
distributed reinforcement learning algorithm and a training
model based on meta-learning, aiming to solve the problem
of poor portability of neural networks.

The DMRO framework can be divided into two types of
models, i.e., an inner model and an outer model. The pur-
pose of the framework using inner and outer models is to
improve the interaction between the model and the environ-
ment on the traditional task offloading decision model. The
inner model focuses on making unloading decisions. The outer
model focuses on unloading changes in the environment and
changes the model parameters of the inner layer according to
the changes, so that the inner model can be adjusted more
quickly. Specifically, the inner model is an offloading deci-
sion model, which is responsible for receiving the workflow
and training the model parameters to provide final offloading
decisions for different tasks. The outer model is responsible for
training the initial parameters to improve the portability of the
model. When the environment of the MEC system changes,
e.g., the performance of the edge server or the bandwidth
between the IoT device and the edge server, it can adjust the
parameters of the neural network in the inner model, so that
the system can quickly adapt to the new environment. When
the workflow is input into the edge offloading system, the
outer model first determines whether the external environment
has changed, in order to determine whether to adjust the initial
parameters. After that, the workflow will enter the inner model,
which will make the offloading decision, and store the state
and action in memory for the training of the neural network.

Furthermore, in order to increase the portability of the
model, speed up the decision-making process and reduce the
amount of computation, we design a deep meta-reinforcement
learning-based method, which also combines the function

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3453

of memory playback (replay memory), so that the decision-
making system can adapt to the new environment quickly and
give the optimal offloading decision when the environment
changes. In addition, the generated offloading decisions are
stored in the replay memory summary for further learning.

A. Inner Model

As shown in Fig. 3, the inner model is based on a paral-
lel Deep Reinforcement Learning (DRL) algorithm. We apply
a classic reinforcement learning method named Q-learning,
in which we input environmental parameters, labeled initial
parameters and workflow x into the inner model.

We use ai to represent the offloading decision of the i-th
subtask of the workflow, which is defined as:

ai =

⎧
⎨

⎩

0, if subtask i is executed on IoT device,
1, if subtask i is offloaded to edge server,
2, if subtask i is offloaded to cloud server,

(12)

where ai = 0, 1, and 2 indicate that the i-th subtask is executed
locally on the IoT device, the edge server, and the cloud server,
respectively.

We represent Si as the state when processing the i-th subtask
in the workflow:

Si =
[
ai−1, ei−1,i , vi , ei,i+1, vi+1, . . . , en−1,n , vn , en

]
, i ≥ 1,

(13)

where ai−1 represents the execution position of a subtask in
the workflow, which is set as 0 at the beginning. Then the
state Si is input to the neural network to find the Q value of
each action in this state.

Here we have s distributed neural network units. Each neu-
ral network action unit is parallel, including two DNNs with
an identical structure, one of which is the target network for
parameter freezing. Parameter freezing means that the two
networks have the same structure, but the parameters of the
frozen network will not be iterated every time. When the other
network learns a certain number of times, the parameters are
copied to the frozen network. The purpose of using parame-
ter freezing is to reduce the relevance of learning [40]. Each
neural network unit will give the selected action value accord-
ing to its own Q value calculated by the greedy algorithm. In
addition, we define a local objective function:

F (Si , a) = T c
i + T t

i−1,i + δEi , (14)

bx ,i−1 = ai−1, (15)

bx ,i = ai , (16)

where F (Si , a) can be interpreted as the weighted sum of
the delay and energy consumption for selecting action a in
state Si . We compare F (Si , a) values generated by the actions
selected by different DNNs as a measure of the effects of the
actions selected by different DNNs. The action with the lowest
F is set as the optimal solution in the state Si .

For the reward function R(Si , a) in DRL, if the action is
the action value of the optimal solution, the reward value is
the negative value of the minimum optimization function; oth-
erwise, the reward value is the negative value of the maximum

function. Then we choose the action of the optimal solution
as ai , and update the state Si as:

Si+1 =
[
ai , ei,i+1, vi+1, ei+1,i+2, vi+2, . . . , en−1,n , vn , en

]
.

(17)

The algorithmic process of the proposed parallel DRL
algorithm is as demonstrated in Algorithm 1.

1) Training Phase: In the training phase, we input
[Si , ai ,R(Si , a),Si+1] calculated by the neural network into
the memory, and then continue to input the updated workflow
into the neural network for calculation until all subtasks of the
workflow have been processed.

After processing a certain number of workflows, e.g., five
times, we will randomly extract [Si , ai ,R(Si , a),Si+1] from
the memory for empirical playback. The purpose of this step is
to eliminate the correlation generated by the associated states.
Then we update the parameters of the network as follows:

Q(Si , ai) ← (1− θ)Q(Si , ai)

+ θ

[

R(Si , a) + μmax
a′∈A

Q(Si+1, a
′)
]

(18)

where Q(Si , ai) represents the Q value function, which is
calculated by the neural network, Q(Si , ai) represents the Q
part is calculated by the network with the latest parameters,
and maxa ′∈AQ(Si+1, a

′) is calculated by the network with
the frozen parameters. The learning rate θ ∈ [0, 1] is the weight
of the current offloading experience. The discount factor μ ∈
[0, 1] denotes the short view of the IoT device regarding the
future reward.

2) Decision-Making Phase: In the decision-making phase,
we will make fine-grained offloading decisions for IoT devices.
First, we obtain the action value a generated by each DNN and
fill it into s action sets A. Then, we input the updated state to
the neural network, and continue to find the execution method
of the next subtask until all the subtasks are assigned. At this
time, Ai represents the offloading scheme given by the i-th
DNN network to the workflow x, and the scheme Ai with the
minimum Q(x , b) value is the final scheme A and output to
the device.

B. Outer Model

In the outer model, we propose a meta algorithm to learn
the initial parameters.

Based on the original algorithm described in [38], i.e., an
initial parameter algorithm for training different image classi-
fication networks, we propose a novel algorithm for learning
initial parameters in order to adapt to the training method of
reinforcement learning. We train our decision-making engine
by leveraging the deep meta-learning method, and then we
make rapid offloading decisions through IoT-edge-cloud com-
puting environments. The algorithmic process of the proposed
meta algorithm is as listed in Algorithm 2.

The principle of our meta algorithm is to input the decision-
making and execution results of the workflow in different
environments into the training model. Each time the training
model randomly selects training samples in one environment
for learning, and randomly selects another environment after

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

3454 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 3. Illustration of the proposed distributed DRL-based offloading scheme.

TABLE II
ENVIRONMENTAL INFORMATION

learning. The purpose of training sample learning is to ensure
that the parameters trained by the model will not be too close
to the optimal solution in a specific environment. We use the
parameters trained in this way as the initial parameters of the
inner model.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed DMRO framework for solving the optimization
problem of offloading decision-making under different MEC
environments.

A. Experimental Setup

In our simulation, we assume that there are four IoT users,
and each user has five workflows. The size of the first subtask
of each workflow is 50−100 MB, and the size of subsequent
tasks is 10−50 MB. The amount of computation for each sub-
task is 103 − 105 MHz randomly distributed. For the DNN
structure, we consider a fully connected DNN consisting of
one input layer, two hidden layers, and one output layer in the
proposed DMRO framework. Since this paper is not limited
to a special environment sensitive to power consumption, the
parameters α and β are both set to 1. In addition, we set the
environmental information as listed in Table II.

Fig. 4. Convergence performance under different learning rates.

B. Convergence Performance

Figure 4 shows the convergence performance of our model
under different learning rates, where the abscissa is the num-
ber of training steps and the ordinate is the value of the neural
network loss function. Due to the training methods of rein-
forcement learning, this is not a true loss function, so we use
“cost” instead. It can be found that when the learning rate is
too low, it will not be able to converge. However, when the
learning rate is 0.01, the convergence effect is the best, so we
will use a learning rate of 0.01 in the next experiment.

Figure 5 shows the convergence performance of our model
under different batch sizes, where the abscissa is the number
of training steps and the ordinate is the value of the neural

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3455

Fig. 5. Convergence performance under different batch sizes.

Algorithm 1 The Distributed Deep Reinforcement Learning
Algorithm
Input: Workflow x, Environment: E, Meta-parameter: ψ
Output: Optimal offloading decision A

1: Initialize the s DNNs with meta-parameter ψ
2: Empty the memory pool
3: for i = 1, 2, 3, · · · ,N do
4: Replicate state Si to all s DNNs
5: Generate s-th offloading action a

j
i via ε-greedy policy

6: for j = 1, 2, 3, · · · , s do
7: Input aji to decision set Aj as: a1i , a2i , · · · , aji
8: Evaluate the local objective function F (Si , a

j
i), gen-

erate reward R(Si , a
j
i)

9: if train then
10: a1i = ai
11: else
12: ai is a

j
i in turn

13: if i == n then
14: Select A according to argminAj Q(Si ,A

j)
15: Output A as offloading decision
16: end if
17: Input [Si , ai ,R(Si , ai),Si+1] to memory pool
18: end if
19: end for
20: if Add data to memory five times then
21: Extract [Si , ai ,R(Si , ai),Si+1] from memory at ran-

dom
22: Replicate state Si to all s DNNs
23: Evaluate the local objective function F (Si , ai), gen-

erate reward R(Si , ai)
24: Update the s DNNs weights θ
25: end if
26: end for

network loss function. It can be seen that the batch size has
less effect on the convergence, but as the batch size increases,
the volatility of the curve becomes smaller. It is worth not-
ing that there is a small fluctuation in the curve every 200
steps, which is mainly due to the parameter freezing mecha-
nism. In the model, we set the network parameters to the target
network every 200 steps. As a result, the parameters will fluc-
tuate every 200 steps, but it does not affect the convergence
of the model.

Algorithm 2 The Meta Algorithm
Input: Workflow x, Environment: E
Output: Optimal offloading decision A

1: Initialize the DNNs with parameter θ0
2: Empty the memory pool
3: for i = 1, 2, 3, · · · ,N do
4: Randomly select environment
5: Input state Si to DNN
6: Generate offloading action ai via ε-greedy policy
7: generate reward R(Si , ai) via Random Environment
8: Input [Si , ai ,R(Si , ai),Si+1] to memory pool
9: if Add data to memory five times then

10: Randomly select environment
11: Extract [Si , ai ,R(Si , ai),Si+1] from memory at ran-

dom
12: Replicate state Si to the DNNs
13: Evaluate the local objective function F (Si , ai), gen-

erate reward R(Si , ai)
14: Update the s DNNs weights θ
15: end if
16: end for
17: Output DNN parameter θ as meta-parameter ψ

C. Comparison With Related Work

To gain insight into the proposed DMRO scheme for
edge offloading decision, we have implemented many existing
approaches in heterogeneous IoT-edge-cloud computing envi-
ronments for comparison.

• Local-only scheme: In this method, all tasks of workflows
are executed locally on the IoT device. The results of this
method can be used as a benchmark to analyze the gain
of task offloading techniques.

• Edge-only scheme: This is a full offloading scheme. In
this method, all tasks of workflows are fully offloaded to
the edge servers for further processing.

• Cloud-only scheme: This is a full offloading scheme. In
this method, all tasks of workflows are fully offloaded to
the cloud server for further processing.

• Deep Q-Network scheme: This is a partial offloading
scheme based on the Deep Q-Network (DQN) algo-
rithm [41], where it can be regarded as a simplified
DMRO algorithm with only one parallel network. As
one of the most classic algorithms in deep reinforcement
learning, DQN is frequently used in task offloading [42].

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

3456 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 6. Performance comparison of different offloading schemes under
different weights.

In this method, we use the Deep Q-Network in making
dynamic offloading decisions.

• Double DQN scheme: Double DQN is an improved algo-
rithm based on nature Deep Q-Network [43]. It uses two
identical neural networks to solve the correlation between
data samples and network before training. In [44], the task
offloading model uses Double DQN to improve the pro-
cessing capacity of the edge node and reduce the packet
loss rate and average delay.

• Dueling DQN scheme: Dueling DQN is another improved
algorithm based on nature Deep Q-Network [45], which
is achieved by optimizing the experience playback pool
and sampling by weight. There is also some work that
introduces Dueling DQN into task offloading [46].

• DMRO scheme: This is a partial offloading scheme based
on the proposed DMRO scheme. It is designed to find the
optimal offloading scheme that minimizes the weighted
delay and energy consumption.

In order to control the variables, several other deep rein-
forcement learning offloading schemes used in the experiment
are the same as the initial parameters of this scheme, includ-
ing the same state space and action space as well as the same
neural network structure. The comparison results are as shown
in Fig. 6, where the abscissa is the weight ratio of delay
to energy consumption, and the ordinate is the value of the
objective function. Since we used feature scaling, the value
of the objective function is dimensionless. The lower the total
cost, the smaller the resulting delay and energy consumption,
which indicates a better offloading effect. Especially, when
the weight value is 0, it means that only delay is considered.
The figure shows that the DMRO algorithm can achieve the
minimum total cost among the seven methods. The offloading
algorithm based on reinforcement learning is better than the
single offloading method. DMRO shows a similar curve trend
with DQN, and outperforms the Deep Q-Network scheme, the
Double DQN scheme, and the Dueling DQN scheme. As can
be seen from the figure, the DMRO algorithm is generally
better than other algorithms. For example, when the weight is
0.2, the DMRO algorithm improves the effect by more than

Fig. 7. Performance comparison of different offloading schemes in a multi-
server environment.

TABLE III
MULTI-SERVER ENVIRONMENTAL INFORMATION

17.6% compared with other DRL algorithms. In addition, as
the weight ratio of energy consumption increases, the total
consumption of local execution increases rapidly, which also
meets our expectations, indicating that local devices are more
sensitive to energy consumption.

Apart from the scenario with one edge server and one cloud
server, the DMRO framework is highly scalable and can be
easily extended to other dynamic scenarios with multiple edge
servers or multiple cloud servers. Here, to examine the effect
of DMRO in a multi-cloud server and multi-edge server envi-
ronment, we simulate an environment with two edge servers,
and two cloud servers. Table III gives the detailed parame-
ter settings, where different servers have different computing
power and bandwidth. In this environment, we still consider
the offloaded energy consumption and latency as the objec-
tive function. Figure 7 compares the effects of different DRL
algorithms in the multi-edge environment, where the horizon-
tal coordinate is the number of training steps and the vertical
coordinate is the average reward value in the DRL algorithm.
Since the reward value of this model is the negative correla-
tion of the objective function value, a higher average reward
represents a higher model offloading effect. From the figure,
we can see that all DRL algorithms improve with the increase
of training steps, which proves that we have set a reason-
able state space and reward function. Moreover, the proposed
DMRO scheme not only converges quickly, but also achieves
the highest average reward value, which demonstrates that
the offloading results using DMRO are significantly better
than other DRL algorithms such as Deep Q-Network scheme,
Double DQN scheme and Dueling DQN scheme.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3457

TABLE IV
EVALUATION PARAMETERS

Fig. 8. Convergence performance under different parameters.

D. Fast Learning

We show the effect of the proposed meta algorithm in fast
offloading decision learning under different MEC environ-
ments. We first set up two types of environments, i.e., the
training environment and the testing environment, as shown
in Table IV.

We input the trained meta parameters into the test envi-
ronment. As depicted in Fig. 8, we compare the convergence
of the meta-parameters, the initialization parameters, and the
parameters that have been trained in other similar environ-
ments. The abscissa is the number of training steps, and the
ordinate is the value of the neural network loss function. It can
be seen that the convergence of the meta-parameters is signif-
icantly better than that of the traditional initialization parame-
ters and similar to that of the trained parameters. This indicates
that both the meta-learning and the trained parameters have
strong convergence in the new MEC environment.

Figure 9 shows the comparison of the effect of the meta
parameters, initialization parameters and trained parameters
on the total cost. The abscissa is the weight ratio of delay to
energy consumption, and the ordinate is the value of the objec-
tive function. It can be seen from the figure that the decision
result of DNNs using the meta parameters is significantly bet-
ter than that of the traditional initialization parameters as well
as the trained parameters. After several rounds of training,
the optimal offloading decision can be achieved. Therefore,
when the environment of the model changes, although both
the meta parameters and the trained parameters are close

Fig. 9. Performance comparison under different parameters.

to convergence, using the meta parameters can obtain better
results than the original trained parameters.

VI. CONCLUSION AND FUTURE WORK

To solve the challenge of poor portability of neural
networks, this paper has proposed a novel DMRO framework
to deal with the task offloading decision-making problem in
heterogeneous edge and cloud collaborative computing envi-
ronments. It includes a task offloading decision model based
on distributed DRL and a training initial parameter model
based on deep meta-learning, which has the potential to fast
adapt to a dynamic MEC environment and solve the problem
of offloading decision-making for edge-cloud computing.

Experimental results show that DMRO has a better effect on
task offloading decisions than binary offloading schemes and
conventional DRL-based partial offloading schemes. In addi-
tion, due to the use of meta parameters, the model has stronger
portability and rapid environment learning ability. Once the
MEC environment changes, the model can quickly converge,
and only a small number of learning steps are required to find
optimal offloading solutions with relatively low costs.

In future work, we will continually improve the meta-
learning algorithm so that it can better adapt to task offloading
decisions in large-scale MEC environments, especially, the
initial parameters can be changed adaptively in response to
environmental parameters. In addition, we will also focus on
issues such as resource allocation and bandwidth adjustment
through serverless edge computing frameworks [47], [48].
Furthermore, the offloading model can not only give the
offloading decision result of tasks, but also provide the
corresponding resource scheduling schemes.

REFERENCES

[1] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
Internet of Things: A primer,” Digit. Commun. Netw., vol. 4, no. 2,
pp. 77–86, 2018.

[2] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “A survey on edge
intelligence,” 2020. [Online]. Available: arXiv:2003.12172.

[3] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Trans. Cloud Comput., vol. 8, no. 2,
pp. 570–584, Apr./Jun. 2020.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

3458 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

[5] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[6] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and
D. Hassabis, “Reinforcement learning, fast and slow,” Trends Cogn. Sci.,
vol. 23, no. 5, pp. 408–422, 2019.

[7] J. X. Wang et al., “Learning to reinforcement learn,” 2017. [Online].
Available: arXiv:1611.05763.

[8] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 4, pp. 2410–2422, Dec. 2020.

[9] P. P. Ray and N. Kumar, “SDN/NFV architectures for edge-cloud
oriented IoT: A systematic review,” Comput. Commun., vol. 169,
pp. 129–153, Mar. 2021.

[10] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application parti-
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 7, pp. 1464–1480, Jul. 2019.

[11] N. Kumar, T. Dhand, A. Jindal, G. S. Aujla, H. Cao, and L. Yang, “An
edge-fog computing framework for cloud of things in vehicle to grid
environment,” in Proc. IEEE 21st Int. Symp. World Wireless Mobile
Multimedia Netw. (WoWMoM), 2020, pp. 354–359.

[12] C. Liu, K. Li, J. Liang, and K. Li, “COOPER-SCHED: A cooperative
scheduling framework for mobile edge computing with expected dead-
line guarantee,” IEEE Trans. Parallel Distrib. Syst., early access, Jun. 7,
2019, doi: 10.1109/TPDS.2019.2921761.

[13] A. Irshad, S. A. Chaudhry, O. A. Alomari, K. Yahya, and N. Kumar,
“A novel pairing-free lightweight authentication protocol for mobile
cloud computing framework,” IEEE Syst. J., early access, Jun. 19, 2020,
doi: 10.1109/JSYST.2020.2998721.

[14] C. Liu, K. Li, J. Liang, and K. Li, “COOPER-MATCH: Job offload-
ing with a cooperative game for guaranteeing strict deadlines in
MEC,” IEEE Trans. Mobile Comput., early access, Jun. 11, 2019,
doi: 10.1109/TMC.2019.2921713.

[15] K. Peng et al., “Joint optimization of service chain caching and task
offloading in mobile edge computing,” Appl. Soft Comput., vol. 103,
May 2021, Art. no. 107142.

[16] P. Shu et al., “eTime: Energy-efficient transmission between cloud and
mobile devices,” in Proc. IEEE INFOCOM, 2013, pp. 195–199.

[17] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[18] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay
tradeoff for dynamic offloading in mobile-edge computing system with
energy harvesting devices,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4642–4655, Oct. 2018.

[19] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” Internet Things J.,
vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[20] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Feb. 2018.

[21] M. Li, Q. Wu, J. Zhu, R. Zheng, and M. Zhang, “A computing offloading
game for mobile devices and edge cloud servers,” Wireless Commun.
Mobile Comput., vol. 2018, Dec. 2018, Art. no. 2179316.

[22] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE
Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[23] X. Xu et al., “A computation offloading method over big data for IoT-
enabled cloud-edge computing,” Future Gener. Comput. Syst., vol. 95,
pp. 522–533, Jun. 2019.

[24] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[25] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computa-
tion offloading,” IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99,
Feb. 2020.

[26] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd
Quart., 2020.

[27] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,”
IEEE Commun. Mag., vol. 57, no. 3, pp. 56–62, Mar. 2019.

[28] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Netw. Appl., pp. 1–8, Nov. 2018.

[29] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[30] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[31] T. Zhang et al., “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2018, pp. 1–8.

[32] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforce-
ment learning,” IEEE Trans. Netw. Service Manag., vol. 17, no. 4,
pp. 2536–2549, Dec. 2020.

[33] Z. Zhang, F. R. Yu, F. Fu, Q. Yan, and Z. Wang, “Joint offloading
and resource allocation in mobile edge computing systems: An actor-
critic approach,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–6.

[34] L. Huang, X. Feng, L. Qian, and Y. Wu, “Deep reinforcement learning-
based task offloading and resource allocation for mobile edge com-
puting,” in Proc. Int. Conf. Mach. Learn. Intell. Commun., 2018,
pp. 33–42.

[35] M. Andrychowicz et al., “Learning to learn by gradient descent by
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3981–3989.

[36] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Adv.
Neural Inf. Process. Syst., 2018, pp. 5302–5311.

[37] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-learning
based dynamic computation task offloading for mobile edge comput-
ing networks,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1568–1572,
May 2021.

[38] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, 2017, pp. 1126–1135.

[39] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253,
Jan. 2021.

[40] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.
[Online]. Available: arXiv:1312.5602.

[41] V. Haghighi and N. S. Moayedian, “An offloading strategy in mobile
cloud computing considering energy and delay constraints,” IEEE
Access, vol. 6, pp. 11849–11861, 2018.

[42] D. Van Le and C.-K. Tham, “A deep reinforcement learning
based offloading scheme in ad-hoc mobile clouds,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2018,
pp. 760–765.

[43] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016,
pp. 2094–2100.

[44] M. Tang and V. W. S. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Trans. Mobile
Comput., early access, Nov. 10, 2020, doi: 10.1109/TMC.2020.3036871

[45] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[46] S. Song, Z. Fang, Z. Zhang, C.-L. Chen, and H. Sun, “Semi-online
computational offloading by dueling deep-Q network for user behavior
prediction,” IEEE Access, vol. 8, pp. 118192–118204, 2020.

[47] S. S. Gill, “Quantum and blockchain based serverless edge computing:
A vision, model, new trends and future directions,” Internet Technology
Letters, Feb. 2021, Art. no. e275.

[48] M. S. Aslanpour et al., “Serverless edge computing: Vision and chal-
lenges,” in Proc. Aust. Comput. Sci. Week Multiconf., Feb. 2021,
pp. 1–10.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPDS.2019.2921761
http://dx.doi.org/10.1109/JSYST.2020.2998721
http://dx.doi.org/10.1109/TMC.2019.2921713
http://dx.doi.org/10.1109/TMC.2020.3036871

QU et al.: DMRO: DEEP META REINFORCEMENT LEARNING-BASED TASK OFFLOADING FRAMEWORK FOR EDGE-CLOUD COMPUTING 3459

Guanjin Qu received the bachelor’s degree from the
Taiyuan University of Technology, China, in 2019.
He is currently pursuing the master’s degree with the
Center for Applied Mathematics, Tianjin University,
China. His research interests include distributed deep
learning and edge computing.

Huaming Wu (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
the Harbin Institute of Technology, China, in 2009
and 2011, respectively, and the Ph.D. degree (with
highest Hons.) in computer science from Freie
Universität Berlin, Germany, in 2015. He is cur-
rently an Associate Professor with the Center for
Applied Mathematics, Tianjin University, China.
His research interests include Internet of Things,
wireless and mobile network systems, edge/cloud
computing, deep learning, and complex networks.

Ruidong Li (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science
from the University of Tsukuba in 2005 and
2008, respectively. He was a Senior Researcher
with the National Institute of Information and
Communications Technology, Japan. He is an
Associate Professor with Kanazawa University,
Japan. His research interests include future networks,
big data, intelligent Internet edge, Internet of Things,
network security, information-centric network, arti-
ficial intelligence, quantum Internet, cyber–physical

system, and wireless networks. He is the Associate Editor of IEEE INTERNET

OF THINGS JOURNAL, and also served as the Guest Editor for a set of pres-
tigious magazines, transactions, and journals, such as IEEE Communications
Magazine, IEEE NETWORK, and IEEE TRANSACTIONS ON NETWORK

SCIENCE AND ENGINEERING. He also served as the Chair for several con-
ferences and workshops, such as the General Co-Chair for IEEE MSN 2021,
AIVR2019, and IEEE INFOCOM 2019/2020/2021 ICCN workshop, and the
TPC Co-Chair for IWQoS 2021, IEEE MSN 2020, BRAINS 2020, IEEE
ICDCS 2019/2020 NMIC workshop, and ICCSSE 2019. He serves as the
Secretary of the IEEE ComSoc Internet Technical Committee. He is the
Founder and the Chair of IEEE SIG on Big Data Intelligent Networking and
IEEE SIG on Intelligent Internet Edge. He is a member of IEICE.

Pengfei Jiao received the Ph.D. degree in computer
science from Tianjin University, Tianjin, China, in
2018, where he is a Lecturer with the Center of
Biosafety Research and Strategy. He has published
more than 50 international journals and conference
papers. His current research interests include com-
plex network analysis, data mining, and graph neural
network, and currently working on temporal commu-
nity detection, link predication, network embedding,
recommender systems, and applications of statistical
network model.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 09,2021 at 07:47:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

