
Double Deep Q-Network Based Dynamic Framing
Offloading in Vehicular Edge Computing

Huijun Tang , Huaming Wu , Senior Member, IEEE, Guanjin Qu, and Ruidong Li , Senior Member, IEEE

Abstract—With the rapid development of Artificial Intelligence
(AI) and the Internet of Vehicles (IoV), there is an increasing
demand for deploying various intelligent applications on vehicles.
Vehicular Edge Computing (VEC) is receiving extensive
attention from both the industry and academia due to its benefits
from the edge computing paradigm, which pushes computing
tasks from the core of the network to the edge of the network.
However, in the VEC environment considering vehicles to Road
Side Units (RSUs), due to the mobility of vehicles, it is still a
challenge to make dynamic and efficient offloading decisions for
compute-intensive tasks, especially in the congestion situation. In
order to minimize the total delay and waiting time of tasks from
moving vehicles, we establish a dynamic offloading model for
multiple moving vehicles whose tasks can be divided into
sequential subtasks, so that the offloading decisions are more
refined. Moreover, the proposed model is frame-based to avoid
unnecessary waiting time, which makes offloading decisions when
the subtasks of each vehicle are generated rather than offloading
subtasks after gathering subtasks of vehicles for a time slot.
Aiming to find the optimal offloading decision for sequential
subtasks, we propose a Dynamic Framing Offloading algorithm
based on Double Deep Q-Network (DFO-DDQN). Extensive
experimental results demonstrate the effectiveness and superiority
of the proposed DFO-DDQN when compared with other DRL-
basedmethods and greedy-basedmethods.

Index Terms—Vehicular edge computing, internet of vehicles,
task offloading, deep reinforcement learning.

I. INTRODUCTION

ALONG with the fast development of Internet of Things

(IoT) and communication technologies, the number of in-

vehicle applications, e.g., online gaming, Augmented Reality

(AR), and Deep Neural Network (DNN)-based intelligent

applications [1], [2], has risen significantly in recent years. The

upcoming sixth-generation (6G) wireless communication

brings together various enabling technologies and opens a new

era of ‘Internet of Intelligence’. Unfortunately, there is still a

contradiction between the huge demand to perform delay-

sensitive and compute-intensive tasks and the severely con-

strained computing resources of vehicles [3]. In the meanwhile,

with the continuous improvement of 6G networks and edge

computing paradigm, these tasks can be either performed in

vehicles, roadside infrastructure, or the cloud, which makes it

possible to make full use of the computing resources in Vehicu-

lar Edge Computing (VEC) environments.

Many efforts have been devoted to task offloading in

Mobile Edge Computing (MEC) environments, where tasks

can be divided into several subtasks that can be executed

locally or be partially offloaded to other devices [4]–[7]. In

order to perform better task offloading under poor wireless

channel conditions, partial offloading is believed to be more

suitable for tasks with stringent latency requirements, rather

than binary offloading whose tasks will be completely off-

loaded or not in edge computing [8], [9]. Compared with the

MEC environment, the conditions of VEC environments are

even more complicated due to the mobility of vehicles, espe-

cially for compute-intensive tasks which need more execution

time. To simplify the offloading-decision problems, numerous

studies [10]–[13] have divided the road into several service

sections of RSUs that do not intersect and assume vehicles in

the coverage of a certain RSU can only offload tasks to the

edge server of this RSU. This is called whether-to-offload set-

ting of RSUs, where the offloading decision is whether to off-

load or not instead of where to offload to. However, the

whether-to-offload setting of edge servers ignores the comput-

ing resources of other available edge servers and may cause

more waiting time when there is traffic congestion in the cov-

erage of the current RSU. Unlike the where-to-offload-to set-

ting, vehicles can choose multiple edge servers.

In addition, people are in great demand of Artificial Intelli-

gence (AI), which is pervading every aspect of life and traffic

is no exception. For example, the amount of computation

required per task for computing a 1024� 768 image can reach

2,640 cycles in [20], which means that executing AR tasks

requires a large amount of computation. However, executing

compute-intensive tasks in VEC environment with high

speeds is still a great challenge. It is important to note that cer-

tain compute-intensive tasks such as Apple ARkit [21] and

Google ARCore [22], which are well-modularized software

development kits that can split tasks into multiple independent

subtasks, which can be processed in sequence. Considering

the limitation of the computing abilities of local devices, such

compute-intensive tasks are usually partially offloaded to edge

or cloud servers. However, dynamic offloading of tasks with

Manuscript received 20 November 2021; revised 21 March 2022; accepted
2 May 2022. Date of publication 5 May 2022; date of current version 25 April
2023. This workwas supported in part by the National Natural Science Foundation
of China under Grant 62071327 and in part by JSPS KAKENHI under Grant
19H04105. Recommended for acceptance by Dr. Zhi Zhou. (Corresponding
author: Huaming Wu.)

Huijun Tang, Huaming Wu, and Guanjin Qu are with the Center for Applied
Mathematics, Tianjin University, Tianjin 300072, China (e-mail: tanghuijune@tju.
edu.cn; whming@tju.edu.cn; guanjinqu@tju.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa Uni-
versity, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Digital Object Identifier 10.1109/TNSE.2022.3172794

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023 1297

2327-4697 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-9905-8952
mailto:
mailto:
mailto:
mailto:
mailto:

sequential dependencies in a VEC environment considering

both Vehicle-to-RSU (V2R) and Vehicle-to-Network (V2N)

remains unresolved. There are few studies discussing the off-

loading of sequential subtasks in the VEC environment, which

is important for applying edge computing to compute-inten-

sive tasks in the VEC environment. As shown in Table I, due

to the consideration of resource competition and decisionmak-

ing cooperation between different vehicles, the previous VEC

models were built in the form of time slots rather than in the

form of frames, where different frames correspond to different

timestamps. Slot-based offloading decisions are more coarse-

grained than frame-based offloading decisions.

In this paper, we propose a novel dynamic offloading-deci-

sion algorithm based on DDQN to optimize the total delay of

subtasks with sequential dependency, including the waiting

time caused by the subtasks congestion when the number

of subtasks received by the same edge server increases

sharply. The key contributions of this paper are summarized

as follows:

� Where-to-Offload-to Setting: In this paper, the subtask

of vehicles can choose different edge servers to offload

instead of choosing the edge server by the location of

vehicles and the coverage of RSUs.

� Sequential Subtasks Offloading: We divide compute-

intensive tasks into several sequential subtasks, which

means the latter subtask is generated after completing

the previous subtask of the same vehicle, and the results

of the last subtask need to be transmitted to vehicles.

Therefore, sequential subtasks can be executed in dif-

ferent edge servers to cope with the uncertainty of com-

munication conditions caused by the mobility of

vehicles and optimize the waiting time caused by the

limited resources in a traffic congestion environment.

� Frame-based Offloading: To further find the optimal

space of offloading decision-making, we build the VEC

model by frame-based form, so that the VEC system

can make decisions immediately once subtasks of

vehicles are generated, instead of being aggregated into

a set of subtasks in a time slot. To the best of our knowl-

edge, this work is the first one to explore the frame-

based offloading in VEC environments.

� Algorithm Design: We design a novel Dynamic Framing

Offloading algorithm based on Double Deep Q-Network

(DFO-DDQN) to solve the MDP problems and further

optimize the time delay of tasks of the multiple moving

vehicles in the VEC system. Based on simulation

experiments conducted under different VEC environmen-

tal conditions, our DFO-DDQN outperforms the greedy-

based method without task segmentation (NoSeg-

Greedy) by over 46.44% at least.

The remainder of this paper is organized as follows. Related

works are provided in Section II. The systemmodel and problem

formulation are provided in Section III. The proposed algorithm

is presented in Section IV. Extensive simulation experiments are

conducted and discussed in Section V. Section VI concludes this

paper and points out future directions.

II. RELATED WORK

In recent years, with the rapid development of AI and

autonomous driving technology, a number of studies focus on

offloading tasks in VEC environments. Huang et al. [12] pro-

posed a Lyapunov-based dynamic offloading algorithm, which

considers the uplink transmission from vehicles to Road Side

Units (RSUs) to optimize the tradeoff between energy con-

sumption, packet drop rate, and queue stability. Wang et al.

[10] proposed a dynamic offloading algorithm considering

limited resources and variable speeds of the vehicle for MEC-

enabled vehicular networks. However, the shortcomings of

the offloading methods based on classic methods are slow cal-

culation and weak generalization ability.

Apart from conventional offloading-decision approaches,

deep learning-based methods such as Federal Learning

(FL) [23], [24], Deep Imitation Learning (DIL) [25], [26],

Deep Reinforcement Learning (DRL) [14], [16]–[19], [27],

[28], Multi-agent Learning [29], [30] and Deep Meta-Learning

(DML) [15], [31], [32] have been widely applied to cope with

the challenges of dynamic offloading decision-making in VEC

environments. As far as we know, the offloading decision-

making process of sequential subtasks can be regarded as a

Markov Decision Process (MDP), where the next state is only

related to the current state. Thus, DRL is particularly suitable

for solving MDP in a complex interactive environment, where

DNNs need to learn how to represent a complicated relation-

ship (or policy p) between the state s and the action a. After
inputting the current state, the network generates an action

that causes the environment to generate a new state and a

reward value of r, as a feedback for adjusting the network.

Deep Q-Network (DQN) [33] is a classic DRL method that is

widely applied in the field of human-computer interaction. Wu

et al. [17] considered a VEC environment, where the RSU can

be switched to a sleeping or working state and proposed a

TABLE I
THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE ON DEEP LEARNING-BASED VEC SCHEMES

1298 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

DQN-based method to find the optimal offloading decision to

minimize the total delay of tasks. However, DQN still suffers

from Q-value overestimation. To solve the overestimate prob-

lem, Double Deep Q-Network (DDQN) is further proposed

in [34] by choosing actions by MainNet parameters instead of

TargetNet parameters. In addition, Huang et al. [14] proposed

a speed-aware offloading algorithm based on Deep Determin-

istic Policy Gradient (DDPG) [35] to minimize the energy

cost within delay constraints. Wu et al. [17] proposed a DQN

based method to learn the optimal scheduling policy for mini-

mizing the total delay of tasks. Luo et al. [18] propose a col-

laborative data scheduling scheme based on DQN to minimize

the processing cost with ensured delay constraints of applica-

tions. The aim of DRL-based methods is to achieve long-term

benefits than greedy-based methods, since greedy-based meth-

ods always choose the current optimal solution.

Unfortunately, the aforementioned studies ignore the depen-

dencies between subtasks, which are generally required to be

considered in AR, video stream, and other DNN-based applica-

tions. For example, we need to perform data acquisition, image

rendering, encoding, transmitting, decoding, and display in a vir-

tual reality system [36], whether to consider the order of tasks

has a great impact on the offloading decision and the overall exe-

cution time. Tang et al. [16] utilized several service vehicles to

provide computing services and designed a DQN-based algo-

rithm to offload subtasks that have order dependencies. How-

ever, it still ignores the computing services of edge servers and

roadside infrastructure. In addition, due to the mobility of the

vehicle, the transmission rate will varywith the distance between

the devices, allowing more room for optimization during partial

offloading, which is much more efficient than binary offloading

inmeeting stringent Quality of Service (QoS) requirements.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a VEC system model as depicted

in Fig. 1, which consists of multiple vehicles (blue, green, and

orange represent different vehicles) and multiple RSUs, and

the tasks of vehicles are divided into several sequential

subtasks.

Once a task is generated in a vehicle, it is common to be

executed on the vehicle or executed on edge servers in RSUs

in previous studies. However, when the task needs to occupy a

large number of computing resources, executing on the vehi-

cle will occupy computing resources of the vehicle for a long

time, which may cause a safety hazard, while executing on

edge servers in RSUs will fail into two situations. One is the

congestion situation, where multiple vehicles may offload

tasks to the same edge server and some tasks need to wait for

a while because of the congestion. The other is a high-speed

situation, where the vehicle may move out of the receiving

range with a high transmission rate during execution and

transmission, causing downlink transmission to fail. To cope

with the aforementioned challenges, we segment each task

into several sequential subtasks and execute them on different

devices. The task of the m-th vehicle is divided to K parts

Fm ¼ ffm1;fm;1; . . . ;fm;Kg, where Fm is the subtasks set of

the m-th vehicle, m ¼ 1; 2; . . . ;M and the subtask fm;kþ1 is

generated on the l-th edge server when the subtask fm;k is

completed on the l-th edge server, where l ¼ 1; 2; . . . ; L and

k ¼ 1; 2; . . . ; K. The major notations used in this paper are

defined in Table II.

In the case when the edge server is not occupied when the

subtask arrives at it, the subtask can be executed immediately

and there is no need to wait (black double arrow in Fig. 1).

Otherwise, if the edge server is occupied by subtasks of other

vehicles when the subtask arrives, the subtask needs to wait

for other subtasks (red arrow in Fig. 1). Solid triangle k of dif-

ferent colors corresponds to the arrival time of the k-th subtask
of different vehicles, dotted hollow triangle k of different col-

ors corresponds to the end time of k-th subtask of different

vehicles without considering waiting time, and hollow triangle

k in different colors represents the actual end time of the k-th
subtask of different vehicles, which is also the generation time

of the kþ 1-th subtask. The transmission time can be regarded

as the gray line between the hollow triangle of k-th and the

solid triangle of kþ 1-th. The gray line represents the trans-

mission and execution process of the VEC system, and it only

can represent chronological order instead of the length of

time. When the tasks that can be divided into several sequen-

tial subtasks are partially offloaded, their subtasks can be exe-

cuted on different edge servers, so that we can make more

refined offloading decisions to cope with the mobility of

vehicles and traffic congestion. By doing this, we can get less

time delay and waiting time compared with offloading the

whole task to the edge. The last subtasks need to be transmit-

ted back to vehicles, whose amount of computation can be 0

or not. The time delay of our VEC system consists of three

parts, i.e., execution time, transmission time, and waiting time.

A. Execution Time

We denote tEm;k;l as the execution time when the current to-

do subtask fm;k of vehicle m is executed on the edge server l

Fig. 1. An illustration of our VEC system model.

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1299

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

in RSUl, which can be expressed as:

tEm;k;l ¼
wm;k

fl
; (1)

where wm;k is the amount of computation of the subtask fm;k,

and fl (cycle/s) is the computing capability of the edge server

l in RSUl, where l ¼ 1; 2; . . . ; L and k ¼ 1; 2; . . . ; K. We

denote tEm;k;0 as the execution time when the subtask fm;k is

executed on vehiclem, which is calculated by:

tEm;k;0 ¼
wm;k

fm
; (2)

where fm (cycle/s) is the computing capability of the vehicle

m, and m ¼ 1; 2; . . . ;M. For subtask fm;k, the execution time

TE
m;k is:

TE
m;k ¼

XL
l¼0

IEm;k;lt
E
m;k;l; (3)

where IEm;k;l 2 f0; 1g is an indicator value that describes whether
fm;k is executed on the device l (l ¼ 0; 1; . . . ; L). For instance,
IEm;k;0 ¼ 1means the subtask fm;k is executed on vehicles, other-

wise, it is offloaded. In addition, we have
PL

l¼0 I
E
m;k;l ¼ 1.

B. Transmission Time

There are three types of transmission time, namely, tTrm;k;l,

tTrm;l;0k;l and t
Tr
l;k;m, where t

Tr
m;k;l is the transmission time from vehi-

cle m to the edge server l in RSUl, t
Tr
m;l;0k;l is the transmission

time of fm;k from the edge server l0 in RSUl0 to the l-th edge

server inRSUl, and t
Tr
l;k;m is the transmission time from the edge

server l to the vehiclem. Moreover, we assume that the channel

is a frequency-flat block-fading Rayleigh channel [8].

1) Vehicle m to RSUl: When the subtask fm;k is transmit-

ted from the vehicle m to the RSUl, the transmission rate

Rm;k;l is:

Rm;k;l ¼ Bm;llog 2 1þ P jhj2
v0ðdm;lÞ#

 !
; (4)

where Bm;l and dm;l are the bandwidth and the distance from

vehicle m to RSUl, respectively. P is the transmission power,

h is the channel fading coefficient, # is the path loss exponent,

and v0 is the white Gaussian noise power. The transmission

delay tTrm;k;l from vehiclem and the RSUl is calculated by:

tTrm;k;l ¼
Dm;k

Rm;k;l
; (5)

where Dm;k is the data size of fm;k.

Furthermore, we define CDm;k as an indicator that describes

on which device the subtask fm;k is executed. For example,

CDm;k ¼ l means fm;k is executed on the edge server l.
2) RSUl0 to RSUl: When the subtask fm;k is transmitted

from the edge server l0 in RSUl0 to the edge server l in RSUl,

which means CDm;k�1 ¼ l0 and CDm;k ¼ l, the transmission

rate Rl;0k;l is:

Rl;0k;l ¼ Bl;0llog 2 1þ P jhj2
v0ðdl;0lÞ#

 !
; (6)

whereBl;0l and dl;0l are the bandwidth and the distance from the

edge server l0 in RSUl0 to the edge server l in RSUl, respec-

tively. The transmission delay tTrl;0k;l from RSUl0 to RSUl is

TABLE II
NOTATIONS AND THEIR DEFINITIONS

1300 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

calculated by:

tTrm;l;0k;l ¼
Dm;k

Rl;0k;l
: (7)

3) RSUl to Vehicle m: When the subtask fm;k is transmit-

ted from the edge server l in RSUl to vehicle m, which means

CDm;k�1 ¼ l and CDm;k ¼ 0, the transmission rate Rl;k;m is

calculated by:

Rl;k;m ¼ Bl;mlog 2 1þ P jhj2
v0ðdl;mÞ#

 !
; (8)

where Bl;m and dl;m are the bandwidth and the distance from

the edge server l inRSUl to vehiclem, respectively. The trans-

mission delay tTrl;k;m fromRSUl to vehiclem is calculated by:

tTrl;k;m ¼ Dm;k

Rl;k;m
: (9)

For subtask fm;k, the transmission time TTr
m;k is:

TW
m;k;l ¼

PL
l¼1 I

Tr
m;k;lt

Tr
m;k;l; if CDm;k�1 ¼ 0PL

l¼1 I
Tr
l;0k;lt

Tr
m;l;0k;l þ ITrl;0k;mt

Tr
l;0k;m; if CDm;k�1 ¼ l0

(

(10)

where ITrm;k;l and ITrl;0k;l are the indicator values that both

describe whether fm;k is execute on the l-th device (l ¼ 1; 2;
. . . ; L), ITrl;0k;m ¼ 1 means the subtask fm;k is executed on

vehicles.
PL

l¼0 I
Tr
m;k;l þ

PL
l¼0 I

Tr
l;0k;l þ ITrl;0k;m ¼ 1 means that the

subtask fm;k can only be executed on one device and

ITrm;k;l; I
Tr
l;0k;l; I

Tr
l;0k;m 2 f0; 1g. ITrm;k is the transmission decision

indicator of subtasks fm;k.

C. Waiting Time

Vehicles may offload subtasks to the same edge server, espe-

cially when vehicles drive on a low speed-limit road or meet the

traffic congestion situation so that the waiting time is an inevita-

ble part when the objective is optimizing the total delay of the

VEC system. The order of executing subtasks that are offloaded

to the same edge server operates on a first-come-first-serve rule,

which means that the execution of the current subtask needs to

wait until the end of the earlier arriving subtask.

When the subtask fm;k is chosen to be executed on the edge

server l, the transmission time is:

TTr
m;k;l ¼

XL
l0¼0

ITrl;0k;lt
Tr
m;l;0k;l þ ITrm;k;lt

Tr
m;k;l: (11)

We denote TOcc
m;k;l as the occupied time of the edge server l

when the subtask fm;k arrive at RSUj and executed on the

edge server l, which is calculated by:

TOcc
m;k;l ¼ max TEnd

m;0k0 ; T
End
m;k

n o
;fm;0k0 2 F�1

m;k;l; 8k � 2; (12)

where F�1
m;k;l is the set of subtasks that are executed on RSUl

and the offloading decision is made before fm;k.

The generation time of the whole tasks for vehicles are dif-

ferent, that is, the start time of subtasks, which is denoted as

TStart
m . The end time of the subtask fm;k�1ðk � 2Þ is the sum

of four parts, which is defined as follows:

TEnd
m;k�1 ¼ TStart

m þ
Xk�1

j¼1

~Tm;j

¼ TStart
m þ

Xk�1

j¼1

TE
m;j þ

Xk�1

j¼1

TTr
m;j þ

Xk�1

j¼1

TW
m;j; (13)

where TW
m;j is the waiting time of the subtask fm;j and ~Tm;j

is the total time of subtask fm;j, which is equal to the sum of

the execution time TE
m;j, the transition time TTr

m;j, and the wait-

ing time TW
m;j.

The arrival time TA
m;k;l of the subtask fm;k arriving at RSUl

is calculated by:

TA
m;k;l ¼ TEnd

m;k�1 þ TTr
m;k;l: (14)

When some subtasks arrive at the edge server l earlier than
subtask fm;k, then the waiting time TW

m;k;l is:

TW
m;k;l ¼ TOcc

m;k;l � TA
m;k;l if TOcc

m;k;l > TA
m;k;l

0 else

�
(15)

Therefore, the waiting time of fm;k can be calculated as:

TW
m;k ¼

XL
l¼1

IEm;k;lT
W
m;k;l: (16)

where IEm;k;l is the indicator value describing whether fm;k is

executed on the edge server l.

D. Problem Formulation

The total delay of the task of vehicle m is TEnd
m;K , and the

total delay of the VEC system is:

TSum ¼
XM
m¼1

TEnd
m;K: (17)

To avoid occupying the limited computing resource of

vehicles and taking too much transmission time between the

edge server and vehicles, we offload almost all subtasks to the

edge server except the last subtasks that should be transmitted

back to vehicles, which means ITrl;0K;m ¼ 1 for vehicle m when

CDm;K�1 ¼ l0. The last subtask may include result data or

even a small amount of computation that needs to be executed

in the vehicle. Accordingly, the dynamic offloading problem

in the VEC environment with sequential subtask dependency

is formulated as:

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1301

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

ðP1P1Þ min
IE
m;k;l

;ITr
m;k

: TSum ¼
XM
m¼1

TEnd
m;K; (18)

s:t: :
XL
l¼0

IEm;k;l ¼ 1; (19)

XL
l¼0

ITrm;k;l þ
XL
l¼0

ITrl;0k;l þ ITrl;0k;m ¼ 1 (20)

IEm;k;l; I
Tr
m;k;l; I

Tr
l;0k;l; I

Tr
l;0k;m 2 f0; 1g (21)

ITrl;0K;m ¼ 1 (22)

where Eq. 19 indicates that fm;k can only be executed on one

device, Eq. 20 indicates that fm;k can only be transmitted to

one device, and Eq. 22 indicates that the last subtask need to

be transmitted back to vehicles.

IV. DYNAMIC FRAMING OFFLOADING ALGORITHM

BASED ON DOUBLE-DQN

In this part, we make offloading decisions in the order of the

generation time of each subtask of multiple vehicles. The gen-

eration time TG
m;k of subtasks fm;k is calculated as:

TG
m;k ¼ TEnd

m;k�1; 8k � 2: (23)

As shown in Fig. 2, the process of making the offloading

decision of whole tasks in the current road is divided into differ-

ent offloading frames tp of subtasks, where p ¼ 1; 2; . . . ;MK.

The proposed Dynamic Framing Offloading algorithm

based on Double Deep Q-Network (DFO-DDQN) is as shown

in Fig. 3. The state s, action a, and reward r are set as follows:
1) State Space: The state in our model consists of the fol-

lowing two parts, namely, the information of subtasks and the

environmental information.

� Subtask Feature (SF): It includes the amount of compu-

tation w and the data size D of subtasks. After the cur-

rent subtask corresponding to the current tp is executed,
the locations of the subtask feature with wm;k and Dm;k

are updated with zeros, and the new subtask feature is

generated. It is worth mentioning that the number of

subtasks of a vehicle can be less than K and the empty

position is filled up with zero. The p-th SF state SF ðtpÞ
is as shown in Eq. 24.

SF ðtpÞ ¼ ð sfp1 ; sfp
2 ; . . . ; sfpMÞ

¼

wp
1;1 wp

2;1 � � � wp
M;1

Dp
1;1 Dp

2;1 � � � Dp
M;1

wp
1;2 wp

2;2 � � � wp
M;2

Dp
1;2 Dp

2;2 � � � Dp
M;2

..

. ..
. . .

. ..
.

wp
1;K wp

2;K � � � wp
M;K

Dp
1;K Dp

2;K � � � Dp
M;K

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(24)

where sfpm ¼ ½wp
m;1; D

p
m;1; w

p
m;2; D

p
m;2; . . . ; w

p
m;K;D

p
m;K �T

is the subtask information set of m-th vehicle in frame

tp, and wp
m;k and Dp

m;k are the amounts of computation

and the data size of subtask fm;k when in frame tp,
which are computed by Eq. 25 and Eq. 26, respectively.

wp
m;k ¼

0; if fm;k has been executed before tp
wm;k; else

�
(25)

Dp
m;k ¼

0; if fm;k has been executed before tp
Dm;k; else

�
(26)

� Vehicle Feature (VF): It includes four aspects of infor-

mation, namely, the start time of the whole tasks of

vehicles, the computing ability of vehicles, the speed of

vehicles, and the location information of vehicles in cur-

rent tp. After the subtask fm;k is executed, the environ-

mental characteristics are updated as the situation

changes, e.g., the location information of the vehicle m
changes. The p-th VF state VF ðtpÞ is as shown in Eq. 27.

VF ðtpÞ ¼ ðvfp1 ; vfp2 ; . . . ; vfpMÞ

¼

TStart
1 TStart

2 � � � TStart
M

f1 f2 � � � fM

v1 v2 � � � vM

xp
1 xp

2 � � � xp
M

0
BBB@

1
CCCA (27)

where vfpm ¼ ½TStart
m ; fm; vm; x

p
m�T is the vehicle infor-

mation set ofm-th vehicle in frame tp. x
p
m is the distance

from the starting point of the road ofm-th vehicle when

in frame tp, which can be calculated by TStart
m ; vm, and

TEnd or obtained from the monitoring system of the

reality.

The state in frame tp is as Eq. 28:

sðtpÞ ¼ ½sfpT1 ; vfpT1 ; sfpT2 ; vfpT2 ; . . . ; sfpT
M ; vfpTM �T : (28)

2) Action Space: In tp frame, we need to compare which

subtask among the current to-do subtasks is the earliest gener-

ated one, denoted as fðtpÞ ¼ argminmT
End;p
m , where TEnd;p

m is

the generation time of the current to-do subtasks of m-th vehi-

cle in frame tp, which is calculated by Eq. 29:

Fig. 2. An illustration of the frame-based offloading process. The execution
time is necessary for a subtask, while the waiting time and transmitting time
may be zero.

1302 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

TEnd;p
m;kp

¼ TStart
m ; kp ¼ 0

TEnd
m;kp

; kp � 1

(
(29)

where ðm; kpÞ is the index tuple of the current to-do subtask of
m-th vehicle in frame tp.

The action space is A ¼ ½a1; a2; . . . ; aL�, each of whose ele-
ment corresponds an edge server, where al 2 f0; 1g andPL

l al ¼ 1, l ¼ 1; 2; . . . ; L. fðtpÞ ¼ fm;k in frame tp means

the current action choice aðtpÞ is the offloading decision of the

k-th subtask of them-th vehicle, where aðtpÞ is the action cho-
sen in tp frame and aðtpÞ 2 A . When the current subtask is

fm;K , the action is a0, indicating that the last subtask will be

transmitted back to the vehiclem.

3) Reward: We use TEnd
m;k to evaluate the action, which is

the time delay required by the subtask fm;k.

rðsðtpÞ; aðtpÞÞ ¼ ~TfðtpÞ

¼ min
m

TEnd;p
m �min

m
TEnd;p�1
m (30)

where p � 1 and fðtpÞ are the subtasks that need to be off-

loaded when the frame is tp. ~TfðtpÞ is also equal to the sum

of the execution time, the transmission time, and the waiting

time of fðtpÞ.
The Q-function of our model is updated as:

Q̂MðsðtpÞ; aðtpÞÞ ¼ rð~TfðtpÞÞ þ gQT ðsðtpþ1Þ;
argmax
aðtpþ1Þ

QMðsðtpþ1Þ; aðtpþ1ÞÞÞ; (31)

where sðtpÞ and aðtpÞ are the state and the action of the current
frame tp, respectively; sðtpþ1Þ and aðtpþ1Þ are the state and the
action of the next frame tpþ1, respectively; QMðsðtpÞ; aðtpÞÞ is
the Q-value of the main network when choosing action aðtpÞ
under state sðtpÞ, Q̂MðsðtpÞ; aðtpÞÞ is the prediction of the

Q-value of the main network when choosing action aðtpÞ
under state sðtpÞ and QT ðsðtpþ1Þ; aðtpþ1ÞÞ is the Q-value of

the target network when choosing action aðtpþ1Þ under state

sðtpþ1Þ. The detailed algorithmic process is as described in

Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on the pro-

posed algorithm under various parameter settings, and to verify

its effectiveness, we further compare it with several existing

offloading schemes in VEC environments.

A. Experimental Settings

The simulation settings are as shown in Table III, which

mainly refer to [10]. We have w ¼ rD, where r is the compu-

tational complexity. Regardless of whether the vehicle posi-

tion changes or not, the transmission rate between different

RSUs remains the same because the distance between differ-

ent RSUs remains the same. We set Rl;0k;l to 1 Gbps, while the

transmission rates Rm;k;l and Rl;k;m are calculated according

to Eq. 4 and Eq. 8, respectively, since they are severely

affected by the distance. We set the number of subtasks K ¼
6, the number of RSUs L ¼ 5, and the speed of vehicle v 2
½10; 15; 20; 25� m/s. For training, we set the maximum training

episode Maxiter ¼ 10; 000, the learning rate 0.01, the reward

decay 0.9, the �-greedy rate 0.98, the replace target iter 500,

and the memory size 13,000.

B. Baselines

In order to validate the effectiveness of the proposed DFO-

DDQN algorithm, we compare it with the other four offload-

ing schemes in VEC environments, as shown below:

Fig. 3. An illustration of the proposed DFO-DDQN algorithm.

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1303

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

� Dynamic Framing Offloading Algorithm Based on Deep

Q-learning Network (DFO-DQN): As the earliest DRL

frame, Deep Q-learning Network (DQN) [33] is widely

used to solve Markov decision processes in complex

environments. Similar to DFO-DDQN, the main differ-

ence lies in Q-value [33], i.e., Q̂Mðs; aÞ ¼ rþ
gmaxa0QT ðs;0 a0Þ. The deep Q network of DFO-DQN

consists of three layers: the first layer is an input layer

with M � ð2�K þ 4Þ, the following layer is the

hidden layer with 20 nodes, and the last layer is the out-

put layer withK nodes.

� Dynamic Framing Offloading Algorithm Based on

Dueling Deep Q-learning Network (DFO-Duel-

ingDQN): Dueling Deep Q-learning Network (Dueling

DQN) [38] are proposed based on DQN and aims to

guide the network to distinguish the impacts of state

and action on reward. Similar to DFO-DQN, we imple-

ment DFO-DuelingDQN through the algorithm pro-

posed in [38]. Compared with DFO-DQN, the output

layer of DFO-DuelingDQN has been improved, which

is divided into two parts: one is the value of the state,

called V ðsÞ, and the other one is the advantages for

each action, called Aðs; aÞ. The Q-value of the target

net is QT ðs; aÞ ¼ V ðsÞ þ Aðs; aÞ and QMðs; aÞ ¼
rþ gmaxa0QT ðs;0 a0Þ.

� Greedy Algorithm with Segmented Tasks (Seg-Greedy):

Greedy algorithm is a classic optimization method that

chooses the best decision of each step and can get the local

optimal solution of the system. First, we make offloading

decisions in the order of the generation time TG
m;k of sub-

tasks fm;k and compare the time cost~Tfm;k
among deci-

sions executing on different RSUs of the current to-offload

subtask, m ¼ 1; 2; . . . ;M; k ¼ 1; 2; . . . ; K � 1. Then

transfer the current subtaskfm;k to the RSUwith the lowest

delay, where l ¼ argminl~Tm;k;l. The last subtask whose

k ¼ K may include result data or even a small amount of

computation so that it needs to be executed in the vehicle.

� Greedy Algorithm without Segmented Tasks (NoSeg-

Greedy): The above methods are all based on segmented

tasks and we need to compare our method to the task off-

loading method without task segmentation. We make

offloading decisions in the order of the generation time

of tasks and compare the time cost of the whole tasks

of vehicles, including fm;1;fm;1; . . . ;fm;K�1ðm ¼ 1; 2;
. . . ;MÞ among offloading decisions that executing on

different RSUs. Then transfer the current to-offload the

whole task to the RSU with the lowest delay and transfer

the last task fm;K to local.

Algorithm 1: Dynamic framing Offloading algorithm based

on DDQN (DFO-DDQN) for sequential subtasks in the VEC

environment.

Input: The initial subtask feature and vehicle feature

Output: optimal offloading decision for input

1: Initialize network parameters u, update steps n, D
2: for episode do

3: TEnd
m;0 ¼ TStart

m , tp ¼ 1.
4: while not all subtasks is executed do

5: Get the earliest generation time of all subtasks that need to

be executed in the current frame tp, and the correspond-

ing vehicle and its subtask are m and fm;k, respectively,

where fm;k ¼ fðtpÞ.
6: Calculate the current location xðtpÞ of vehiclem
7: Input sðtpÞ to MainNet and get QMðsðtpÞ; alÞ,

l ¼ 1; 2; . . . ; L
8: if k ¼ K then

9: Choose aðtpÞ ¼ a0
10: done ¼ 1
11: else

12: Choose aðtpÞ ¼ arg maxaQMðsðtpÞ; aÞ according to
��greedy policy

13: Get the occupied time TOcc
m;k;aðtpÞ of RSUaðtpÞ before

executing the subtask fðm; kÞ by Eq. 12
14: Get the arrival time TA

m;k;aðtpÞ of the current subtask

fðtpÞ, which is transmitted to RSUaðtpÞ by Eq. 14
15: Compute the waiting time TW

m;k;aðtpÞ by Eq. 15
16: end if

17: Compute TEnd
m;k

18: Compute rðfðtpÞÞ ¼ ~TfðtpÞ ¼ TEnd
m;k � TEnd

m;k�1

19: Generate the new state sðtpþ1Þ
20: Save ðsðtpÞ; aðtpÞ; rðtpÞ; sðtpþ1Þ; doneÞ in D
21: if Training Step then

22: Sample memories from D
23: Input sðtpÞ to MainNet and get QMðsðtpÞ; aðtpÞÞ
24: Input sðtpþ1Þ to MainNet and get

aðtpþ1Þ ¼ arg maxalQMðsðtpþ1Þ; alÞ
25: Input sðtpþ1Þ to TargetNet and get QT ðsðtpþ1Þ; aðtpþ1ÞÞ
26: Compute the prediction Q-value by Eq. 31:

Q̂Mðs; aÞ ¼ rðtpÞ þ gð1� doneÞQT ðsðtpþ1Þ; aðtpþ1ÞÞ
27: Update the parameter of the main network by

minimizing jQMðs; aÞ � Q̂Mðs; aÞj2
28: Copy the parameter of the main network to the target

network, every n steps

29: end if

30: end while

31: end for

32: return optimal offloading decision for input

TABLE III
PARAMETER SETTINGS

1304 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

Among them, DFO-DDQN, DFO-DQN and DFO-Duel-

ingDQN are three DRL-based methods, while Seg-Greedy and

NoSeg-Greedy are two representative greedy-basedmethods.

C. Evaluation Indicators

� Average Delay: The average finish time of tasks of

vehicles, which is as follows:

T ¼ TSum

M
¼
PM

m¼1 T
End
m;K

M
: (32)

� Average Reward: The average reward of the frames.

The higher the value, the better the performance of the

DRL-based method is.

� Average Start Time: The start time of the m-th vehicle is

TStart
m , which is the generation time of the task of vehicle

m. The start time is entirely unrelated to different meth-

ods, and we simulate it by some start tasks fStart whose

computations wStart ¼ ½wStart
1 ; wStart

2 ; . . . ; wStart
M � is in

½0; 100� � 108 cycles. Then we can get TStart
m as follows:

TStart
m ¼ wStart

m

fm
: (33)

� Average Waiting Time: The average waiting time is cal-

culated as follows:

T
W ¼ 1

M

XM
m¼1

XK
k¼1

TW
m;k: (34)

� Average Transmission Time: The average transmission

time is calculated as follows:

T
Tr ¼ 1

M

XM
m¼1

XK
k¼1

TTr
m;k: (35)

� Average Execution Time: The average execution time is

as follows:

T
E ¼ 1

M

XM
m¼1

XK
k¼1

TE
m;k: (36)

� The Average Delay excluding Start Time ~T :
It includes the average waiting time, the average

transmission time, and the average execution time. The

relationship among different types of time is as follows:

~T ¼
PM

m¼1

PK
j¼1

~Tm;j

M

¼
PM

m¼1

PK
j¼1ðTE

m;j þ TTr
m;j þ TW

m;jÞ
M

¼ T
E þ T

Tr þ T
w

¼ T �
PM

m¼1 T
Start
m

M
: (37)

� The Improvement Rate: The improvement rate IRA1=A2
of

algorithmA1 compared withA2 is:

IRA1=A2
¼ TA1

� TA2

TA2

; (38)

where TA1
and TA2

are the average delays of the A1

algorithm and the A2 algorithm, respectively.

D. Experimental Results

1) Impact of the Speeds of Vehicles: As shown in Fig. 4,

DFO-DDQN achieves significantly better results than other

approaches. For instance, when the speed of the vehicle is 15 m/

s and the number of vehicles is 15, it achieves 10.28%, 25.64%,

43.65%, and 46.45% improvements when compared with DFO-

DQN, DFO-DuelingDQN, Seg-Greedy, NoSeg-Greedy, respec-

tively. The Seg-Greedy algorithm achieves a relatively good off-

loading decision, which is better than the NoSeg-Greedy

algorithm. The three DRL-based algorithms DFO-DDQN,

DFO-DQN, and DFO-DuelingDQN are always significantly

better than two greedy algorithms under different speeds.

2) Impact of r: In this part, we set r 2 ½20; 40; 60; 80; 100�,
which corresponds to the computational complexities of differ-

ent types of tasks. Each of r is larger than one to make sure that

the tasks are compute-intensive and have high computational

complexity. As shown in Fig. 5, DFO-DDQN performs best

when tasks with different r. when r is increased, the average

delay of DFO-DDQN method and two greedy-based methods

are decreased although the decreasing trends are not pro-

nounced, indicating that these methods are insensitive to the

value of r.

Fig. 4. Average time delay in different speeds under different offloading
algorithms.

Fig. 5. Average time delay of tasks with different r under different offload-
ing algorithms.

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1305

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

3) Comparison At Different Speeds: As shown in Fig. 6

(a), the values of IRDFO�DDQN=Seg�Greedy at different

speeds are relatively good, which are mostly higher than

IRDFO�DQN=Seg�Greedy and IRDFO�DuelingDQN=Seg�Greedy.

Compared with Seg-Greedy, the improvement rates of DFO-

DDQN are always higher than 43.3% at different speeds. As

shown in Fig. 6(b), the values of IRDFO�DDQN=NoSeg�Greedy at

different speeds are relatively good, which are mostly higher

than IRDFO�DQN=NoSeg�Greedy and IRDFO�DuelingDQN=NoSeg�Greedy.

The improvement rates of DFO-DDQN are always higher than

46.4% at different speeds compared with NoSeg-Greedy. Over-

all, for the performance of DFO-DDQN at different speeds,

DFO-DDQN is better than DFO-DQN and DFO-DuelingDQN.

4) Convergence Performance: Considering the random-

ness of results of different random seeds, we set three same

seeds 0, 50, 100 for DFO-DDQN, DFO-DQN, and DFO-

DuelingDQN to fix the results so that the comparisons are

equitable. As depicted in Fig. 7, the red scope indicates the

average rewards of different seeds of DFO-DDQN. The nar-

rower the scope, the smaller the influence by different seeds,

which means that the algorithm is more stable. DFO-Duel-

ingDQN performs poorly in the low-speed situation, while

DFO-DQN utperforms it in in each speed situation, but not

better than DFO-DDQN. DFO-DDQN is more stable than

DFO-DQN and DFO-DuelingDQN. The average rewards of

DFO-DDQN at different speeds go beyond -0.2 when the

episodes are in [4000,6000], while the average rewards of

DFO-MDQN and DFO-DuelingDQN are always under -0.2

after training for 10,000 episodes, which indicates that DFO-

DDQN achieves significantly better results than DFO-DQN

and DFO-DuelingDQN.

5) Comparison Under Different Numbers of Vehicles: In

order to further evaluate our DFO-DDQN, we conduct com-

parison experiments under different numbers of vehicles when

v ¼ 15 m/s, and obtain the results as follows:

� Average Waiting Time T
W
: The waiting time is gener-

ated from the chosen edge server when it is occupied by

other subtasks. As shown in Fig. 8(a), DRL-based meth-

ods including DFO-DDQN, DFO-DQN, DFO-Duel-

ingDQN perform obviously better than greedy-based

methods including Seg-Greedy and NoSeg-Greedy. As

the number of vehicles increases, the subtasks conges-

tion is more and more serious, the waiting time of

greedy-based method increases significantly, while the

waiting time of DRL-based method has slow growth. It

shows that even in the congestion situation, DRL-based

methods are better suited to dynamic sequential sub-

tasks offloading decisions. This is because DRL-based

methods consider long-term returns, while greedy-

based methods only consider the immediate rewards.

� Average Transmission Time T
Tr
: As shown in Fig. 8(b),

the transmission time of greedy-based methods is sig-

nificantly higher than that of DRL-based methods,

which means that DRL-based methods can find edge

servers that are more suitable for offloading. It is worth

mentioning that the transmission time of the NoSeg-

Greedy method is higher than that of the Seg-Greedy

method. This is because the Seg-Greedy method can

refine the offloading decision and choose different edge

servers to execute subtasks, while the NoSeg-Greedy

method can only choose one edge server because of the

need to offload the entire task.

� Average Execution Time T
E
: As shown in Fig. 8(c), the

execution time of the NoSeg-Greedy method is signifi-

cantly higher than other methods. This is because off-

loading the whole task may lose the wide optimization

space of choosing edge servers. The average execution

time of Seg-Greedy is close to but higher than that of

DRL-based methods, which means that task segmenta-

tion is an effective method of optimizing execution

time. This is because partial offloading can offload sub-

tasks according to the combination of a more suitable

decision, instead of offloading the whole task to an edge

server, especially in the dynamic situation of vehicle

movement.

� Average Delay except Start Time ~T : As shown in

Fig. 8(d), the ~T of greedy-based methods are signifi-

cantly higher than that of DRL-based methods under dif-

ferent numbers of vehicles. The seg-Greedy method

performs better than the NoSeg-Greedy method when

M ¼ 10; 15; 20, while it performs worse than the

NoSeg-Greedy method when M ¼ 25; 30, indicating

that task segmentation is not a good choice when the traf-

fic congestion is heavy. This is because partial offloading

may enlarge the shortcomings of greedy-based methods

when applied to solve theMDP problem, while this prob-

lem can be well solved by DRL-based methods.

� Average Start Time: The average simulation value of

TStart is shown in Fig. 8(e). The average start time is

not flat but instead rises and falls with the random set-

tings of the computing capability of vehicles. Different

methods share the same start time to be fair.

Fig. 6. Performance improvement of different DRL-based algorithms com-
pared with Seg-Greedy and NoSeg-Greedy at different speeds whenM ¼ 15.

1306 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

� Average Finish Time T : As shown in Fig. 8(f), the aver-
age delay of different methods increases with the

increase in the number of vehicles, and the NoSeg-

Greedy method and DRL-based methods perform

diminishing growth, which may mainly be because of

the influence of the random start time. The average

delay of greedy-based methods is significantly higher

than that of DRL-based methods under different num-

bers of vehicles.

6) Impact of the Number of Vehicles At Different Speeds:

To further study the impact of congestion at different

speeds, we conduct experiments under different numbers

of vehicles at different speeds and compare the values of

IRDFO�DDQN=Seg�Greedy and IRDFO�DDQN=NoSeg�Greedy. As

shown in Fig. 9(a), the values of IRDFO�DDQN=Seg�Greedy

at different speeds increase with the number of vehicles. When

M ¼ 10, DFO-DDQN performs best in lowest speed 10 m/s

because it is more likely to occur congestion under lower speed

than under higher speed and DFO-DDQN performs well, espe-

cially in the congestion situation. WhenM ¼ 20, DFO-DDQN
performs best in highest speed 25 m/s because the Seg-Greedy

method performs worse in the high-speed situation, while

DFO-DDQN is less affected by speed than the Seg-Greedy

method. As shown in Fig. 9(b), DFO-DDQN performs better in

high speed and heavier task congestion than in low speed and

lighter task congestion when compared with the NoSeg-Greedy

method.

Fig. 7. Comparison of the average rewards under DF0-DDQN, DFO-DQN and DFO-DuelingDQN when v ¼ ½10; 15; 20; 25� m/s.

Fig. 8. Comparison of different types of delay under differentM ¼ ½10; 15; 20; 25; 30� when v ¼ 15 m/s.

Fig. 9. Performance improvement compared with Seg-Greedy and NoSeg-
Greedy at different speeds whenM ¼ ½10; 15; 20; 25�.

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1307

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

7) Convergence Performance At Different Speeds and Dif-

ferent Numbers of Vehicles: As shown in Fig. 10, the differ-

ence in rewards at different speeds when M ¼ 10 is greater

than that when M ¼ 30, and the difference in rewards

decreases as the number of vehicles increases. This is because

the congestion is mainly caused by the number of vehicles

rather than the speed when the number of vehicles is large,

while the congestion of a small number of vehicles is mainly

affected by the speeds of vehicles because vehicles are more

likely to be scattered at high speeds.

8) Convergence Performance At High Speeds: In this part,

we set M ¼ 15, seed 2 ½0; 50; 100� and v 2 ½10; 15; 20;
25; 30; 35; 40; 45�m=s. As shown in Fig. 11, DFO-DDQN per-

forms best when it is compared with other algorithms. Tasks

cost an initial decreased average delay which was followed by

a subsequent increase in average delay when the speeds are

increased under the NoSeg-Greedy algorithm. Because the

congestions are more serious when in lower speeds which

cause higher waiting time, while the transmission distances

are farther when in higher speeds which cause higher trans-

mission time. However, when the task is divided into several

subtasks, the trends of increasing average delay are slow

down, which means task segmentation contributes to optimiz-

ing the average delay of the computation-intense task when in

high speeds environment. In addition, the average delays of

DRL-based methods are all lower than the average delays of

greedy-based methods, which have again proved that DRL-

based methods are better at solving the MDP problem than

greedy-based methods.

E. Results on ARkit and ARCore

ARkit can be divided into six sequential modules, namely,

UIView, ARSCNView, SCNScene, ARCamera, ARSession and

Fig. 10. Comparison of the average rewards of DFO-DDQN at different speeds whenM ¼ ½10; 15; 20; 25; 30�.

Fig. 11. Average time delay in high speeds under different offloading
algorithms.

Fig. 12. Average time delay of ARkit and ARCore.

1308 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

ARFrame [21], while ARCore can be divided into five sequen-

tial modules, namely, SCNScene, Environment Tracking,

ARSession, ARFrame and Render [22]. AR tasks of vehicles are

generated by initial subtasks on local where different vehicles

have different initial subtasks, so that the generation time of AR

tasks are different.

Considering the speeds of vehicles are different in the real-

ity, we set different speeds for different vehicles, whose values

are randomly taken from [10, 20] m/s. The amount of compu-

tation and data size of each subtask are set as the former simu-

lations. The entire task of ARCore is set to the same amount

of computation and data size as ARkit. The number of M is

unfixed, it is randomly taken from [10,20], and the number of

subtasks L is set as 7 for ARkit, where the former 6 subtasks

correspond to the 6 modules of ARkit, while the last subtask is

the result of the last module of ARkit that needs to be transmit-

ted back to the vehicle. ARCore has fewer modules than

ARkit, which means that the state set of ARCore can be

regarded as a subset of ARkit’s state, so we can directly utilize

the trained network of ARkit to make offloading decisions of

ARCore. As shown in Fig. 12 and Fig. 13, DFO-DDQN is

obviously much better than two greedy-based methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, aiming to minimize the total delay and waiting

time of tasks from moving vehicles, we build a dynamic off-

loading model for multiple moving vehicles whose tasks can

be divided into sequential subtasks, and further propose a

DFO-DDQN algorithm to offload these sequential subtasks.

By doing this, fine-grained offloading decisions can be

achieved based on the frame-based process for offloading

compute-intensive tasks in complex VEC environments con-

sidering V2R. Experimental results demonstrate that the pro-

posed DFO-DDQN algorithm is far superior to other DRL-

based offloading algorithms and greedy-based offloading algo-

rithms, regardless of whether the congestion is mainly caused

by the number of vehicles or the low speed.

For future work, we will introduce cloud computing into our

model and consider the intelligent optimization of end-edge-

cloud collaboration among different vehicles [39]–[41]. In

addition, introducing content caching into task offloading may

further reduce delay and save energy, which is in favor of a

low-carbon VEC system.

REFERENCES

[1] M. Xue, H. Wu, G. Peng, and K. Wolter, “DDPQN: An efficient DNN
offloading strategy in local-edge-cloud collaborative environments,”
IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 640–655, Mar./Apr. 2022.

[2] Z. Xu et al., “Energy-aware inference offloading for DNN-driven appli-
cations in mobile edge clouds,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 4, pp. 799–814, Apr. 2021.

[3] H. Tang, H. Wu, Y. Zhao, and R. Li, “Joint computation offloading and
resource allocation under task-overflowed situations in mobile edge
computing,” IEEE Trans. Netw. Service Manag., vol. 19, no. 2,
pp. 1539–1553, Jun. 2022.

[4] X. Cao, F.Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and com-
munication cooperation for energy-efficient mobile edge computing,”
IEEE Internet Things J., vol. 6, no. 3, pp. 4188–4200, Jun. 2019.

[5] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading sched-
uling and power allocation for mobile edge computing systems,” IEEE
Internet Things J., vol. 6, no. 4, pp. 6774–6785, Aug. 2019.

[6] S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in Proc. IEEE Conf. Comput. Com-
mun., 2018, pp. 37–45.

[7] H. Huang, K. Peng, and P. Liu, “A privacy-aware Stackelberg game
approach for joint pricing, investment, computation offloading and
resource allocation in MEC-enabled smart cities,” in Proc. IEEE Int.
Conf. Web Serv., 2021, pp. 651–656.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[9] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO: An
energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet Things
J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[10] H. Wang, X. Li, H. Ji, and H. Zhang, “Dynamic offloading scheduling
scheme for MEC-enabled vehicular networks,” in Proc. IEEE/CIC Int.
Conf. Commun. China (ICCC Workshops), 2018, pp. 206–210.

[11] S. Raza, S. Wang, M. Ahmed, M. R. Anwar, M. A. Mirza, and
W. U. Khan, “Task offloading and resource allocation for IoV using 5G
NR-V2X communication,” IEEE Internet Things J., vol. 9, no. 13,
pp. 10397–10410, Jul. 2022.

[12] X. Huang, K. Xu, C. Lai, Q. Chen, and J. Zhang, “Energy-efficient offload-
ing decision-making for mobile edge computing in vehicular networks,” J.
Wireless Commun. Netw., vol. 2020, Feb. 2020, Art. no. 35.

[13] W. Zhan, C. Luo, J. Wang, C. Wang, and Q. Zhu, “Deep reinforcement
learning-based offloading scheduling for vehicular edge computing,”
IEEE Internet Things J., vol. 7, no. 6, pp. 5449–5465, Jun. 2020.

[14] X. Huang, L. He, and W. Zhang, “Vehicle speed aware computing task
offloading and resource allocation based on multi-agent reinforcement
learning in a vehicular edge computing network,” in Proc. IEEE Int.
Conf. Edge Comput., 2020, pp. 1–8.

[15] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y.Wu, “Meta-learning based
dynamic computation task offloading for mobile edge computing
networks,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1568–1572, May 2021.

[16] D. Tang, X. Zhang, M. Li, and X. Tao, “Adaptive inference reinforcement
learning for task offloading in vehicular edge computing systems,” in Proc.
IEEE Int. Conf. Commun.Workshops (ICCWorkshops), 2020, pp. 1–6.

[17] Y. Wu, J. Wu, L. Chen, J. Yan, and Y. Luo, “Efficient task scheduling
for servers with dynamic states in vehicular edge computing,” Comput.
Commun., vol. 150, pp. 245–253, 2020.

[18] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9637–9650, Oct. 2020.

[19] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for MEC in heteroge-
neous vehicular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916–7929, Jul. 2020.

[20] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,”
IEEE Wireless Commun. Lett., vol. 6, no. 3, pp. 398–401, Jun. 2017.

[21] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial computa-
tion offloading scheme for mobile edge computing enabled Internet of
Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814,
Jun. 2019.

[22] J. Wang, T. Lv, P. Huang, and P. T. Mathiopoulos, “Mobility-aware par-
tial computation offloading in vehicular networks: A deep reinforcement
learning based scheme,” China Commun., vol. 17, no. 10, pp. 31–49,
2020.

Fig. 13. ~T of ARkit and ARCore.

TANG et al.: DOUBLE DEEP Q-NETWORK BASED DYNAMIC FRAMING OFFLOADING IN VEHICULAR EDGE COMPUTING 1309

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

[23] G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, “ChainFL: A simulation plat-
form for joint federated learning and blockchain in edge/cloud computing
environments,” IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3572–3581,
May 2022.

[24] Z. Zhou, S. Yang, L. J. Pu, and S. Yu, “CEFL: Online admission control,
data scheduling and accuracy tuning for cost-efficient federated learning
across edge nodes,” IEEE Internet Things J., vol. 7, no. 10, pp. 9341–9356,
Oct. 2020.

[25] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for perva-
sive edge computing: A decentralized computation offloading algorithm,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425, Feb. 2021.

[26] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation off-
loading,” IEEEWireless Commun., vol. 27, no. 1, pp. 92–99, Feb. 2020.

[27] Z. Zhou, K. Luo, and X. Chen, “Deep reinforcement learning for intelli-
gent cloud resource management,” in Proc. IEEE INFOCOM Conf.
Comput. Commun. Workshops, 2021, pp. 1–6.

[28] X. Zhang, Y. Xiao, Q. Li, and W. Saad, “Deep reinforcement learning
for fog computing-based vehicular system with multi-operator support,”
in Proc. IEEE ICC 2020 Int. Conf. Commun., 2020, pp. 1–6 .

[29] T. Cai et al., “Cooperative data sensing and computation offloading in
UAV-assisted crowdsensing with multi-agent deep reinforcement
learning,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3197–3211,
Sep.–Oct. 2022.

[30] H. Huang, Q. Ye, and Y. Zhou, “Deadline-aware task offloading with
partially-observable deep reinforcement learning for multi-access edge
computing,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 6, pp. 3870–3885,
Nov.–Dec. 2022.

[31] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021.

[32] Z. Zhang, N.Wang, H.Wu, C. Tang, and R. Li, “MR-DRO: A fast and effi-
cient task offloading algorithm in heterogeneous edge/cloud computing
environments,” IEEE Internet Things J., vol. 10, no. 4, pp. 3165–3178, Feb.
2023.

[33] V. Mnih et al., “Playing atari with deep reinforcement learning,” Com-
put. Sci., 2013, arXiv:1312.5602.

[34] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[35] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Inf. Process. Syst., 2017, vol. 30, pp. 6382–
6393.

[36] L. Liu et al., “Cutting the cord: Designing a high-quality untethered vr
system with low latency remote rendering,” in Proc. 16th Annu. Int.
Conf. Mobile Syst., Appl., Serv., MobiSys ’18, 2018, pp. 68–80.

[37] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[38] K. Peng, H. Huang, B. Zhao, A. Jolfaei, X. Xu, and M. Bilal, “Intelligent
computation offloading and resource allocation in IIoT with end-edge-
cloud computing using NSGA-III,” IEEE Trans. Netw. Sci. Eng., to be
published, doi: 10.1109/TNSE.2022.3155490.

[39] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EosDNN: An efficient off-
loading scheme for DNN inference acceleration in local-edge-cloud col-
laborative environments,” IEEE Trans. Green Commun. Netw., vol. 6,
no. 1, pp. 248–264, Mar. 2022.

[40] I. Attiya,M.A. Elaziz, L.Abualigah, T. N. Nguyen, andA. A. Abd el-Latif,
“An improved hybrid swarm intelligence for scheduling IoT application
tasks in the cloud,” IEEE Trans. Ind. Informat., to be published, doi:
10.1109/TII.2022.3148288.

Huijun Tang received the B.Sc. degree from Jinan
University, Guangzhou, China, in 2016, and the M.S.
degree in 2018 from Tianjin University, Tianjin,
China, where she is currently working toward the
Ph.D. degree with the Center for Applied Mathemat-
ics. Her research interests include Internet of Things,
mobile edge computing, and deep learning.

HuamingWu (SeniorMember, IEEE) received the B.E.
and M.S. degrees in electrical engineering from the Har-
bin Institute of Technology, Harbin, China, in 2009 and
2011, respectively, and the Ph.D. degree (with the High-
est Hons.) in computer science from Freie Universit€at
Berlin, Berlin, Germany, in 2015. He is currently an
Associate Professor with the Center for Applied Mathe-
matics, Tianjin University, Tianjin, China. His research
interests includewireless networks,mobile edge comput-
ing, Internet of Things, and deep learning.

Guanjin Qu received the bachelor’s degree from the
Taiyuan University of Technology, Taiyuan, China,
in 2019. He is currently working toward the master’s
degree with the Center for Applied Mathematics,
Tianjin University, Tianjin, China. His research inter-
ests include distributed deep learning and edge
computing.

Ruidong Li (SeniorMember, IEEE) received theM.Sc.
and Ph.D. degrees in computer science from the Univer-
sity of Tsukuba, Tsukuba, Japan, in 2005 and 2008,
respectively. He was a Senior Researcher with the
National Institute of Information and Communications
Technology, Tokyo, Japan. He is currently anAssociate
Professor with Kanazawa University, Kanazawa, Japan.
His research interests include future networks, Big
Data, intelligent Internet edge, Internet of Things, net-
work security, information-centric network, artificial
intelligence, quantum Internet, cyber-physical system,

and wireless networks. He was the Secretary of IEEE ComSoc Internet Technical
Committee, and is the Founder and Chair of IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet Edge. He is an Associate Editor
for the IEEE INTERNET OF THINGS JOURNAL. He was the Guest Editor of a set of
prestigious magazines, transactions, and journals, such as the IEEE Communica-
tions Magazine, IEEE NETWORK, and IEEE TRANSACTIONS ON NETWORK SCI-
ENCE AND ENGINEERING. He was also the chair of several conferences and
workshops, such as the General Co-Chair of IEEE MSN 2021, AIVR2019, IEEE
INFOCOM 2019/2020/2021 ICCN Workshop, TPC Co-Chair of IWQoS 2021,
IEEE MSN 2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC Workshop,
and ICCSSE 2019. He is aMember of IEICE.

1310 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 25,2023 at 01:28:11 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TNSE.2022.3155490
https://dx.doi.org/10.1109/TII.2022.3148288

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

