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Abstract— A variety of methods have been proposed for
modeling and mining dynamic complex networks, in which the
topological structure varies with time. As the most popular and
successful network model, the stochastic block model (SBM)
has been extended and applied to community detection, link
prediction, anomaly detection, and evolution analysis of dynamic
networks. However, all current models based on the SBM for
modeling dynamic networks are designed at the community
level, assuming that nodes in each community have the same
dynamic behavior, which usually results in poor performance
on temporal community detection and loses the modeling of
node abnormal behavior. To solve the above-mentioned problem,
this article proposes a hierarchical Bayesian dynamic SBM
(HB-DSBM) for modeling the node-level and community-level
dynamic behavior in a dynamic network synchronously. Based
on the SBM, we introduce a hierarchical Dirichlet generative
mechanism to associate the global community evolution with
the microscopic transition behavior of nodes near-perfectly and
generate the observed links across the dynamic networks. Mean-
while, an effective variational inference algorithm is developed
and we can easy to infer the communities and dynamic behaviors
of the nodes. Furthermore, with the two-level evolution behaviors,
it can identify nodes or communities with abnormal behavior.
Experiments on simulated and real-world networks demonstrate
that HB-DSBM has achieved state-of-the-art performance on
community detection and evolution. In addition, abnormal evo-
lutionary behavior and events on dynamic networks can be
effectively identified by our model.
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I. INTRODUCTION

COMPLEX networks have been widely applied to model a
variety of real-world phenomena, e.g., social relations [1]

and biological systems [2]. As an emerging interdisciplinary
subject, network science has received increasing attention
from different fields. Community structure, as one of the
important statistical characteristics, plays an important role
in understanding the formation and function, link prediction,
and spreading dynamics of complex networks. The community
is usually denoted as a subnetwork with a higher inner
density in a given network. Community detection drives the
development of link prediction, information spreading, and
anomaly detection of complex networks, and it also can be
used for event detection, criminal organization identification,
and terrorist group mining. Therefore, a large number of
methods and models for community detection [3]–[6] have
been proposed, e.g., modularity optimization-based, spectral
clustering, and statistical inference [7].

All of the methods described earlier are only designed for
static networks with constant structures. However, complex
networks are usually time varying, i.e., the structure of the
networks changes over time, which is referred to as dynamic
or temporal complex networks. For instance, in a collaboration
network based on DBLP data, nodes and edges denote the
authors and their cooperative relationships, changes in research
fields, and the number of nodes and links changes over
time. For this network, the communities usually correspond
to different areas of research, such as the area of data mining.
With the varying structures of dynamic networks, the commu-
nities present different evolution forms [8], including Growth,
Contraction, Merge, Split, and so on, and the evolution forms
are early denoted by [9] and further expanded by [3].

With the various forms of community evolution in dynamic
networks, it poses new challenges for detecting temporal com-
munities. It is widely acknowledged that a dynamic network
is usually represented as a series of snapshots, each of which
can be regarded as a static network. As a result, community
detection in dynamic networks has three subproblems, namely,
community detection in each snapshot, evolution across snap-
shots, and abnormal behavior or change point identification.
These complex and interwoven challenges make it full of
vitality. In essence, these subproblems can mutually promote
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and are related to each other. At the same time, the temporal
community detection can also be used for exploring functional
brain networks [10], change point detection [11], identification
of influential individuals [12], [13], fraud detection [14], and
so on. It can also help understand the evolution mechanism of
dynamic networks and make better link predictions.

A variety of methods [3], [15] for community detection
in dynamic networks have been developed, including meth-
ods based on modularity, spectrum, multi-objective optimiza-
tion, dynamics, dynamic stochastic block models (DSBMs),
and matrix decomposition. Each method focuses either on
detection, evolution, or abnormal behavior. For the detection
task, they improve the community quality by considering the
topological structure of some successive snapshots, which
could increase the robustness of the community structure.
The most representative one is the evolutionary clustering
framework, which assumes that there should be no obvious
mutation in community structure abrupt change and leads
to a number of temporal communities detection methods
like FaceNet [16]. For the community evolution task, the
methods mainly focus on the evolution of communities across
the snapshots with given community structures. For instance,
event matching-based methods establish the corresponding
relationship between communities by defining some similarity
indexes across the snapshots. However, all these methods and
models are focusing on community detection or community
evolution, independently. The abnormal behavior is more
related to the community evolution, if we have learned the
dynamic behaviors on nodes and communities, it is easy to
identify the abnormal nodes of communities or some events
on networks [17]. Similarly, some critical events and behaviors
are conducive to community detection and evolution.

In recent years, some models have tried to solve com-
munity detection and evolution simultaneously by modeling
the dynamic network. DSBM [18] is the first generative
model for the tasks by defining a probability transition
matrix between two snapshots based on an SBM. Then, some
studies [19], [20] further extended DSBM to generate the
dynamic network with an evolutionary community structure,
which relaxed the constraint of fixed connectivity probabilities.
Liu et al. [21] proposed DECS based on the evolutionary
clustering and multi-objective optimization algorithm. At the
same time, some methods of integrating community struc-
ture and abnormal behavior have been proposed gradually.
Cheung et al. [22] proposed to detect both change points and
community structures simultaneously based on each individual
subnetwork following an SBM, and utilized minimum descrip-
tion length (MDL) principle for minimizing objective criterion.

However, all these methods for modeling dynamic networks,
whether based on DSBM or heuristics, are designed at the
community level, i.e., they assume that nodes in each commu-
nity have the same dynamic behavior. For example, the nodes
in one community have the same transition probability from
the current snapshot to the next, which has been proven by
some empirical studies [23]. Thus, the lack of some important
dynamic patterns of different nodes and communities usually
leads to poor performance on temporal community detection
and ignores certain node-level dynamic behaviors. It is impos-

sible to recognize abnormal node behaviors in the community
network.

In this article, we focus on modeling the evolution of
node-level and community-level of the dynamic network
synchronously. There exist two major challenges: 1) how
to accurately model both node-level and community-level
dynamic behavior? 2) How to quantify the relationship
between node-level and community-level transitions? With this
information, we can infer the community structure, dynamic
evolution, and nodes with abnormal behaviors. In order to
solve these problems in principle, we propose a hierarchical
Bayesian dynamic SBM (HB-DSBM) to model both commu-
nity structure and evolution from the perspective of statistical
models. We characterize the changes of the generated network
by defining several latent variables, such as community-level
transition, node-level transition, and community membership
of nodes. At the same time, we introduce a hierarchical
Dirichlet generation mechanism to associate the mesoscopic
community evolution with the microtransition behavior of
nodes in dynamic networks. Then, we show a detailed gen-
erated process of the temporal network and drive an effective
optimization algorithm based on the variational inference.
Experiments on temporal community detection, evolution,
abnormal behavior, and some case studies show the superiority
of HB-DSBM. The main contributions of this article can be
summarized as follows.

1) We propose a full Bayesian generative model called
HB-DSBM, which is a well-designed generation mech-
anism based on DSBM and can generate and model the
evolution of nodes and communities, and the changes of
dynamic networks.

2) The focus of HB-DSBM is to model dynamic com-
munities at the node and community levels syn-
chronously from a hierarchical Bayesian perspective.
Moreover, HB-DSBM can help improve community
detection and evolution, and further identify abnormal
behaviors.

3) We also propose an effective variational inference algo-
rithm for HB-DSBM. Extensive experiments have been
conducted to show its superior performance and effec-
tiveness on simulated and real-world dynamic networks.

II. RELATED WORK

Recently, several innovative methods have been devel-
oped for community mining in dynamic networks. Here,
we divide these methods into three categories, namely, heuris-
tic optimization-based for temporal community detection,
generative models for modeling community evolution, and
abnormal behavior of nodes and communities identification
on dynamic networks.

A. Heuristic Optimization-Based Methods

In general, heuristic optimization-based methods can be
divided into three categories, namely, two-step methods, incre-
mental clustering-based methods, and evolutionary clustering.
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1) Two-Step Methods: These methods treat community
detection and evolution as two independent problems. The
key idea is to detect the communities and then use similarity
measures to match communities across different snapshots.
GraphScope [24] first used the MDL principle to extract
communities and detect community evolutions. Besides, there
are also many methods based on the embedding technology
with side information like node feature, e.g., the author
information in a coauthor network. For instance, TRNN [25]
utilizes the multihead self-attention into a transformer-style
neural network to capture the dynamic information in the
dynamic network, then observe the embedding vector of every
node to support downstream tasks like link prediction, node
classification, and so on. But these methods take side infor-
mation as input in the models. If there is no side information
in the network, it is ubiquitous in the real world due to the
privacy policy, and the accuracy of these methods will drop
drastically.

2) Incremental Clustering-Based Methods: These methods
typically renew the communities according to the varying of
the dynamic network based on the community structure at
the first snapshot, which is obtained via one static network.
DynaMo [26] is an incremental modularity-based cluster-
ing method, which is faster than the Louvain algorithm.
Tajeuna et al. [11] proposed an approach for automatically
detecting the size of the snapshot to adopt when identifying
and tracking communities over time. Temporal interactions a
local edge strategy, which is an community detection method
[27] (TILES) used label propagation for network changes,
which is very efficient for large-scale networks.

3) Evolutionary Clustering-Based Methods: Evolutionary
clustering is the most popular framework for detecting
the communities of the snapshot by adding regularization.
FacetNet [16] was a typical model based on a unified frame-
work for community detection and evolution with evolution-
ary clustering. DYNMOGA [28] was proposed by turning
the community detection into a multi-objective optimization
problem. GenLouvain [29] exploited a novel measure of
dynamic networks based on the modularity, and then used
the well-known Louvain method [30] to calculate the com-
munity structure. Seifikar et al. [31] further introduced a new
Louvain-based dynamic community detection algorithm which
is relied on the previous snapshot of the network evolution.
PisCES [32] used historical observations to predict future
events of a network, which put the two tasks into a unified
framework and made them mutually constrained.

In summary, some of these methods ignore the evolution
for community mining in dynamic networks, some treat com-
munity detection and evolution as independent problems, and
some lack theoretical explanations that simultaneously solve
community detection and evolution.

B. Generative Model

It can be divided into dynamic latent space model (DLSM),
dynamic SBM (DSBM), and other generative models.

DLSM embeds the dynamic network into a latent Euclid-
ean space and assigns each node a temporal trajectory with
time [33] and uses it to conduct community detection [34].

Considering a large number of parameters in such models,
they are usually optimized by the Markov Chain Monte-
Carlo (MCMC) sampling and are only suitable for small net-
works [35]. The classic DSBM [18] was first proposed based
on SBM to analyze dynamic networks by providing a unified
framework to capture both communities and their evolution
simultaneously. Xu and Hero [19] proposed a state–space
model for dynamic networks based on the SBM and used
an extended Kalman filter (EKF) augmented with a local
search to optimize the model. Furthermore, Xu and Hero [36]
constructed a stochastic block transition model (SBTM) to
model the direct influence of connections between snapshots.
Becker and Holzmann [37] analyzed the nonparametric identi-
fication in the dynamic SBM. DBTDP [38] was developed for
community detection and evolution tracking, and the number
of communities per snapshot was automatically determined
by a Dirichlet process. Similar works are proposed in [39]
and [40]. In addition, other generative models of dynamic
networks have also been proposed, for example, [40] proposed
a Poisson gamma probabilistic model based on the Bernoulli
Poisson link function. Furthermore, some methods based on
the nonnegative matrix factorization (NMF) for community
detection in dynamic networks can also be regarded as model-
based [41]–[43].

In summary, all these generative models are based on the
community-level transition tendency, assuming that the nodes
within the same community have identical dynamic behavior.
This assumption causes different dynamic behaviors of nodes
lost, thus failing to capture of dynamic behavior heterogeneity
of nodes.

C. Abnormal Behavior Identification

Abnormal behavior identification in dynamic networks can
indicate profound underlying network structure changes. It can
be divided into two types.

1) Node Abnormal Behavior: It refers to abnormalities that
occur due to changes in node features. Its key idea is to
calculate and compare the node feature of different time slices.
DeltaCon [44] handles streaming graphs, gradational similarity
updates for time-evolving graphs by using the L2 norm,
and graphs with node attributes for expressions that utilize
fast belief propagation [45] to derive node affinity. Commu-
nity identification based change point detection model [17]
(CICPD) encodes nodes’ importance characteristics of each
time slice through PageRank defines a new network by using
Jensen–Shannon (JS) divergence to compute the distance of
snapshots. NetWalk [46] utilizes the popular network embed-
ding method based on deep autoencoder and clique embedding
to dynamically capture node abnormal, and by using reservoir
sampling, NetWalk can compute the vector representations
with constant space requirements.

2) Community or Motif Abnormal Behaviors [47], [48]:
They are obviously caused by the huge change in the group.
Peel and Clauset [49] introduced GHRG which laconically
models nested community structure at all scales in a net-
work. It considers a fixed-length sliding window and uses
the generalized likelihood ratio to evaluate whether and the
type of changes. The coding method of GraphScope [17] not
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Fig. 1. Graphical model of HB-DSBM. wt
i j is the similarity of nodes i

and j at snapshot t and the observation variable. A and C are evolutionary
variables at the community and node levels, respectively, representing their
dynamic behaviors. B and Z are the latent variables of DSBM, and α, β, μ,
and γ are hyperparameters.

only considers the community structure but also considers
their change points in time. Community detection and segment
partition are obtained and their resemblance is measured by
the MDL principle.

In summary, these methods focus on identifying the abnor-
mal nodes or communities, or the change points on the
temporal networks. As a result, they all failed in community
detection and its evolution.

III. PROPOSED MODEL

In this section, we first introduce the notations used in this
article and then give the problem definition and the details of
our proposed HB-DSBM, including its generation process and
the joint probability distribution.

A. Problem Formulation

Given a dynamic unweighted and undirected network with
T snapshots, we use W = {W 1,W 2, . . . ,W T } to represent a
series of adjacency matrices of the temporal network. We also
denote Z = {Z 1, Z 2, . . . , Z T } as the community assignment
for all nodes in each snapshot, i.e., zt

i ∈ {1, . . . , K } is used to
denote the community ownership of node i , where K (assumed
to be constant) is the number of communities, t = 1, . . . , T
and i = 1, . . . , N . In other words, zt

i = k means that node
i belongs to the kth community at snapshot t . Important
notations used in this article are listed in Table I. Therefore,
the problem can be formulated as: given W , how can we
get the community structure, its evolutionary trajectory, and
nodes across the network? Furthermore, which nodes and
communities may have abnormal behaviors? The HB-DSBM
comes into being.

The graph model of HB-DSBM is shown in Fig. 1, which
generates the observed links at each snapshot based on the
community and node levels. It can be described in the follow-
ing three parts.

1) In this model, π is the prior probability of Z 1 and
follows a Dirichlet distribution with parameter γ , B
is the probability matrix denoted on the communities,
i.e., Bkl is the probability that two nodes belonging to
communities k and l will establish a link, and it follows a

TABLE I

NOTATIONS AND THEIR DESCRIPTION

beta distribution with hyperparameters αkl and βkl. With
the community membership and the probability matrix,
it can generate the links at each snapshot.

2) Let A ∈ [0, 1]K×K express the global community-level
transition matrix, and Ak , each row of A, follows
a Dirichlet distribution with μ as its parameter,
so

�
l Akl = 1. It denotes the global dynamic behaviors

of communities and models their evolution.
3) We introduce C = {C1,C2, . . . ,CT } to handle the

community transition tendency for each node across
the snapshots, where each Ct is generated from the
community-level transition matrix A and C1 has no
real meaning just for unified formalization. At snapshot
t > 1, node i follows its unique transition vector
Ct

i ∈ [0, 1]K , which is a probability vector following a
Dirichlet distribution with parameter Azt−1

i
, so

�
k ct

ik =
1. It can model the microscopic evolution behavior
of nodes and help improve community detection and
abnormal behaviors.

The first step is a general generation process for each link
of all snapshots. The second and third processes are the core
components of the model from the community and node levels,
which form the evolution dynamics of the temporal network.
The third step is very important and exquisite to associate the
community evolution with node behavior, which is known as
the hierarchical Dirichlet generative mechanism.

Compared with DSBM [18] and SBTM [36], our
HB-DSBM inherits all its advantages and has the following
innovations. From the microscopic view, we use Ct

i (t ≥ 2) to
describe the transition probability vector of node i at snapshot
t , which can represent the temporal trajectory of nodes. From
the mesoscopic view, we denote A as the probability matrix of
community transition, which is the dynamic behavior patterns
of communities across the dynamic networks. Furthermore,
we integrate these two pieces of information to construct and
model the dynamic network.

Based on the above-mentioned discussion, it can generate
the temporal community structure and its evolution for the
observed links of the dynamic network. The complete gener-
ation process is as follows.
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1) Generate community initialize probability π ∼ Dir(γ ).
2) Generate block matrix B ∼ Beta(α, β).
3) For each node i at snapshot t = 1.

a) Generate every node’s community assignment z1
i ∼

Mult(π).
b) Generate link ω1

i j ∼ Bernoulli(·|Bz1
i ,z

1
j
).

4) Generate every community-level transition probability
vector Ak ∼ Dir(μ).

5) For each node i at snapshot t > 1.

a) Generate every node-level community transition
vector Ct

i ∼ Dir(Azt−1
i
).

b) Generate every node’s community assignment zt
i ∼

Mult(Ct
i ).

c) Generate link ωt
i j ∼ Bernoulli(·|Bzt

i ,z
t
j
).

According to the graphical model in Fig. 1 and the
above-mentioned generation process, the joint probability dis-
tribution of HB-DSBM can be written as

P(W, Z ,C, B, A, π |α, β, γ, μ)

=
T�

t=1

Pr
�
W t |Z t , B

�
Pr

�
Z 1|π� T�

t=2

Pr
�
Z t |Ct

�
×

T�
t=2

Pr
�
Ct |A, Z t−1�Pr(A|μ)Pr(π |γ )Pr(B|α, β)

=
T�

t=1

⎡⎣ �
wi j =1

Bz(t)i z(t)j

�
wi j =0

�
1 − Bz(t)i z(t)j

	⎤⎦ N�
i=1

π z1
i

×
T�

t=2

N�
i=1

Ct
i

zt
i

T�
t=2

N�
i=1

�
��

l Azt−1
i l

	
�

l �
�

Azt−1
i l

	 �
l

C
A

zt−1
i l

−1

il

×
�

k

�
��

l(μkl)
��

l �(μkl)

�
l

Aμkl−1
kl

�
��

k γk
��

k �(γk)

�
k

π
γk−1
k

×
�

k,l≥k

�(αkl + βkl)

�(αkl)�(βkl)
Bαkl−1

kl (1 − Bkl)
βkl−1. (1)

When t = 1, we could generate the community z1
i of

node i from a multinomial distribution with parameter π , and
then generate links between every pair of nodes following a
Bernoulli distribution, i.e., nodes i and j have a link between
them with a probability of Bernoulli(·|Bz1

i ,z
1
j
). When t > 1,

the nodes’ community ownership Z t follows a multinomial
distribution with parameter Ct , i.e., node i follows Mult(Ct

i )
to choose its community at t and Ct

i is generated from
Dir(Azt−1

i
). Each Ak is generated from a Dirichlet distribution

with parameter μ, it denotes the global transfer tendency of
community k.

To optimize this model, our goal is to calculate the pos-
terior distribution P(W, Z ,C, B, A, π |α, β, γ, μ), which can
be written as

P(Z ,C, B, A, π |W ) = P(W, Z ,C, B, A, π |α, β, γ, μ)
P(Z ,C, B, A, π |W, α, β, γ, μ) (2)

where the parameters α, β, γ , and μ are ignored for conve-
nience. In Section IV, we will introduce how to calculate and
optimize this posterior.

It is important to emphasize that although we have assumed
that the number of communities and nodes in the network
is fixed, these communities and nodes are unweighted and
undirected. It can be easily extended to complex situations
similar to DSBM [18]. On the other hand, we can also
extend the link generation process by replacing SBM with
a more refined model, such as the degree preserving [50]
or scale-free characteristic [51] SBM model. Although they
can help improve the generative capability and community
detection, our focus is modeling the dynamic network from
the community and node levels, and these extensions can be
used as follows.

IV. LEARNING THE MODEL

Intuitively, the proposed model is complex and difficult
to be optimized. Therefore, in this section, we propose an
efficient variational expectation–maximization algorithm to
infer parameters of the model. Then, on the basis of the learned
parameters Z , C , B , A, and π , we can infer community
structure, community evolution, block matrix, and abnormal
behaviors in the dynamic network.

A. Variational Inference

It is usually difficult to directly calculate the posterior
distribution P(Z ,C, B, A, π |W, α, β, γ, μ), for it needs to
integrate all the hidden variables Z ,C, B , and A. Although we
take some conjugate prior distributions, its calculation is also
exponential. For complex probability graph models, variational
inference is usually used as an effective learning method.
With this framework, we can approximate the posterior with
a decomposable distribution q(Z ,C, B, A, π) based on mean-
field theory [40] as follows:

q(�) =
T�

t=1

N�
i=1

q
�
zt

i

� T�
t=2

N�
i=1

q
�
ct

i

�
q(B)q(A)q(π) (3)

where � represents parameters {Z ,C, B, A, π} for simplicity,
the block matrix variational parameter q(B|
α,
β) =�

k,l≥k Beta(
αkl,
βkl), and community-level transition matrix
variational parameter q(A|
μ) = �K

k=1

�K
l=1 Dir(
μkl). q(zt

i |
φt
i )

follows a multinomial distribution with 
φt
i as its parameter.

q(ct
i |
ξ t

i ) and q(π |
γ ) both follow the Dirichlet distribution
with parameters 
ξ t

i and 
μkl, respectively. We need to note that
all of these settings are based on the conjugate distribution
and it can help infer the variational parameters based on the
coordinate ascent algorithm.

After a series of derivation [52] and variational inference,
we have the following identity (Appendix A):

log P(W ) = KL(q(�)||P(Z ,C, B, A, π |W ))+ 
L(q). (4)

To learn the model, our goal is to optimize the KL diver-
gence between P(Z ,C, B, A, π |W, α, β, γ, μ) and q(�) =
q(Z ,C, B, A, π). According to (4), minimizing the diver-
gence is equivalent to maximizing 
L(q), referred to as the
evidence lower bound (ELBO). Therefore, our goal is to
optimize 
L(q) with respect to the variational parameters.
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Under the variational inference framework, the variational
ELBO 
L(q) of the model can be written as


L(q) =
�

z

�
π,B,A,C

q(�) log
p(�,W )

q(�)
d�

= E
φ,
α,
β
T�

t=1

�
log P(W t |Z t , B)

�
+E
γ ,
φ�log P(Z 1|π)� + E
φ,
ξ

T�
t=2

�
log P(Z t |Ct)

�
+E
ξ,
φ,
μ

T�
t=2

�
log P

�
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(5)

where 
φ, 
ξ , 
α, 
β, 
μ, and 
γ are the variational parameters. For
simplicity, we omit the conditional parts of the q(·) distrib-
utions. For example, we abbreviate q(�|
φ,
ξ ,
α,
β,
μ,
γ ) and
q(zt

i |
φt
i ) to q(�) and q(zt

i), respectively.
We maximize the ELBO to learn the variational parameters

of the latent variables Z , π, B, A, and C and the model
parameters γ, α, β, and μ. We take the derivatives of 
L(q)
with respect to the variational parameters 
φ,
γ ,
α,
β,
μ, and
ξ , and set these derivatives to zeros and get the update rules
as

∇
L(q) =
�
∂
L
∂
γ , ∂
L∂
α , ∂
L∂
β , ∂
L∂
μ, ∂
L∂
ξ , ∂
L∂
φ

�
= 0. (6)

Next, we will introduce the iteration rules on the variational
parameters 
φ,
γ ,
α,
β,
μ, and 
ξ , respectively. We also need to
add that 
φ and 
ξ are denoted at the node level, which are
referred to as local variational parameters. On the contrary,
the parameters 
α, 
β, and 
γ are global for they are designed
at the community level.

B. Parameter Learning

The iteration rules on the variational parameters are given
by


γk = γk +
N�
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φ1
ik (7)
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il
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For parameter 
φ.
1) When t = 1:
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2) When 1 < t < T :
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3) When t = T :
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where ψ(x) = ��(x)/�(x) = d log�(x)/dx .
The inference detail of variational parameters can be seen in

the Supplemental Material (Appendix A). As we can see, the
hyperparameters of the model, such as μ and α, are constants,
and their values have no significant effect on the performance
of the model and algorithm.

C. Algorithm

As mentioned earlier, we have given all the update rules
of parameters in our model. Here, the optimization process of
the model is given as Algorithm 1, where 
ξ and 
φ are local
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Algorithm 1 Optimization Algorithm for HB-DSBM

Input: the adjacency matrix W t for each snapshot, hyperpa-
rameters, max iteration times nmax and the threshold ε.
Output: the variational parameters 
α, 
β, 
γ , 
μ, 
ξ , 
φ.
1: parameters initialization
2: repeat
3: given 
φ, update 
γ , 
ξ , 
α, 
β and 
μ according to Eqs. (7),

(8), (9), (10), (11), (12) and (13).
4: given 
γ , 
ξ , 
α, 
β and 
μ, update 
φ according to

Eqs. (14), (15) and (16).
5: until 
L converges or iteration times > nmax

6: return 
ξ , 
γ , 
α, 
β, 
μ and 
φ
variational parameters because they are related to each node,
and 
α, 
β, 
γ , and 
μ are global variational parameters.

The computational complexity of the proposed algorithm
mainly depends on three parts. The complexity of updating
φ is O(TN2 K 2), the complexity of the step that updates ξ is
O(TNK 2) and the complexity of the step that calculates the
ELBO is O(TN2 K 2), where T is the number of snapshots, N
is the number of nodes in the network, and K is the number
of communities. In summary, the computational complexity of
this algorithm is O(TN2 K 2).

Considering that most real-world networks are sparse,
we can further improve the efficiency and reduce running
time and complexity as O(mK 2), where m is the number of
edges for all snapshots of the dynamic network. We can further
reduce computing time by using some sampling methods based
on stochastic optimization or parallelism for the proposed
algorithm.

V. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the performance of our proposed model on temporal
communities detection, community and node evolution, and
abnormal behaviors identification of dynamic networks.

A. Baselines and Settings

We compare our HB-DSBM with typical and represen-
tative temporal community detection methods. They are
designed either from spectral methods, incremental opti-
mization, defined optimization functions, generative models,
or global views. These baselines could represent the best level
of community analysis in dynamic networks, which are listed
as follows.

1) ECD [53]: It combines the proposed new genetic
operator and classic genetic operators to exploit inter-
and intra-connections between nodes. This approach
improves the discovery of evolving community struc-
tures and finds the best balance between clustering
accuracy and temporal smoothness.

2) DECS [21]: It is a novel algorithm based on genome
representation, employing population generation via
label propagation (PGLP) for population initializa-
tion and decomposition framework for multi-objective
optimization.

3) ESPRA [54]: It is a density-based method by combining
the resource allocation (RA) index in link prediction
and structural perturbation model [55] to improve the
community detection.

4) GenLouvain [29]: It denotes a generalized network
function, time-dependent modularity, and can model the
temporal coupling across the snapshots with heuristic
optimization.

5) AFFECT [56]: It extends the classical evolutionary
clustering [57] with adaptive evolution factor, so no
balance parameter is needed to be designed. It is a
general framework for temporal community analysis
with different clustering methods.

6) DYNMOGA [28]: It generalizes the evolutionary cluster-
ing based on a multiobjective optimization algorithm and
can compromise the snapshot quality and historical cost
effectively and determine the number of communities in
dynamic networks.

7) DSBM [18]: It is the most successful generative model
for dynamic community detection and evolution analysis
based on SBM.

8) PisCES [32]: From the perspective of spectral opti-
mization, this is a global method that can infer the
evolution by combining a series of networks, eigenvector
smoothing, and degree correction.

For a fair comparison, we take the open codes by the authors
and set the default parameters in the original papers. For
our HB-DSBM, since the values of the hyperparameters do
not significantly affect the results, without loss of generality,
we set αkl = 10 when k �= l and αkk = N , and set
β = αkl, l �= k = 10. Besides, μ and γ are also set to the
same value, i.e., μk = γk = 1/K for 1 < k < K in our
experiments.

B. Performance Metrics and Datasets

To compare the performance of HB-DSBM and baseline
methods, we introduce some indicators as our performance
metrics. We also show the synthetic and real dynamic net-
works.

1) Evaluation Index: Accuracy (AC) or error rate [58] is
usually denoted as the distance between the ground truth and
community membership of one method. Its definition is as
follows:

AC = ��ZZT − Z � Z �T ��
F

(17)

where Z and Z � are the community membership of ground
truth and one method, respectively. 	 ·	F is the Frobenius
norm, the smaller the AC value on each snapshot, the better
the community results.

As most temporal community detection work [59] does,
we also use normalized mutual information (NMI) as one
of our performance metrics to evaluate the proposed model
and baselines for community detection in dynamic networks.
Because NMI is specifically designed for static networks,
we calculate it for different methods on each snapshot of the
dynamic network. NMI is used when there exists ground truth,
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which measures the similarity between a given community par-
tition and the true community structure. Let Z = {Z1, . . . , Z K }
and Z � = {Z �

1, . . . , Z �
K } represent the true community partition

and the community partition to be evaluated, respectively,
where Zk or Z �

k is the nodes set of community k. For Z and
Z �, we usually have Zk ∩ Zl = ∅, k �= l and

�
Zk is the node

set of dynamic networks. The NMI is denoted as

NMI(Z , Z �) =
�

Z,Z � p(Z , Z �) log p(Z,Z �)
p(Z)p(Z �)

max(H (Z), H (Z �))
(18)

where H (Z) and H (Z �) are the entropy of community Z
and Z �, respectively. The value of NMI is between 0 and 1.
The higher the value of NMI is, the more similar the given
community partition is to the true community partition.

Adjusted rand index is another metric for clustering and
community detection performance, which is defined as

ARI = Index − E[Index]
max (Index)− E[Index] (19)

where index is the rand index value of a community, defined as
RI = a + b/(n/2), where a and b are the number of node pairs
placed in the same cluster and in different clusters, respec-
tively. E[Index] is the expectation of Index. A larger ARI value
indicates better performance on community detection.

2) Datasets: We use the following synthetic and real-world
datasets of dynamic networks to evaluate HB-DSBM and the
baselines for temporal community analysis.

1) Synthetic Dataset 1: It was first adopted by
Lin et al. [16], [58] based on the GN network
data. Specifically, it usually generates a temporal
network with 128 or 256 nodes, 4 communities, and
ten snapshots. A single parameter ζ representing
the mean number of edges from a node to nodes in
other communities is used to describe the data. And
we use nC to indicate the number of nodes to leave
their original community in each snapshot, while aD
to indicate the average degree of nodes. Relatively
speaking, this data has s stable dynamic behaviors
across the snapshots. With different parameter settings,
we have different temporal networks to evaluate the
models.

2) Synthetic Dataset 2: It was proposed by Greene et al. [8]
to describe community dynamics. For this dataset, sev-
eral community-level events are introduced to make
it more similar to real-world networks. In general,
each generated network contains ten snapshots and
1000 nodes, with an average degree of 15 and a
maximum degree of 50. The number of communities
ranges from 20 to 50, and the probability of edges
between communities is 0.2. Its node degree follows
the power-law distribution. In our experiments, we select
two classes of datasets, namely, switch and merge–split,
which are the most representative temporal networks
with dynamic behaviors at the node and community
levels, respectively.

3) KIT-Email Dataset: It is an email network [60], where
nodes represent senders and recipients and the edge
denotes the relationships. It has 1097 email IDs (the

number of nodes) and 27 887 messages. We use it to
construct three temporal networks with time intervals of
two, three, and six months, respectively, and the number
of snapshots of the three temporal networks is 24, 16,
and 8, respectively. The number of communities ranges
from 23 to 32.

4) DBLP Dataset: It comes from the DBLP bibliography.1

Similar to the processing of DSBM [18], we select
data from three major fields, i.e., data mining (DM),
database (DB), and artificial intelligence (AI) from
28 conferences during nine years. After preprocessing,
it contains 1163 authors and 26 986 papers. We con-
struct this temporal network based on the cooperative
relationships and the ground truth is their research fields.
We split this network into nine-time snapshots with each
corresponding to one year.

5) A Patent Dataset: We collect this data from
WANFANG DATA2 and focus on one university.
It includes 3427 patents ranging from 2010 to 2020,
belonging to the patent classification number G06
(Computing; Calculating; and Counting). We construct
its author collaboration network. Due to the imbalance
of patent counts, we divide it into four snapshots, which
come from years (2010–2014, 2014–2016, 2016–2018,
and 2018–2020), respectively, and each snapshot
contains 1942 nodes and 15 000 edges on average.

C. Experiments on Community Detection

We compare HB-DSBM with ECD, DECS, ESPRA,
DYNOMGA, DSBM, GenLou, and PisCES on two types of
synthetic datasets and real-world temporal networks.

1) Synthetic Networks: For the synthetic dataset 1, we gen-
erate four temporal networks, and the specific parameter set-
tings are ζ = 5, nC = 9, aD = 20; ζ = 5, nC = 3, aD = 20;
ζ = 4, nC = 9, aD = 16; and ζ = 4, nC = 3, aD = 16,
respectively. They all have 128 nodes and four communities,
but different degrees of dynamic evolution behaviors. For the
synthetic dataset 2, we select two typical synthetic networks,
one is specially designed for the dynamic behavior of nodes
and the other is for communities, called switch and merge–
split, respectively. They all have 1000 nodes and varying the
number of communities and their degree distributions are all
power law. For each temporal network, we report the results
based on the three metrics, as shown in Fig. 2. It is easy
to know that HB-DSBM has achieved the best performance
based on the AC, NMI, and ARI on all six different dynamic
networks. This is because our model can model both the
community detection and its evolution, so accurate community
and node behaviors can help to improve the detection results.
PisCES achieves the second-best performance because it is
committed to improving community structure by incorporating
the evolution of the temporal network across time. However,
PisCES has very poor performance on the merge–split net-
work, in which the communities have great varying behaviors,
so it cannot cope with the community evolution. Although

1https://dblp.uni-trier.de/
2http://www.wanfangdata.com.cn/index.html
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Fig. 2. Community detection results on the synthetic dataset, the x-axis is snapshot t . From left to right, the synthetic temporal networks are parameterized
as synthetic dataset 1: (a) ζ = 5, nC = 9, and aD = 20; (b) ζ = 5, nC = 3, and aD = 20; (c) ζ = 4, nC = 9, and aD = 16; and (d) ζ = 4, nC = 3,
and aD = 16, and synthetic dataset 2: (e) switch and (f) merge–split. The top-down results are presented based on the different metrics AC, NMI, and ARI,
respectively. For each data, we randomly generate 20 networks with the same configuration parameters, and the values are the mean of corresponding results.

GenLouvain has also achieved good results since it can pre-
serve the consistency of community structure over time by
coupling constraints, it usually overfits the network structure
and automatically determines that the number of communities
exceeds the ground truth. The performance of ECD, DECS,
ESPRA, DSBM, and AFFECT is somewhere in between and
is difficult to distinguish on different networks.

From Fig. 2(a)–(d), HB-DSBM and other baselines all
present the results of serialization on small-scale temporal
networks. However, for Fig. 2(e) and (f), these methods
are polarized on community detection in large-scale tempo-
ral networks with more complex dynamic behaviors. To be
specific, HB-DSBM still achieves the best performance on
both networks, PisCES has a better performance than other
baselines, while DSBM has a very low NMI because its
sampling algorithm makes it inefficient in large networks,
even with 1000 nodes at each snapshot. ECD, DECS, and
DYNOMGA also have poor performance, especially on the
switch network. Without loss of generality, the models with
the community and network evolution analysis usually have
better results than others.

2) Real-World Networks: As for real-world datasets,
we also evaluate the performance of different methods in
terms of AC, NMI, and ARI. We compare the results of
our proposed method with the baselines of the KIT-email
and DBLP dynamic networks. As we can see from Fig. 3,
on the three KIT-email networks, HB-DSBM has the best
performance than other baselines on two networks no matter
based on the AC, NMI, or ARI. On the temporal network with
six-month intervals, our model also has competitive results,
for that in this network, each snapshot of which is relatively
independent of the other two. Therefore, we can conclude
that HB-DSBM not only has a stronger ability for community

Fig. 3. Community detection results on real-world datasets. From left to
right, the KIT email temporal networks with 24, 16, and eight snapshots,
respectively, and the DBLP network. For each line, the results are presented
based on different metrics AC, NMI, and ARI, respectively.

detection but also better simulates the characteristics of real-
world networks. We also note that the NMI and ARI of
our method are roughly equal to that of other methods in
the first snapshot. The later the snapshots are, the better the
performance of our method, which shows a general upward
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Fig. 4. Sankey diagram of nodes and communities evolution on synthetic dataset 1 with ζ = 5, nC = 9, and aD = 20. (a) GroundTruth. (b) DSBM.
(c) HB-DSBM. (d) GenLouvain. (e) PisCES. (f) DYNMOGA. (g) DECS. (h) ESPRA. (i) AFFECT.

trend. This is because the transition has no impact on the first
snapshot in the model; while from the second snapshot, the
advantage of our model in the detailed description of node
transition heterogeneity is reflected. Besides, DSBM also has
competitive performance. To sum up, the statistical modes with
dynamic evolution are more suitable for real-world temporal
networks.

The experimental results on DBLP are shown in Fig. 3(d).
The performance of our method is significantly superior to
that of other methods, which demonstrates the effectiveness of
our method in community detection. Among other methods,
DSBM has a better effect because it is a generative model,
while the sparsity of DBLP data and the parameter sensitivity
of PisCES lead to the poor effect of PisCES. It can be seen
from Fig. 3(d) that our curve is smoother than that of other
methods, because we put community detection and community
evolution in a unified framework, making full use of the
transition between nodes and communities.

D. Community Evolution Analysis

Previous models, such as DSBM, treat nodes in the same
community indiscriminately, i.e., two nodes in the same
community will have the same transform tendency in the
next snapshot, which means that the method can only reveal
community-level transform trends. In our model, the latent
parameters C and A represent the node- and community-level
transform trends, respectively. For the comparison of commu-
nity evolution, if one method could not analyze the dynamic
behavior, we will match the temporal communities across the
snapshots and show its dynamic evolution. For the synthetic
datasets, we select two representative networks for analyzing
the dynamic behaviors. Fig. 4 and (Fig. 5 in the Supplemental
Material) describe the Sankey diagram of evolution of the

networks on the synthetic dataset 1 and the synthetic dataset
2 merge–split, respectively. In addition, the Sankey diagram
is a kind of flow diagram, where the width of every branch is
proportional to the flow rate, which is the number of nodes/N
in our diagram. Therefore, the Sankey diagram can visualize
the community evolution in the dynamic network.

For the first temporal network, there are four communities
and a stable dynamic evolution, Fig. 4(a) is the ground
truth, and other subfigures are the results of different meth-
ods. Although all methods show good performance on each
snapshot, a few methods can detect the evolution perfectly.
DECS, DYNMOGA, and ESPRA present a chaotic evolution-
ary trajectory. On the contrary, DSBM, GenLouvain, and our
HB-DSBM could reveal the hidden behaviors of the network.
However, DSBM fails to perform node transition across the
snapshots because it is only designed for the communities,
while HB-DSBM is much closer to the real-world evolution
of the network.

For more complex situations of the merge–split and DBLP
networks, we present some better baselines, as shown in
(Fig. 5 in the Supplemental Material) and (Appendix D Fig. 6).
The behaviors revealed by DYNMOGA are extremely chaotic
because they could not directly model the evolution. Among
other methods that could model the evolution of temporal
networks, DSBM adapts to the network due to its focus on
the community level. Our HB-DSBM is more realistic than
GenLouvain and PisCES because it can model the dynamic
evolution at both community and node levels.

Furthermore, we analyze the community-level interaction
based on the learned parameters. As shown in Fig. 5, DSBM,
PisCES, and HB-DSBM can learn the block matrix. It presents
the community interaction for two different temporal networks,
and PisCES has no clear block structure. Compared with
DSBM, our HB-DSBM not only learns the link probability
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Fig. 5. Block matrix or community interaction on DBLP data and synthetic dataset 2 merge–split event, where the diagonal line indicates the link probability
within the community. (a) DBLP. (b) Synthetic dataset 2 of merge–split event.

Fig. 6. Anomaly index of node-level transform trends. Note that patent and synthetic datasets have the same anomaly index patterns, which indicates that
the patent network also contains a dramatic community evolution. (a) DBLP. (b) Patent. (c) Synthetic dataset 2 merge–split event.

Fig. 7. Anomaly case in DBLP dataset from 2008 to 2010, where Shuicheng Yan has the largest anomaly index. (a) Year 2008. (b) Year 2009. (c) Year 2010.

within the community but also preserves interactions between
the communities. This result also demonstrates the advantage
of our method in discovering the dynamic behavior of nodes.

E. Abnormal Behaviors

Based on the node-level transition matrix C over time in
HB-DSBM, we can capture node transition behaviors between
consecutive slices; therefore, it can detect node’s abnormal
behaviors by calculating the entropy of C . More specifically,
the anomaly index of node i can be calculated as follows:

Ei = −
T −1�
t=1

�
k

ct
ik log c(t+1)

ik (20)

where a large Ei indicates that node i transfers its community
membership across the snapshots frequently, which are usually
the abnormal behaviors in many cases of temporal networks.

We calculate the anomaly index on three temporal networks,
namely, DBLP, patent, and the synthetic dataset 2 merge–split
event. It can be seen from Fig. 6 that the DBLP network

only has the four largest anomaly indices, which indicates that
DM, DB, and AI have relatively stable community structures
during nine years (2001–2009). In contrast, most nodes in
the patent have the largest anomaly index, we believe patent
data have significant community evolution events from 2014 to
2020. To prove it, we also calculate the anomaly index of the
synthetic dataset 2 merge–split event (based on the generation
and evolution mechanism, there are indeed a large number
of evolutionary anomalous nodes). It can be observed from
Fig. 6(b) and (c) that the patent and synthetic networks have
the same patterns, which confirms our inference.

In addition, we find some anomalies and interesting cases in
DBLP and patent networks. Fig. 7 shows some ego networks
of the most abnormal authors in DBLP, we can see that
Shuicheng Yan and his partners Thomas S. Huang et al. always
belong to the same community, which indicates that they might
be in the same team. We emphasize that the DBLP dataset only
represents someone who publishes a paper with someone else
as an edge. This kind of relationship is a weak relationship.
Therefore, Shuicheng Yan switches his community frequently
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Fig. 8. Anomaly case in Patent Dataset from 2015 to 2020. Zhang Jiawan belongs to the School of Software Engineering. Note that his ego network expanded
rapidly from 2016 to 2018, and it contains many people belonging to other communities, such as the School of Electrical and Information Engineering during
2018–2020 (a) Year 2015–2016. (b) Year 2017–2018. (c) Year 2018–2020.

only represents that his research involves all three domains.
As shown in Fig. 8, Zhang Jiawan’s patent ego network
expanded rapidly from 2016 to 2018, which may indicate
that he has begun to actively carry out the implementation
of scientific research results. However, from 2018 to 2020,
he not only switched communities but also contacted other
communities like Liu Zeyu. According to our investigation,
this was caused by a community merger event. The School of
Software Engineering and the School of Computer Science are
merged into the College of Intelligence and Computing. This
further proves that our anomaly index can discover anomalous
nodes and events.

F. Complexity Comparison

Though the VEM algorithm of HB-DSBM is an iterative
method, it only requires a small number of iterations to reach
the local optimum (Appendix B). Furthermore, its computa-
tional complexity depends on the total number of edges in
the whole network, while the real-world networks are always
sparse. Thus, the running time of HB-DSBM is acceptable.
Fig. 9 shows the execution time of our method and baselines
in the synthetic dataset 1 with multiplied number of nodes.
And all the methods are tested on a PC with 16 Gb memory
and Intel Core i5 − 7400 CPU. The average degree of each
dataset is fixed at 16, thus with the increase of the number
of nodes, the network will become increasingly more sparse.
As we can see, DYNMOGA is very fast on each dataset
due to multiobjective optimization. GenLouvain is faster than
DYNMOGA on the datasets with the number of nodes below
8192, however, when the number of nodes increases to 8192,
GenLouvain will receive a our of memory (OOM) error. When
the number of nodes is below 2048, ESPRA is faster than
HB-DSBM, DSBM, DECS, and ECD, but when the number of
nodes increases, its run time is not acceptable [out of memory
(OOT)]. Both DECS and ECD receive errors (OOT and OOM,
respectively) when the number of nodes is larger than 1024.
Though DSBM has fewer parameters than HB-DSBM, the
MCMC algorithm makes DSBM rather slow in terms of its
parameter scale. Besides, if we use the VEM method for the
DSBM, it will be faster than the MCMC, but the accuracy will
be lost. Finally, although the execution time of HB-DSBM is

Fig. 9. Execution time comparison on synthetic dataset 1 (ζ = 3, nC = 3,
and aD = 16) with different numbers of nodes (due to low performance,
we omitted AFFECT). The dotted line indicates that the corresponding method
receives an OOM error on the data point beyond the OT/OM line. When the
data point belongs to a solid line beyond the OT/OM line, it means that the
corresponding method receives an OOT error.

not faster than GenLouvain and DYNMOGA, it is sufficient to
handle a network with 8192 nodes due to good convergence
performance. Furthermore, HB-DSBM is still not fast enough
to calculate a network with millions of nodes, but this can
be solved with parallel technology or the utilization of neural
networks, this is also what we will do in the future.

VI. CONCLUSION

Temporal community detection and its evolution analysis
have been widely applied in a variety of applications of net-
work science. Constructing the generated model for dynamic
networks can help predict the varying of its structure and
function. In this article, we propose a full Bayesian gener-
ative model named HB-DSBM, which models dynamic net-
works, detects community structure, analyzes node-level and
community-level evolution, and identifies abnormal behaviors.
It describes the generation and evolution of the network in
detail from the perspective of joining nodes and communities.
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Furthermore, we propose an effective optimization algorithm
for the model based on the variational inference, in which we
design approximate posterior distributions for dynamic transi-
tion behavior at the node and community levels. Experiments
on community detection, dynamic evolution, and abnormal
behavior show that this model achieves better performance on
both the simulated and real-world datasets. On the whole, our
model can also reveal the dynamic behavior of communities
and nodes based on the well-designed generative mechanism
and optimization.

There are some interesting points on our model that can be
expanded. The first and most important problem is the model
selection of dynamic networks, i.e., how to automatically
determine the number of communities. Although a lot of
methods have been developed for static networks and some for
dynamic networks, they are not enough to meet the need of
generative models, such as our HB-DSBM. Another problem
is how to predict community change points based on dynamic
behaviors and enable them to achieve better prediction tasks.
Besides, the algorithm for our model is not suitable for very
large-scale dynamic networks, and using stochastic gradient
descent (SGD) to optimize HB-DSBM will be the focus of
future research.

REFERENCES

[1] D. He, X. You, Z. Feng, D. Jin, X. Yang, and W. Zhang, “A network-
specific Markov random field approach to community detection,” in
Proc. AAAI, 2018, pp. 306–313.

[2] X. Luo and M.-S. Shang, “Symmetric non-negative latent factor
models for undirected large networks,” in Proc. IJCAI, Aug. 2017,
pp. 2435–2442.

[3] G. Rossetti and R. Cazabet, “Community discovery in dynamic net-
works: A survey,” ACM Comput. Surv., vol. 51, no. 2, pp. 1–37,
Jun. 2018.

[4] F. Ye, C. Chen, Z. Wen, Z. Zheng, W. Chen, and Y. Zhou, “Homophily
preserving community detection,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 8, pp. 2903–2915, Aug. 2020.

[5] L. Yang, W. Fan, and N. Bouguila, “Clustering analysis via deep
generative models with mixture models,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 1, pp. 340–350, Jan. 2022.

[6] S. Fortunato and D. Hric, “Community detection in networks: A user
guide,” Phys. Rep., vol. 659, pp. 1–44, Nov. 2016.

[7] M. Qiao, J. Yu, W. Bian, Q. Li, and D. Tao, “Improving stochastic
block models by incorporating power-law degree characteristic,” in Proc.
IJCAI, Aug. 2017, pp. 2620–2626.

[8] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution
of communities in dynamic social networks,” in Proc. ASONAM,
Aug. 2010, pp. 176–183.

[9] G. Palla, A. L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, no. 7136, pp. 664–667, 2007.

[10] W. Wang and X. Li, “Temporal stable community in time-varying
networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1508–1520,
Jul. 2020.

[11] E. G. Tajeuna, M. Bouguessa, and S. Wang, “Modeling and predicting
community structure changes in time-evolving social networks,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 6, pp. 1166–1180, Jun. 2019.

[12] G. Song, Y. Li, X. Chen, X. He, and J. Tang, “Influential node tracking
on dynamic social network: An interchange greedy approach,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 2, pp. 359–372, Feb. 2017.

[13] Y. Yang, Z. Wang, J. Pei, and E. Chen, “Tracking influential individuals
in dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 11,
pp. 2615–2628, Nov. 2017.

[14] H. Lin, G. Liu, J. Wu, Y. Zuo, X. Wan, and H. Li, “Fraud detection in
dynamic interaction network,” IEEE Trans. Knowl. Data Eng., vol. 32,
no. 10, pp. 1936–1950, Oct. 2020.

[15] B. Kim, K. H. Lee, L. Xue, and X. Niu, “A review of dynamic network
models with latent variables,” Statist. Surv., vol. 12, no. 1, pp. 105–135,
2018.

[16] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “FacetNet: A
framework for analyzing communities and their evolutions in dynamic
networks,” in Proc. WWW, 2008, pp. 685–694.

[17] T. Zhu, P. Li, L. Yu, K. Chen, and Y. Chen, “Change point detection
in dynamic networks based on community identification,” IEEE Trans.
Netw. Sci. Eng., vol. 7, no. 3, pp. 2067–2077, Jul. 2020.

[18] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, “Detecting communities
and their evolutions in dynamic social networks—A Bayesian approach,”
Mach. Learn., vol. 82, no. 2, pp. 157–189, Feb. 2011.

[19] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels for time-
evolving social networks,” IEEE J. Sel. Topics Signal Process., vol. 8,
no. 4, pp. 552–562, Aug. 2014.

[20] C. Matias and V. Miele, “Statistical clustering of temporal networks
through a dynamic stochastic block model,” J. Roy. Stat. Soc. B, vol. 79,
no. 4, pp. 1119–1141, 2017.

[21] F. Liu, J. Wu, S. Xue, C. Zhou, J. Yang, and Q. Sheng, “Detecting the
evolving community structure in dynamic social networks,” World Wide
Web, vol. 23, no. 2, pp. 715–733, Mar. 2020.

[22] R. C. Y. Cheung, A. Aue, S. Hwang, and T. C. M. Lee, “Simultaneous
detection of multiple change points and community structures in time
series of networks,” IEEE Trans. Signal Inf. Process. Netw., vol. 6,
pp. 580–591, 2020.

[23] T. Li, W. Wang, X. Wu, H. Wu, P. Jiao, and Y. Yu, “Exploring the tran-
sition behavior of nodes in temporal networks based on dynamic com-
munity detection,” Future Gener. Comput. Syst., vol. 107, pp. 458–468,
Jun. 2020.

[24] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “GraphScope:
Parameter-free mining of large time-evolving graphs,” in Proc. SIGKDD,
2007, pp. 687–696.

[25] D. Xu, J. Liang, W. Cheng, H. Wei, H. Chen, and X. Zhang,
“Transformer-style relational reasoning with dynamic memory updating
for temporal network modeling,” in Proc. AAAI Conf. Artif. Intell.,
vol. 35, 2021, pp. 4546–4554.

[26] D. Zhuang, M. J. Chang, and M. Li, “DynaMo: Dynamic community
detection by incrementally maximizing modularity,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 5, pp. 1934–1945, May 2021.

[27] G. Rossetti, L. Pappalardo, D. Pedreschi, and F. Giannotti, “Tiles:
An online algorithm for community discovery in dynamic social net-
works,” Mach. Learn., vol. 106, no. 8, pp. 1213–1241, 2017.

[28] F. Folino and C. Pizzuti, “An evolutionary multiobjective approach for
community discovery in dynamic networks,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 8, pp. 1838–1852, Aug. 2014.

[29] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela,
“Community structure in time-dependent, multiscale, and multiplex
networks,” Science, vol. 328, no. 5980, pp. 876–878, May 2010.

[30] A. Lancichinetti and S. Fortunato, “Community detection algorithms: A
comparative analysis,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 80, Nov. 2009, Art. no. 056117.

[31] M. Seifikar, S. Farzi, and M. Barati, “C-blondel: An efficient Louvain-
based dynamic community detection algorithm,” IEEE Trans. Computat.
Social Syst., vol. 7, no. 2, pp. 308–318, Apr. 2020.

[32] F. Liu, D. Choi, L. Xie, and K. Roeder, “Global spectral clustering
in dynamic networks,” Proc. Nat. Acad. Sci. USA, vol. 115, no. 5,
pp. 927–932, Jan. 2018.

[33] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embed-
ding trajectory in temporal interaction networks,” in Proc. SIGKDD,
Jul. 2019, pp. 1269–1278.

[34] D. K. Sewell and Y. Chen, “Latent space approaches to commu-
nity detection in dynamic networks,” Bayesian Anal., vol. 12, no. 2,
pp. 351–377, Jun. 2017.

[35] D. K. Sewell and Y. Chen, “Latent space models for dynamic networks,”
J. Amer. Stat. Assoc., vol. 110, no. 512, pp. 1646–1657, Oct. 2015.

[36] K. Xu, “Stochastic block transition models for dynamic networks,” in
Proc. AISTATS, 2015, pp. 1079–1087.

[37] A.-K. Becker and H. Holzmann, “Nonparametric identification in the
dynamic stochastic block model,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4335–4344, Jul. 2019.

[38] X. Tang and C. C. Yang, “Detecting social media hidden communities
using dynamic stochastic blockmodel with temporal Dirichlet process,”
ACM Trans. Intell. Syst. Technol., vol. 5, no. 2, pp. 1–21, Apr. 2014.

[39] L. Yu, W. H. Woodall, and K.-L. Tsui, “Detecting node propensity
changes in the dynamic degree corrected stochastic block model,” Social
Netw., vol. 54, pp. 209–227, Jul. 2018.

[40] S. Yang and H. Koeppl, “A Poisson gamma probabilistic model for latent
node-group memberships in dynamic networks,” in Proc. AAAI, 2018,
pp. 1–8.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 26,2022 at 01:48:31 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[41] X. Ma and D. Dong, “Evolutionary nonnegative matrix factorization
algorithms for community detection in dynamic networks,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 5, pp. 1045–1058, May 2017.

[42] L. Wang, M. Rege, M. Dong, and Y. Ding, “Low-rank kernel matrix fac-
torization for large-scale evolutionary clustering,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 6, pp. 1036–1050, Jun. 2012.

[43] P. Jiao, W. Wang, and D. Jin, “Constrained common cluster based
model for community detection in temporal and multiplex networks,”
Neurocomputing, vol. 275, pp. 768–780, Jan. 2018.

[44] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and C. Faloutsos,
“DeltaCon: Principled massive-graph similarity function with attribu-
tion,” ACM Trans. Knowl. Discovery Data, vol. 10, no. 3, pp. 1–43,
Feb. 2016.

[45] D. Koutra, T.-Y. Ke, U. Kang, D. H. P. Chau, H.-K. K. Pao, and
C. Faloutsos, “Unifying guilt-by-association approaches: Theorems and
fast algorithms,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov-
ery Databases. Berlin, Germany: Springer, 2011, pp. 245–260.

[46] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang,
“NetWalk: A flexible deep embedding approach for anomaly detection
in dynamic networks,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2018, pp. 2672–2681.

[47] Z. Zhang, D. Chen, L. Bai, J. Wang, and E. R. Hancock, “Graph
motif entropy for understanding time-evolving networks,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Oct. 13, 2020, doi:
10.1109/TNNLS.2020.3027426.

[48] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Estimation of graphlet counts
in massive networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 1, pp. 44–57, Jan. 2019.

[49] L. Peel and A. Clauset, “Detecting change points in the large-scale
structure of evolving networks,” in Proc. AAAI, 2015, pp. 2914–2920.

[50] D. Jin et al., “Detecting communities with multiplex semantics by
distinguishing background, general, and specialized topics,” IEEE Trans.
Knowl. Data Eng., vol. 32, no. 11, pp. 2144–2158, Nov. 2020.

[51] X. Wu, P. Jiao, Y. Wang, T. Li, W. Wang, and B. Wang, “Dynamic
stochastic block model with scale-free characteristic for temporal com-
plex networks,” in Proc. Int. Conf. Database Syst. Adv. Appl. Cham,
Switzerland: Springer, 2019 pp. 502–518.

[52] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in
variational inference,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 8, pp. 2008–2026, Aug. 2019.

[53] F. Liu, J. Wu, C. Zhou, and J. Yang, “Evolutionary community detection
in dynamic social networks,” in Proc. IJCNN, Jul. 2019, pp. 1–7.

[54] P. Wang, L. Gao, and X. Ma, “Dynamic community detection based
on network structural perturbation and topological similarity,” J. Stat.
Mech., Theory Exp., vol. 2017, no. 1, Jan. 2017, Art. no. 013401.

[55] L. Lü, L. Pan, T. Zhou, Y.-C. Zhang, and H. E. Stanley, “Toward link
predictability of complex networks,” Proc. Nat. Acad. Sci. USA, vol. 112,
no. 8, pp. 2325–2330, 2015.

[56] K. S. Xu, M. Kliger, and A. O. Hero, III, “Adaptive evolutionary
clustering,” Data Mining Knowl. Discovery, vol. 28, no. 2, pp. 304–336,
2014.

[57] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proc. SIGKDD, 2006, pp. 554–560.

[58] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Analyzing
communities and their evolutions in dynamic social networks,” ACM
Trans. Knowl. Discovery Data, vol. 3, no. 2, pp. 1–31, 2009.

[59] T. Hartmann, A. Kappes, and D. Wagner, “Clustering evolving net-
works,” in Algorithm Engineering. Cham, Switzerland: Springer, 2016,
pp. 280–329.

[60] R. Görke, M. Holzer, O. Hopp, J. Theuerkorn, and K. Scheibenberger,
“Dynamic network of email communication,” Dept. Inform., Karlsruhe
Inst. Technol., Karlsruhe, Germany, Tech. Rep., 2011.

Pengfei Jiao received the Ph.D. degree in computer
science from Tianjin University, Tianjin, China,
in 2018.

From 2018 to 2021, he was a Lecturer with
the Center of Biosafety Research and Strategy,
Tianjin University. He is currently a Professor
with the School of Cyberspace, Hangzhou Dianzi
University, Hangzhou, China. His current research
interests include complex network analysis and its
applications.

Tianpeng Li the B.E. and M.S. degrees from Tianjin
University, Tianjin, China, in 2017 and 2020, respec-
tively, where he is currently pursuing the Ph.D.
degree with the College of Intelligence and Com-
puting.

His current research interests include complex net-
work analysis, dynamic community detection, and
network embedding.

Huaming Wu (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
Harbin Institute of Technology, Harbin, China,
in 2009 and 2011, respectively, and the Ph.D. degree
(Hons.) in computer science with Freie Universität
Berlin, Berlin, Germany, in 2015.

He is currently an Associate Professor with the
Center for Applied Mathematics, Tianjin University,
Tianjin, China. His research interests include wire-
less networks, mobile edge computing, the Internet
of Things, and complex networks.

Chang-Dong Wang received the Ph.D. degree
in computer science from Sun Yat-sen University,
Guangzhou, China, in 2013.

He was a Visiting Student with the University
of Illinois at Chicago, Chicago, IL, USA, in 2012.
In 2013, he joined as an Assistant Professor with the
School of Mobile Information Engineering, Sun Yat-
sen University, where he is currently an Associate
Professor with the School of Computer Science and
Engineering. He has authored or coauthored over
120 scientific papers in international journals and

conferences, such as the IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, the IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, the IEEE TRANSACTIONS ON CYBERNETICS,
the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYS-
TEMS, ACM Transactions on Knowledge Discovery from Data, the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, the IEEE TSMC-
C, ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, AAAI Conference on Artificial Intelligence, International Joint
Conference on Artificial Intelligence, IEEE Conference on Computer Vision
and Pattern Recognition, IEEE International Conference on Data Mining, Con-
ference on Information and Knowledge Management, and SIAM International
Conference on Data Mining. His current research interests include machine
learning and data mining.

Dongxiao He received the Ph.D. degree in computer
science from Jilin University, Changchun, China,
in 2014.

She is currently an Associate Professor with the
College of Intelligence and Computing, Tianjin
University, Tianjin, China. She has authored or coau-
thored more than 50 international journals and con-
ference papers. Her current research interests include
data mining and analysis of complex networks.

Wenjun Wang is currently a Professor with the
School of College of Intelligence and Computing,
Tianjin University, Tianjin, China. He was the prin-
cipal investigator or was responsible for more than
50 research projects. He has authored or coauthored
more than 50 papers on main international jour-
nals and conferences. His research interests include
computational social science, large-scale data min-
ing, intelligence analysis, and multilayer complex
network modeling.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 26,2022 at 01:48:31 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2020.3027426

