
248 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

EosDNN: An Efficient Offloading Scheme for DNN
Inference Acceleration in Local-Edge-Cloud

Collaborative Environments
Min Xue, Huaming Wu , Member, IEEE, Ruidong Li , Senior Member, IEEE,

Minxian Xu , Member, IEEE, and Pengfei Jiao

Abstract—With the popularity of mobile devices, intelligent
applications, e.g., face recognition, intelligent voice assistant, and
gesture recognition, have been widely used in our daily lives.
However, due to the lack of computing capacities, it is difficult for
mobile devices to support complex Deep Neural Network (DNN)
inference. To alleviate the pressure on these devices, traditional
methods usually upload part of the DNN model to a cloud server
and perform a DNN query after uploading an entire DNN model.
To achieve real-time DNN query, we consider the collaboration
between local, edge and cloud, and perform DNN query when
uploading DNN partitions. In this paper, we propose an Efficient
offloading scheme for DNN Inference Acceleration (EosDNN) in
a local-edge-cloud collaborative environment, where the DNN
inference acceleration is mainly embodied in the optimization of
migration delay and realization of real-time DNN query. EosDNN
comprehensively considers the migration plan and uploading
plan, where for the former, a Particle Swarm Optimization with
Genetic Algorithm (PSO-GA) is applied to obtain the distribution
of DNN layers under the server with the lowest migration delay,
and for the latter, a Layer Merge Uploading Algorithm (LMU)
is proposed to obtain DNN partitions and their upload order
with efficient DNN query performance. Experimental results
demonstrate that EosDNN can be applied to large-scale DNN
model migration, which can achieve an ideal migration delay
and obtain a more fine-grained DNN partition uploading plan,
thereby optimizing DNN query performance.

Index Terms—Mobile computing, local-edge-cloud collab-
oration, computation offloading, DNN inference, intelligent
applications.

Manuscript received April 22, 2021; revised June 29, 2021; accepted
September 7, 2021. Date of publication September 10, 2021; date of cur-
rent version February 16, 2022. This work was supported in part by the
National Natural Science Foundation of China under Grant 61801325, Grant
62071327, and Grant 62102408; in part by the Japan Society for the Promotion
of Science (JSPS) KAKENHI under Grant 19H04105; in part by the Shenzhen
Institutes of Advanced Technology (SIAT) Innovation Program for Excellent
Young Researchers; and in part by the Tianjin Research Innovation Project for
Postgraduate Students (Artificial Intelligence) under Grant 2020YJSZXS27.
(Corresponding author: Huaming Wu.)

Min Xue and Huaming Wu are with the Center for Applied Mathematics,
Tianjin University, Tianjin 300072, China (e-mail: xm_17@tju.edu.cn;
whming@tju.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Minxian Xu is with the Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
mx.xu@siat.ac.cn).

Pengfei Jiao is with the Center of Biosafety Research and Strategy, Tianjin
University, Tianjin 300072, China (e-mail: pjiao@tju.edu.cn).

Digital Object Identifier 10.1109/TGCN.2021.3111731

I. INTRODUCTION

DEEP Neural Networks (DNNs) have already demon-
strated overwhelming advantages in computer vision,

natural language processing, biological information, driverless
cars, and other fields. Along with the large-scale populariza-
tion of mobile devices and driven by artificial intelligence
technology, more and more intelligent applications based on
DNN models have emerged, and the number of DNN intelli-
gent applications deployed on mobile devices has increased
dramatically [1]. However, due to the challenges of insuf-
ficient computing power and small storage space in mobile
devices, it is difficult for them to support the complex
operations of DNN inference [2], e.g., the calculation of
network weights determined by DNN training. The process
of DNN inference by running the DNN layer under the
cloud/edge server and the DNN layer under the client is called
DNN query.

To run complex DNNs on the cloud/edge server, we need to
install the corresponding pre-trained DNN model on the tar-
get cloud/edge server [3], [4]. Considering the real-time data
processing, it is generally preferred to upload the DNN model
to a cloud/edge server closer to the task [5], [6]. However,
since the client can keep moving, it is quite difficult to accu-
rately predict which cloud/edge server the client will connect
to. Thus it is unreasonable to pre-install the DNN model on the
cloud/edge server. Therefore, we first need to determine which
cloud/edge server the client is connected to, and then deploy
the DNN model from the client to the specified cloud/edge
server, which is a more realistic approach.

As a promising method, the DNN migration plan can
reduce the pressure on mobile devices by migrating extremely
computation-intensive execution from resource-constrained
devices to cloud/edge servers, thereby achieving DNN infer-
ence acceleration [7], [8]. It mainly involves DNN deployment,
migrating decision-making, and resource allocation [9]. The
traditional method usually migrates part of the DNN model
to cloud servers with high computing power, thus reducing
the execution delay of the DNN model and achieving low
delay DNN migration [10]. However, since the cloud cen-
ter is too far away from the client, cloud-based migration
plans are affected by multiple factors, e.g., the network band-
width, the central computing capacity, the amount of data
transferred, and the number of computing tasks [6], [11], [12].

2473-2400 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0002-0046-5153
https://orcid.org/0000-0003-1049-1002
wu huaming

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 249

Instead, we can seek the help of edge computing, where edge
servers are widely distributed between mobile devices and
cloud computing centers, and integrate core capabilities of
the network, computing, storage, and applications [13], [14].
Thus, edge-based migration plans can effectively alleviate the
burden on network bandwidth and achieve lower transmis-
sion delay, thereby obtaining a DNN migration plan with low
migration delay [15]. Unfortunately, the computing power of
edge servers is generally limited, and it is difficult to sup-
port the operation of large-scale DNN models. Therefore,
capturing a DNN migration plan in a resource-limited com-
puting environment is one of the current challenges. We know
that the local-edge-cloud collaborative environment combines
the characteristics of cloud computing with high computing
capacity and edge computing with low transmission delay.
However, most current studies fail to consider how to obtain
the DNN migration plan suitable for large-scale DNN models
in the multi-user local-edge-cloud collaborative environment
with limited computing resources [16], [17].

One of the major problems with DNN uploads is that
the transmission delay for uploading the entire DNN model
is too long. Before the completion of uploading the DNN
model, the DNN query will only be run by the client, which
causes a great burden on the client while the DNN query
performance is very poor [10], [18]. Therefore, we should con-
sider segmenting the DNN model to obtain the DNN partition
and execute the DNN query while uploading the DNN par-
tition, thereby increasing DNN query performance. For the
DNN partition that has been successfully uploaded to the
cloud/edge server, the message that the DNN partition was
successfully uploaded will be returned to the client. At this
time, the DNN query will be executed by the DNN par-
tition under the client and the DNN partition successfully
uploaded to the cloud/edge server. The shortest path method
combined with the penalty factor method is often used to
make the uploading plan of the DNN model. As a result,
DNN partitions are generally large and lack the opportunity
to achieve better DNN query performance with more fine-
grained partitions. In response to the problem of excessive
granularity partitioning, an efficiency-based partitioning algo-
rithm was designed to generate a more fine-grained uploading
plan [19]. Unfortunately, similar to the above uploading plans,
this method uploads DNN partitions from a single client to
a single cloud/edge server, and it is challenging to be fur-
ther applied to a multi-cloud/edge server environment with
multiples users and servers.

To address the above challenges, we propose a novel
offloading scheme called EosDNN, considering the migration
and uploading problems of DNN models in the multi-user
local-cloud-edge collaborative computing environment [20].
Firstly, we consider the migration problem of DNN models
in the local-edge-cloud collaborative environment with lim-
ited resources. In order to obtain the optimal migration delay
under multi-task parallelism, we apply the Particle Swarm
Optimization with Genetic algorithm (PSO-GA algorithm) to
create the DNN migration plan. After that, we also consider
the processing of the topological DNN model containing the
inception module. In order to optimize the migration delay of

the DNN model, we propose a two-step migration method to
process the topological DNN model. Secondly, we consider a
DNN uploading plan that allows the client to perform DNN
queries before uploading the entire DNN model. With the aim
of performing DNN queries more efficiently, we propose a
layer merge uploading algorithm (LMU algorithm) to create
the DNN uploading plan. Compared with existing partition
uploading plans, the LMU algorithm can generate a more fine-
grained DNN partition uploading plan by combining the DNN
layer with adjacent layers to form a DNN partition, where the
DNN layer is the finest-grained DNN partition. This approach
avoids the problem that the granularity of the DNN partition is
too large due to the direct partition of the whole DNN model.
The main contributions of this paper are listed as follows:

• A migration plan based on PSO-GA algorithm is
proposed to obtain the distribution of the DNN layer
under each server in the local-edge-cloud collabora-
tive environment. This method is suitable for multi-task
parallelism, which is conducive to obtaining the low-
est migration delay. In addition, we propose a two-step
migration method to deal with topological DNN models.

• An uploading plan based on LMU algorithm is proposed
to obtain DNN partitions and determine the upload order
of DNN partitions. This method greatly reduces the gran-
ularity of DNN partitions and greatly improves DNN
query performance.

• Consider a more realistic computing environment and
offloading scheme, where multiple DNN models are
paralleled in a multi-user local-edge-cloud collaborative
environment with limited resources, which is suitable for
large-scale DNN model migration and upload.

The rest of this paper is organized as follows. Section II dis-
cusses relevant studies. Section III introduces a framework of
local-edge-cloud collaborative computing. Section IV presents
the overall architecture of the EosDNN offloading scheme.
Section V describes the first part of the EosDNN offload-
ing scheme, i.e., the migration plan, and gives the distribution
of the DNN layer under the server in the local-edge-cloud
collaborative computing. Section VI proposes the second part
of the EosDNN offloading scheme, i.e., the uploading plan,
and formulates a plan for the upload order of the DNN parti-
tion. Section VII provides the simulation results from different
aspects. Finally, Section VIII concludes the paper and points
out future research directions.

II. RELATED WORK

In recent years, many efforts have been devoted to the DNN
migration plans and DNN uploading plans, respectively, and
several feasible solutions have been put forward from different
perspectives.

A. Existing Migration Plans

Previous migration plans are mostly reflected in the
application of task migration. Liu et al. [21] formulated
the optimization problem for energy saving on mobile
devices whose tasks can be divided, and utilized a greedy
choice to solve the problem. Zhang et al. [22] proposed a

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

lightweight energy-efficient computational migration plan to
make migration decisions for each component and adopted
a greedy heuristic [21] to determine which components to
be migrated to edge servers. Cui et al. [23] considered a
tripartite-based model to represent the problem of data replica
placement. For this reason, they proposed a data replica place-
ment strategy based on the Genetic Algorithm (GA) to reduce
data transmission in the cloud server. Pandey et al. [24]
presented a heuristic algorithm based on Particle Swarm
Optimization (PSO) [25] for data-intensive applications while
considering both the computational cost and data transmission
cost. Deng et al. [26] presented a fine-granularity migra-
tion plan and the energy-efficient task migration problem
is mathematically formulated as a constrained 0-1 program-
ming. Lin et al. [27] proposed a self-adaptive Discrete
Particle Swarm Optimization algorithm with GA operators
(GA-DPSO) [28], [29], optimizing the data transmission delay
when placing data for a scientific workflow. This approach
considers the impact factors that affect transmission delay and
the data placement characteristics. Lin et al. [30] proposed an
adaptive discrete PSO algorithm using GA operators to reduce
the system cost caused by data transmission and DNN model
execution.

B. Existing Uploading Plans

Some research has been conducted on DNN uploading with
the use of partition-based methods. Jeong et al. [31] proposed
a new approach to run a Machine Learning (ML) Web
app on resource-constrained embedded devices by uploading
ML computations to servers, where uploading computations
dynamically depending on the problem size and network sta-
tus. IONN [3] uses the shortest path method and the penalty
factor method to determine DNN partitions, and builds the
DNN model incrementally when each DNN partition arrives,
allowing the client to start partial uploading even before
uploading the entire DNN model, thereby improving query
performance. Enhanced Partitioning [32] is based on a penalty
factor method of uploading overhead and uses the shortest
path method on the DNN execution graph between the client
and the cloud/edge server to partition the DNN layer, which
generates a more granular uploading plan. JointDNN [33]
transforms the optimal computing scheduling problem of
DNN into the shortest path problem and Integer Linear
Programming (ILP) in the mobile cloud computing envi-
ronment, and divides the DNN architecture by optimization
formulations at layer granularity, thereby achieving collabo-
rative computing between mobile devices and the cloud. In
addition, Jeong [34] constructed a lightweight edge computing
system called PerDNN, to provide seamless uploading services
even if users move between multiple edge servers, where
PerDNN was proposed to further support DNN to perform
uploading between mobile users and many interconnected
edge servers.

C. Qualitative Comparison

We briefly analyzed the issues existing in previous migra-
tion plans and uploading plans, respectively. Then, in view

of the deficiencies of the existing work, we put forward our
improvement.

Migration Plan: Swarm intelligence algorithms, e.g., GA
and PSO algorithms, are usually considered for the migration
plan. However, these algorithms are easy to fall into the local
optimum, and it is difficult to obtain global optimal results.
Moreover, they neglect the introduction of crossover and muta-
tion operations in the PSO algorithm to optimize the update
process. In addition, the existing work only considers how to
obtain the optimal migration plan of the DNN model in the
edge/cloud environment, and ignores the parallel requirements
of large-scale DNN models for multiple users, in which the
computing resources of the edge server are insufficient to sup-
port DNN operation and the high transmission delay of cloud
servers is not enough to achieve low migration delay. In other
words, most existing migration plans do not take into account
the waiting time caused by the parallelism of large-scale DNN
models in resource-constrained computing environments.

Uploading Plan: Most of the current studies are based on
the shortest path method and the penalty factor method to
formulate the uploading plan of the DNN model. However,
the problem of the penalty factor method is that for each
DNN model, due to the limited number of penalty factor
values, DNN partitions are generally large and lack the oppor-
tunity to achieve better DNN query performance. For the
problem of excessive granularity, some scholars have proposed
efficiency-based partitioning algorithms, which can generate
more fine-grained uploading plans. Unfortunately, this upload-
ing plan is only suitable for environments from a single client
to a single edge server, not for complex environments with
multi-cloud/edge servers. Several lightweight edge comput-
ing systems have been developed to provide seamless upload
services, but the loss caused by the layer upload delay has
been ignored.

As a comparison, this paper proposes an efficient EosDNN
offloading scheme to speed up DNN inference. It is achieved
by considering both the DNN migration plan and the DNN
uploading plan. For the migration plan, we propose a PSO-GA
algorithm in a multi-user local-edge-cloud collaborative envi-
ronment, which can realize the multi-task parallelism with low
migration delay, obtain the distribution of DNN layer under the
server, and is suitable for large-scale DNN model migration.
For PSO-GA algorithm, the crossover operation and mutation
operation of GA algorithm are introduced into the update of
PSO algorithm, which is beneficial to obtain the global optimal
migration plan. For DNN uploading plans, we propose the
LMU algorithm that improves DNN query performance by
reducing the granularity of the DNN partition, suitable for
DNN queries while uploading DNN partitions.

III. ENVIRONMENTAL DEFINITION

In this paper, we consider a multi-user local-edge-cloud col-
laborative computing environment (M, E, C), where M =
{m1,m2, . . . ,mu} is the set of clients, E = {e1, e2, . . . , eo}
is the set of edge servers and C = {c1, c2, . . . , cw} is the
set of cloud servers. Here, we set up a local-edge-cloud
collaborative environment with u clients, o edge servers, and

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 251

TABLE I
SYMBOLS AND DEFINITIONS

w cloud servers. The symbols and definitions are described in
Table I.

The multi-user local-edge-cloud collaborative comput-
ing environment is defined as R = (M,E,C) =
{r1, r2, . . . , rd , . . . , rs}, where {r1, r2, . . . , ru} represents the
set of clients M, {r(u+1), r(u+2), . . . , r(u+o)} represents the
set of edge servers E, and {r(u+o+1), r(u+o+2), . . . , rs} rep-
resents the set of cloud servers C, respectively. Here, we have
d ∈ [0, s] and s = u + o + w . The DNN set on the device
is denoted by D = {D1,D2, . . . ,Di , . . . , }, i ∈ [1, α], where
we define the DNN model Di as a task, and α indicates
the number of tasks. Each DNN task can be expressed as
Di = {Di1,Di2, . . . ,Dij , . . . , }, j ∈ [1, βi], where Dij refers
to the subtask at the j-th layer under the i-th DNN model,
and βi refers to the number of subtasks under the task Di . In
addition, we know that subtasks Dij under each task Di run
in serial order.

IV. ARCHITECTURE OF EOSDNN OFFLOADING SCHEME

We cannot accurately predict which cloud/edge server the
mobile client will connect to, so it would not make sense to
pre-install DNN subtasks on the cloud/edge server. It is a more
realistic method to first determine which cloud/edge server the
client will connect to, and then deploy the DNN subtasks under
the client to the designated cloud/edge server. In the above
scenario, how to achieve efficient DNN inference becomes a
problem. To address the above issues, the EosDNN offloading
scheme is established in a multi-user local-edge-cloud collabo-
rative environment with limited resources. As shown in Fig. 1,
we describe the operation process of the EosDNN offload-
ing scheme, and then describe the internal architecture of the
migration plan and an uploading plan, where the EosDNN
offloading scheme contains a migration plan and an upload-
ing plan, which achieve low migration latency and efficient
DNN query performance, respectively.

A. Migration Plan

We consider using PSO-GA algorithm to generate a DNN
migration plan, so as to determine the distribution of DNN
subtasks under the cloud/edge server.

Considering the high transmission delay of cloud servers
and the limited computing capacity of edge servers, the
existing local-cloud or local-edge computing environment is
difficult to support large-scale DNN model inference. In addi-
tion, most of the existing algorithms are not suitable for

Fig. 1. The process of EosDNN offloading scheme. Among them, 1 repre-
sents the parameters of the DNN model, and 2 represents the environmental
parameters of the local-edge-cloud collaborative environment. 3 means that
after the migration plan determines the migration location of the DNN sub-
task, the uploading plan obtains the DNN partition and the upload order of
DNN partition based on this. 4 represents the process of uploading the DNN
partition to the computing environment.

generating efficient migration plans for the parallel processing
of DNN models in resource-limited computing environments.
Therefore, we propose a PSO-GA algorithm for DNN parallel
migration in a multi-user local-edge-cloud collaborative envi-
ronment with limited resources and then generate a migration
plan. The PSO-GA algorithm uses individual local information
and group global information to guide the search and has a fast
convergence speed, which is suitable for efficiently generating
a DNN migration plan. Finally, considering the diverse struc-
ture of the DNN model, in order to enhance the generalization
ability of the migration plan, we proposed two-step migra-
tion to deal with the topological DNN model with inception
modules.

B. Uploading Plan

Based on the migration plan, the migration position of each
DNN layer is known. Then, we propose LMU algorithm to
generate a DNN uploading plan, so as to obtain the DNN
partition and determine the upload order of the DNN partition.

In Table IV, we notice that the DNN model is too large,
so the transmission delay to upload the entire DNN model is
too long. Before DNN model uploading is completed, DNN
queries will only be run by the client, causing a lot of burden to
the client. Due to the low computing power of the client, DNN
inference efficiency is very low. Considering that the DNN par-
tition granularity of the existing DNN uploading plan is too
large, it is difficult to obtain better DNN query performance. In
addition, the existing DNN uploading plans are applied from
a single client to a single edge/cloud computing node, which
does not conform to the trend of edge-cloud collaboration.
Therefore, we proposed the LMU algorithm in the local-edge-
cloud collaborative environment. As we all know, the DNN
layer is the smallest granularity of the DNN model. Based
on LMU algorithm, the DNN layer is merged with adjacent

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

layers to form a DNN partition, which avoids the excessive
granularity caused by the whole DNN model partition in the
existing work. In this case, the generation of fine-grained parti-
tions can be maximized, and the performance of DNN queries
can be optimized.

V. PROPOSED MIGRATION PLAN

We use the PSO-GA algorithm to analyze the subtask dis-
tribution in a multi-user local-edge-cloud collaborative envi-
ronment, so as to obtain the first part of EosDNN offloading
scheme, i.e., migration plan. The section includes three parts:
Firstly, we preprocess the topological DNN model and then
propose the two-step migration of the DNN model. Secondly,
we briefly introduce the mathematical model of the migration
plan. Finally, we consider the operation of PSO-GA algorithm
under the migration plan.

A. Two-Step Migration

1) Two-Step Migration Preprocessing: We know that DNN
models usually include chain DNN models and topological
DNN models containing inception modules. Considering the
data dependency between DNN subtasks and the migration
efficiency of DNN models, it is usually necessary to preprocess
the DNN model.

When the deviation between the out-degree of the prede-
cessor and the in-degree of the successor under the inception
module is 1, some scholars merge the two adjacent layers
into a new layer. After preprocessing, the data dependency
between the predecessor and the successor will disappear [30].
Some methods directly regard the inception module as a whole
and convert the topological DNN model containing the incep-
tion module into a chain DNN model [35]. In addition, some
scholars regard the inception module as a minimum cutting
problem and use Boykov–Kolmogorov maximum flow algo-
rithm, topological sorting algorithm, and other algorithms to
perform a DNN partition [36]. However, the existing prepro-
cessing topology DNN model is not suitable for generating
fine-grained DNN partitions, and it is difficult to obtain a
more efficient DNN migration plan and DNN uploading plan.
Therefore, we design two-step migration preprocessing as
follows.

• Initial Migration Preprocessing: For the topological DNN
model, we first directly regard the inception module
as a whole, and convert the topological DNN model
into a chain DNN model, which ensures that the data
transmission relationship of the inception module is not
destroyed.

• Secondary Migration Preprocessing: Considering that
the repeated transmission of the same input data will
bring unnecessary transmission pressure to the wireless
network, it will also bring higher transmission delay. We
treat the DNN layers with the same input under the incep-
tion module as a whole and migrate them to the same
edge/cloud server.

Taking Fig. 2 as an example, we regard layer block A as
one layer during the initial migration preprocessing. In the
secondary migration preprocessing, we regard layer block B

Fig. 2. Inception module.

and layer block C as one layer, respectively, and then split the
inception module.

2) Two-Step Migration: In order to process the topological
DNN with inception module, based on the two-step migration
preprocessing, we propose a two-step migration method as
follows.

• Initial Migration: based on the initial migration prepro-
cessing, we regard the inception module as one layer in
the DNN model, thus transforming the topological DNN
model into the chain DNN model, and then the chain
DNN model is divided for the first time. In the Initial
Migration, we can know the migration position of the
input and output layers of the inception module.

• Secondary Migration: Based on the secondary migra-
tion preprocessing, we divide the inception module for
the second time, migrate each branch of the inception
module, and get the subtask distribution of the inception
module under the cloud/edge server. At this time, the final
migration delay of the inception module is the branch that
takes the longest time, and the energy consumption and
cost are the sums of all branches, respectively.

B. Migration Plan Analysis

In the local-edge-cloud collaborative environment, we can
choose to perform subtasks Dij locally or migrate to a
cloud/edge server. We first calculate the transmission delay,
execution delay, and waiting delay, respectively. Then we
establish the migration delay formula of the DNN model under
the two-step migration.

We define an indicative function 1d , where d represents the
migrating location of subtask Dij in the local environment M.
For instance, for the indicative function 1d∈[1,u], if the actual
migrating location of Dij is rd , when d > u, 1d∈[1,u] = 0,
otherwise, 1d∈[1,u] = 1.

1) Execution Delay: After the input data required by sub-
task Dij is transmitted to the cloud/edge server, the subtask
starts to execute, and its execution delay T 1

ij is as follows:

T 1
ij =

Pij

Q l
ij

1d∈[1,u] +
Pij

Qe
ij

1d∈[u+1,u+o] +
Pij

Qc
ij

1d∈[u+o+1,s],

(1)

where Pij represents the number of CPU cycles to complete
subtask Dij . Q l

ij , Qe
ij and Qc

ij indicate the computing power

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 253

of the client, edge server and cloud server where subtask Dij

is located, respectively.
2) Transmission Delay: Since the subtask Dij under the

task Di is executed serially, we consider the data transmission
between the server where subtask Dij−1 is located and the
server where subtask Dij is located. Let v denote the data
transmission rate between servers, which can be defined as:

v =

⎧
⎨

⎩

∞, if rd and rd ′ are connected & rd = rd ′ ,
η, if rd and rd ′ are connected & rd �= rd ′ ,
0, ifrd and rd ′ are not connected.

(2)

where rd and rd ′ represent two servers in a local-edge-cloud
collaborative environment, and η is a constant.

Therefore, the transmission delay T 2
ij between subtasks

Dij−1 and Dij is calculated as follows:

T2
ij =

gij
vij

1d∈[1,u] +
gij
vij

1d∈[u+1,u+o] +
gij
vij

1d∈[u+o+1,s], (3)

where gij represents the transmission data between subtasks
Dij−1 and Dij , and vij represents the transmission rate
between the server where subtask Dij−1 is located and the
server where subtask Dij is located.

3) Waiting Delay: The number of parallel pools represents
the maximum number of subtasks that the cloud/edge server
can execute concurrently, and each parallel pool can execute
a DNN subtask. For example, if the number of parallel pools
under a cloud/edge server is four, it means that the cloud/edge
server can process up to four subtasks simultaneously. We
assume that the number of parallel pools per server is lim-
ited, that is, computing resources are limited. Therefore, when
formulating a migration plan, due to the limitation of the par-
allel pool, it is necessary to consider the waiting time due to
subtask queuing under each cloud/edge server.

Let xpld , x rund and x std denote the number of parallel pools,
the number of running subtasks, and the number of sub-
tasks to be run under the server rd , respectively. Obviously,
x rund ≤ x

pl
d . In addition, if x std ≤ x

pl
d , the queuing time

zij = 0. If x std > x
pl
d , we calculate the difference Iij between

the complete execution time of subtask being executed and
the start execution time of subtask being queued. If Iij > 0,
it indicates that the subtask needs to queue, and the queuing
time zij = Iij . If Iij ≤ 0, indicating that the subtask does not
need to wait, then the queuing time zij = 0. The waiting delay
T 3
ij can be expressed as:

T 3
ij = zij 1d∈[1,u] + zij 1d∈[u+1,u+o] + zij 1d∈[u+o+1,s], (4)

Iij = T 2
i ′j ′ + T 1

i ′j ′ + zi ′j ′ − T 2
ij +

(
ti ′j ′ − tij

)
, (5)

zij =

{
0, x std ≤ x

pl
d ,

max
{
0, Iij

}
, x std > xpld .

(6)

where Di ′j ′ and Dij respectively represent the subtask that
ends first and the subtask that arrives first under the cloud/edge
server. zij and zi ′j ′ denote the queuing time of subtask Dij

and Di ′j ′ , respectively. T 1
i ′j ′ denotes the execution delay of

subtask Di ′j ′ , T
2
ij denotes the transmission delay between sub-

tasks Dij−1 and Dij , T 2
i ′j ′ denotes the transmission delay

between subtasks Di ′j ′−1 and Di ′j ′ , tij and ti ′j ′ denote the

time to start transmitting the input data of the subtask Dij and
Di ′j ′ , respectively.

C. Problem Formulation

For the topological DNN model containing the inception
module, we consider the two-step migration.

• Initial Migration: The first step is to treat the incep-
tion module as a whole, and treat the inception module
as a layer Dij in the DNN model Di . Our goal is to
find the best migration plan with the lowest migration
delay in the local-edge-cloud collaboration environment
to meet the resource constraints of each server. Then, the
optimization formula is as follows:

min :
∑

i

∑

j

T 1
ij + T 2

ij + T 3
ij

s .t . : x rund ≤ xpld (7)

• Secondary Migration: After initial migration, the migra-
tion locations of the input and output layers of the
inception module are available. Based on this, we migrate
each branch of the inception module separately. It is
important to note that the migration delay of the incep-
tion module is the single branch with the highest delay,
as follows:

min :
∑

c

max
j ∗

{
∑

w

T cw1
ij ∗ + T cw2

ij ∗ + T cw3
ij ∗

}

s .t . : x rund ≤ x
pl
d (8)

Some layers of tasks Dij in the initial migration are incep-
tion modules, defined as Dcw

ij ∗ . For these layers, we perform
a secondary migration, where c is the total number of incep-
tion modules, w is the number of layers in each branch of the
inception module, j ∗ indicates that the j-th layer in the initial
migration is the inception module. In addition, the formulas
of T cw1

ij ∗ , T cw2
ij ∗ and T cw3

ij ∗ are the same as the formulas of
T 1
ij , T 2

ij and T 3
ij .

D. PSO-GA Algorithm

The fundamental goal of the DNN migration plan is to find
a mapping from D to R to minimize the delay of the migration
plan. In addition, we need to note that finding the best mapping
from D to R is an NP-hard problem [37]. Based on this, we use
PSO-GA algorithm to get the best mapping from D to R, that
is, the migration plan. In order to explain more concisely, we
mainly discuss Eq. (7) in initial migration. (Inception module
migration in secondary migration is the same as the initial
migration except for the difference of the fitness function).

1) Rationality: The PSO algorithm is a collaborative search
algorithm that uses individual local information and group
global information to guide the search at the same time. It
has a faster convergence rate and is suitable for efficiently
generating DNN migration plans. However, the local search
ability of PSO algorithm is poor, and the search accuracy is not
high enough to obtain an accurate optimal solution. The search
performance of the PSO algorithm depends on the balance of
its global exploration and local refinement, which depends to

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

254 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

Fig. 3. An encoded particle for a DNN migration.

a large extent on the inertial component, individual cognition,
and social cognition of the algorithm.

In order to avoid premature convergence of particles and
improve the global search performance, the PSO-GA algo-
rithm introduces the crossover operator and mutation operator
of the GA algorithm when the particles are updated, so that
the particles can gain the ability to explore new regions,
thereby obtaining better global search capabilities. For indi-
vidual cognitive components and social cognitive components,
the crossover operator of GA algorithm is introduced to refresh
the corresponding components. In addition, we combine the
inertial component with the mutation operator of the GA
algorithm, which can better balance the local search and the
global search, and then obtain the optimal migration plan in
local-edge-cloud collaborative computing environments.

2) Coding Strategy: A good coding strategy is a prerequi-
site for a reasonable migration decision, which usually needs
to comply with the following three principles:

• Completeness: Each candidate solution can be coded as
a particle.

• Non-redundant: Each candidate solution has only one
corresponding coded particle.

• Feasibility: Each coded particle represents a candidate
solution.

In Fig. 3, the PSO-GA algorithm uses a nested strategy to
encode the migration problem of the DNN layer, where each
particle represents a candidate solution for all DNNs, and the
k-th particle Hk in the t-th iteration is described as:

H t
k =

(
htk1, h

t
k2, . . . , h

t
k β̄

)
, (9)

htkj =
(
rd , uj

)t
kj
, (10)

where β̄ is the total number of layers in all DNN models,
htkj means that in the t-th iteration, the server rd will execute
subtask Dij in the order of uj . uj = 0, 1, . . . , β̄ − 1 indicates
the order of subtask Dij .

3) Fitness Function: The fitness function is used to evaluate
the performance of particles, and particles with lower fitness
represent better candidate solutions. The purpose of this paper
is to pursue the minimum migration delay, so we define the
fitness function as follows:

f (Hk) =
∑

i

∑

j

T 1
ij + T 2

ij + T 3
ij , (11)

where f (Hk) represents the migration delay in a multi-user
local-edge-cloud collaborative environment. The lower the
individual fitness, the less time it takes to complete all tasks,
which means that it is less likely to be eliminated from the
population.

Fig. 4. Update operator.

4) Update Strategy: We know that PSO algorithm mainly
includes inertia component, individual cognition, and social
cognition, while the high quality of traditional PSO algorithm
is easy to fall into the defect of local optimization. In order to
avoid premature convergence and improve the global search
performance, the PSO-GA algorithm introduces the crossover
operator and mutation operator of the GA algorithm during
particle updates. The crossover operator p() (or g()) is shown
in Fig. 4(a), randomly selecting the ind1 and ind2 positions in
the old particle, and then replacing the segment between ind1
and ind2 with partial best PB (or global best GB) particles
in the same interval. The mutation operator M() is shown in
Fig. 4(b), by randomly selecting the position in the particle
and changing the corresponding server.

Iterative Update: When the i-th particle is in the t-th
iteration, the iteration update is as follows:

H t
k = ε2 ⊕ g

(
ε1 ⊕ p

(
w ⊕M

(
H t−1

k

)
,PB t−1

k

)
,GB t−1

)
. (12)

Inertial Component: The mutation operator M() is intro-
duced to refresh the inertial component At

k .

At
k = w ⊕M

(
H t−1
k

)
=

{
M

(
H t−1
k

)
, r1 < w ,

H t−1
k , else.

(13)

Individual Cognition: Introduce crossover operator p() to
refresh individual cognition B t

k .

B t
k = ε1 ⊕ p

(
At
k ,PB

t−1
)
=

{
p
(
At
k ,PB

t−1
)
, r2 < ε1,

At
k , else.

(14)

Social Cognition: Introduce crossover operator g() to refresh
social cognition C t

k .

C t
k = ε2 ⊕ g

(
B t
k ,GB t−1

)
=

{
g
(
B t
k ,GB t−1

)
, r3 < ε2,

B t
k , else.

(15)

where PB t−1 is the partial optimal solution in the t − 1th

iteration, and GB t−1 is the global optimal solution in the
t − 1th iteration. ε1 and ε2 represent acceleration coefficients.
r1, r2 and r3 represent random numbers between [0, 1]. In
addition, the order of DNN layers uj is not updated with
iteration. εst1 and εed1 are the start value and end value of ε1,
respectively. εst2 and εed2 are the start value and end value of
ε2, respectively.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 255

Algorithm 1: Migration Algorithm
Input: Local-edge-cloud collaborative environment

parameters (bandwidth, server computing power,
number of various servers), DNN model
description (number of CPUs required for
execution layer, data transfer volume).

Output: The optimal migration plan.
1 Preprocessing: obtain the current optimal allocation plan

and the historical optimal plan through the GA
algorithm, and update the PSO algorithm parameters.

2 for particle k = 1 do
3 Initialize particle with crossover and mutation

operations
4 Ti =

∑
j T

1
ij + T 2

ij + T 2
ij

5 Calculate the fitness of particle k and
6 set PBk = Hk
7 GB = min PBk
8 for k = 1 to N do
9 Update particle with crossover and mutation

operations
10 Calculate the fitness of particle

fitness(Hk) =
∑

i

∑
j T

1
ij + T 2

ij + T 3
ij

11 if fitness(Hk) < fitness(PBk) then
12 PBk = Hk

13 if fitness(PBk) < fitness(GB) then
14 GB = PBk

15 final
16 return GB as migration plan

5) Mapping of Particles and DNN Migration: The k th

particle of the PSO-GA algorithm is in the local-edge-cloud
collaborative environment, the partial optimal solution PBk is
the relative optimal distribution of subtasks, and the global
optimal solution GB indicates the optimal distribution of
subtasks, particle Hk represents the distribution and order
information of subtasks. We set up N particles. The pseu-
docode of the algorithm is as shown in Algorithm 1. A more
preferred subtask allocation scheme is generated by the GA
algorithm as the initial solution, and then the PSO algorithm
is applied to find a subtask migration plan close to the optimal
solution in the solution space, then we combine crossover and
mutation operations to update.

6) Parameter Settings: We know that the inertia weight w
affects the convergence and search ability of PSO algorithm.
The PSO-GA algorithm designs an adjustment mechanism that
adapts to the nonlinear migration characteristics, and considers
an adjustment mechanism that can adaptively adjust the search
capability according to the current particle:

w = wmax − (wmax − wmin)× e

d(Ht−1
k)

d(Ht−1
k

−1.01) , (16)

where wmax and wmin are the maximum and minimum val-
ues of w in the initialization phase, respectively. d(H t−1

k) =
div(GB t−1,H t−1)

|C | , where div(GB t−1,H t−1) denotes the

Fig. 5. Schematic diagram of DNN layer uploading.

Fig. 6. Diagram of data transmission. B in
ij , Bout

ij represent input and output
data transmission delays of layers Dij between the client and server, respec-
tively. Oij represents the input data transmission of layer Dij between two
servers. Cij and Aij represent the execution delay of layer Dij on the client
and server, respectively.

coordinate difference between the global best particle GB t−1

and the current particle H t−1 in the t − 1th iteration, i.e., the
lower div(GB t−1,H t−1) is, the closer GB t−1 and H t−1

are. In addition, the search capability is adaptively adjusted
according to the difference between the current particle and
the global best particle.

VI. PROPOSED UPLOADING PLAN

Through the migration plan, we can know the migration
position of each DNN layer. Based on this, we propose a layer
merge uploading algorithm to obtain DNN partitions and for-
mulate the upload order of DNN partitions, thereby obtaining
the second part of the EosDNN offloading scheme, i.e., the
uploading plan. In Fig. 5, we briefly introduce the data flow
of the DNN model.

In this section, we first give some common definitions.
Then, we design four principles for DNN model uploading.
Finally, we propose an LMU algorithm to upload the DNN
model according to four principles.

A. Common Definition

We give several common definitions: Definition 1 (merged
layer): Merged layer refers to the combination of several adja-
cent layers. According to Fig. 6, when the layer Dij and the
layer Dij+1 are uploaded to the cloud/edge server as a whole,
it is called a merged layer.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

Definition 2 (DNN partition): DNN partition represents the
division of the DNN model, including the DNN layers and
merged layers.

Definition 3 (Uploading Method Definition): We divide
uploading methods into Independent Uploading and Non-
independent Uploading, in which Non-independent Uploading
can be divided into three cases. The detailed definition is as
follows.

• Independent Uploading: When a DNN partition is
uploaded to the cloud/edge server, but the input DNN
partition and output DNN partition are not uploaded.

• A-Non-Independent Uploading: For a DNN partition,
if the input DNN partition has been uploaded to the
cloud/edge server, but the output DNN partition has not
been uploaded.

• B-Non-Independent Uploading: For a DNN partition,
if the output DNN partition has been uploaded to the
cloud/edge server, but the input DNN partition has not
been uploaded.

• C-Non-Independent Uploading: For a DNN partition,
both the input DNN partition and output DNN partition
have been uploaded to the cloud/edge server.

In Fig. 6, based on [32], we give definitions for four
different conditions related to delay.

Definition 4 [Total Delay Advantage (TDA)]: The delay
advantage obtained by executing all DNN partitions on a
cloud/edge server compared to executing all DNN partitions
locally.

• Example 1: For Dij−1, Dij and Dij+1 upload in turn,
the corresponding TDAs are TDA′

ij−1, TDA′
ij and

TDA′
ij+1, respectively, where TDA′

ij−1 = Aij−1 −
Cij−1−B in

ij−1−Bout
ij−1, TDA′

ij =
∑j

a=j−1(Aia−Cia)−
Oij − B in

ij−1 − Bout
ij and TDA′

ij+1 =
∑j+1

b=j−1(Aib −
Cib)−

∑j+1
c=j Oic − B in

ij−1 − Bout
ij+1.

• Example 2: For Dij−1, Dij+1 and Dij upload in turn,
the corresponding TDAs are TDA′′

ij−1, TDA′′
ij+1 and

TDA′′
ij , respectively, where TDA′

ij−1 = Aij−1−Cij−1−
B in
ij−1 − Bout

ij−1, TDA′
ij+1 = Aij+1 − Cij+1 − B in

ij+1 −
Bout
ij+1 and TDA′

ij =
∑j+1

b=j−1(Aib−Cib)−
∑j+1

c=j Oic−
B in
ij−1 − Bout

ij+1.
Definition 5 [Layer Delay Advantage (LDA)]: LDA refers

to the optimization of the TDA after uploading each DNN
partition. We define the TDA change caused by each DNN
partition upload as LDA. In addition, we record the LDA under
the Independent Uploading mode as LDA∗.

• Example 3: For Dij−1, Dij and Dij+1 upload in turn, the
corresponding LDAs are LDA′∗

ij−1, LDA′
ij and LDA′

ij+1,
where LDA′∗

ij−1 = TDA′
ij−1, LDA′

ij = TDA′
ij −

TDA′
ij−1 and LDA′

ij+1 = TDA′
ij+1 − TDA′

ij .
• Example 4: For Dij−1, Dij+1 and Dij upload in turn, the

corresponding LDAs are LDA′′∗
ij−1, LDA′′

ij and LDA′′∗
ij+1,

where LDA′′∗
ij−1 = TDA′′

ij−1, LDA′′∗
ij+1 = TDA′′

ij+1
and LDA′′

ij = TDA′′
ij − TDA′′

ij−1 − TDA′′
ij+1.

• Example 5: Dij−1 and Dij are merged to upload, then
the LDA∗ of the merged layer is Aij−1+Aij −(Cij−1+
Oij + Cij)− B in

ij−1 − Bout
ij .

Fig. 7. Geometric representation of ELDA.

Definition 6 [System Delay (SD)]: As DNN partitions are
uploaded, the delay for completing DNN model queries will
change constantly. We define the delay of completing the DNN
model query as SD. In Fig. 8, we denote the sum of SD
changes during the continuous upload process of the DNN
partition as SSD.

• Example 6: In Fig. 6, if the layer Dij−1 and Dij+1 are
executed on the cloud/edge server, and layer Dij is exe-
cuted locally. In addition, first upload layer Dij−1 and
then upload layer Dij+1. The layer upload delay is tij−1

and tij+1 respectively.
The SD before uploading layer Dij−1 is defined as SD =
Aij−1 + Aij + Aij+1.
The SD after uploading layer Dij−1 is SDij−1 = B in

ij−1+

Cij−1 + Bout
ij−1 + Aij + Aij+1.

The SD after uploading layer Dij+1 is SDij+1 = B in
ij−1+

Cij−1 + Bout
ij−1 + Aij + B in

ij+1 + Cij+1 + Bout
ij+1.

The SSD during uploading layers Dij−1 and Dij+1 is
defined as SSD = SD × tij−1 + SDij−1 × tij+1.

Definition 7 [Migration Delay (MD)]: It refers to the delay
obtained by PSO-GA algorithm, which is also equal to SD
after uploading the final DNN partition.

Definition 8 [Efficiency of Layer Delay Advantage (ELDA)]:
The ELDA of DNN partition under unit initial input data is
defined as:

ELDA =
LDA/DNN partition upload delay

initial input data size
. (17)

In Fig. 7, ELDA can be regarded as tan γ, meaning that SD
changes during the DNN partition upload.

B. Uploading Principle Analysis

In this section, we put forward four uploading principles
of the uploading plan. Firstly, we briefly introduce the four
uploading principles. Secondly, we analyze the operation pro-
cess of the four principles. Finally, the formulation principle
of these four principles is demonstrated in detail.

1) Uploading Principle: The contents of the four uploading
principles are as follows.

• Principle 1: DNN partitions are uploaded in descending
order of ELDA.

• Principle 2: After pre-uploading the size = 0 layer under
the merged layer with LDA∗ > 0, the size = 0 layer will
be executed directly. However, after pre-uploading the
size = 0 layer under the merged layer with LDA∗ < 0,

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 257

it will not be executed until the rest of the merged layer
is uploaded.

• Principle 3: Based on Principle 1, when several adja-
cent layers with LDA∗ > 0, upload these layers directly
(Direct Uploading); when part of the DNN partition with
LDA∗ < 0, choose to combine with adjacent layers to
form a new merged layer with LDA∗ > 0, and then
upload the new merged layer(Merge uploading).
For Merge uploading, we proposed Merge Rules to handle
the layer with LDA∗ < 0. In other words, if there is a
layer with LDA∗ < 0, merge it with the adjacent layer
and form a merged layer with LDA∗ > 0 according to
the Merge Rules. The details are as follows:

– For two merged layers with LDA∗ > 0 composed
of input or output adjacent layers, we choose the
merged layer with a higher ELDA.

– The merged layer can be composed of the input
or output adjacent layer. For the LDA∗ of the two
merged layers, if one is greater than 0 and the other
is less than 0, then the merged layer with LDA∗ > 0
is selected.

– When two merged layers with LDA∗ < 0 are consti-
tuted by the input or output adjacent layer, then we
choose to form a merged layer with output adjacent
layers. If the merged layer with LDA∗ < 0, then
continue to find the adjacent layers of the merged
layer based on the above merging rule until a new
merged layer with LDA∗ > 0 is formed.

• Principle 4: According to principle 1, the merged layer
was further divided and uploaded. In other words, when
uploading a merged layer, follow principle 1 to upload the
sub-partitions (including the layers and smaller merged
layers under the merged layer) with LDA∗ > 0 sepa-
rately, and then upload the rest of the merged layer at
once.

2) Operation of the Principle 1-4: We briefly introduce the
operation of Principle 1-4, from which we can easily discover
the relationship between the four principles: Principle 2 is the
premise; Principle 1 is the basis of Principle 3 and Principle 4.

• First of all, we will upload the size = 0 layer in advance
based on Principle 2.

• Secondly, we propose a Merge Rules based on Principle
3 to combine the LDA∗ < 0 layer with its adjacent layers
to obtain the merged layer with LDA∗ > 0 and then get
the DNN partition under the uploading plan.

• Thirdly, we will formulate uploading plans of the DNN
partition based on Principle 1.

• Finally, we combine Principle 4, and formulate upload-
ing plans of the sub-partition with LDA∗ > 0 based on
Principle 1.
It should be noted that when formulating an upload-
ing plan of the sub-partition with LDA∗ > 0,
the upload order of the layers and merged layers
in the entire DNN model remains unchanged, but
the merged layer is uploaded in a more fine-grained
partition.

3) Principle Theory: In this part, we will explain the
Principle 1-4 in detail.

Fig. 8. The performance of SD under different upload orders.

TABLE II
THE SD OF PLAN A AND PLAN B

TABLE III
DETAILED STEPS FOR PLAN B

Remark (Principle 1): Fig. 8(b) shows the SD changes for
different upload orders under Fig. 8(a). Table II describes the
layer upload delay (LUD) and system delay (SD) of uploading
the DNN layer in different orders. Table III describes how to
determine the upload order according to Principle 1.

• Plan A: It represents the SD changes when uploading the
layer in the order of D→ C → A →B under the random
upload layer mode.

• Plan B: It represents the SD changes when uploading the
layer in the order of B→ D → C →A under Principle 1.

In Fig. 8, if the area of the plan (i.e., SSD) is smaller, it
means that the SD is lower in the continuous process of layer
upload, which means that the uploading plan is better. Since
SSD(Plan B) = 2203, SSD(Plan A) = 2359, Plan B is obvi-
ously better than Plan A, which can continuously bring lower
SD changes with continuous uploading of layers.

Remark (Principle 2): We discuss the corresponding LDA
according to the upload order of DNN partitions.

• Under the Same Server: In Fig. 6, for adjacent layers
under the same server, the data transmission delay Oij =
Oij+1 = 0,Bout

ij−1 = B in
ij ,B

out
ij = B in

ij+1.
Independent Uploading: When layer Dij is uploaded
to the cloud/edge server, but Dij−1 and Dij+1 are not
uploaded. The LDA of layer Dij is as follows:

LDA∗
ij = Aij − Cij − B in

ij − Bout
ij . (18)

A-Non-Independent Uploading: If layer Dij−1 has been
uploaded to the cloud/edge server, but layer Dij+1 has
not been uploaded. The LDA of layer Dij can be defined
as follows:

LDA1
ij = Aij − Cij + B in

ij − Bout
ij . (19)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

B-Non-Independent Uploading: Layer Dij+1 has been
uploaded to the cloud/edge server, but layer Dij−1 has not
been uploaded. The LDA of layer Dij can be shown as:

LDA2
ij = Aij − Cij − B in

ij + Bout
ij , (20)

C-Non-Independent Uploading: Both layers Dij−1 and
Dij+1 have been uploaded to the cloud/edge server. The
LDA of layer Dij can be defined as:

LDA3
ij = Aij − Cij + B in

ij + Bout
ij . (21)

• Under Different Servers: In Fig. 6, for adjacent lay-
ers under different servers, the data transmission delay
Oij ,Oij+1 �= 0, where Oij ≤ Bout

ij−1, Oij+1 ≤ B in
ij+1

according to the bandwidth.
Independent Uploading: When layer Dij is uploaded
to the cloud/edge server, but Dij−1 and Dij+1 are not
uploaded, we define LDA of this layer as:

LDA∗
ij = Aij − Cij − B in

ij − Bout
ij . (22)

A-Non-Independent Uploading: If layer Dij−1 has been
uploaded to the cloud/edge server, but layer Dij+1 has
not been uploaded, we define LDA of layer Dij as:

LDA1
ij = Aij − Cij + Bout

ij−1 − Bout
ij −Oij . (23)

B-Non-Independent Uploading: If layer Dij+1 has been
uploaded to the cloud/edge server, but layer Dij−1 has
not been uploaded, LDA of layer Dij can be expressed as:

LDA2
ij = Aij − Cij − B in

ij + B in
ij+1 −Oij+1. (24)

C-Non-Independent Uploading: When both layers Dij−1

and Dij+1 have been uploaded to the cloud/edge server,
LDA of layer Dij can be calculated by:

LDA3
ij = Aij − Cij + B in

ij+1 + Bout
ij−1 −Oij −Oij+1.

(25)

According to Eqs. (18)–(21) and Eqs. (22)–(25), we com-
pare the relationship between the independent upload LDA
and the non-independent upload LDA under the same server
and different servers, respectively, and we can find LDA∗

ij ≤
LDAu

ij ,LDA
∗
ij ≤ LDAu ′

ij , u, u ′ = {1, 2, 3}. From this, we
can prove the rationality of Principle 1. At the same time, we
will get a higher merged layer uploading advantage efficiency
(ELDA) without increasing the layer upload delay.

Remark (Principle 3): We compare the TDA changes of
several adjacent layers with LDA∗ > 0 (Type-1) and part
of the DNN partition with LDA∗ < 0 (Type-2) under
Direct Uploading and Merge uploading. The area Sn , n =
{1, 2, 3, 4} shows the sum of TDA changes during the contin-
uous upload of the DNN layer in different upload methods.
The details are as follows:

• Direct Uploading (Type-1): In Fig. 9(b), the area S1 =
386, if layers A and B are uploaded directly in the order
of A→ B →C.

• Merge uploading (Type-1): In Fig. 9(c), the area S2 =
258, if layers A and B are merged and uploaded in the
order of (AB)→C.

Fig. 9. The TDA performance of the layer with LDA∗ > 0.

Fig. 10. The TDA performance of the layer with LDA∗ < 0.

• Direct Uploading (Type-2): In Fig. 10(b), the area S3 =
312, if layers A and B are uploaded directly in the order
of A→ B →C. (The value of Wmax is negative.)

• Merge uploading (Type-2): In Fig. 10(c), the area S4 =
504, if layers A and B are merged and uploaded in the
order of (AB)→C.

In Fig. 9, S1 > S2 shows that for several adjacent lay-
ers with LDA∗ > 0, Merge uploading is worse than Direct
Uploading. In Fig. 10, S3 < S4, which means that if the layer
with LDA∗ < 0, TDA of this layer will be ignored during the
uploading process of the merged layer, so Merge uploading is
a better uploading method.

Remark (Principle 4): In Fig. 11(a), AB is a merged layer.
We discuss the TDA changes brought about by the different
upload methods of the merged layer. Fig. 11(b) shows that
the merged layer is uploaded according to Principle 1. The
layer B with LDA∗ > 0 is uploaded first before the overall
merged layer is uploaded, and S5 = 536 indicates that TDA
changes during the layer upload process. Fig. 11(c) shows that
the entire merged layer AB is uploaded directly, and S5 = 504
indicates that TDA changes during the layer upload process.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 259

Fig. 11. The TDA performance of the merged layer under different upload
methods.

In Fig. 11, S5 > S6, indicating that uploading the merged
layer according to Principle 4 is better than uploading the
entire merged layer directly.

C. Layer Merge Uploading Algorithm

Based on the migration plan, we apply Principle 1-4 to
create an LMU algorithm and then generate an uploading
plan. Algorithm 2 shows the process of the algorithm, which
includes five steps.

• Step 1: By using PSO-GA algorithm to generate a migra-
tion plan, thereby obtaining the migration position of
DNN layer on the server (PSO-GA algorithm: line 1).

• Step 2: In order to achieve non-independent uploading
as much as possible, we consider uploading the size = 0
layer according to Principle 2 (Principle 2: line 2).

• Step 3: We consider processing layers with different
LDA∗ types: if LDA∗ > 0, then it will not actively form
a new merged layer with the adjacent DNN partition; if
LDA∗ < 0, it will actively form a new merged layer with
the adjacent DNN partition according to Merge Rules.
Thus, we can obtain DNN partitions. (Principle 3: lines
6∼11).

• Step 4: Based on Principle 1, we obtain the upload order
of DNN partition (Principle 1: line 4).

• Step 5: According to principle 1, we further formulated
the upload order of the sub-partitions with LDA∗ > 0
under the merge layer (Principle 4: line 12).

In addition, it is important to note that during the uploading
process, we upload the inception module as one layer for DNN
overall upload, rather than uploading the inception module step
by step.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the EosDNN offloading scheme
in terms of the migration delay and DNN query performance.

A. Experimental Setup

We build a local-edge-cloud collaborative environment R =
{r1, r2, . . . , r14}, where the first four belong to the clients,

Algorithm 2: Layer Merge Uploading Algorithm
Input: Local-edge-cloud collaborative environment

parameters (Bandwidth, server computing power,
number of various servers), DNN model
description (number of CPUs required for
execution layer, data transfer, layer size).

Output: Optimal DNN uploading plan
1 .
2 Use PSO-GA algorithm to find the optimal migration

plan;
3 Priority uploading size = 0 layer according to Principle

2;
4 for task Di i = 1, 2, 3, . . . , α do
5 Upload DNN partition under DNN model based on

Principle 1.
6 for layer Dij j = 1, 2, 3, . . . , βi do
7 if layer LDA∗ < 0 then
8 Form a merged layer with input or output

adjacent layers, respectively.
9 while merged layer with LDA∗ > 0 do

10 Select the adjacent layer with the highest
ELDA to form a merged layer.

11 while merged layer LDA∗ < 0 do
12 Form a merged layer with j + 1th layers.

13 Upload sub-partitions with LDA∗ > 0 based
on Principle 1.

14 final
15 return uploading plan

TABLE IV
DNN MODEL PARAMETERS

the last five belong to the cloud servers, and the remaining
five belong to the edge servers. The number of parallel pools
of clients, edge servers, and cloud servers in the local-edge-
cloud collaborative environment is 1, 2, and 8, respectively.
We set the bandwidths between the client and the edge server
to 10MB/s, the client and the cloud server to 0.5 MB/s, the
edge server and the cloud server to 0.5 MB/s, the cloud
server and the cloud server to 5 MB/s, the edge server and
the edge server to 10 MB/s. The CPU processing capac-
ity of the client, edge server, and cloud server is set as
1.1∼2.3 GHz, 4.2∼18.3 GHz, and 40∼120 GHz, respec-
tively. The above-mentioned parameter setting is based on
literature [30], [38], [39].

Following [30], [40], we set εst1 = 0.9, εed1 = 0.2, εst2 = 0.4,
εed2 = 0.9, wmax = 0.8, wmin = 0.2, N = 100 and the num-
ber of iteration to 600. We adopt four different types of DNN
models, namely, AlexNet [41], VGG [42], GoogleNet [43]
and ResNet [44], where the model size is described in

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

260 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

TABLE V
LAYER SIZE OF THE ALEXNET MODEL

TABLE VI
LAYER SIZE OF THE VGG MODEL

Table IV, the layer sizes for AlexNet and VGG are shown
in Table V and Table VI, respectively. Other DNN model
information, such as the transmission data between subtasks,
and the framework of the DNN model, can be viewed in the
file.1

We distribute tasks under each client, after the client con-
nects to the cloud/edge server, the client executes the PSO-GA
algorithm to create a migration plan and then executes the
LMU algorithm to create an uploading plan. To reveal the
effectiveness of the proposed EosDNN offloading scheme, we
compare various migration plans and uploading plans in local-
edge-cloud collaborative environments, which are listed as
follows.

• Non-Uploading Algorithm (Uploading Plan) [10]: Once
the distribution of the DNN layer is determined, the DNN
layer uploaded to the cloud/edge server will be directly
uploaded as a whole.

• IONN Algorithm (Uploading Plan) [3]: It applies the
shortest path method and penalty factor method to upload
DNN partitions from a single client to a single edge
server, thereby dividing the DNN model and creating an
uploading plan.

• Recursive-Efficiency Algorithm (Uploading Plan) [32]: It
uses the shortest path method and efficiency-based recur-
sive partitioning method to upload DNN partitions from
a single client to a single edge server, thereby dividing
the DNN model and create an uploading plan.

• LMU Algorithm (Uploading Plan Under EosDNN): We
use PSO-GA algorithm to obtain the DNN layer dis-
tribution, and combine the Principle 1-4 to propose a
LMU algorithm, which can be applied to generate a
more fine-grained DNN uploading plan in a multi-server
environment.

• Greedy Algorithm (Migration Plan) [45]: This is a com-
mon method to find the optimal migration plan, which
generally applies the greedy principle to select the best

1https://github.com/LinBin403/dataset-for-our-research

choice in the current state, and hopes to stack the final
results together.

• GA Algorithm (Migration Plan) [23]: It imitates the
natural evolution process, adopts the principle of
crossover and mutation, and then carries out genetic
iterations to produce a new uploading plan.

• PSO-GA Algorithm (Migration Plan Under
EosDNN) [30]: The PSO-GA algorithm combines
the crossover operator and the mutation operator under
GA algorithm, which can better balance the local search
and the global search, so as to obtain the global optimal
DNN migration plan. In the EosDNN offloading scheme,
we adopt a two-step migration preprocessing method to
preprocess the DNN model.

• prePSO Algorithm (Migration Plan) [30]: Combine two
adjacent layers into a new layer when the deviation
between the out-degree of the predecessor and the in-
degree of the successor is 1. After the above DNN
model preprocessing is completed, PSO-GA algorithm is
performed.

B. Partitioning Behavior

As we all know, smaller partitions can be uploaded to
the cloud/edge server faster, which helps to obtain a greater
additional layer delay advantage.

It is found from Fig. 12 that the proposed EosDNN offload-
ing scheme can divide the largest partition into smaller
partitions. Compared with IONN algorithm and Recursive-
efficiency, LMU algorithm can significantly reduce the maxi-
mum distribution ratio for different types of DNN. We know
that the DNN layer is the finest-grained DNN partition.
Compared with the existing uploading plan, LMU algorithm
can generate a finer-grained DNN partition uploading plan by
combining the DNN layer and adjacent layers to form DNN
partitions, avoiding the problem of excessive granularity of
DNN partitions caused by direct segmentation of the whole
DNN model.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 261

Fig. 12. The relative size of the largest partition compared to that of the
entire model of various DNN models under different uploading plans.

Fig. 13. Comparison of total SD between EosDNN and other uploading
plans with AlexNet.

Fig. 14. Comparison of total SD between EosDNN and other uploading
plans with VGG.

C. DNN Query Performance

We tracked the SD changes of repeated queries of Alexnet
and VGG. As shown in Figs. 13-14, based on the migration
plan, we can know the distribution of layers under servers.
Based on this, we compared the SD changes of non-uploading
algorithm, IONN algorithm, efficiency-based uploading, and
LMU algorithm, respectively, under Alexnet and VGG for
repeated queries. Among them, the abscissa represents the
upload delay of the DNN model, and the ordinate represents
the SD changes with the DNN partitions uploaded. We observe
that the LDA∗ of Alexnet is mostly positive, while the LDA∗
of VGG is mostly negative. Both cover all types of DNN
uploading. In addition, the layer upload delay is relatively
long, and the model structure is relatively simple, making it a
more suitable observation object. In particular, we notice that
when the DNN model is large, the layer upload delay is much
higher than the SD of the DNN model.

In Fig. 13(a), compared with the non-uploading algo-
rithm, the SSD of layer merge uploading algorithm has
been optimized by 45.16%. It can be observed from
Fig. 13(b) that in the interval of 234.47∼572.12 ms and

Fig. 15. The performance of various DNNs under different computing
environments under Alexnet, VGG, Googlenet and Resnet, each with 12 tasks.

17380.56∼23782.12 ms, the SSD of LMU algorithm is 13.41%
lower than that of IONN algorithm schemes. In Fig. 13(c),
since the size = 0 layer under merged layer with LDA∗ > 0
is pre-uploaded, the cloud/edge server is still not in the “idle
period” before uploading the first size �= 0 layer. Therefore,
the DNN query is executed by the local and cloud/edge servers
in coordination to gain the layer delay advantage brought by
the size = 0 layer, so LMU algorithm obtains a lower delay
than efficiency-based uploading. Although the SSDs of these
two schemes are similar under Alexnet, which is caused by
many layers with LDA∗ > 0 under the Alexnet model.

In Fig. 14(a), it is obvious that the fine-grained partitioned
uploading plan adopted by the LMU algorithm can obtain
a lower SSD. In Fig. 14(b), the SSD of LMU algorithm is
lower than that of IONN algorithm during continuous upload-
ing of DNN partitions. This advantage is mainly caused by
the more fine-grained DNN partition and pre-uploading of the
size = 0 layer under the merged layer with LDA∗ > 0. In
Fig. 14(c), the SSD of LMU algorithm is much lower than
that of Recursive-efficiency algorithm. This is mainly due to
the advantages brought by the pre-upload of the size = 0 layer
under merged layer with LDA∗ > 0. For the VGG model, the
size = 0 layer with ELDA = −∞. From this, we know that
under Recursive-efficiency algorithm, the size = 0 layer under
merged layer with LDA∗ > 0 will be uploaded in the last
part of the DNN upload. Under LMU algorithm, we consider
Principle 2. Based on this, we pre-upload size = 0 layer, and
then upload the other layers of the merged layer to obtain a
better LDA.

The most important point is that whether IONN algorithm
or Recursive-efficiency algorithm, they are based on the short-
est path method for DNN division, which is not suitable
for the local-edge-cloud collaborative environment with multi-
cloud/edge servers. However, EosDNN offloading scheme uses
the PSO-GA algorithm to divide the DNN based on the local-
edge-cloud collaborative environment to develop a migration
plan and uses LMU algorithm to develop a detailed upload-
ing plan, which is obviously more suitable for a multi-server
environment.

D. Delay Under Different Computing Environments

In Fig. 15, we evaluate the migration Delay based on the
PSO-GA algorithm in different computing environments, i.e.,
the local-edge environment (L-E), the local-cloud environment
(L-C) and the local-edge-cloud collaborative environment
(L-E-C).

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

262 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

Fig. 16. Comparison of MDs of different algorithms under Alexnet, VGG,
Googlenet and Resnet, each with 12 tasks.

It can be seen from Fig. 15(a) that the execution delay
under the L-E environment is relatively higher, because the
edge server has limited computing resources and insufficient
computing power, resulting in waiting delay. With the help of
scalable cloud servers, the execution time of large-scale tasks
can be greatly reduced. In Fig. 15(b), the transmission delay
in the L-C environment is much higher than that of the other
computing environments, mainly because the cloud server is
so far away from the client. This shows that migrating data-
intensive tasks from the client to the cloud server is not always
effective because it involves a large amount of data transfer.
Considering that the edge server is close to the client, migrat-
ing some subtasks to the edge server can greatly reduce the
transmission delay. In Fig. 15(c), migration Delay is the lowest
under the L-E-C environment. The cloud computing center is
too far away from clients, but its data transmission rate is low.
The edge server has a high data transmission rate, but its com-
puting power is insufficient to handle large-scale tasks. When
considering characteristics of the edge and cloud, we adap-
tively choose to migrate some subtasks to the edge and cloud
servers, which can effectively reduce the migration Delay.

E. Delay Performance Under Different Algorithms

From Fig. 16, the migration Delay based on PSO-GA algo-
rithm is lower than GA algorithm, perPSO algorithm and the
Greedy algorithm, whether in more complex models such as
VGG, Googlenet, and ResNet or relatively simple models such
as AlexNet. In addition, compared with perPSO algorithm,
PSO-GA algorithm has a lower delay. This is because the com-
pression layer has a larger amount of calculation and must be
distributed on cloud servers with greater computing power.
However, the transmission delay from the cloud server to the
client is very high. Obviously, the migration plan generated
by PSO-GA algorithm is significantly better than other algo-
rithms and is more suitable for migrating tasks of different
sizes. Compared with other algorithms, the delay performance
is better, the algorithm performance is more stable, and the
applicability is generally higher.

As shown in Fig. 17(b), the migration Delay under the four
algorithms increases linearly with the increase of task amount.
It is not difficult to see that with the increase of task amount,
the migration Delay under Greedy algorithm, prePSO algo-
rithm and GA algorithm have a steeper increase trend and more
obvious fluctuation, among which Greedy algorithm has the
largest fluctuation. However, the PSO-GA algorithm shows a

Fig. 17. The impact of the number of tasks on MD under different algorithms.

Fig. 18. The impact of the number of local devices on MD.

relatively stable increase trend. It can be observed from Fig. 17
that the PSO-GA algorithm has greater advantages in dealing
with large-scale DNN tasks.

In Fig. 18, the migration Delay will gradually decrease
as the number of local devices increases. We observe the
relationship between migration delay, transmission delay, and
execution delay, and find that as the number of clients
increases, the reduction of migration delay is mainly reflected
in the reduction of transmission delay. Obviously, the PSO-GA
algorithm is suitable for large-scale DNN task migrating with
multi-users.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the joint optimization
problem of DNN migration and DNN upload in a multi-user
local-edge-cloud collaborative environment, where computing
resources are too limited to support complex intelligent appli-
cations. We apply PSO-GA algorithm to obtain the distribution
of the DNN layer that meets the minimum migration delay of
multi-task parallelism and propose LMU algorithm to achieve
more fine-grained DNN partitions and obtain better DNN
query performance. It is verified that EosDNN is suitable for
large-scale DNN parallelism in the multi-user local-edge-cloud
collaborative environment with limited computing resources.

In future work, we will consider how to coordinate the
balance between delay, energy consumption, and cost in real-
world DNN migration. In addition, the unreasonable allocation
of computing resources in the local-edge-cloud collaborative
computing environment is also a direction that needs in-depth
research.

REFERENCES

[1] Z. Xu et al., “Energy-aware inference offloading for DNN-driven appli-
cations in mobile edge clouds,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 4, pp. 799–814, Apr. 2021.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: EosDNN: EFFICIENT OFFLOADING SCHEME FOR DNN INFERENCE ACCELERATION 263

[2] W. Niu et al., “PatDNN: Achieving real-time DNN execution on mobile
devices with pattern-based weight pruning,” in Proc. 25th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Mar. 2020, pp. 907–922.

[3] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proc. ACM Symp. Cloud Comput., Oct. 2018, pp. 401–411.

[4] H.-J. Lee, H.-J. Jeong, and S.-M. Moon, “Snapshot-based customiza-
tion for offloading Web application computation in edge computing
environment,” to be published.

[5] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in Proc. Workshop
Mobile Edge Commun. (MECOMM), 2018, pp. 31–36.

[6] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[7] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE Conf. Comput.
Commun., Apr. 2019, pp. 1423–1431.

[8] H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive dis-
tributed DNN inference acceleration in edge computing environment,”
in Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec.
2019, pp. 438–445.

[9] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition
deployment and resource allocation for delay-sensitive deep learning
inference in IoT,” IEEE Internet Things J., vol. 7, no. 10, pp. 9241–9254,
Oct. 2020.

[10] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” ACM Sigplan Notices, vol. 52, no. 1,
pp. 615–629, 2017.

[11] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN:
An open framework for mapping DNN models to cloud FPGAs,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2019,
pp. 73–82.

[12] M. Xu, Q. Zhou, H. Wu, W. Lin, K. Ye, and C. Xu, “PDMA:
Probabilistic service migration approach for delay-aware and mobility-
aware mobile edge computing,” Softw. Pract. Exp., to be published.

[13] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021.

[14] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet Things
J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[15] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253,
Jan. 2021.

[16] Y. Huang, B. Lin, Y. Zheng, J. Hu, Y. Mo, and X. Chen, “Cost effi-
cient offloading strategy for DNN-based applications in edge-cloud
environment,” in Proc. IEEE Int. Conf. Parallel Distrib. Process.
Appl. Big Data Cloud Comput. Sustain. Comput. Commun. Social
Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom), Dec. 2019,
pp. 331–337.

[17] D. Liu, X. Chen, Z. Zhou, and Q. Ling, “HierTrain: Fast hier-
archical edge AI learning with hybrid parallelism in mobile-edge-
cloud computing,” IEEE Open J. Commun. Soc., vol. 1, pp. 634–645,
2020.

[18] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application parti-
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 7, pp. 1464–1480, Jul. 2019.

[19] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 4, pp. 2410–2422, Dec. 2020.

[20] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[21] H. Liu, H. Zheng, M. Jiao, and G. Chi, “SCADS: Simultaneous com-
puting and distribution strategy for task offloading in mobile-edge
computing system,” in Proc. IEEE Int. Conf. Commun. Technol., 2018,
pp. 1286–1290.

[22] W. Zhang, B. Zhou, W. Dang, and S. Hu, “A lightweight energy-efficient
computational offloading scheme in mobile edge computing,” in Proc.
11th ACM Int. Conf. Future Energy Syst., Jun. 2020, pp. 560–565.

[23] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A genetic algo-
rithm based data replica placement strategy for scientific applications
in clouds,” IEEE Trans. Services Comput., vol. 11, no. 4, pp. 727–739,
Jul./Aug. 2018.

[24] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. 24th IEEE Int. Conf. Adv. Inf.
Netw. Appl., 2010, pp. 400–407.

[25] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, “A survey of PSO-based
scheduling algorithms in cloud computing,” J. Netw. Syst. Manage.,
vol. 25, no. 1, pp. 122–158, 2016.

[26] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in Proc. IEEE
Int. Conf. Commun. Workshops (ICC), May 2016, pp. 638–643.

[27] B. Lin et al., “A time-driven data placement strategy for a scien-
tific workflow combining edge computing and cloud computing,” IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4254–4265, Jul. 2019.

[28] S. Huang, J. B. Yang, and H. J. Ding, “Research on GA-DPSO vir-
tual machine scheduling algorithm based on comprehensive utilization
of host resource,” Adv. Mater. Res., vols. 791–793, pp. 1373–1376,
Sep. 2013.

[29] W. Xu and S. Guo, “A multi-objective and multi-dimensional
optimization scheduling method using a hybrid evolutionary algorithms
with a sectional encoding mode,” Sustainability, vol. 11, no. 5, p. 1329,
2019.

[30] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven
off-loading for DNN-based applications over cloud, edge, and end
devices,” IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5456–5466,
Aug. 2020.

[31] I. Jeong, H.-J. Jeong, and S.-M. Moon, “Snapshot-based offloading for
machine learning Web app: Work-in-progress,” in Proc. 13th ACM Int.
Conf. Embedded Softw. Compan. (EMSOFT), 2017, pp. 1–2.

[32] K. Y. Shin, H.-J. Jeong, and S.-M. Moon, “Enhanced partitioning
of DNN layers for uploading from mobile devices to edge servers,”
in Proc. 3rd Int. Workshop Deep Learn. Mobile Syst. Appl., 2019,
pp. 35–40.

[33] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Trans. Mobile Comput., vol. 20, no. 2,
pp. 565–576, Feb. 2021.

[34] H.-J. Jeong, “Lightweight offloading system for mobile edge comput-
ing,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
(PerCom Workshops), Mar. 2019, pp. 451–452.

[35] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-driven and context-aware cloud-edge distribution of deep
neural networks,” in Proc. IEEE/ACM 13th Int. Conf. Utility Cloud
Computing (UCC), Dec. 2020, pp. 257–268.

[36] X. Tian, J. Zhu, T. Xu, and Y. Li, “Mobility-included DNN partition
offloading from mobile devices to edge clouds,” Sensors, vol. 21, no. 1,
p. 229, 2021.

[37] Hochba and S. Dorit, “Approximation algorithms for NP-hard prob-
lems,” ACM SIGACT News, vol. 28, no. 2, pp. 40–52, 1997.

[38] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for Internet
of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9255–9265,
Oct. 2020.

[39] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iRAF: A deep
reinforcement learning approach for collaborative mobile edge comput-
ing IoT networks,” IEEE Internet Things J., vol. 6, no. 4, pp. 7011–7024,
Aug. 2019.

[40] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput. IEEE World Congr. Comput. Intell., 1998,
pp. 69–73.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[43] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[45] P. Zhao, H. Tian, and B. Fan, “Partial critical path based greedy
offloading in small cell cloud,” in Proc. IEEE 84th Veh. Technol. Conf.
(VTC-Fall), Sep. 2016, pp. 1–5.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

264 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

Min Xue received the bachelor’s degree from
Qingdao University of Science and Technology,
Qingdao, China, in 2018. She is currently pur-
suing the master’s degree with the Center for
Applied Mathematics, Tianjin University, China. Her
research interests include deep learning, deep rein-
forcement learning, cloud computing, and mobile
edge computing.

Huaming Wu (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
Harbin Institute of Technology, China, in 2009 and
2011, respectively, and the Ph.D. degree (Highest
Hons.) in computer science from Freie Universität
Berlin, Germany, in 2015. He is currently an
Associate Professor with the Center for Applied
Mathematics, Tianjin University, China. His research
interests include wireless networks, mobile edge
computing, Internet of Things, and deep learning.

Ruidong Li (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer sci-
ence from the University of Tsukuba in 2005 and
2008, respectively. He was a Senior Researcher
with the National Institute of Information and
Communications Technology, Japan. He is an
Associate Professor with Kanazawa University,
Japan. His research interests include future networks,
big data, intelligent Internet edge, Internet of Things,
network security, information-centric network, arti-
ficial intelligence, quantum Internet, cyber-physical

system, and wireless networks. He serves as the Secretary of IEEE ComSoc
Internet Technical Committee, and are the founders and chairs of IEEE SIG on
Big Data Intelligent Networking and IEEE SIG on Intelligent Internet Edge.
He is an Associate Editor of IEEE INTERNET OF THINGS JOURNAL, and also
served as the Guest Editor for a set of prestigious magazines, transactions,
and journals, such as IEEE Communications Magazine, IEEE NETWORK,
and IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING. He
also served as chairs for several conferences and workshops, such as the
General Co-Chair for IEEE MSN 2021, AIVR2019, and IEEE INFOCOM
2019/2020/2021 ICCN Workshop, and a TPC Co-Chair for IWQoS 2021,
IEEE MSN 2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC Workshop,
and ICCSSE 2019. He is a Senior Member of IEICE.

Minxian Xu (Member, IEEE) received the B.Sc.
and M.Sc. degrees in software engineering from the
University of Electronic Science and Technology
of China in 2012 and 2015, respectively, and the
Ph.D. degree from the University of Melbourne in
2019. He is currently an Assistant Professor with
Shenzhen the Institutes of Advanced Technology,
Chinese Academy of Sciences. He has coauthored
over 20 peer-reviewed papers published in promi-
nent international journals and conferences, such as
ACM Computing Surveys, IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING, IEEE TRANSACTIONS ON AUTOMATION

SCIENCE AND ENGINEERING, Journal of Systems and Software, Journal
of Parallel and Distributed Computing, ICSOC, and IEEE INTERNET OF

THINGS JOURNAL. His research interests include resource scheduling and
optimization in cloud computing. His Ph.D. Thesis was awarded the 2019
IEEE TCSC Outstanding Ph.D. Dissertation Award. He is member of CCF.

Pengfei Jiao received the Ph.D. degree in computer
science from Tianjin University, Tianjin, China, in
2018, where he is a Lecturer with the Center of
Biosafety Research and Strategy. He has published
more than 50 international journals and conference
papers. His current research interests include com-
plex network analysis, data mining and graph neural
network, and currently working on temporal commu-
nity detection, link predication, network embedding,
recommender systems, and applications of statistical
network model.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 17,2022 at 01:51:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

