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Decoupled R-CNN: Sensitivity-Specific Detector
for Higher Accurate Localization

Dong Wang , Kun Shang , Huaming Wu , Senior Member, IEEE, and Ce Wang, Member, IEEE

Abstract— Object detection, as a fundamental problem in
computer vision, has been widely used in many industrial
applications, such as intelligent manufacturing and intelligent
video surveillance. In this work, we find that classification and
regression have different sensitivities to the object translation,
from the investigation about the availability of highly overlapping
proposals. More specifically, the regressor head has intrinsic char-
acteristics of higher sensitivity to translation than the classifier.
Based on it, we propose a decoupled sampling strategy for a deep
detector, named Decoupled R-CNN, to decouple the proposals
sampling for the two tasks, which induces two sensitivity-specific
heads. Furthermore, we adopt the cascaded structure for the
single regressor head of Decoupled R-CNN, which is an extremely
simple but highly effective way of improving the performance of
object detection. Extensive empirical analyses using real-world
datasets demonstrate the value of the proposed method when
compared with the state-of-the-art models. The reproducing code
is available at https://github.com/shouwangzhe134/Decoupled-
R-CNN.

Index Terms— Object detection, R-CNN, two-stage detection,
decoupled sampling strategy, decoupled R-CNN.

I. INTRODUCTION

RECENT years have witnessed the computer vision
systems (CVS) bring rapid development in the

‘industry 4.0’ era. Object detection is one of the fundamen-
tal problems in CVS, considered as an enabling technology
contributing to the growth of many industrial applications.
Furthermore, it provides advanced information for various
downstream tasks. For example, the CVS in smart manufac-
turing detects the special tiny object to obtain better quality
products that are available at lower costs. Person search [1]
in an intelligent surveillance system provides the human-
concerned semantic cue for adding to already-heightened
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security awareness. Hence, object detection has resulted in
increased research interest in the application of data/predictive
analytics.

Due to the remarkable performance of deep learning [2],
especially convolutional neural network (CNN) [3], [4], the
CSV has made breakthroughs in accuracy and speed to detect
the concerned object. Generally, existing object detection
methods can be categorized as: one-stage detection, such
as YOLO series [5]–[7] and SSD series [8], [9], two-stage
detection, such as R-CNN series [10]–[15], and even multi-
stage detection, such as Cascade R-CNN [16]. Despite these
different detection frameworks, object detection always aims
to determine where the object locates and which category the
object belongs to in a given image, which is constructed as a
multi-task learning problem: regression and classification.

Specifically, the one-stage frameworks [17]–[20] directly
use the CNN-based features to classify the objects in the pre-
defined reference boxes and regress the offsets of refinements
without a proposal generation step. However, the one-stage
detector comes to terms with the bounding box regression,
because it seems to be translation invariant.1 For two-stage
detectors [21], [22], which treat the detection as a coarse-
to-fine process, they first generate region proposals (a pre-
processing step) and then adopt a region of interest (RoI)
pooling to extract a fixed-length representation for the next
steps. It makes the extracted feature reveal the position infor-
mation of the region proposal explicitly. So the region-specific
RoI pooling breaks down translation-invariance to some extent.
This phenomenon makes the two-stage detector to be more
sensitive to translation than the one-stage.

Note that the mentioned two-stage detectors perform the
classification and regression tasks on the same dense proposals
generated by Region Proposal Networks (RPNs), where they
have opposite preferences towards translation. Intuitively, the
shift on an object inside an image should be indiscriminative
for classification, while the translation of an object inside
a candidate box should produce meaningful responses for
regression. It led to a big dilemma: increasing transla-
tion invariance for classification vs. respecting translation
variance for regression. More specifically, the translation-
invariant of an object is beneficial to classification, and in
contrast, the translation-variant is helpful for regression.

1There are two reasons: the misalignment between the reference box and the
extracted feature (a 3 × 3 convolution centered at the reference box), and the
shared convolutional feature among multiple reference boxes with the same
center.
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Fig. 1. The illustration of our motivation. (a) The regressor and the classifier
share the same training samples. (b) The regressor and the classifier should
be operated on the different views for improving the performance of the two-
stage detector.

Unfortunately, the detector must distinguish the foreground
objects from the background and assign accurate bound-
ing boxes to different objects simultaneously, as shown in
Fig. 1-(a). It is particularly difficult to accomplish the two
tasks perfectly for the RoI-based detector with the shared
proposals and heads for classification and regression. Note
that the detectors based on deep learning are very example
intensive. Training on the same proposals makes both the
classifier and the regressor finally have correlated sensitivities
to translation, especially for the shared heads. This process
is particularly problematic for deep detectors: two different
tasks with the same sensitivity. Based on the above, classi-
fication and regression should be considered on specific RPN
proposals, which is shown in Fig. 1-(b).

In this work, we meticulously revisit the sampling process
in the RoI-based object detector to seek the solution of the
sensitivity mismatching. Then, we introduce a novel network
structure with the sensitivity-specific training scheme, named
Decoupled R-CNN, to alleviate the aforementioned problems.
Specifically, we propose a decoupled sampling strategy, that
classification adopts the random sampling with a positive-to-
negative ratio and regression adopts only positive sampling,
to select the specific proposals with the different sensitivities to
translation for the corresponding heads. Besides, the parame-
ters on the two heads are decoupled to avoid interacting with
each other. Then, we extend the sensitivity-specific regressor to
a cascaded structure. Benefited from the cascaded regressors
with increased sensitivity to translation, the performance of
our proposed method is significantly improved. The major
contributions of this paper are summarized as follows:

• We investigate the availability of highly overlapping RPN
proposals for the two basic tasks, which are removed by
a Non-Maximum Suppression (NMS) operation. To our
best knowledge, few works have been proposed to study
whether the highly overlapping proposals are really
redundant for both classification and regression. In other
words, we study whether the threshold of NMS on RPN
proposals is suitable for both tasks.

• We propose a decoupled sampling strategy to select
proposals with different densities for the two tasks,
corresponding to the sensitivity-specific classifier and
regressor. With the decoupled design, it is convenient
to extend the single regressor to a cascaded structure

with increased sensitivity to translation, in a simple but
effective way.

• We evaluate our method from different aspects on the
public databases, including PASCAL VOC [23] and
Microsoft COCO [24]. The experimental results on
MS COCO test-dev demonstrate that our final detector
achieves Average Precision (AP) of 45.3 on ResNet-101
and 47.2 on ResNeXt-101-64 × 4d using multi-scale
training.

II. RELATED WORK

In this section, we briefly survey relevant works about the
sampling strategy in object detection and the advancements of
Faster R-CNN.

A. Sampling Strategy

The training of a deep object detector is essentially
an imbalanced foreground-background (fg-bg) class learning
problem. Some sampling strategies, such as heuristic sam-
pling or hard negative mining, are performed to maintain
a manageable balance between foreground and background.
In RPN [12], the authors randomly selected 256 anchor boxes
in an image as a mini-batch, where the ratio between the pos-
itives and negatives was 1:1. Fast R-CNN [11] constructed a
mini-batch by randomly sampling proposals with a fixed fg-bg
ratio (1:3). In SSD [8] and OHEM [25], only the gradients of
a small set of samples with the largest loss values were back-
propagated, which eliminated the hyper-parameter of the fg-bg
ratio. In RetinaNet [18], a focal loss was proposed to address
the extreme fg-bg class imbalance problem by down-weighting
the loss assigned to well-classified examples, and all anchor
boxes were contributed to the training. PISA [26] selected
the positive samples with the highest IoUs and the negative
samples with the highest classification scores to train an object
detector, which is defined as prime samples. Besides, some
learn-to-match methods such as FreeAnchor [27], ATSS [28]
and AutoAssign [29] were proposed to change the contribution
of samples.

All the above methods were trained on the same samples,
which leads to the interaction between classification and
regression.

B. The Advancements of Faster R-CNN

Recently, there are some advancements focused on either
classification or regression.

R-FCN [21] introduced positive-sensitive score maps to
address the dilemma between invariance/variance on transla-
tion for classification and regression tasks. R-FCN-3000 [30]
decoupled a super-classes detection by a fine-grained classi-
fication. Deformable ConvNets [31], [32] were introduced to
adapt to the geometric variations of objects. Cheng et al. [33]
focused on improving the classification performance of the
detector, and proposed a Decoupled Classification Refine-
ment (DCR) module to train an RCNN-styled strong classifier,
while introduced extra computation overhead. Furthermore,
Cheng et al. [34] designed a faster DCR module to alleviate
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the computation overhead. Cai et al. [16] proposed Cas-
cade R-CNN, a multi-stage object detection architecture com-
posed of cascaded regressors and cascaded classifiers, which
learned high-quality object detectors sequentially. The cas-
caded regressors are powerful for bounding box regression and
have been evidenced by the remarkable improvement under
high-quality evaluation metrics. In order to emphasize the
head structure, Double-Head [35] adopted a fully connected
head for classification and a convolution head for regression.
TSD [36] proposed task-aware spatial disentanglement learn-
ing, in which two deformation-learning operations extracted
specific features focusing on different spatial dimensions for
different tasks. Qiao et al. [37] proposed DeFRCN for few-
shot object detection, which tailored the degree of decoupling
between the three components of Faster R-CNN and decoupled
the tasks of classification and regression by a score calibration
module. D2Det [38] introduced a dense local regression that
predicts multiple dense bounding boxes for each proposal.

Different from the above, our Decoupled R-CNN selects
different dense samples for corresponding tasks to satisfy the
sensitivity requirements of the two basic tasks.

III. MOTIVATION

A series of detectors based on Faster R-CNN have shown
dramatic improvement in object detection, while it is worth
noting that the generated RPN proposals highly overlap with
each other in the proposal generation stage. To reduce the
redundancy, a common practice is to use NMS at an Intersec-
tion over Union (IoU)2 threshold (usually set to 0.7) for the
RPN proposals.

The strategy is also proven not harmful to the final perfor-
mance since the detector is trained on the same proposals for
both tasks in [12]. However, there is no previous work studying
whether the threshold of NMS is suitable for both classification
and regression. To bridge the gap, we next investigate the
availability of highly overlapping proposals for specific tasks.

A. The Investigation of Highly Overlapping Proposals

To investigate the availability of highly overlapping pro-
posals for the classification and regression, we conduct a
toy example with Faster R-CNN on PASCAL VOC [23]
dataset. We perform twice sampling on RPN proposals with
different NMS thresholds for classification and regression,
respectively. Besides, the parameters of Fully Connected (FC)
layers from the classification branch and the regression branch
are unshared. With such experimental settings, we dynamically
change the corresponding NMS thresholds for classification
(NMS_cls) and regression (NMS_reg) to explore the impact
of the NMS threshold on the two different tasks.

For quantitative analysis of the impact of NMS threshold,
we utilize the overall AP3 as the primary metric. However, the

2Intersection over union (IoU) between the proposal bounding box b and
any ground truth bounding box bg is defined as:

IoU(b, bg) = area(b
⋂

bg)

area(b
⋃

bg)
.

3AP is computed by averaging over 10 IoU thresholds[0.5:0.95]; AP50 and
others are computed at a single IoU threshold of 0.5 or corresponding value.

TABLE I

RESULTS WITH DIFFERENT NMS THRESHOLDS EVALUATED ON THE
PASCAL VOC2007 TEST. NMS_REG REFERS TO NMS

THRESHOLD FOR REGRESSION, AND NMS_CLS

REFERS TO NMS THRESHOLD

FOR CLASSIFICATION

overall metric is not enough to show the specific influence
at each single IoU threshold, and we further use (AP50,
AP60, AP70, AP80, AP90) to detailedly discuss the influence
with a different quality degree. The experimental results are
summarized in Table I.

As in Table I, when we increase NMS_reg from 0.7 to 0.9
and fix NMS_cls, the performance is significantly improved,
especially for high-quality evaluation metrics. However, the
increment of NMS_cls for classification has little influence
on the detection performance. The phenomena induce two
findings as follows and encourage us to make a distinction
when treating classification and regression in a deep detec-
tor: 1) highly overlapping proposals are useful rather than
redundant for regression, and the regressor trained on denser
proposals will fit with translation variance better; 2) highly
overlapping proposals are redundant for classification, and [25]
also showed that the proposals with high overlaps are likely
to have correlated losses, which results in twice repetitive
optimization. These observations lead to a question: Why do
the same proposals have different behaviors for the two
tasks?

B. Analysis of the Head Branches

To make a comprehensive analysis, we first give concrete
notations, followed by our analytical results. Suppose F and
G are the corresponding classification function and regression
function in R-CNN, respectively. The predictions of the two
head branches are given by:

p = F(X), (1)

t = G(X), (2)

where X is the RoI feature of a proposal, p is the predicted
probability and t is the predicted offset. When training a
deep detector, cross-entropy loss and L1 loss are usually used
for classification and regression, respectively. With a concrete
declaration, the cross-entropy loss is defined as:

C E(p, p∗) = −
∑

i

p∗
i log(pi ), (3)

and L1 loss is defined as:
L1(t j , t∗j ) = |t j − t∗j |, (4)
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Fig. 2. The framework of Decoupled R-CNN. It decouples the proposals for two tasks (Decoupled Sampling Strategy) and makes the parameters of the
following FC layers to be unshared (Unshared-FC Heads). Proposals_cls and Proposals_reg denote the proposals for classification and regression, respectively.

where i is the index of categories, j is the index of a box’s
center coordinates, and p∗

i , t∗j are the corresponding ground
truth.

For two pre-mentioned highly overlapping proposals, the
input features X1 and X2 are also highly overlapped such that
the predictions of p1 and p2 are highly correlated and so it is
with the predictions of t1 and t2. On the other hand, these two
proposals have the same category labels p∗, but different offset
labels t∗1 and t∗2 as training supervisions. These two ground-
truth offsets (t∗1 , t∗2 ) always differ from the shift between the
two proposals. Then, under the optimization with the above
two object functions for classification and regression, t1 and
t2 aim to specific targets of t∗1 and t∗2 , while p1 and p2 aim
to the same target of p∗, leading to different behaviors on the
highly overlapping proposals for the two tasks.

C. Analysis of the Effective Bin Locations

The RoI feature of a proposal is generated by RoI-pooling,
in which max-pooling is utilized to convert the proposal into a
fixed spatial extent of HxW (e.g., 7 × 7). The visualization of
Effective Bin Locations (EBLs) in [32] has shown that not all
bins in an RoI-pooling contribute equally to their responses,
and bins on the object foreground generally receive larger
gradients. For a deep detector, the effective bins are inconsis-
tent for different tasks. Specifically, the features in the salient
area have rich information for classification while features
around the boundary are always necessary for bounding box
regression. Intuitively, the inside bins of an object generally
receive larger gradients for classification and the boundary
bins of an object receive larger gradients for regression. Thus,
the shift of RoIs is unlikely to influence the inside bins.
Reconsidering the two highly overlapping proposals, although
the RoI features are highly correlated, the corresponding EBLs
for the regression task are more likely to be different.

Based on the aforementioned analyses, we find that the
regressor has intrinsic characteristics of relative sensitivity

to translation while the classifier is relatively insensitive to
translation. The phenomena usually happen in the two-stage
detectors and encourage us to process the classification and
regression with a different strategy: using the highly over-
lapping proposals to make the regressor higher sensitive
to translation.

IV. PROPOSED METHOD

In this section, we propose Decoupled R-CNN to deal
with the sensitivity mismatching for specific tasks, which is
illustrated in Fig. 2. We first introduce a decoupled sampling
strategy to select different dense proposals, corresponding
to the sensitivity-specific classifier and regressor. Further,
we extend the single regressor, equipped with increased sen-
sitivity to translation, to cascaded structure in a simple way,
which enhances the performance of the detector with a higher
accurate localization.

A. Decoupled Sampling Strategy

Sharing the training samples makes the heads of classifier
and regressor finally have the same sensitivity to translation,
where the two tasks compromise with each other. From the
above analyses in Section III, the corresponding object func-
tions of classifier and regressor have different characteristics of
translation sensitivity. Therefore, we here design a Decoupled
Sampling Strategy (DSS) to separately take samples from
specific RPN proposals for preventing the two tasks from
interacting with each other. Specifically, we employ NMS
with different thresholds (NMS_cls and NMS_reg) on the
RPN proposals to obtain the differently dense proposals for
the corresponding tasks (Proposals_cls for classification and
Proposals_reg for regression), which is shown in Fig. 2.
Notice that the regressor is higher sensitive to translation
intrinsically than the classifier, NMS_reg threshold should be
set higher than NMS_cls. And compared to Proposals_cls,
the shift on overlapping Proposals_reg is slighter. Hence, the
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final proposals of regression should be much more than the
proposals of classification.

In this manner, our regressor needs to be aware of the
slighter translation between overlapping proposals, obtaining
more accurate localization. We set the label attribute by using
the function as follows:

L = sign(IoU − p), (5)

where

sign(x) =
{

+1, x > 0

−1, x ≤ 0
(6)

If the IoU ratio is greater than p (L = +1), we will assign a
positive label to an RPN proposal. Otherwise, we will assign
a negative label (without loss of generality, we set p = 0.5).
To maintain a manageable balance between foreground and
background in classification, we randomly select positive and
negative proposals with a fixed fg-bg ratio (1:3) from Propos-
als_cls (Random Sampling with fg-bg Ratio). For regression,
we only select positive proposals from Proposals_reg and con-
struct a large mini-batch for more training samples (Positive
Sampling).

Our proposed DSS is a focused module, which can deal
with different sensitivities to translation for classification and
regression. In the previous Faster R-CNN, random sampling
with fg-bg ratio for shared proposals causes two limitations
for the regressor: the restrictive number of positive and
the useless negative; the restrictive sensitivity to translation.
In our Decoupled R-CNN, adopting separate sampling only
for the positive on more dense Proposals_reg allows us to
efficiently train the regressor on more available samples.
Training on proposals with different densities for two tasks
corresponds with sensitivity-specific heads. Besides, to pre-
vent the two task-specific heads from interacting with each
other, the classifier branch should not share any parame-
ters with the regressor branch (the Unshared-FC Heads are
shown in Fig. 2).

B. Cascaded Structure for Regression

Cascaded technique is an extremely simple but highly
effective way to improve the performance of a deep detector.
Considering the decoupled sampling for the two unshared-
FC heads, we can extend the single regressor in Decoupled
R-CNN to cascaded structure in a simple way, as shown in
Fig. 3. Increased translation sensitivity for regression is also
suitable for cascaded structure, which further enhances the
accurate localization capability of our detector.

Notice that all regression stages have the same architecture,
two fully connected layers followed by a final output layer.
The positive samples in the first stage (P-Samples1) are taken
from Proposals_reg. In the subsequent stages, we adopt the
resampling mechanism

P-Samplesi = Regressori−1(P-Samplesi−1). (7)

The regression outputs in the previous stage are sam-
pled to train the subsequent stage. Decoupled sampling
strategy selects denser proposals for cascaded regression.

Fig. 3. The two top branches in Decoupled R-CNN with cascaded regression.
P-N -Samples denotes the positive and negative samples for classification.
P-Samplesi denotes the positive samples for the ith stage of regression.

Benefiting from it, the cascaded regressors are more sensitive
to translation. However, for classification, we do not adopt the
cascaded structure because of the little performance improve-
ment, compared with the cascaded regressors, with similar
additional computational complexity. The detailed discussion
will be introduced in Section VI-A.

C. Loss Function

For the proposed deep detector, we use a multi-task loss to
jointly train for classification and cascaded regression:

L(p, p∗, t, t∗) = Lcls (p, p∗) + λ

[∑
k

Lloc(tk, t∗k )

]
. (8)

The classification loss Lcls is the cross-entropy loss defined
as C E(p, p∗) = − ∑

i p∗
i log(pi), where i is the index of

categories, pi is the predicted probability and p∗
i is the ground-

truth label. The regression loss Lreg is the L1 loss defined as
L1(tk, t∗k ) = |tk − t∗k |, where k is the index of regression stage,
tk is the predicted offset in k-th stage, and t∗k is the ground
truth. All terms are normalized by mini-batch, and the two
task losses are weighted by a balancing parameter λ because
of one classifier vs. three cascaded regressors.

V. EXPERIMENTS

A. Datasets

We evaluate our proposed Decoupled R-CNN on PASCAL
VOC [23] and MS COCO [24], which are the two most
widely used datasets in object detection. For the PASCAL
VOC dataset, we use the union of VOC 2007 trainval and
VOC 2012 trainval as training data and evaluate our model
on the VOC 2007 test. For the MS COCO dataset, training
and evaluation are performed on 118k images of the training
set and 5k images of the validation set, respectively. Finally,
we report our results on the COCO test-dev set (without public
labels).

B. Implementation Details

All experiments are implemented on MMDetection [39],
an open-source object detection toolbox based on
PyTorch [40]. The input images are resized to 800 pixels
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TABLE II

THE ABLATION STUDY ON THE SHARED PARAMETERS OF FC LAYERS

along the shorter side. Besides, only the horizontal image
flipping is used for data augmentation. The proposed model
is end-to-end trained on 4 TITAN X GPUs with a total batch
size of 8 (2 images per GPU). For the classification branch,
we select 512 region proposals including foreground and
background. For the (cascaded) regression branch, we use a
large mini-batch size of 512 to only select positive proposals.
If the number of positive proposals is less than 512, we pad
the negative proposals to ensure a fixed mini-batch size,
and the negatives are ignored via setting the corresponding
weights to zero.

To train the model, we choose the SGD optimizer with
the weight decay and momentum setting as 0.0001 and 0.9,
respectively. On the PASCAL VOC, we use a training schedule
with 12 epochs, in which the learning rate is initialized as
0.005 and dropped 10 times at the 9th epoch. On the MS
COCO, two training schedules are adopted: “1x” and “2x”,
with corresponding 12 epochs and 24 epochs, respectively.
The learning rate is initialized as 0.01 and dropped 10 times
at the 8th and 11th epoch in “1x” schedule. For “2x”, the
learning rate is also initialized as 0.01 while dropped at the
16th and 22nd epoch. For testing, we use at most 1k top-
scoring proposals for detection, followed by NMS with a
threshold of 0.5, and finally the top-N scoring detections are
obtained. Note that before NMS a threshold of score_thr is
usually used to remove detections with scores lower than it.
Unless otherwise claimed, we set score_thr as 0.05 following
the default hyper-parameter in MMDetection.

C. Ablation Experiments

In Decoupled R-CNN, the choice of hyper-parameters
(NMS_reg, Number of stages, λ) heavily influences the detec-
tion performance. To investigate the effectiveness of these
hyper-parameters, we firstly conduct ablation experiments on
PASCAL VOC data set and choose the best one fixed in the
following experiments. we use ResNet-101 [4] as backbone
model with Feature Pyramid Network (FPN) [41] in our
ablation experiments.

1) The Necessity of Unshared Parameters: DSS (Decou-
pled Sampling Strategy) is a key sampling technique for
our method, which makes the classifier head and regressor
head have different sensitivities to the translation. We set
NMS_reg = 0.7 to reveal the effect of the different Shared-
FC and Unshared-FC head branches for the detection perfor-
mance, which is reported in Table II.

From Table II, whatever FPN or Decoupled R-CNN, the
models with unshared-FC have achieved the best perfor-
mance. Especially, Decoupled R-CNN with shared-FC has

TABLE III

NMS_REG THRESHOLD CHANGES THE SENSITIVITY OF
THE REGRESSOR HEAD IN DECOUPLED R-CNN

TABLE IV

THE PERFORMANCE OF CASCADED REGRESSION

degraded the performance. That means that sharing a same
fully connected head for two different tasks would introduce
confliction. Hence, unshared parameters are necessary for the
proposed method.

2) NMS_Reg Threshold: By using DSS, the classification
and the regression have differently dense samples. We explore
different choices of NMS_reg threshold for regression to
investigate the influence of NMS_reg Threshold.

The detection performance with different NMS_reg, which
varies from 0.7 to 0.95, are reported in Table III.
Obviously, increasing the NMS_reg value will improve the
performance, and it achieves the best performance of 56.6 AP
when NMS_reg is equal to 0.85. However, the performance
degrades when we further increase the value of NMS_reg.
The phenomena seem that the translation would be too slight
to produce a response for regression.

Hence, based on the availability of highly overlapping
proposals, we introduce DSS to select proposals with different
densities for the two tasks, corresponding to sensitivity-
specific heads. The regressor, equipped with specific sensi-
tivity to translation, is capable to achieve higher accurate
localization.

3) Number of Stages: With the additional cascaded structure
in our proposed model, we next explore the impact of the
number of stages for cascaded regression on the detection
performance, and we exhibit results in Table IV.

Similar to Cascade R-CNN [16], the three-stage regression
achieves the best result. As the number of stages increases to 4,
the performance increases continuously on the AP90 metric but
declines slightly on AP50, which means that the aimlessness of
increasing the number of stages would result in loss imbalance
for the two tasks due to cascaded regressors vs. one classifier.

4) The Impact of NMS_Reg for Cascaded Regression:
Compared with Cascade R-CNN [16], the training samples for
our cascaded regressors are denser through DSS. As shown in
Table V, the cascaded regressors trained on denser proposals
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TABLE V

THE IMPACT OF NMS_REG FOR CASCADED REGRESSION

TABLE VI

THE INFLUENCE OF λ

(NMS_reg=0.85), improves the AP by 0.7, which reflects the
impact of NMS_reg for cascaded regression. The improve-
ment indicates that increased sensitivity to translation for the
regressor head is also necessary for the cascaded structure.

5) Balance Between Classification and Regression: The
hyper-parameter of λ in Eq. (8) controls the balance between
the two tasks. When using a single regressor, although we
select more dense positive proposals, the gap between the two
terms of loss is not large. In this case, we empirically set
λ = 1. When using the cascaded structure, the gap is non-
negligible, due to three cascaded regressors vs. one classifier.
So it is necessary to select the suitable λ to balance the two
task losses. Next, we investigate the influence of λ for the
performance when it varies in the range [0.25, 1].

As shown in Table VI, when decreasing λ from 1 to 0.5,
we observe the best overall performance when it is set to 0.5,
where our model consistently achieves the best performance,
especially on AP50, which is important for classification. The
phenomena indicate that there exists an imbalance between
the classification loss and the cascaded regression loss. While
the performance on high IoU levels significantly degrades as
we further decrease λ to 0.25. Therefore, we set λ = 0.5 in
the following experiments.

D. Main Results

1) Results on VOC: First, We evaluate our method on
PASCAL VOC following the above settings, and the detec-
tion results are reported in Table VII. Compared with FPN
based on ResNet-50, our method significantly improves the
performance of AP by 2.6, and our cascaded regression further
improves the AP by 2.9. Besides, a significant improvement
is also shown in the ResNet-101 experiment. Apart from the
detection performance, the Inference Speed has also been com-
pared. For Decoupled R-CNN without cascaded regression,
the increase in computing overhead is negligible compared to
the performance gain. Therefore, in order to achieve better
detection results, the further use of cascade technology is also
worthwhile.

2) Results on COCO Validation: To prove the effectiveness
of our method, we report our results on COCO validation

based on different backbones. We adopt the “1x” training
schedule for the following experiments. The performance on
three popular backbones has been reported in Table VIII.

We find that Decoupled R-CNN has improved on these
backbones consistently by 1.1 ∼ 1.2 for AP, which demon-
strates the effectiveness of our proposed DSS design. When
using the cascaded technique for the basic model (Decoupled
R-CNN), a consistent improvement with 1.4 ∼ 1.5 AP has
been achieved. Especially, our method gains 7 ∼ 8 improve-
ment on AP90, compared to FPN. The quantification results
show that our method is effective for improving the perfor-
mance of the detector with a highly accurate localization. That
means the sensitivity-specific heads and cascaded structure
in our method have proven to be useful. Besides, from
Table VIII, the proposed module only brings about few FLOPs
(floating point operations) and parameters, which is tolerable
in detection.

To confirm the high accurate localization, we further
visually show some results of the head-to-head comparison
between Faster R-CNN [12] and Ours in Fig. 4. Clearly, the
localization of our output regression boxes achieves higher
accuracy.

3) Results on COCO Test-Dev: In this part, We will
carry out a comprehensive and systematic analysis about our
proposed method compared with a series of state-of-the-art
methods on COCO test-dev. For a fair comparison, the results
of single-model and single-scale testing for all methods are
reported in Tabel IX.4

First, when compared with the one-stage detectors, whose
results located in the top group of Table IX, our proposed
method has achieved a comparable performance. It is noted
that the recent one-stage detectors usually adopt a multi-
scale training manner for improving the performance. For
a fair comparison, we further adapt multi-scale training for
our model, and our detector (our method with ResNet-101
and MStrain) achieves a significantly better performance of
45.3 AP, which outperforms existing one-stage approaches.

Compared with the two-stage detectors, whose results
located in the middle group of Table IX, our detector with
ResNet-101 using single-scale training achieves 43.3 AP,
which outperforms the recent two-stage approaches of Tri-
dentNet [43], Cascade R-CNN [16] and TSD [36]. However,
DCNv2 [32] and D2Det [38] have a better performance than
ours. Notice that DCNv2 uses the deformable convolution,
where it has proven the deformable convolution is better than
the normal one, to achieve 44.0 AP on ResNet-101. However,
the gaps reduce to 0.1 (44.6 vs. 44.5) when comparing on the
backbone of ResNeXt-101. Besides, D2Det proposes a dense
local regression and a discriminative RoI pooling for classifi-
cation, achieving 45.4 AP. Considering the improvement from
the proposed RoI pooling (more than 1.0 AP), the difference
between D2Det and our method (Ours+)5 is less than 0.7 when
only comparing the localization capability.

4We use the “2x” training schedule and set the score_thr to 0.001.
5Ours+ means that we apply the same soft-NMS as D2Det at inference and

obtain 43.7 AP.
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TABLE VII

DETECTION RESULTS ON PASCAL VOC. INFERENCE SPEED IS MEASURED ON A SINGLE TITAN X GPU

TABLE VIII

DETAILED COMPARISON ON COCO VALIDATION OVER MULTIPLE POPULAR BACKBONES. INFERENCE SPEED IS MEASURED

ON A SINGLE TITAN X GPU AND FLOPS ARE COMPUTED ON A GIVEN SIZE IMAGE OF 1333 × 800

Fig. 4. Faster R-CNN [12] (top) vs. Decoupled R-CNN (bottom). Both are using ResNet-101 with FPN as the backbone. It is clear that our rectangle boxes
more tightly bound the objects than the Faster R-CNN.

We further improve the detection performance of our
method to 46.3 and 47.2 by utilizing larger backbones
ResNeXt-101-32×4d and ResNeXt-101-64×4d, respectively.
The results show that our proposed DSS is effective for
improving the detection performance.

For further demonstrating the performance of our proposed
model, we select visual results of compared methods on the
COCO test-dev and show them in Fig. 5. Our model accurately
locates the boundary of objects and achieves better results
under challenging conditions, such as different geometric
variations in object scale, pose, viewpoint, etc. However, there
also have some failure cases as in the last row, where the
objects are partially occluded or aim clutter. With considerable

observation, we find that foreground objects highly overlap
with each other in these scenarios, therefore confusing our
regressor and leading to the final inaccurate bounding boxes.
In the future, we will explore how to solve these conditions.

VI. DISCUSSION

To detailedly explain the advantages of our Decoupled
R-CNN, we next discuss the differences between it and other
state-of-the-art models from the following three aspects.

A. Differences to Cascade R-CNN

Our module of cascaded regression is similar to Cascade
R-CNN. However, the proposed work differs from it in that:
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TABLE IX

COMPARISONS WITH STATE-OF-THE-ART DETECTORS ON THE COCO TEST-DEV. “MStrain ” DENOTES MULTI-SCALE TRAINING. “N/A” MEANS THAT
TRAINED MODELS FROM THE MMDETECTION REPOSITORY AND AP RESULTS FROM THE ORIGINAL PAPERS ARE NOT AVAILABLE.

“RESNEXT-101(32× 4D)” DENOTES THE BACKBONE MODEL THAT WE MEASURE THE INFERENCE SPEED, FLOPS, AND MODEL

PARAMETERS ON. INFERENCE SPEED, FLOPS, AND MODEL PARAMETERS ARE MEASURED ON THE SAME MACHINE WITH

A SINGLE TITAN X GPU UNDER THE SAME MMDETECTION [39] FRAMEWORK. ESPECIALLY, INFERENCE SPEED IS
RELATED TO SCORE_THR, FOR WHICH WE REMOVE DETECTIONS WITH SCORES LOWER THAN IT, AND SET

SCORE_THR TO 0.001; FLOPS IS HIGHLY RELATED TO THE INPUT SHAPE, WHICH WE SET TO [1333, 800].
“OURS” REPRESENTS SINGLE-SCALE TRAINING + TRADITIONAL NMS; “OURS+” REPRESENTS

SINGLE-SCALE TRAINING + SOFT-NMS; AND “OURS∗” REPRESENTS

MULTI-SCALE TRAINING + SOFT-NMS

1) Cascade R-CNN is composed of cascaded regressors
and cascaded classifiers, averaging the three classifier
probabilities for the final classification score at infer-
ence. However, our proposed method only has cas-
caded regressors with a single classifier. This design
profits from the study [53] that the classification score
does not well reflect the quality of the bounding box
(localization). It has indicated that classification and

localization need to be solved differently in the detection
pipeline. Specifically, given a proposal, the classifier
probability naturally acts as classification confidence
of the proposal, and the bounding box regression finds
the optimal transformation for the proposal to best fit
the ground-truth. Therefore, the classification score is
not well correlated with the localization confidence.
Via the considerably designed decoupling technique, the
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Fig. 5. Visualization on the COCO test-dev set. Each bounding box is linked with a category label and a softmax score. We set the score threshold to 0.6 to
display these images. The last row shows some failure cases, where the objects are partially occluded or aim clutter in the challenging non-iconic images.
In these cases, different foreground objects overlap with each other, therefore confusing our regressor and leading to inaccurate bounding boxes.

TABLE X

THE STAGE PERFORMANCE OF CASCADED REGRESSION AND CASCADED CLASSIFICATION OVER DIFFERENT METHODS. NOTE THAT WE EQUIP

DECOUPLED R-CNN WITH BOTH CASCADED REGRESSION AND CASCADED CLASSIFICATION, IN WHICH WE ADOPT THE INCREASING
IOU THRESHOLDS AT THE CASCADED STAGES AS SAME AS CASCADE R-CNN. AND BOTH METHODS USE RESNET-101 AS

THE BACKBONE. THE TEST STAGE (i, j) DENOTES THE i-TH STAGE REGRESSOR AND THE j-TH STAGE CLASSIFIER,
AND THE TEST STAGE (3, 1-3) DENOTES THE AVERAGE OF THE THREE CLASSIFIER PROBABILITIES

structure of our method is feasible and the classification
score depends on the single classifier probability on
the RPN proposals. Moreover, considering our proposed
DSS module and Unshared-FC heads, it is convenient
to only adopt cascaded regression without cascaded
classification.

2) For training a sequence of higher-quality detectors to
effectively reject close false positives, Cascade R-CNN
increases IoU thresholds at each cascade stage for select-
ing the positive samples with higher IoU distributions.
However, in our cascaded regression, the resampling is
only performed on the positive, and the output IoU of a
regressor is almost invariably better than the input IoU.
It makes us use a fixed IoU threshold of 0.5 for all
the cascaded regression stages. Our method eliminates
the hyperparameters of increasing IoU thresholds, and
each stage of regressors is trained on the corresponding
sample distributions.

3) The most important difference is training samples.
Cascade R-CNN uses random sampling with fg-bg ratio
to select shared proposals, which inevitably restricts
the regressor’s sensitivity to translation. Without the
constraint of classification, we select more dense positive

proposals to train the cascaded regressor. Benefited from
increased translation sensitivity, our cascaded regressors
can localize an object more accurately.

To concretely compare with Cascade R-CNN, we implement
our Decoupled R-CNN with the same cascaded structure and
the increasing IoU thresholds. Table X summarizes the stage
performance over the two different methods. And we can find
that the regressor at the final third stage brings significant
improvements for Cascaded R-CNN (from 38.5 to 41.2) and
Decoupled R-CNN (from 38.7 to 41.8). However, the single
classifier at any stage obtains marginal improvements and
the ensemble result, averaging the three classifier probabil-
ities, is necessary for better performance. Benefiting from
our proposed DSS, which is more sensitive to translation,
our cascaded regressors are better than the regressors in
cascade R-CNN (41.8 vs. 41.2). When adopting the cascaded
classification, we obtain similar performance improvements
with similar additional computational complexity. So our final
detector only adopts the cascaded structure for regression.

B. Sampling Strategy

Recently, some learn-to-match approaches are proposed
to change the contribution of samples. FreeAnchor [27],
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TABLE XI

THE EFFECTIVENESS OF DOUBLE-HEAD FOR DECOUPLED R-CNN

an object-anchor matching approach, is proposed to allow
each object to flexibly match the best anchors during training.
ATSS [28] uses the statistical characteristics of each object to
compute a dynamic IoU threshold for the definition of positive
and negative samples. AutoAssign [29] generates positive and
negative weight maps to adjust each location’s positive and
negative confidences. However, they neglect that the same
sample has different contributions to the two tasks. For our
proposed DSS, “classification and regression” take samples
from the different dense RPN-proposals, and our model evenly
deals with all samples in the training process.

In TSD [36], two disentangled proposals are generated by
two deformable operations on the original proposals and the
corresponding feature extractors for the two heads, solving
the spatial misalignment between classification and regression.
During training, the TSD heads need to be jointly optimized
with the sibling heads. At inference, the same deformable
operations and feature extractors in TSD heads are applied.
But our proposed method focuses on different sensitivity to
the translation for classification and regression, where DSS
takes different dense samples for the unshared-FC heads of
the classifier and the regressor. Even equipped with cascaded
regression, our method has a faster inference speed than the
complex TSD heads, which as shown in Table IX.

Besides, SPFTN [54] incorporates a similar strategy and
decouples the involved self-paced regularizers for different
tasks of localization and segmentation. However, the work
focuses on the task of weakly labeled video object localization
and segmentation, which is very different from our decoupling
of the sampling strategy for the two basic tasks of classification
and regression.

C. Regression Task

In Decoupled R-CNN, we decouple the sampling of classi-
fication and regression, and disentangle the shared parameters
of these two detector heads. In Double-Head [52], a more
elaborate structure of the detector heads is designed, obtaining
a satisfactory performance. Inspired by the success, we further
inspect the effectiveness of Double-Head for our Decoupled
R-CNN in Table XI. To implement the Double-Head structure,
we equip the classifier head with two fully connected layers
and additionally stack 4 residual convolution blocks for the
regressor head. With such a replacement operation, Decoupled
R-CNN without cascaded regression achieves 40.0 AP and
41.6 AP on ResNet-50 and ResNet-101, which is close to

the results with cascaded regression. Furthermore, when our
cascaded regression also adopts the 4 residual convolution
blocks, we obtain 40.4 AP and 42.2 AP on ResNet-50 and
ResNet-101, only a slight gain by 0.1 ∼ 0.3 AP. Although
Double-Head has fewer model parameters, there is a great
increase in computational overhead. Similarly, the dense local
regression in D2Det [38] also adopts a deep head with eight
convolutions, which inevitably increases the FLOPs as seen
in Table IX. Compared with a deep and complex regressor,
our cascaded regressors decompose the regression task into a
sequence of stages, which is efficient and low cost.

VII. CONCLUSION

In this work, we propose a decoupled architecture, called
Decoupled R-CNN, for object detection. It is a simple but
accurate and efficient method to address a rarely explored
problem, i.e. the compromising suboptimality of sensitivity to
translation for the current classifier and regressor. Our model
uses decoupled sampling strategy to decouple the proposals
sampling for two different branches, which guarantees the
consistent sensitivity to the translation for each correspond-
ing branch. Furthermore, we propose a cascaded structure
for regression to improve the accuracy of localization of
Decoupled R-CNN. The extensive experimental results show
that our method achieves competitive performance. Inspired
by the learn-to-match, we further conjecture that a task-
proposal matching approach allows each object to respectively
match the best proposals for the two tasks “classification and
regression” and the label assignment for the two tasks could
be conducted in a different manner, which encourages us to
further improve our model in the future.
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