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Abstract—Mobile cloud offloadingmigrates heavy computation frommobile devices to remote cloud resources or nearby cloudlets. It is a

promisingmethod to alleviate the struggle between resource-constrainedmobile devices and resource-hungrymobile applications. Caused

by frequently changing locationmobile users often see dynamically changing network conditionswhich have a great impact on the

perceived application performance. Therefore, making high-quality offloading decisions at run time is difficult inmobile environments. To

balance the energy-delay tradeoff based on different offloading-decision criteria (e.g., minimum response time or energy consumption), an

energy-efficient offloading-decision algorithm based on Lyapunov optimization is proposed. The algorithm determineswhen to run the

application locally, when to forward it directly for remote execution to a cloud infrastructure andwhen to delegate it via a nearby cloudlet to

the cloud. Thealgorithm is able tominimize the average energy consumption on themobile devicewhile ensuring that the average response

time satisfies a given time constraint. Moreover, compared to local and remote execution, the Lyapunov-based algorithm can significantly

reduce the energy consumption while only sacrificing a small portion of response time. Furthermore, it optimizes energy better and has less

computational complexity than the LagrangeRelaxation basedAggregatedCost (LARAC-based) algorithm.

Index Terms—Mobile cloud computing, cloudlet, offloading, energy-efficient, Lyapunov optimization, LARAC algorithm
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1 INTRODUCTION

1.1 Limitation of Mobile Devices

MOBILE devices, such as smartphones, smart watches,
tablets and notebooks, are constrained by limited

resources such as memory capacity, network bandwidth,
processor speed and battery power. These constraints pre-
vent mobile devices from widely running complex mobile
applications with heavy multimedia and signal processing.
This is not just a temporary limitation of current mobile
hardware technology, but is intrinsic to mobility [1].

Battery life is the top concern of mobile users. An investi-
gation engaged by thousands of users around theworld indi-
cated that “over 75 percent of respondents said better battery
life is the main feature they want from a future converged
device” [2]. Longer battery life is more important than most
other features, including camera and storage. Mobile termi-
nals are gettingmore advanced in terms of processing speed,
sharper screen andmore sensorswhich lead to higher energy
consumption. Smartphones are no longer used only for voice
communication but are more and more frequently used for
watching videos, web surfing, interactive gaming, aug-
mented reality and other purposes which consume huge
amounts of energy and seriously shorten the life of a smart-
phone battery. Further, these applications are too

computation intensive to be executed on a mobile system.
Even though battery technology has been steadily improv-
ing, it has not been able to keep up with the rapid growth of
energy consumption of mobile systems [3].

1.2 Mobile Offloading

The emergence of cloud computing allows to resolve a num-
ber of concerns of mobile computing, since the cloud can be
seen as a system characterized by unlimited resources that
can be accessed anytime and anywhere [4]. Mobile Cloud
Computing (MCC), which combines the strength of the
cloud with the convenience of mobile terminals, is emerging
as a new computing paradigm that aims to augment
computational capabilities of mobile devices, taking advan-
tage of the abundant resources present in the cloud.

Along with the maturity of MCC, mobile cloud offload-
ing is becoming a promising method to alleviate the strug-
gle between resource-constrained mobile devices and
resource-hungry mobile applications. Its main idea is to
migrate compute-intensive tasks from the mobile device to
remote cloud servers and then receive results in return [5].
Offloading can release the mobile devices from intensive
processing and increase the performance of mobile applica-
tions [6]. It brings many potential benefits, such as saving
energy, performance improvement, reliability improve-
ment, convenience for the software developers and better
exploitation of contextual information [7].

1.3 Challenges

Making good offloading decisions is very difficult, since the
mobility of users typically causes a dynamically changing net-
work environment [8]. The mobile network environment has
a great influence on the performance of task offloading. For
example, if a mobile device has a stable network connectivity
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and plenty of network bandwidth, then offloading will result
in better performance in terms of both response time and
energy consumption. Thus, making a high-quality offloading
decision requires a good understanding of the changes in net-
work condition inmobile environments [9].

Mobile devices usually use heterogeneous wireless inter-
faces, such as cellular andWiFi networks to access the cloud
service for offloading of tasks. Different types of networks
have different bandwidth and network latency. While tradi-
tional cloud applications (e.g., iCloud and Siri [10]) have
been very successful, on mobile devices they still suffer
from a number of shortcomings due to the response time of
wireless communication at the edge of a network. Problems
include high latency and energy consumption caused by
the intermittent nature of wireless networks, which makes
executing applications locally more advantageous in certain
circumstances [11]. Since the overhead involved in transmit-
ting the migrated data via a wireless network may be
greater than the benefit from offloading, a decision of which
portion of an application should be offloaded and where to
place the execution (locally or remotely) should be made
based on different offloading-decision criteria.

1.4 Contributions

Toprolong battery life time,mobile devices can offloadpart of
their computational workload via a nearby cloudlet to a
remote cloud server under varyingwireless environment con-
ditions. The design objective of our energy-efficient offload-
ing-decision algorithm is to determine under which
circumstances offloading is beneficial. We aim at minimizing
the average amount of energy consumed by themobile device
while satisfying an application response time requirement.

The main contributions of this paper are threefold:

� We propose a generic approach for offloading deci-
sion making. Criteria such as minimum response
time and minimum energy consumption are studied
to decide whether an application should run locally,
or remotely on a cloud infrastructure, directly or via
a cloudlet. The tradeoff between energy consump-
tion and response time is analyzed.

� To save energy when meeting a deadline, we have
formulated a mathematical model for extending the
battery life time of the mobile device. We present a
dynamic algorithm based on Lyapunov optimization
for offloading decision making (i.e., to determine
which application components to be executed locally
and which to process remotely with the given avail-
able wireless networks). Simulation results show
that this algorithm can significantly reduce the
energy consumption on the mobile device while
only sacrificing a small portion of response time.

� We develop an offloading-decision algorithm based
on Lagrangian Relaxation based Aggregated Cost
(LARAC). The aggregated cost function is redefined
for offloading decision-making. It is set to where to
offload, and instead of using Dijkstra’s algorithm to
find the shortest path, we use an iterative method to
find an optimal offloading-decision combination vec-
tor. In comparisonwith the LARAC-based offloading-
decision algorithm, the proposed Lyapunov-based

offloading-decision algorithm reduces energy con-
sumption more and has lower computational com-
plexity but a small delay penalty.

1.5 Roadmap

The remainder of this paper is organized as follows. In
Section 2, we review the related work. We give a brief intro-
duction of different mobile offloading systems in Section 3.
Section 4 discusses the partitioning problem and offloading-
decision criteria. Dynamic energy-efficient offloading-deci-
sion algorithms using Lyapunov optimization and the
LARAC algorithm are presented in Section 5. Section 6 con-
tains the simulation and its results. Finally, the paper is con-
cluded in Section 7.

2 RELATED WORK

Extending battery lifetime is one of the most crucial design
objectives of mobile devices because they are usually
equipped with limited battery capacity while applications
are becoming increasingly complex [12]. Many research
efforts like [13], [14] and [15] have been devoted to energy-
efficient offloading in mobile cloud computing.

Offloading decisions regarding where to execute compu-
tation should be made based on the ratio of communication
versus computation required by the application. Kumar
et al. [12], [16] argue that cloud computing could potentially
save energy for mobile users, but not all applications were
energy-efficient when migrated to the cloud. It depends on
whether the computational cost (i.e., time or energy) saved
due to offloading outperforms the extra communication
cost. A large amount of communication combined with a
small amount of computation should preferably be per-
formed locally on the mobile device, while a small amount
of communication with a large amount of computation
should preferably be executed remotely.

Many offloading systems are able to make offloading deci-
sions dynamically. MAUI [17] is a system that enables
energy-aware offloading of mobile code to the infrastructure
by deciding at run time which methods should be executed
remotely. It saves most possible energy under the mobile
device’s current connectivity constraints. Its main aim is to
optimize energy consumption of a mobile device by estimat-
ing and trading off the energy consumed by local processing
versus transmission of code and data for remote execution.
The offloading inference engine proposed in [18] can adap-
tively make decisions at run time, dynamically partition an
application and offload part of the application execution to a
powerful server. We have explored the tradeoff between
reducing the execution time and extending the battery life of
mobile devices for mobile cloud offloading by using com-
bined metrics [19], [20], [21]. Some researchers consider a
response time constraint when partitioning application tasks
for execution on mobile devices and servers, which is an
important issue for many interactive applications. To reduce
energy consumptionwhilemeeting a givendeadline dynamic
offloading algorithms were presented in [22] and [23]. This
publication presented a solution of low complexity to solve
the problem of offloading decision making (i.e., to determine
which software components to execute remotely under
mobile network environments). Beraldi et al. [11] showed that
rather than always offloading the whole application, running
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partial components locally can be more advantageous. They
proposed a novel generic architecture that can be integrated
into anymobile application. The architecture aims at automat-
ing the offloading decision and at improving the application
response timewhileminimizing the overall energy consumed
by themobile device.

Mobile users can also offload applications to nearby
resource-rich devices to reduce energy consumption and
improve performance, not using the cloud since this would
normally come at higher latency with lower available band-
width. Satyanarayanan et al. [1] proposed a type of MCC
known as Cloudlet, in which the mobile device connects
through a WLAN network and receives service from a
cloudlet (e.g., coffee shop) as an intermediary node. In
essence, cloudlets make use of mobile devices as thin clients
to access local resources rather than connecting to a remote
cloud server directly. A Mobile Cloud Middleware (MCM)
is also introduced in [24] as an intermediary between the
mobile device and the cloud in order to manage the asyn-
chronous delegation of mobile tasks to cloud resources and
to decrease the offloading time to the cloud from the mobile
device. Mobile task computation then happens at the cloud
provider and a connection between the MCM and the cloud
provider is maintained during the task execution.

In previous work on energy-efficient mobile cloud off-
loading, no dynamic offloading-decision algorithms were
proposed for mobile users using a nearby cloudlet or mid-
dleware. That is the main focus of this paper.

3 SYSTEM OVERVIEW

A variety of cloud systems with different characteristics are
emerging these days for data storage and processing, e.g.,
Amazon EC2, Apple iCloud, Microsoft Windows Azure,
and Google App Engine. Such systems use proprietary
cloud platforms to provide different kinds of services. For
example, a cloud data center specifically designed for health
care services provides a platform for large data storage and
parallel computing capabilities for data mining [25].

As illustrated in Fig. 1, a general offloading model can be
organized as a two-level or three-level hierarchy [26]. An
application can deploy its components on multiple applica-
tion processing nodes such as a mobile device, a cloudlet and
the cloud, i.e., there can be multiple offloading destinations
and targets. Offloading the same application to different pla-
ces may achieve a different amount of computation within
the same time interval due to the different speed of cloud
servers. It may incur different communication cost and com-
munication time due to the specific wireless network and
cloud availability.

3.1 Two-Level Offloading Systems

Rather than running applications locally and directly request-
ing data from content providers, a mobile device can offload
parts of its workload to the cloud, taking advantage of the
abundant cloud resources to help gather, store, and process
data [27]. This offloading scheme critically depends on a reli-
able end-to-end communication and on the availability of the
cloud [13]. In addition, it suffers from high network access
latency and low network bandwidth. Access to the cloud is
usually influenced byuncontrollable factors, such as the insta-
bility and intermittency of wireless networks.

As shown in Fig. 2a, computation offloading consists of
three steps: sending the required data to the cloud, waiting
for the cloud to complete execution of the offloaded computa-
tion and receiving execution results from the cloud.Wedefine
the total response time from the perspective of the mobile
device as the duration between sending the application to the
cloud and receiving the results back from the cloud. Accord-
ing to Fig. 2a, it includes the transmission delays and the time
to process the requested task in the cloud. Therefore, the
response time and the energy consumed to handle a cloud
service request can be calculated as follows:

T2-level ¼ ttr þ ts; (1)

E2-level ¼ ptr � ttr þ pi � ts; (2)

where ttr ¼ D=B is the transmission time taken across the
radio link for the cloud service request, including the time
to transmit the request to the cloud and the time to send the
response back to the mobile device, the definitions of D and
B refer to Table 1. The time to perform the actual service at
the cloud server is ts, the power for sending and receiving
data is ptr and pi is the power used while the mobile device
is idle. We ignore the effects of contention for the cloud ser-
vice and assume that the cloud is able to handle many ser-
vice requests at the same time.

There may be several ways to access the cloud, e.g., via a
costly cellular connection or intermittently available WLAN
hotspots. The cellular connection can provide a near-ubiqui-
tous coverage for mobile terminals in a wide area and sup-
port high mobility [13]. However, due to factors such as
channel fading and traffic congestion the connectivity
between mobile devices and the cloud often has relatively
low data rate and sometimes is unstable.

3.2 Three-Level Offloading Systems

Rather than relying on direct access to a remote cloud a
mobile device can use a nearby cloudlet or MCM via
WLAN to connect to the cloud at lower latency and lower

Fig. 1. A general mobile cloud offloading system.
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energy consumption. A cloudlet is viewed as a trusted,
resource-rich computer or cluster of computers that is well-
connected to the Internet and is available for use by nearby
mobile devices [1]. It works like a middleware, does some
preprocessing, and reduces the latency to the cloud in some
cases. The computation task is first transmitted to the cloud-
let and then forwarded onto the remote cloud via a stable
Internet connection. The mobile device does not need to
communicate with the remote cloud directly, but only with
the cloudlet. This architecture often reduces latency by
using a single-hop network and potentially saves battery by
using WiFi or short-range radio instead of a broadband
wireless network which typically consumes more energy
[17]. Besides, loss or destruction of a cloudlet is not cata-
strophic since it only contains soft state such as cached cop-
ies of data or code that is also available elsewhere.

Three-level offloading is a technique which can be applied
inMobile Edge Computing (MEC) [28]. The cloudlet becomes
a better choice for mobile offloadingwhen direct offloading to
the cloud is unstable. As shown in Fig. 2b the model of three-
level offloading service consists of a local tier of mobile devi-
ces, a middle tier of nearby cloudlets, typically located at the

mobile devices’ access point but characterized by limited
resources, and a remote tier of cloud servers,which have prac-
tically infinite resources [29]. It takes five steps to perform
computation offloading: the mobile device sends the required
data to the cloudlet, the cloudlet sends the required data to
the cloud, waits for the cloud to complete execution, the
cloudlet receives the execution results from the cloud, and the
mobile device receives execution results from the cloudlet
[30]. Consequently, the total response time and energy con-
sumption are calculated as

T3-level ¼ ttr þ tte þ tc þ ts; (3)

E3-level ¼ ptr � ttr þ pi � ðtte þ tc þ tsÞ; (4)

where ttr is the transmission time across the radio link for
the service invocation between the mobile device and the
cloudlet. The value includes the time taken to transmit the
request to the cloudlet and the time to send the response
back to the mobile device. The transmission time between
the cloudlet and the cloud is tte and tc is the time taken to
process the request at the cloudlet.

4 OFFLOADING DECISIONS

In this section we formulate the problem of offloading deci-
sion making. We first focus on decision criteria (e.g., mini-
mum response time or energy consumption) to decide
when to perform the computation locally and when to dele-
gate it directly or via a cloudlet to cloud resources, and then
with such criteria some realistic experiments are performed.
Finally, a mathematical model of where to offload is built.

4.1 Offloading-Decision Criteria

The communication cost between the mobile device and the
cloud depends on the network bandwidth. Since the band-
width of WLAN networks is considerably higher than the
bandwidth provided by radio access to a mobile device, dif-
ferent wireless technologies offer competing choice to con-
nect to a nearby cloudlet and then to the cloud. As depicted
in Fig. 3, the bandwidth between the mobile device and the
cloudlet is B1, which generally uses Bluetooth or a high-
bandwidth WLAN. The connection between the cloudlet

TABLE 1
Parameters for Offloading Decisions

Symbol Meaning

tm Execution time on the mobile device
ts Time taken to process the actual service on the cloud

server
tc Time taken to process the request in the cloudlet
tte Transmission time between the cloudlet and the cloud
ttr Transmission time between the mobile device and the

cloud/cloudlet
D Transmitted data between the mobile device and the

cloud
B Bandwidth between the mobile device and the cloud
B1 Bandwidth between the mobile device and the cloudlet
B2 Bandwidth between the cloudlet and the cloud
pm Power for computing
pi Power while being idle
ptr Power for sending and receiving data

Fig. 2. Different mobile cloud offloading services [24].
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and the cloud is usually wired with bandwidth B2, using
broadband technology like Internet. The connection
between the mobile device and the cloud is mostly wireless
with bandwidth B, which uses a cellular or WiFi interface.
Mostly, we have B � B1 and B1 � B2.

It is more profitable to offload the application directly to
the cloud (i.e., two-level offloading) instead of executing
locally on the mobile device if

pm � tm > ptr �D
B

þ pi � ts; (5)

that is to say, we compare the energy consumed by local exe-
cution with the energy consumption when offloading to the
cloud, and if the former is greater than the latter, then we
decide to perform the application at the remote cloud server.

Similarly, it is encouraged to offload the application via
its nearby cloudlet to the remote cloud (i.e., three-level off-
loading) when the following condition is satisfied

pm � tm > ptr � D
B1

þ pi �
 

D

B2
þ tc þ ts

!
; (6)

which is obtained by substituting ttr ¼ D=B1 and
tte ¼ D=B2 into Eq. (4). We compare the local energy con-
sumption with the energy cost when offloading via a cloud-
let to the cloud, and if the former is greater than the latter,
then we decide to migrate the application to the remote
cloud.

According to Eqs. (5) and (6) it is straight forward to see
that the three-level offloading scheme performs better than
the two-level offloading only if it satisfies

ptr �D
B

> ptr � D
B1

þ pi �
 

D

B2
þ tc

!
: (7)

An offloading decision-making process based on the pre-
dicted energy consumption is explained in Fig. 4. Given an
application, we first estimate the average bandwidth of the
current network, trigger the energy consumption predictor to
get an expected energy consumption of themobile device and
then use the offloading-decision criteria to take an offloading
decision [5]. On one hand, if the predicted energy consump-
tion satisfies bothEqs. (6) and (7),wewill apply the three-level
offloading model; on the other hand, if the predicted energy
consumption does not satisfy Eq. (7) but Eq. (5), we choose

the two-level offloading scheme. In all other cases, the appli-
cation is preferably executed locally on themobile device.

4.2 Offloading-Decision Engine

Building on our previous work [32], [33], an offloading-
decision engine based on different decision criteria is
developed to capture the tradeoff between computation
and communication.

At the cloud side, a server of Freie Universit€at Berlin is
used which processes with 4 cores of the type Intel Xeon
CPU E5649 2.53 GHz, with a main memory of 7,786 MB. The
server runsApache Tomcat 6 and uses Java 1.6. At themobile
side up to date mobile devices (see Table 2) are applied in
mobile cloud environments with various mobile communi-
cation networks. The server is about 17 times faster than the
slow device (Xiaomi Redmi 2) and 1.1 times faster than
the fast device (Samsung Galaxy S6). Communication with
the server is based on the basic query/response structure.
PowerTutor1 is adopted for battery usage calculations.

Fig. 5 shows an overview of the offloading-decision
engine. The left screen shows all the relevant parameters
such as the speedup factor (i.e., the ratio of the cloud serv-
er’s execution speed compared to the speed of the mobile
device), the bandwidth, the network and server availability
information. On the main screen, we can choose different
amounts of computation (FLOPS) and communication data
(MB). Offloading decisions can be made based on one of the
three criteria, i.e., time-saving, energy-saving, and time- and
energy-saving. The right screen shows the estimated and real
costs for both local and remote executions. The engine will
decide whether the task should be offloaded or not, depend-
ing on which estimated option (local or remote) has rela-
tively lower cost.

Fig. 3. Model of mobile offloading systems [31].

Fig. 4. Offloading decision making based on the predicted energy
consumption.

1. PowerTutor is an application for Android phones that provides
accurate, real-time power consumption estimates for power-intensive
hardware components, http://ziyang.eecs.umich.edu/projects/
powertutor/
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From Figs. 6 and 7 it can be observed that the real cost
matches the estimates produced by the offloading-decision
engine well when taking into account both the bandwidth

and round-trip time (RTT). It is also of interest to observe
the point where offloading starts being beneficial. For a
small amount of data (100 KB), only about 17 MFLOPS are

TABLE 2
Mobile Device Specifications

Device CPU Memory Communication Method Technology

WiFi IEEE 802.11g
Xiaomi Red 2 Quad-core 2.1 GHz Cortex-A57 1 GB RAM 3G HSPAP/HSUPA

4G LTE

WiFi IEEE 802.11g
Samsung Galaxy S6 Quad-core 1.2 GHz Snapdragon 410 3 GB RAM 3G HSPAP/HSUPA

4G LTE

Fig. 5. The offloading-decision engine based on different criteria.

Fig. 6. Behavior of the slow device with different amounts of computation.
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needed to reach this point, while the point arrives around
100 MFLOPS for a large volume of data (1 MB). As the data
size grows, the RTT loses relevance and the bandwidth
becomes the main factor. When choosing the energy-saving
criterion even more computation is needed to reach the criti-
cal point. As shown in Fig. 7 the fast device can not benefit
so much from offloading the computation to the server as
the slow device does. We observe that offloading is only
beneficial if the amount of computation is very large
(GFLOPS).

Further, the utilization of cellular networks such as 3G
and 4G LTE technologies for offloading will suffer from
high latency when compared with WiFi [34]. In spite of this
the offloading-decision engine still works very well since it
considers the relative relationship of communication and
computation.

4.3 Mathematical Model

A graphical illustration of where to perform the computa-
tion (locally, delegate it directly or via a cloudlet to cloud
resources) is depicted in Fig. 8. The mobile device, the cloud
and the cloudlet are represented as queueing nodes to cap-
ture the resource contention on these systems. We define
1=mm, 1=mcloud and 1=mcloudlet as the expected execution time
on the mobile device, the cloud and the cloudlet, respec-
tively [30]. The wireless access network and the Internet are
denoted as simple delay centers representing average net-
work delays when a task is remotely executed, where 1=m0,

1=m1 and 1=m2 are the expected execution time on the differ-
ent networks. Different application tasks are generated on a
mobile device according to some process. We assume a sim-
ple model where functions in an application are not hierar-
chically called and all tasks run sequentially without
parallelism. Suppose there are N þ 1 application compo-
nents that can be classified into two classes [35], where each
time a component is executed a decision must be taken into
which class it belongs to:

� Unoffloadable: in general, not all application compo-
nents can be offloaded, we assume there are m com-
ponents that should be unconditionally executed
locally on the mobile device, either because transfer-
ring relevant information would take too long and
consume too much energy or because these tasks
must access local components (e.g., cameras, sensors
and user interfaces) [17]. Local processing consumes
the CPU power of the device and, in particular, the
battery power. Fortunately, there are no communica-
tion costs or delays.

� Offloadable: N þ 1�m application components are
flexible tasks that can be processed either on the
mobile device or remotely in a cloud infrastructure,
offloaded directly or via a cloudlet to the cloud.
Many tasks fall into this category and the offloading
decision depends on whether the communication
costs outweigh the local processing costs [12].

Fig. 7. Behavior of the fast device with different amounts of computation.

Fig. 8. A mathematical model of adaptive decision making for mobile cloud offloading.
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The problem of taking offloading decisions correctly
does not exist for unoffloadable components. However, as
for the offloadable ones, since offloading all computation
components of an application to the remote cloud is not nec-
essary or effective under all circumstances, it is of interest to
consider when they should be executed locally on the
mobile device, when they should be offloaded directly onto
the remote cloud for execution and when they should be off-
loaded through a nearby cloudlet to the remote cloud for
further processing based on available networks, response
time or energy consumption. The mobile device has to take
an offloading decision based on the result of a dynamic opti-
mization problem.

We further analyze the mathematical model by including
offloading-decision criteria. 8n 2 f0; 1; . . . ; Ng, the nth
application component’s response time is selected as

TnðtÞ ¼
�
T local
n ðtÞ; T cloud

n ðtÞ; T cloudlet
n ðtÞ�; (8)

where T local
n ðtÞ is the time taken locally without offloading,

T cloud
n ðtÞ ¼ Ts

n þ Dn
BðtÞ is the time taken when offloading

directly to the cloud and T cloudlet
n ðtÞ ¼ Dn

B1ðtÞ þ
Dn
B2ðtÞ þ Tc

n þ Ts
n

is the time taken when offloading via a cloudlet to the cloud.

Ts
n and Tc

n is the time taken to process the nth component on

the cloud and cloudlet, respectively.
Similarly, the energy consumption can be expressed as

EnðtÞ ¼
�
Elocal

n ðtÞ; Ecloud
n ðtÞ; Ecloudlet

n ðtÞ�; (9)

where Elocal
n ðtÞ ¼ pm � T local

n ðtÞ is the energy consumed

locally, Ecloud
n ðtÞ ¼ ptr � Dn

BðtÞ þ pi � Ts
n is the energy consumed

when offloading directly to the cloud, and Ecloudlet
n ðtÞ ¼ ptr �

Dn
B1ðtÞ þ pi �

�
Dn
B2ðtÞ þ Tc

n þ Ts
n

�
is the energy consumed when

offloading via a cloudlet to the cloud.

We consider a deadline-aware offloading scenario where
the user has a processing deadline and all tasks must be
completed before this time. Without deadline the user may
defer tasks to process locally or in the cloud in future stages
expecting that the penalty of failed tasks may be less. Thus,
the total response time may be very long. The deadline
forces the user to offload tasks to reduce energy consump-
tion while satisfying the given response time requirement.
Taking the average in Eqs. (8) and (9) we obtain the average
response time and average energy consumption as follows:

min �E , lim sup
t!1

1

t

Xt�1

t¼0

XN
n¼0

EfEnðtÞg;

s:t: �T , lim sup
t!1

1

t

Xt�1

t¼0

XN
n¼0

EfTnðtÞg � Td;

where Td is a deadline and the processing of all application
components have to be finished within this time.

5 ENERGY-EFFICIENT DYNAMIC

OFFLOADING-DECISION ALGORITHMS

5.1 Partitioning Problem

Our objective is to minimize the average energy consump-
tion on the mobile device while satisfying a given response

time requirement. There are three constraints of the pro-
posed approach [22]:

� Minimizing the average energy consumption of the
mobile device.

� Satisfying the given deadline on run time of the data
processing for each application.

� Opportunistic partitioning of the application compo-
nents into different categories (e.g., run on mobile
device, cloudlet or cloud).

We consider a graph G ¼ ðR;SÞ with jRj ¼ N þ 1 to rep-
resent the relationship among the N þ 1 application compo-
nents (one must be executed locally, the other N
components are offloadable). Each vertex v 2 R denotes a
component and Duv along the undirected edge ðu; vÞ repre-
sents the size of data migrating from vertex u to v. When
there is a request for application execution, a controller in
the mobile device determines which components to be exe-
cuted locally and which ones to be executed remotely in the
cloud (e.g., Amazon EC2 or Microsoft Azure) [22].

At the tth execution, let the offloading-decision vector be
defined as

vvðtÞ ¼ �vnðtÞjn 2 f0; 1; . . . ; Ng;vnðtÞ 2 f0; 1; 2g�
1�ðNþ1Þ;

(10)

where vnðtÞ ¼ 1 denotes that the nth component is executed
locally, vnðtÞ ¼ 0 represents that it is directly offloaded to
the remote cloud, and vnðtÞ ¼ 2 denotes that it is first
migrated to a nearby cloudlet and then offloaded from the
cloudlet to the cloud. The component with index 0 is
assumed to be unoffloadable and it should always be exe-
cuted locally. Therefore we always have v0ðtÞ ¼ 1. The
other N components are offloadable such that vnðtÞ can be
selected from f0; 1; 2g.

5.1.1 Total Response Time

The total response time is equal to the time taken by the
components running locally and those running remotely
plus the additional communication time when they reside
in different places

T ðvvðtÞÞ ¼
X
v2R

vvðtÞ � Tm
v ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

local

þ
X
v2R

j1� vvðtÞj � T r
vðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

remote

þ
X

ðu;vÞ2S

�
2� jvuðtÞ � vvðtÞj

� � TuvðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

communication

;
(11)

where vvðtÞ and vuðtÞ are elements from Eq. (10), the local

execution time is: Tm
v ðtÞ ¼ > 0 if vvðtÞ ¼ 1

0 otherwise

	
, the remote

execution time is: T r
vðtÞ ¼

T s
vðtÞ if vv ¼ 0 or 2

0 otherwise

	
, and the

transfer time from task u to v is

TuvðtÞ ¼
Duv
BðtÞ if vuðtÞ � vvðtÞ ¼ 1

Duv
B1ðtÞ þ

Duv
B2ðtÞ þ T c

v ðtÞ if vuðtÞ � vvðtÞ ¼ 0

0 otherwise;

8><
>:
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Duv is the communication data from component u to v, and
� and � are XOR computation and NOR computation for
binary variables, respectively.

The total response time when all components are exe-
cuted locally on the mobile device is TlocalðtÞ ¼

P
v2R Tm

v ðtÞ.

5.1.2 Total Energy Consumption

The total energy consumption is the energy consumed by
the components running locally, plus the energy consumed
in idle state when some components are executed remotely,
plus the energy consumed for communication

EðvvðtÞÞ ¼
X
v2R

vvðtÞ � Em
v ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

local

þ
X
v2R

j1� vvðtÞj � Ei
vðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

idle

þ
X

ðu;vÞ2S

�
2� jvuðtÞ � vvðtÞj

� � EuvðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

communication

;
(12)

where Em
v ðtÞ ¼ pm � Tm

v ðtÞ is the local energy consumption,
Ei

vðtÞ ¼ pi � T r
vðtÞ is the energy consumed in the idle state

due to offloading and the energy consumed for data transfer

EuvðtÞ ¼
ptr

Duv
BðtÞ if vuðtÞ � vvðtÞ ¼ 1

ptr
Duv
B1ðtÞ þ pi

�
Duv
B2ðtÞ þ T c

v ðtÞ
�

if vuðtÞ � vvðtÞ ¼ 0

0 otherwise:

8><
>:

Similarly, the total local energy consumption when all
components are executed locally on the mobile device is
ElocalðtÞ ¼

P
v2R Em

v ðtÞ.
After each decision, all components should meet the fol-

lowing conditions: XXlocal ¼ fXaja 2 ½1; 2; . . . ; k	g, XXcloud ¼ fXbj
b 2 ½1; 2; . . . ; s	g, XXcloudlet ¼ fXcjc 2 ½1; 2; . . . ; N þ 1� k� s	g,
XXlocal \XXcloud \XXcloudlet ¼ ? and XXlocal [XXcloud [XXcloudlet ¼ XX,
where XX is the set of all components, XXlocal is the subset of
the components that are executed locally,XXcloud is the subset
of the components that are directly offloaded to the cloud
and XXcloudlet is the subset of the components that are off-
loaded through a cloudlet to the cloud [36].

As a partitioning example three cases after offloading deci-
sionmaking are listed in Fig. 9. Suppose component 1 is unof-
floadable and can only be executed locally, while the other
components are offloadable and can either be processed
locally or offloaded to the cloud, directly or via a cloudlet.We
use a dotted arrow to represent offloading via the cloudlet to
the cloud. In case 1, component 3 is executed on the mobile
device, component 4 is offloaded directly to the cloud while
component 2 is offloaded via the cloudlet to the cloud, thus
the decision combination vector is vv1ðtÞ ¼ f1; 2; 1; 0g. In case
2, components 2 and 4 are offloaded via the cloudlet to the
cloud while component 3 is offloaded directly to the cloud.
Hence we have vv2ðtÞ ¼ f1; 2; 0; 2g. In case 3, all three compo-
nents are offloaded directly to the remote cloud and the deci-
sion combination vector isvv3ðtÞ ¼ f1; 0; 0; 0g.

Challenges. LetFF be the set of all possible decision combina-
tions. When the application has N offloadable components,
we can obtain jFFj ¼ 3N . For each execution, the number of
steps to search for the optimal solution (i.e., to determine
whether vnðtÞ should be 0, 1 or 2, 8n ¼ 1; 2; . . . ;N) grows
exponentially with the number of vertices [36]. Therefore, it is
difficult to obtain the optimal solution directly.

5.2 A Lyapunov-Based Offloading-Decision
Algorithm

For a given decision combination vector vvðtÞ, the corre-
sponding energy consumption for different executions may
change due to the variation in the available wireless net-
work. In this case it will be difficult to obtain the optimal
solution. Therefore, we suppose that the available wireless
network remains constant during the tth execution.

The constraint is that the total response time of that parti-
tion should be less than or equal to a deadline Td. Let the
execution indicator variable be defined as

s
�
vvðtÞ� ¼ 0 if T

�
vvðtÞ� � Td

1 otherwise:

(
(13)

A decision combination vector vvðtÞ is feasible if the total
response time satisfies the delay constraint which is denoted
as s

�
vvðtÞ� ¼ 0. Otherwise we have s

�
vvðtÞ� ¼ 1. A feasible

decision combination vector v
v
ðtÞ with the minimum
energy consumption is the optimal solution among all the
feasible decision vectors. Formally, we have

min
vvðtÞ

lim sup
t!1

1

t

Xt�1

t¼0

E
�
E vvðtÞð Þ�; (14)

s:t: lim sup
t!1

1

t

Xt�1

t¼0

E
�
s vvðtÞð Þ� � r; (15)

where r is the violation ratio, i.e., the ratio of the number of
executions which do not meet the deadline to the total num-
ber of executions. Eq. (15) ensures that the system is stable.

We define the dynamic offloading system as

Qðtþ 1Þ ¼ max½QðtÞ � r; 0	 þ s
�
vvðtÞ� 8t 2 f0; 1; . . . ;1g;

(16)

where QðtÞ is defined as the system state at the tth execu-
tion, which depends on the violation ratio r. Therefore, the
larger QðtÞ, the longer the application response time.

Fig. 9. A partitioning example of where to offload.
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Before further discussing the decision function, we first
present a Lemma from [37], which is related to the deriva-
tion of the decision function.

Lemma 1. LetW , U , m, and A be non-negative real numbers and
W ¼ max½U � m; 0	 þ A, then W 2 � U2 þ m2 þA2 � 2Uðm�AÞ.
For each execution, define the Lyapunov function [38] as

LðQðtÞÞ ¼ 1

2
Q2ðtÞ: (17)

Then the Lyapunov drift is defined as the change in this
function from one execution to the next. We have

LðQðtþ 1ÞÞ � LðQðtÞÞ ¼ 1

2

�
Q2ðtþ 1Þ �Q2ðtÞ�

¼ 1

2

n�
max½QðtÞ � r; 0	 þ s

�
vvðtÞ��2 �Q2ðtÞ

o
� r2 þ s2ðvvðtÞÞ

2
þQðtÞ � �s�vvðtÞ�� r

� ðby Lemma 1Þ:
(18)

The conditional Lyapunov drift DðQðtÞÞ is the expected
change in the continuous execution of the Lyapunov func-
tion. Given that the current state at the tth execution is QðtÞ,
we have

DðQðtÞÞ , E
�
LðQðtþ 1ÞÞ � LðQðtÞÞjQðtÞ�: (19)

According to Eq. (18) DðQðtÞÞ for a general control policy
satisfies

DðQðtÞÞ � C � rQðtÞ þ E
�
QðtÞs�vvðtÞ�jQðtÞ�; (20)

where C , Efr2þs2ðvvðtÞÞ
2 jQðtÞg ¼ r2

2 þ Efs2ðvvðtÞÞ2 jQðtÞg.
To stabilize the queue state while minimizing the average

energy consumption, we incorporate the expected energy
consumption over one execution. It can be designed to
make control actions that greedily minimize a bound on the
following drift-plus-penalty term at each execution [38]

DðQðtÞÞ þ VE
�
E
�
vvðtÞ�jQðtÞ�; (21)

where V � 0 is a control parameter that represents an
“importance weight” on how much we emphasize the
energy minimization compared to the violation rate of the
deadline. In other words, V can be thought of as a threshold
on the system queue state on which the control algorithm
takes offloading decision. So V controls the tradeoff
between the energy consumption and response time. Then
substituting Eq. (20) into Eq. (21), yields

DðQðtÞÞ þ VE
�
E
�
vvðtÞ�jQðtÞ� � C � rQðtÞ

þ VE
�
E
�
vvðtÞ�jQðtÞ�þ E

�
QðtÞs�vvðtÞ�jQðtÞ�

¼ C � rQðtÞ þ E
��
VE
�
vvðtÞ�þQðtÞs�vvðtÞ��jQðtÞ�: (22)

Note that our objective is to minimize the average energy
consumption. If we minimize the right-hand-side of
Eq. (22), we can reduce the energy consumption while keep-
ing Eq. (16) stable. This is accomplished by searching for a
feasible vvðtÞ that greedily minimizes the decision criterion
as follows:

argmin
vvðtÞ

�
VE
�
vvðtÞ�þQðtÞs�vvðtÞ��: (23)

Since the average violation rate is E
�
s
�
vvðtÞ�� � r, the

system is stable. We define the decision function as

d
�
QðtÞ;vvðtÞ� ¼ VE

�
vvðtÞ�þ s

�
vvðtÞ�QðtÞ: (24)

For the tth execution, we choose a decision combination
vector v
v
ðtÞ such that d

�
QðtÞ;v
v
ðtÞ� is minimized. We

apply a 1-opt local search algorithm that seeks for an
optimal solution around the initial estimate, whose vec-
tors of candidates are composed by all possible solutions
with unitary Hamming distance. The algorithm has low
computational complexity that in terms of run time is
Oðjdj3Þ [39].

Performance Bounds. For any control parameter V > 0, we
achieve the average energy consumption and queue backlog
satisfying the following constraints [38]

�E ¼ lim sup
t!1

1

t

Xt�1

t¼0

E
�
E vvðtÞð Þ� � C

V
þ E
; (25)

�Q ¼ lim sup
t!1

1

t

Xt�1

t¼0

EfQðtÞg � C þ V ðE
 � �EÞ
"

: (26)

Discussion. It can be seen from Eqs. (25) and (26) that per-
formance of the dynamic offloading decision algorithm
depends on V , which controls the energy-delay tradeoff.
Since the system state is closely related to the response time,
the tradeoff between energy consumption and response
time ½Oð1=V Þ; OðV Þ	 follows. The average energy consump-
tion �E can be arbitrarily close to the optimum E
 with a
diminishing gap (1=V ) while maintaining queue stability.
However, this reduction is achieved at the expense of a
larger delay because the average system state �Q increases
linearly with V . Therefore, we can tune V to flexibly trade
off between energy consumption and response time. When
the power constraint is stringent (e.g., the mobile device is
running out of battery), choosing a larger V can save more
energy at the expense of higher average response time and
instead, when the battery supply is not so critical (e.g., a
charger is available), we can reduce V to shorten the
response time and enjoy better quality of service [40].

Proof. Because our decision combination vector vvðtÞ mini-
mizes the right-hand-side of the drift-plus-penalty
inequality we have at every tth execution (given the
observed QðtÞ)

D
�
QðtÞ�þ VE

�
E
�
vvðtÞ�jQðtÞ� � C � rQðtÞ

þ VE
�
E
�
vv
ðtÞ�jQðtÞ�þ E

�
QðtÞs�vv
ðtÞ�jQðtÞ�

� C � rQðtÞ þ VE
 þQðtÞðr� "Þ ¼ C þ VE
 � "QðtÞ;
where vv
ðtÞ is any other (possibly randomized) trans-
mission decision that can be made at the tth execution
and E
 is the minimum energy consumption. Since
E
�
s
�
vv
ðtÞ�� � r, there exists some vv
ðtÞ and an arbi-

trarily small " > 0 that meet the requirement that
E
�
s
�
vv
ðtÞ�� � r� ".

Taking expectations of the above inequality and using
the law of iterated expectations yields
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E
�
L
�
Qðt þ 1Þ��� E

�
L
�
QðtÞ��þ VE

�
E
�
vvðtÞ��

� C þ VE
 � "EfQðtÞg:
Summing the above inequality over t 2 f0; 1; . . . ; t� 1g

for some positive integer t yields

E
�
L
�
QðtÞ��� E

�
L
�
Qð0Þ��þ V

Xt�1

t¼0

E
�
E
�
vvðtÞ��

� Ctþ VE
t� "
Xt�1

t¼0

EfQðtÞg:

Since E
�
L
�
QðtÞ�� and EfQðtÞg are non-negative elim-

inating one or both terms from the above inequality the
following two inequalities still hold

� E
�
L
�
Qð0Þ��þ V

Xt�1

t¼0

E
�
E
�
vvðtÞ�� � Ctþ VE
t;

� E
�
L
�
Qð0Þ��þ V

Xt�1

t¼0

E
�
E
�
vvðtÞ��

� Ctþ VE
t� "
Xt�1

t¼0

EfQðtÞg:

Rearranging terms in the above inequalities yields

1

t

Xt�1

t¼0

E
�
E
�
vvðtÞ�� � E
 þ C

V
þ E

�
L
�
Qð0Þ��
Vt

;

1

t

Xt�1

t¼0

EfQðtÞg �
C þ V

h
E
 � 1

t

Pt�1
t¼0 E

�
E
�
vvðtÞ��i

"

þ E
�
L
�
Qð0Þ��
"t

:

Taking limits as t ! 1, we derive Eqs. (25) and (26). tu

5.3 A LARAC-Based Offloading-Decision Algorithm

For comparison we propose a dynamic offloading-decision
algorithm according to LAgrangian Relaxation based Aggre-
gated Cost, which uses the concept of aggregated cost and
provides an efficient method to find the optimal multiplier
based on Lagrange relaxation [41].

Our objective is still the same, i.e., to find an offloading
scheme that can minimize the mean energy consumption
subject to the constraint that the average response time
should not exceed the given deadline Td. A decision combi-
nation vector vvðtÞ is feasible if the total response time meets
the deadline. A feasible decision combination vector v
v
ðtÞ
with the minimum average energy consumption is the opti-
mal solution among all the feasible decision combination
vectors. Mathematically, we have

min
vvðtÞ

limsup
t!1

1

t

Xt�1

t¼0

E
�
E vvðtÞð Þ�; (27)

s:t: limsup
t!1

1

t

Xt�1

t¼0

E
�
T vvðtÞð Þ� � Td; (28)

Specifically, we define an aggregated cost function as

fð�Þ ¼ E
�
E
�
vvðtÞ�þ �T

�
vvðtÞ��� �Td; (29)

where � is the Lagrange multiplier [23].

Using the principle of Lagrange duality, we obtain

fð�Þ � E
�
E
�
v
v
ðtÞ��; (30)

which gives a lower bound for the optimal solution of the
offloading policy.

To find an optimal combination vector v
v
ðtÞ among all
the possible offloading decision combinations, we formulate
the LARAC-based offloading decision algorithm as shown
in Algorithm 1. If we can find a minimum-energy combina-
tion vector that satisfies the deadline and this combination
is the solution. However, if the minimum-time combination
vector violates the deadline, there is no solution; otherwise
we repeatedly update vEvEðtÞ and vTvT ðtÞ to search for the opti-
mal v
v
ðtÞ. Although we cannot guarantee to find the opti-
mal decision combination, a lower bound for the optimal
solution can be achieved. The computational complexity of
the LARAC algorithm in terms of run time is Oðjf j2log4jfjÞ
[41]. Hence, the LARAC algorithm has a higher complexity
than the Lyapunov-based algorithm.

Algorithm 1. A LARAC-Based Offloading-Decision
Algorithm

//Find the optimal solution with offloading decision ombina-
tion vector v
v
ðtÞ
Function [v
v
ðtÞ] = LARAC(E

�
E vvðtÞð Þ�, E�T vvðtÞð Þ�, Td)

Input: E
�
E vvðtÞð Þ�: the mean energy consumption

E
�
T vvðtÞð Þ�: the mean response time

Td: the deadline
Output: v
v
ðtÞ: the optimal offloading-decision combination

vector
1: vEvEðtÞ , argminvvðtÞ E

�
E vvðtÞð Þ�

2: vTvT ðtÞ , argminvvðtÞ E
�
T vvðtÞð Þ�

3: if E
�
T vEvEðtÞ� �� � Td then

4: return vEvEðtÞ
5: end if
6: if E

�
T vTvT ðtÞ� ��

> Td then
7: return “There is no feasible solution”
8: end if
9: while true do

10: � ¼ E

�
E vEvE ðtÞð Þ

�
�E

�
E vTvT ðtÞð Þ

�
E

�
T vTvT ðtÞð Þ

�
�E

�
T vEvEðtÞð Þ

�
11: v
v
ðtÞ ¼ argminvvðtÞ E

�
E vvðtÞð Þ þ �T vvðtÞð Þ�

12: if E
�
E v
v
ðtÞð Þ þ �T v
v
ðtÞð Þ�¼¼ E

�
E vEvEðtÞ� �þ �T vEvEðtÞ� ��

then
13: return vTvT ðtÞ
14: else
15: if E

�
T v
v
ðtÞð Þ� � Td then

16: vTvT ðtÞ ¼ v
v
ðtÞ
17: else
18: vEvEðtÞ ¼ v
v
ðtÞ
19: end if
20: end if
21: end while

6 SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
Lyapunov-based offloading-decision algorithms in compar-
ison with different offloading-decision schemes.
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6.1 Parameter Settings

Since our algorithms rely on the knowledge of current states
(i.e., the current network bandwidth is supposed to be
known), they closely depend on the bandwidth estimation.
We could use the predictors proposed in [42] which con-
sider the classical bandwidth predictors synthetically. The
framework unifies such decision models by formulating the
problem as a statistical decision problem that can either be
treated “classically” or using a Bayesian approach. How-
ever, we will not focus on bandwidth estimation here.
Instead we assume that the current network bandwidth is
well predicted and can be directly used.

We need to estimate the achievable bandwidth BðtÞ,
B1ðtÞ and B2ðtÞ at the beginning of the tth execution and
they stay constant during each execution. Suppose that
BðtÞ, B1ðtÞ and B2ðtÞ follow uniform distributions on [1,
200], [1, 400], and [1, 500] Kbps, respectively. Among N þ 1
application components, one must be executed locally, for
the other N components, offloading decisions must be
taken. According to the power models developed in [43],
we set the parameters as: N ¼ 4, pm ¼ 0:3 W, pi ¼ 0:03 W
and ptr ¼ 0:2 W. We assume that the communication data
between different components is Duv ¼ 10 Kbits, the viola-
tion ratio r ¼ 0:2, the deadline Td ¼ 600 s, the local process-
ing time T local

n ¼ 100 s, the cloud processing time T s
n ¼ 10 s

and the cloudlet processing time T c
n ¼ 10 s, where

n 2 f0; . . . ; Ng. The algorithm is simulated 10;000 times for
each value of the control parameter V ranging from 1 to 400.

6.2 Results of the Lyapunov-Based Offloading
Decisions

As depicted in Fig. 10a, the average energy consumption
decreases strongly at the beginning and then tends to
descend slowly while the average response time grows line-
arly with V at first and then tends to increase slowly. This
finding confirms that there is a [Oð1=V Þ; OðV Þ] tradeoff
between the average energy consumption and the average
response time. A good operating point would be to pick a
value of V where a unit increase in V yields a very small
reduction in �Q. At such a point the gain in the energy metric
may not be worth the increase in response time obtained by
increasing V [40]. There exists a sweet spot of value V (e.g.,
V ¼ 100) beyond which increasing V leads to a marginal
energy conservation yet leading to consistently growing
delays. As depicted in Fig. 10b, the average violation rate
E
�
s
�
vvðtÞ�� first grows linearly with V and then tends to

increase slowly, finally, it approaches a fixed ratio r ¼ 0:2,
denoted by the dotted red line. Because E

�
s
�
vvðtÞ�� � r sat-

isfies the stable condition defined in Eq. (15), the queuing
system state is stable.

In Fig. 11a the average energy consumption increases
with the communication dataD, while the average response

Fig. 10. The impact of V on the average energy consumption, response time and violation rate.

Fig. 11. The impact of communication data on the average energy consumption, response time and system state, when V ¼ 100.
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time has a peak and then decreases again. However, there is
no benefit from offloading when D is very large and thus all
the application components are executed locally in this
case. From Fig. 11b, when D is large enough (e.g., D � 45
Kbits), the average system queue state is always 0, which
means T ðtÞ � Td, and all the components are executed
locally. This is because the transmission time is so large that
it dominates the response time. Then we would rather per-
form the computation locally on the mobile device than off-
load it to the remote cloud.

Because the average violation rate is much larger than
the constant r ¼ 0:2 denoted by the red dotted line in
Fig. 12c, the system is unstable when Td ¼ 400 s. We ignore
this situation since the result under such deadline is unrea-
sonable. From Fig. 12a it can be seen that the average energy
consumption decreases with increasing Td when V is small,
while the average response time increases as Td increases
from 600 to 800 in Fig. 12b. Therefore, setting the deadline a
little larger can reduce the average energy consumption but
also leads to the increase of average response time.

6.3 Comparison of the Different Decision Schemes

To gain insight on the proposed energy-efficient dynamic off-
loading decision algorithm,we compare the average response
time and energy consumption using the followingmethods:

� Local scheme: all application components are executed
locally on the mobile device.

� Cloud scheme: all offloadable application components
are directly offloaded to the cloud for further
processing.

� Cloudlet scheme: all offloadable application compo-
nents are offloaded via the cloudlet to the cloud for
further processing.

� Lyapunov scheme: using the Lyapunov-based dynamic
offloading-decision algorithm (e.g., V ¼ 100).

� LARAC scheme: using the LARAC-based dynamic
offloading-decision algorithm.

Fig. 13 shows the average response time and energy con-
sumption, respectively, normalized to the local scheme. The
red dotted line denotes the deadline. It can be seen that our
proposed Lyapunov scheme can help to save around 50 per-
cent of the energy consumption compared to the local
scheme while only sacrificing a small portion of response
time. This is because the Lyapunov scheme dynamically off-
loads tasks according to changes in the network condition
and the transmit power, while both the cloud scheme and
the cloudlet scheme do not take the network conditions into
consideration. Especially when the network bandwidth is
very low offloading tasks to the cloud or via the cloudlet to
the cloud may not be beneficial. Besides, when comparing it
with the optimal schedule using the LARAC algorithm our
proposed scheme also saves more energy while only
sacrificing a small portion of response time.

7 CONCLUSION AND FUTURE WORK

Reducig the energy consumption by computation offloading
is not guaranteed on mobile devices if the evoked data trans-
fer via wireless networks consumes an unpredictable amount
of energy. Therefore, running a certain part of the application
locally on the mobile device can be advantageous and may
save both energy and response time, especially in the pres-
ence of intermittent wireless connectivity. Accordingly, we
present an approach for dynamic offloading decisions based
on different criteria and consider all factors such as applica-
tion responsiveness, energy characteristics and particularly
the changing landscape of network connectivity (cellular net-
work versusWiFi to cloud versus cloudlet). The design objec-
tive is to minimize the energy consumed by the mobile
device, while meeting a given time constraint. We have
derived a control algorithm using Lyapunov optimization
which determines when to offload and where to offload such
that energy expenditure is minimized with a low delay

Fig. 12. The impact of V on average the energy consumption, response time and violation rate under different deadlines.

Fig. 13. Comparison of average response time and energy consumption
under different schemes.
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penalty. The algorithm is able to partition individual portions
of the offloading task pool into different groups, each with
very specific combinations of offloadable characteristics.
Numerical results show that this algorithm can save around
50 percent of the energy needed as compared with local exe-
cutionwhile only slightly sacrificing response time.

So far the validation of the approach is based on simula-
tion considering simplifying assumptions (e.g., the band-
width remains constant during each execution). Validation
based on real workloads and more realistic application
examples will be provided in the future to demonstrate
insights about the efficiency of the proposed algorithm.
Since the available bandwidth between a mobile device and
a nearby access point or base station is hard to predict or
measure accurately the most convincing way to validate the
proposed model will be to conduct extensive experiments.
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