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Abstract — Identifying high-order Single Nucleotide Polymorphism (SNP) interactions of additive genetic model is crucial for
detecting complex disease gene-type and predicting pathogenic genes of various disorders. We present a novel framework
for high-order gene interactions detection, not directly identifying individual site, but based on Deep Learning (DL) method
with Differential Privacy (DP), termed as Deep-DPGI. Firstly, integrate loss functions including cross-entropy and focal loss
function to train the model parameters that minimize the value of loss. Secondly, use the layer-wise relevance analysis
method to measure relevance difference between neurons weight and outputting results. Deep-DPGI disturbs neuron weight
by adaptive noising mechanism, protecting the safety of high-order gene interactions and balancing the privacy and utility.
Specifically, more noise is added to gradients of neurons that is less relevance with the outputs, less noise to gradients that
more relevance. Finally, Experiments on simulated and real datasets demonstrate that Deep-DPGI not only improve the
power of high-order gene interactions detection in with marginal and without marginal effect of complex disease models, but
also prevent the disclosure of sensitive information effectively.

Index Terms— Genome-Wide Association Studies, gene interaction detection, deep learning, differential privacy

1 INTRODUCTION
he genetic basis of many complex diseases involves
multiple genetic variants, such as Single Nucleotide

Polymorphism (SNP), and complicated interactions
between them [1]. Increasing evidence shows that
genes do not function independently, rather, they cross
talk with each other, termed the gene–gene interaction
[2]. Detecting gene-gene interaction refers to finding
the combinations of multiple genes that affect complex
diseases to identify the pathogenic causes and genetic
mechanism of complex diseases in humans, which has
played important role in Genome-Wide Association
Studies (GWAS) [3].

Methods for gene–gene interactions have been
extensively studied in the literature [4-9]. Attila et al. [4]
proposed the exhaustive method, which required
scanning all possible combinations in detecting
epistatic effect. While this method took
comprehensiveness and integrity into account, it did
not balance the experimental calculation burden and
detection efficiency. Literature [5] constructed the
statistical-based approach to estimate the gene
combinations. This method could decrease the
calculation burden, but still could not increase the
power of detection. The swarm intelligence-based
method has the advantage of controllable time
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complexities, heuristic positive feedback search and
high detection power, the researches including
FHSA-SED [6], IPSO [7], DECMDR [8], AntEpiSeeker
[9] and so on. These methods based on non-parametric
did not assume specific parametric models, thus, they
had certain advantages. However, they could only
detect gene interactions of without marginal effect
disease model or weak marginal effect and could not
estimate the interaction effect in most models, making
result interpretation challenging. Moreover, with the
exponential growth of the number of SNPs, the
detection of K-order gene interactions on the basis of
these methods, especially, when K is greater than 3, is
still unable to achieve high performance due to the
enormous computational burden.

Deep Learning (DL) has emerged from the advances
in high dimensional data by using sophisticated
algorithms and the power of parallel computation,
solving poor accuracy performance and overcoming
the influence of computational burden [10]. However,
the majority of current approaches based on DL does
not seem suitable for gene interaction process due to
the objective of K-order gene detection process has the
particularity [11]. More importantly, the DL model
training process will cause the disclosure of genetic
private information in the training data [12]. The
previous study has shown that adversary can identify
someone only by obtaining 30~80 SNP information [13].
Suppose that one adversary grabs the 75 SNP
information with the help of repeat query attack from
the published DL model for gene interaction. He can
predict the private and sensitive feature of target
individual based on the released model and some
background information about the target individual,
making use of the unknown, sensitive feature and
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model output. Thus, publishing the DL model without
privacy protection will increase the risk of private
information leakage.

Consequently, it is urgent to develop a rigorous
privacy preserving framework that not only resists the
attack of adversaries, but also improves the accuracy of
high-order gene interactions. In this paper, we propose
the high-order gene interactions detection DL
framework (Deep-DPGI) based on Differential Privacy
(DP). This framework first identifies gene interaction
combinations in the DL model and sets multi-loss
functions that are more suitable for high-order sites
detection. Secondly, Deep-DPGI uses the layer-wise
relevance analysis method to measure relevance
difference between neurons weight and outputs, and
disturbs neuron weight by adaptive noising
mechanism to protect the safety of high-order gene
interactions, balancing the privacy and utility. The
main contributions of Deep-DPGI are the following:

(1) Analyze the particularity of high-order gene
interaction process in DL model, design and integrate
multi-loss functions to make sure that the detecting
process is more reasonable.

(2) Propose the adaptive noising mechanism to
protect the security of whole identifying process by
layer-wise relevance analysis method to measure
relevance difference between neurons weight and
outputting results, disturbing neuron weight.

(3) According to the relevance analysis result, add
more noise to gradients of neurons that is less
relevance with the outputs, less noise to gradients that
more relevance, solving the imbalance between privacy
and utility.

The remainder of the paper is organized as follows.
Section 2 overviews the related literature and lists the
preliminaries of this paper, mainly including gene
interaction, deep learning and differential privacy. In
Section 3, we introduce our proposed method in detail.
The experimental evaluations and results are discussed
in Section 4. Finally, Section 5 summarizes the paper.

2 PRELIMINARIES AND BACKGROUND
DL constructs the multi-layer structured network to
learn the internal development rules of data objects
under unsupervised conditions, which has improved
training performance. Based on this, this paper
identifies high-order gene interactions using DL.
However, the training of DL requires private and
representative datasets, which contain sensitive
personal information probably. Ideally, this training
process will not disclose private information. In fact,
one adversary can steal sensitive information and infer
the key feature by constructing model inversion attack,
which will leads to the disclosure of private
information [14]. Therefore, integrating privacy
protection methods into DL methods is a feasible
approach to address privacy threats. This section will
introduce the definition of the differential privacy
theory, deep neural networks and the Layer-wise
relevance analysis algorithm in detail.

Given the dataset D = {(X1, Y1), (X2, Y2), . . . (Xn, Yn)} (X
represents the SNP, and the Y is the class label of SNP
association with disease), where Xi = (xi1, xi2, . . . xid) (xij
is the gene-type result of SNP). Our objective is to
protect the safety of D by an adaptive differential
privacy mechanism for deep neural network that takes
Xi as input and ensure the accuracy of output Yi to the
greatest extent. Table I summarizes the notations used
throughout this paper.

TABLE I SUMMARY OF NOTATIONS OF THIS PAPER

Notations Description
GWAS Genome-wide association studies
SNP Single Nucleotide Polymorphism
DL Deep Learning
DP Differential Privacy
D Input datasets
Xi The training samples
Y The output of machine learning model
K Covolution kernal
t The epoch time of CNNmodel
ℳ Randomized algorithm

{ℎ1, ℎ1, . . . , ℎn} Hidden layers number
e, p One neuron
Rel (Xi) The relevance analysis result between input

and one neuron
Tp An affine transformation of neuron
f(p) The update parameter of each training layer
γ Regularization parameter
θ Learning rate
Zt Random Laplace noise

MAF Minor Allele Frequencies

2.1 Deep learning concept
DL learns and extracts internal laws of datasets by
multi-layer networks that describe the potential
relationships between the inputs and outputs, and has
been one of the most used machine learning
technologies [15]. There are multiple networks of deep
learning frameworks, such as Multi-Layer Perception
(MLP) [16], Convolutional Neural Network (CNN) [17],
Recurrent Neural Network (RNN) [18] ans so on.
Different networks are applied for solving different
types of problems. Among these models, CNN is a
very common and representative model of deep
learning and is used in this paper. Specifically, CNN
can share the convolution kernel during layers, and
there is no need to manually select features on
high-dimensional data processing. The definition of
CNN is shown as follows.

Definition 1 (Convolutional Neural Network) [17].
CNN generally consists of the input layer, convolution
and layer (also called hidden layer), fully connected
layer and output layer. CNN employs the notion of
convolution that is not matrix multiplication but the
mathematical linear operation at least in one of the
hidden layers. The contribution of convolution is to
determine the feature maps. Given a three-order SNP
as input with three-dimensional kernel K , and the
outputting Y is expressed as follows:
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Y[p, q, r] = (S ∗ K)[p, q, r] = ℎ i j S[p − ℎ, q − i, r −���

j]K[ℎ, i, j] (1)

Where p, q, r represent three SNPs respectively. The
new feature maps will be obtained by combining the
input and learned kernel. And, the non-linear
activation function is used for the convolved
outputting.

Activation function = 2
1+e−2Y[p,q,r]

− 1 (2)

This function is as the input in pooling layer, and
the activation function in pooling layer is softmax
activation function. Softmax activation function
computes probability for each class by interpreting its
confidence value. The total error of the output layer is
calculated by using cross-entropy function as follows:

Error =− 1
N s (ln

Y∗Y’ + ln(1−Y)∗(1−Y’))� (3)

Where Y’ is the desired output and N is the sample
of CNN model.

Then, the gradient optimization method is used to
compute the partial derivative of cross entropy loss
function to search the optimal parameters. The key
parameters of the CNN model are updated for every
epoch from time t to t + 1.
2.2 Related work of deep learning in gene interaction
There is no doubt that DL is a popular branch of
machine learning techniques. Research [19] extended
the DL by proposing the hybrid architecture DNN-RF
to improve the presicion to some extent. Li et al. [20]
conducted the DL on the basis of clustering for the
prediction of gene interactions detection, termed as
DPEH. However, it did not validate algorithm
performance on real datasets, its actual availability is
questionable, and it was only suitable for small
datasets. Although, literature [21] showed the
performance of its method based on convolution
neural network in detecting two-loci of hypertension
data, but still used the sorting method to pick out top
20 relevant sites actually, which meant that this
method was a false neural network intelligent method.
Abdulaimma et al. [22] proposed the framework using
the DL to model the cumulative effects of SNPs for the
classification of Type 2 Diabetes. After verification, the
practicability and generality of this method is poor.
Wang et al. [23] studied the marginal epistasis by using
DL that combines the one-dimensional convolutional
neural network and the Long-short Term Memory. But,
literature [24] had concluded that one-dimensional
CNN model was disadvantaged for prediction of
complex sites. The deep learning in identifying SNP
interactions is yet to meet its potential achievements
[22]. However, the first drawback of DL methods is
that they are highly specialized to a specific domain,
and reassessment is needed to tackle issues that do not
pertain to that identical domain. These models are
unable to understand the expression of the data that
they are trained with, which is an issue while

interpreting the results [25]. Then, these models do not
really apply to high-order gene Interactions. Last but
not least, they do not consider the security of input
data that usually contain the large amounts of private
information of contributor during DL training.
2.3 Differential privacy concept
Differential privacy is as one promising strategy for
data privacy protection, and is usually integrated into
machine learning and DL algorithms to preserve the
privacy of input data [26-27]. Indeed, differential
privacy presents the reliable privacy guarantee to
ensure that adversaries cannot infer the inclusion or
exclusion of records in the database, even if they have
information about all records other than the target. The
definition of it is shown as follows.

Definition 2 (ϵ-Differential Privacy) [28]. Given two
adjacent databases D1 , D2 ∈ D , the randomized
algorithmℳ: D → R satisfies ϵ-differential privacy, and
if for any subset of output O ⊆ R, we have:

Pr[ℳ(D1) = O] ≤ eϵPr[ℳ(D2) = O] (4)

Where ϵ is privacy budget and is an important role
in affecting the privacy preserving intensity. ϵ
represents the protection level of the randomized
algorithm ℳ can provide. In practice, the privacy
budget ϵ is always set to a small value because the
smaller the ϵ , the stronger the privacy guarantee, and
vice versa. ϵ should be greater than 0, however,
although in ϵ =0 the algorithm can provide the
strongest guarantee privacy for training data, but for
any adjacent datasets, there are two same probability
distribution, and also can not reflect any useful
information about data. Therefore, the research of the
size design of ϵ value has always been a hot direction
in the field of differential privacy. Actually, it is
difficult to model in utility and seek the trade-off
between privacy information and privacy.
2.4 Related work of differential privacy in deep

learning
As literature [14, 48] demonstrated, deep neural
network model training data (especially some highly
sensitive data, such as biological or image data
containing personal information, etc.) has the risk of
privacy information disclosure, and privacy protection
methods must be integrated during the training.
Differential Privacy has become one of the most
popular methods for preserving privacy for all records
due to it has the strict mathematical theory. Many
scholars have carried out researches on differential
privacy protection for deep learning. Xia et al.
proposed the gradient based differential privacy
optimizer in [30], which simply combined random
sampling, gradient clipping, gradient based on random
perturbation and advanced privacy budget statistics
methods. Gati et al. [31] expressed the data by tensor
and disturbed the tensor matrix to ensure the
differential privacy preserving. Chang et al. [32]
focused the privacy of neural network and proposed
the scheme for solving the privacy disclosure of
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centralized and distributed by analyzing the privacy
vulnerabilities of the training model. Hao et al. [33]
proposed an efficient and privacy-protected joint deep
learning protocol by combining the homomorphic
encryption with differential privacy. It assumed that
third-party servers are honest and secure, but this
assumption was unreasonable. Xu et al. [34] studied
the secure framework based on differential privacy for
edge computing that injected noise into learned
features achieving the purpose of bofuscating sensitive
information. Liu et al. [35] presented the
privacy-protected generative adversary-network
model, by adding noise to the training gradient and
balanced privacy and utility by controlling the number
of training iterations. Cheng et al. [36] proposed a new
algorithm, averaging noise stochastic Gradient Descent.
However, Yang et al. [37] pointed out that the
generally differential privacy SGD algorithm (DP-SGD)
added Gaussian noise of a fixed level would cause the
accuracy of the model to decrease slowly with the
increase of training times. And, Hoefer et al. [38]
concluded that the the classification performance
would decrease with the development of the
pre-training model in differential private data
classification under dynamic pre-training model,
especially when the datasets themselves were not be
considered. Zhang et al. [39] demonstrated that deep
neural network with standard differential privacy
would not provide quantifiable protection to fend off
model reversal attack, by reconstrcuting the training
data from the existing model reversal attack. Wang et
al. [40] embed differential privacy into specific layers
and learning processes to achieve domain adaptation
privacy guarantees. Gong et al. [41] aimed to bridge
the gap between private and non-private models and
proposed the general differential private deep neural
network learning framework based on back
propagation algorithm. Although this framework
improved data availability to some extent, it still led to
excessive back propagation gradient and algorithm
time complexity.
2.5 Layer-wise relevance analysis concept
Layer-wise relevance analysis is a classical algorithm
that calculates the relevance between each input
feature xij and output ℱxi(O) by decomposing the
neurons of preceding layers. The definition and
process of relevance analysis is illustrated in the
following.

Definition 3 (Layer-wise relevance analysis) [42]. l
hidden layers ℎ1, ℎ2, . . . , ℎl , given Re

(l)(xi) is the
relevance result between input xi and neuron e at
layer l . Define the process is Re←p

(l−1,l)(xi) that neuron e
send the message to p . The total relevance of neurons
is:

Re
(l−1)(xi) = p∈ℎi

Re←p
(l−1,l)(xi)� (5)

The decomposing of layer-wise relevance analysis
is:

Re←p
(l−1,l)(xi) =

Tep
Tp+θ

Re
(l)(xi), Tp ≥ 0

Tep
Tp−θ

Re
(l)(xi), Tp < 0

(6)

θ (θ ≥ 0 ) is the predefined stabilizer to resolve the
issue of the unboundedness of Re

(l)(xi). Where Tp is an
affine transformation of neuron e, and it can be defined
as:

Tep = veωep (7)
Tp = e Tep� + up (8)

Where ve is the value of neuron e , ωep is the
weight between neuron e and p. up is the basic term.

In the last hidden layer, for the output variable o ,
the relevance is calculated as follows:

Rp
(l)(xi) =

Tpo
To+θ

fxi(ω), To ≥ 0
Teo
To−θ

fxi(ω), TO < 0
(9)

3 THE PROPOSED METHOD
At present, epistatic detection studies still focus on
identifying 2-order gene interactions. Moreover, few
researchers have paid attention to the security of
genome-wide association studies analysis based on
gene interactions. To remedy these research gaps, this
paper proposes a secure high-order gene interactions
detection framework (Deep-DPGI). This framework
provides privacy guarantee for deep neural networks
based on relevance analysis for high-order gene
interactions, which not only preserves the private
information in the training data effectively, but also
keeps the utility of the framework by adaptive
disturbance mechanism to gradients. As shown in Fig.
1, Deep-DPGI consists of five steps, including
standardizing input data, determining output
requirements, CNN training, correlation analysis, and
result output. The layer-by-layer correlation analysis
method is integrated in the output layer of the
convolutional neural network, and the correlation
between weighted correlation neurons and
classification results is analyzed mainly through back
propagation. Small noise is allocated to the parameters
of neurons with strong correlation, and large noise is
allocated to those with weak correlation. In addition,
the size of the noise range is determined by the Laplace
distribution of the data and the results of the
correlation analysis. The purpose of this is to obtain the
trade-off between privacy and availability, and avoid
adding too much noise and low data availability, and
vice versa. The definition of high-order gene
interaction, specific problem definition and method
elaboration will be presented in the following sections.
3.1 The definition of high-order gene interaction
The scientific community generally believe that there is
almost no phenotype characteristics of an individual is
determined only by a single gene, thus gene-gene (or
gene-environment interaction) to explain individual
characteristics has important theoretical and practical
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significance, also makes the study of gene-gene are
being more and more attention. The process of
identifying gene-gene interactions consists of three
steps: sequencing of contributed gene data, standard
SNP data, and association analysis. The process of
high-order gene interaction is defined as the
combinations of at least κ SNPs affecting phenotype or
disease genes. We express the gene interactions process
as R = {S, G, A} , where S = {S1, S2. . . , Si} represent SNP
typing, G = {G11, G12, . . . , Gij} represent interaction
between Gi and Gj corresponding genes, and A =
{A1, A2. . . , Ai} represented association results. The
κ -order gene interaction represents the recognition of
SNP interaction results of the order of 3n . Among
them, when Gmn > θ, Gmn is called the result with the
main effect, and when Gab < θ, Gab is the result of the
edge effect.
3.2 Problem statement
Let the set of gene variables X = {X1, X2,…, Xi} includes
S = {S1, S2,…, Sj} SNP marker for N individuals. For
high-order gene interaction detection algorithms, the
temporal O(f(n)) and spatial S(n) complexity of the
algorithm increases exponentially in 3n detection
demand. Convolutional neural networks reduce
complexity and improve detection efficiency by
constructing multiple convolutional and pooling layers.
But there are three ways in which neural network
training data may reveal genetic privacy. Firstly, in the
data input phase, one attacker A initiates AK =
{AK1, AK2, . . . , AKn}attacks, including repeated queries
and so on, obtaining about lots of SNPs information
I1, I2, . . . In , and combining background knowledge
KN = {KN1, KN1, . . . , KN1} to directly locate in the
individual. Secondly, in the data analysis stage, A
launches AK = {AK1, AK2, . . . , AKn} attacks, including

model inversion attack and so on, to obtain the T
gradient, ω weight, θ learning rate and other key
parameters related to the original input data. A may
achieve sensitive information by combining the these
parameters and KN = {KN1, KN1, . . . , KN1} . Finally, in
the outputting results stage, the privacy disclosure
process is similar to that of the input scenario. For the
training model without integrated privacy protection
methods, the output of the model is directly related to
the original data. When A obtains a certain number of
output results, he may locate an individual based on
the KN = {KN1, KN1, . . . , KN1} to obtain sensitive
information of the individual.

Fig. 1: Flow diagram of detecting high-order gene interaction by
deep learning in Deep-DPGI framework

Fig. 2: The architecture of Deep-DPGI proposed in this paper

As shown in Fig. 2, this paper proposes a method to
protect the safety of CNN framework, termed as
Deep-DPGI. The method determines the importance of
each neuron by analyzing the correlation between each
layer of neuron and the result during back-propagation,
providing each neuron with varying degrees of privacy
protection. Next, we will elaborate this method.
3.3 Design integrated loss functions
Loss function is an important part of unsupervised
machine learning. A good loss function is critical for
successful training of model parameters because it is

possible to determine parameters that minimize the
mean value of losses for a given training set [43]. The
detection efficiency of the current deep learning model
for epistatic detection is low due to use the learner for
multiple repeat training when detecting multi-order
gene interactions. In this paper, We integrate the
commonly used cross-entropy and the novel focal loss
function [44], which is originally used to resolve the
text classification problem. In order to make it suitable
for epistatic detection process, we have optimized and
improved it, and the specific definition is as follows.

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3214863

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 22,2022 at 06:41:18 UTC from IEEE Xplore.  Restrictions apply. 



Cross entropy loss, also called logarithmic loss, is
the most commonly used classification loss function in
neural networks. The outputting prediction is always
between 0 and 1 and is interpreted as probability,
which is the maximization of logarithmic likelihood
between the training data and the corresponding data
condition. As the predicted probability deviates from
the actual label, the cross entropy loss increases. The
definition is shown in Equation (10).

Le(Yi, Yi� ) =− iYilog(Yi�)� (10)

Define the fp to express the probability for the
classification:

fp =
p if Y = 1

1 − p otℎerwise (11)

To balance the classification in Equation (11), focal
Loss introduces a regulating factor (1 − fp)β , β ≥ 0 . In
this paper, the β in the specific DL framework can be
obtained by reversing the frequency and by the
parameter cross validation process. Specifically, the
focal loss function is defined as follows:

Le(fp) =− (1 − fp)βlog(fp) (12)

Deep-DPGI searches for high-order gene interaction
results under the cross-entropy and focal function. The
two classifiers first search for different epistatic genes
and then correlate epistatic combinations to find
high-order interaction results. The loss function of this
paper is defined as follows:

L = min
xi,xj i=1

N
j=1
ω βi,j

2� Li,j(Yi,j, Y�i,j)� (13)

3.4 Distorting neuron weight based on relevance
analysis

In centralized analysis scenarios, sensitive information
will be disclosed in the training and sharing stage of
epistatic detection research based on machine learning.
Differential privacy noise perturbation methods that
generally integrated in machine learning include
perturbing output result, perturbing gradient,
perturbing objective function coefficient and so on.
These methods ignore the actual requirement of the
data and add inappropriate noise, resulting in poor
availability or insufficient protection degree. This
paper adds appropriate Laplace noise to the training
gradient of neurons on the basis of analyzing the
correlation between each neuron layer and the output
layer. The core theoretical operation process is shown
in Fig. 3. Relevance analysis begins after forward
propagation and backward propagation finishing, and
total neuronal relevance results of one layer are been
calculated. Moreover, the average value can be got
between one neuron and outputting results. More
importantly, relevance analysis results will adjust with
the process of forward and backward propagation, and
finish until the propagation process ends.

At the beginning of the training, we define the

gradient updating objective function of the general
optimization method. In each training step, a group of
random training samples L on data set X is used,
starting from the initial point f0 and updating
parameter f at t step, we have:

ft+1 = ft − θt(γft +
1
L i=1 L(ft, Xi)� ) (14)

Where θ is the learning rate of step t and γ is the
regularization parameter.

In the process of back propagation, we obtain the
total correlation value between neurons at layer j =
{j1, j2, . . . , jn} and the result through Equation (15).

Rj
X = i=1Ri←j

X� (15)
Then, the correlation analysis results of individual

neurons are obtained by averaging.

Rj(Xi) =
1
N i=1Rij(X)� (16)

In order to better combine the correlation result
with the noise distribution mechanism, we introduce
the correlation coefficient r . Because the stronger the
correlation is, the smaller the added noise will be, and
vice versa, so the r is expressed as an inverse
relationship in this paper.

Fig. 3: The process of layer-wise relevance analysis method of
Deep-DPGI based on back propagation algorithm

Algorithm 1: DPLRP.

Input: SNP datasets X, privacy budget ϵ, Learning rate θ, the

number of batches t, Loss function L(Xi), relevance

coefficient r.

Output: The optimal and noised gradient of each neuron

ft+1.

1: Initialize the model parameters.

2: for j ∈ [1, i] do

3: Calculate the relevance Rj(X) of each layer in deep

neural network.

4: Get the relevance coefficient rj.

5: Allocate the adaptive privacy budget ϵij = rij × ϵ.
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6: end for

7: for t ∈ T do

8: Select the dataset Li from training samples L on X.

9: Compute gradient f(Xi) ← L(fi, Xi).

10: Gradient update after noised ft+1 = ft − θt(γft +
1
L
( i=1 L(Xi) + Zt)� ).

11: end for

rj =
1

Rj(Xi)
(17)

In addition, the adaptive privacy budget allocation
is given by:

ϵij = rij × ϵ (18)

Where ϵ refers to the total privacy budget value
calculated from the Laplace distribution of data.

Finally, we disturb the training gradient to ensure
the security of SNPs in the training and sharing stages
in the centralized scenario. As shown in Equation (19),

ft+1 = ft − θt(γft +
1
L
( i=1L(Xi) + Zt)� ) (19)

Zt is the Laplace noise. Pseudo-code of adaptive
disturb mechanism based on correlation analysis,
taking SGD learner as an example, termed as DPLRP,
is shown in Algorithm 1.

Next, we will prove that our algorithm satisfies
ϵ-differential privacy.

Proof: Given that L and L’ are two adjacent batches.
The ft+1(L) and ft+1(L’) are the parameters of L and L’.
The formula is expressed as follows.

ft+1(L) = ft − θt(γft +
1
L
( i=1 L(Xi))� ) (20)

ft+1(L’) = ft − θt(γft +
1
L
( i=1 L(X’i))� ) (21)

Then, the inequality of two outputs difference is the
following:

∆ft =
θt
|L| f∈ft

||
Xi∈ft

L(Xi) −
X’i∈f’t

L(X’i)�� ||1�

≤
θt
|L| f∈ft

||
Xi∈ft

L(Xi)||1��

+
θt
|L| Xi∈ft

||�
X’i∈f’t

L(X’i)� ||1

≤ 2 θt
|L|
max
Xi∈ft f∈ft

||L(Xi)||1� (22)

Meanwhile, from the Equation (22) and differential

privacy, ∆ft is the sensitivity of neural network ( ∆ft ≤

2 θt
|L|
) . To protect the private information of neural

network, we disturb the gradient based on relevance

analysis, the noise can be written as:

ft+1 = ft − θt(γft +
1
L
( i=1 L(Xi) + Lap( ∆ft

ϵi
))� ) (23)

We have:

Pr[ft+1(L)]
Pr[ft+1(L’)]

=
f∈ft i=1 n�� exp(

ϵi
θt
|L| || Xi∈ft

L(Xi) − ( Xi∈ft
L(Xi) + Lap(

∆ft
ϵi
))� ||1�

∆ft
)

f∈ft i=1 n�� exp(
ϵi
θt
|L| || X’i∈f’t

L(X’i) − ( Xi∈ft
L(Xi) + Lap(

∆ft
ϵi
))� ||1�

∆ft
)

≤
f∈ft i=1

nexp(
ϵi
θt
|L|
∆ft

||
Xi∈ft

L(Xi) −
X’i∈f’t

L(X’i)||1���� )

≤
f∈ft i=1

n�� exp(
ϵi
θt
|L|
∆ft

2max
Xi∈ft

|| L(Xi)||1)

≤
f∈ft i=1

n�� exp(ϵ
2 θt|L|

rj
Rj(Xi)
∆ft

) = exp(ϵ)

4 EXPERIMENTS
In order to tackle the problem of privacy disclosure of
the high-order gene interaction detection and improve
the detection efficiency, this paper proposes the
Deep-DPGI framework, which integrates the DL
training model based on multiple objective functions
and adaptive allocation disturbing mechanism based
on correlation analysis, achieving the balance between
privacy and utility. In this section, we will verify the
performance of Deep-DPGI framework with the results
of virtual simulation experiments, including the
sources of datasets required by simulation experiments
and the experimental operating environment.
4.1 Experimental setup
The datasets required by the experiment include
simulated and real datasets. More specifically, the
simulated datasets are generated by GAMETES 2.0
software [45], the sample size of case and control are
4000 respectively, and the number of SNP changed
within 5000, which means that the datasets are at least
4000,000. The real datasets come from Age-related
Macular Degeneration (AMD) sequencing results.
There are a total of 8 disease models, among which
Model 1-4 are the models with marginal effect, which
are referred to the literature [46]. Model 5-8 are
generated according to the penetrance table without no
marginal effect. Furthermore, we adopt the
Age-related Macular Degeneration (AMD) [47]
datasets to judge Deep-DPGI performance. A 64-bit,
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
processor and 32GB RAM simulation environment is
used to train the detection model. Python 3.6 is used as
the main programming language, and TensorFlow 1.14
as the machine learning framework in the Windows10
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system. In addition, since the interaction results of
simulated datasets are the last three SNPs, in order to
ensure the actual effect of the framework, the
simulated datasets used in the training process are
disturbed and the three SNPs are randomly placed in
different positions of the datasets.
4.2 Performance of secure DL model for high-order

interaction
In DL research, the classification performance of models

greatly affects the accuracy of results. Therefore, evaluation
of model performance is crucial to timely adjustment of
model parameters to improve practical availability. In this
experiment, True Positive Rate (TPR), False Positive Rate
(FPR), Accuracy and other indicators are used to evaluate
the CNN network for identifying high-order gene
interactions used in this paper. A total of 300 iterations of
training, among which the data in Fig. 4 (c) and (d) are the
average values.

Fig. 4: Performance results of Deep-DPGI method in TPR, FPR, Loss and Precision

TPR and FPR results are obtained by constructing
confusion matrix. TPR refers to the proportion of
positive example data correctly identified in the total
positive example data, also called recall rate. FPR
stands for the percentage of misclassification data
predicted to be correct. Ideally, the higher the TPR, the
better performance, indicating that the model is more
likely to be correctly classified. The smaller the FPR,
the better performance, also means that the model is
less and less likely to misclassify. Fig. 4 illustrates the
performance of Deep-DPGI metrics with respect to
accuracy, precision, loss, and classification error for
both training and validation. As can be seen from Fig.
4(a), TPR gradually increases with the number of
iterations until it approaches 100. It shows that
Deep-DPGI can correctly identify positive case data. In
Fig. 4(b), FPR gradually decreases with the number of
iterations until it approaches 0 and becomes flat. The
results show that the capability of Deep-DPGI model to
identify error samples increases with the increase of
iterations. Fig. 4 (c) shows the relationship between
accuracy and loss. In general, the smooth curve
indicates that the loss and prediction accuracy change
direction is consistent, and the model performance is
good. In fact, according to the experimental results, at
the beginning of the training iteration, the model still
had a high classification loss in identifying high-order
gene interaction combinations, but the model after
training has a good classification performance. Fig. 4 (d)
is the comparison between the model's training
precision and testing accuracy. It can be seen from the
results that the overall model classification accuracy

changes in the same direction, which can reduce the
excessive number of iterations and high model
complexity caused by training bias. It is worth noting
that the number of training iterations of this model is
within a reasonable range [48].
4.3 Power of high-order gene interaction based on

simulated datasets
Simulated studies are exampled on three-locus
epistatic interactions detection. As there are few
methods to study high-order gene interaction, DECF
[49] and DualWMDR [50] are selected as the compared
algorithms. Refer literature [50] to create disease
models 1-8 which are influenced by different
penetrances and MAF to simulate the real gene state.
Especially, MAF varies in [0.05, 0.4] for each epistatic
model. Each dataset includes SNPs varying from 200 to
5000, 8000 samples with 4000 cases and 4000 controls.
We guess that the number of iterations might have an
impact on Power, so the average calculated by 200
iterations was taken as the experimental result to
ensure the fairness and rationality of the experiment.
In addition, Power is used to evaluate the performance
of high-order gene interaction in simulated experiment,
and defined as:

Power = NT
ND

(24)

Where NT is the number of datasets in which
specific disease-associated epistasis can be successfully
identified, and ND is the number of generated datasets.
The comparison results are shown in Fig. 5.
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Fig. 5: Power performance comparison results between Deep-DPGI, EDCF and DualWMDR algorithms

The Power of these methods on eight three-locus
epistatic models are shown in Fig. 5. For all cases,
Deep-DPGI frequently outperforms EDCF and
DualWMDR. The difference between Deep-DPGI and
other methods is that Deep-DPGI can identify epistatic
model with marginal effect. The obvious comparison
results between them in Fig. 5 model 1-4 show that the
Deep-DPGI is more accurate than EDCF and
DualWMDR to evaluate the interaction effect of genes,
and the Power of DualWMDR is high than EDCF. The
reason is that Deep-DPGI uses DL method to seek the
laws of epistatic model and can meet the needs of
different scenarios with and without marginal effects
under the guidance the idea of migration, furthermore,
DualWMDR improves Power based on filtering and
exhaustion, which is better than EDCF which only uses
clustering method. In model 5-8 (epistatic model with
no marginal effect) and SNP>1000 experiment, the
overall performance of DualWMDR is inferior to that
of EDCF and DeeP-DPGI. The reason is that the
computational performance of this algorithm decreases
with the increase of experimental data for high-order
detection objects. The detection accuracy of EDCF is
close to the Deep-DPGI method in this paper, which
can meet the requirements of large-scale data analysis.
However, after testing, it is found that the running
time and space complexity of this method is high, and
it is not suitable for large-scale practical application
scenarios.
4.4 Power of high-order gene interaction based on

real datasets
We apply Deep-DPGI on AMD real datasets [47]. AMD
is the leading cause of blindness in middle-aged and
elderly people and is a common eye disease. We
downloaded AMD data from the official website of
WTCCC, which contained 96 case individuals and 50
control individuals with 103611 SNPS. Through quality
control, the number of SNP is 96607. Klein et. al [51]
reported two interaction results most relevant to AMD,
rs380390 and rs1329428. After the initialization
parameters, the deep-DPGI framework took these two
results as the main effect SNPS to search for the
corresponding third-order gene interaction results in
AMD. The results are shown in Table II.
TABLE II THREE-ORDER EPISTATIC DETECTION RESULTS OF

DEEP-DPGI METHOD IN AMD DATASETS

Gene SNP Location P-value

CFH,
NPAT,

rs380390,
rs3781868,

11q22,
13q21

8×10-18

PCDH9 rs1036995

NRG3
rs1458402,
rs2207768,
rs4901408

11p15 8×10-18

NXPH1,
PTPRD

rs1476623,
rs6967345,
rs1408120

7p22,
9p23-p24

3.2×10−24

KANK1
rs595113,
rs1569651,
rs2031175

9p24 4.9×10−24

CFH, NPAT
rs132948,
rs3781868,
rs3781868

1p32,
11p22-23

6.78×10−10

NAMPT,
KCNH7

rs10487833,
rs10495593,
rs1740752

10p13 3.24×10−18

Above are the results of the third-order gene
interaction test for AMD. These SNPS are located in
some important genes and perform important
functions. For example, CFH gene on chromosome 1
encodes a protein that plays a key role in the regulation
of complement activation. PCDH9 gene encodes a
cadherin associated neuronal receptor and we assume
that it involves in specific neuronal connections and
signal transduction. In addition, the other SNP
combinations also are found that would associate with
AMD, but their biological explanation needs further
research.
4.5 Privacy protection effect comparison of deep

learning-oriented methods
This paper presents a DL differential perturbation
method (DPLRP) based on correlation analysis. First,
the correlation between each layer of neurons and the
results is analyzed, and then the noise is allocated
adaptively according to the characteristics of the data.
We evaluate the DPLRP compared with Adam,
DPAdam and Gaussian. Adam [52] has become the
most commonly used neural network gradient
optimizer because of its ability to address non-convex
problems. Literature [29] demonstrated that the
gradient of deep neural network model may disclose
the private information. DPSGD [53] adds uniform
Laplace noise to the gradient to ensure the security of
the sensitive information in the training data. In
addition, Gaussian [54] is also selected for comparison
that added the equal amount of Gaussian noise to the
gradient to prevent sensitive information leakage. All
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experimental results are obtained after 200 iterations.
The experimental results are shown in Fig. 6.

Fig. 6 (a) is a combination diagram of training
accuracy based on different training batches and
different models. First, the line chart shows the change
of accuracy of different learners with the increase of
iteration times. Adam is the standard reference
without noise disturbance. It can be seen from the line
chart that compared with other methods, DPLRP
method can greatly improve the accuracy at the
beginning of training iteration, and its accuracy
iteration speed is better than DPSGD and Gaussian.
The reason is that DPLRP can avoid the interference of
excessive noise by adding noise intelligently through
the correlation between neurons and results, so as to
quickly improve the accuracy of training. DPSGD and
Gaussian lines have the same change trend, and the
change direction of accuracy is consistent with the
improvement speed. The reason is that the two
methods ignore the characteristics of data and add the
same amount of noise to the gradient, resulting in
excessive noise and low initial accuracy of training. It

can also be seen from the histogram below (a) that
DPLRP is slightly better than other methods in
detecting high-order gene interaction. Fig. 6 (b) is also
a combination diagram of training accuracy based on
different training batches and different models. The
comparison algorithm includes only the learner with
integrated gradient disturbance mechanism. First, the
line chart shows the change of accuracy of DPSGD,
Gaussian and DPLRP with the change of privacy
budget size. As can be seen from the line chart results,
the other two methods can always ensure high
accuracy, while the accuracy of the DPLRP method in
this paper changes along with the privacy budget
value. In general, the smaller the privacy budget, the
more noise you add and the lower the data availability.
DPLRP changes in accordance with the standard law,
while DPSGD and Gaussian add the same amount of
noise to data each time, creating the illusion of high
accuracy and ignoring the law of data distribution and
development. As can be seen from the histogram
below (b), DPLRP is slightly better than other methods
in detecting high-order gene interaction.

(a) (b)

Fig. 6: Accuracy comparison results between Adam, DPSGD, Gaussian and DPLRP methods

5 CONCLUSION
In order to address the problem of privacy disclosure
in the field of epistatic detection, improve the detection
performance and reduce the detection burden
high-order gene interaction, a secure detection
framework for high-order gene interaction is proposed
in this paper. This framework provides the intelligent
protection mechanism that is an adaptive differential
privacy preserving learning framework for deep neural
networks based on relevance analysis. Our approach
adds noise to the gradient adaptively according to the
relevance results between neurons and outputs.
Specifically, the more noise is added to the gradients
that are less relevance to the outputs, and on the
contrary, the less noise is added to the gradients of
neurons which has more relevance to the outputs. In
addition, we also identify network requirements for

high-order gene interactions and optimized the
convolutional neural network structure. A high order
convolutional neural network method based on
multiple loss functions is designed. Experimental
evaluations are constructed on simulated and real
datasets validate the accuracy of our framework.
Currently, the Deep-DPGI algorithm also has certain
limitations. For example, the execution time need to be
improved. In our experience, one possible reason is
that the more algorithmic components of Deep-DPGI.
Then, we should compare Deep-DPGI with other
state-of-the-arts in larger datasets, after all, we will
have new challenges in the big data era.

In the future, our work will be extended towards
the following aspects. On the one hand, an intelligent
gradient clipping method is designed to accelerate the
convergence of training and improve the effectiveness
of the model. On the other hand, some other noising
mechanisms based on differential privacy need to be
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studied to protect the security of sensitive information
from multiple perspectives and ensure the security of
model training and sharing. Finally, the research of
Deep-DPGI on large-scale datasets is also our future
research directions.

ACKNOWLEDGMENTS

This work was supported by the National Key
Research and Development Program of China under
Grant No. 2020YFC2006600, the National Natural
Science Foundation of China under Grant No.
62003291, National Science and Technology
Foundation Project under Grant No. 2019FY100100,
and the QingLan Project of Jiangsu Province of China.

DATA AVAILABILITY STATEMENT

Python 3.6 is the main programming language, and
TensorFlow 1.14 is the machine learning framework. In
addition, if we have to share the codes, we will
consider uploading the key part of Deep-DPGI.

REFERENCES
[1] V. Milad, S. Siavash, K. Karim, et al., “Weighted Single-Step

GWAS for Body Mass Index and Scans for Recent Signatures
of Selection in Yorkshire Pigs”, Journal of Heredity, vol. 3,
no. 3, pp. 1-15, 2022.

[2] N. Hao, Y. Feng, H. Zhang, “Model selection for
high-dimensional quadratic regression via regularization”,
JOURNAL OF THE AMERICAN STATISTICAL
ASSOCIATION, vol. 113, pp. 615-625, 2018.

[3] M. Mills, C. Rahal, “The GWAS Diversity Monitor tracks
diversity by disease in real time”, Nature Genetics, vol. 52,
no. 3, pp. 242-243, 2020.

[4] G. Attila, M. Jonathan, “High-throughput analysis of
epistasis in genome-wide association studies with BiForce”,
BIOINFORMATICS, vol. 28, no. 15, pp. 1957-1964, 2012.

[5] T. Nguyen, J. Huang, Z. X. Wu, Y. Qing, “Genome-wide
association data classification and SNPs selection using
two-stage quality-based Random Forests”, BMC
GENOMICS, vol. 16, pp. 1-11, 2015.

[6] S. Tuo, J. Zhang, X. Yuan, “FHSA-SED: Two-Locus Model
Detection for Genome-Wide Association Study with
Harmony Search Algorithm”, PLOS ONE, vol. 11, no. 3, pp.
1-27, 2016.

[7] L. Chuang, Y. Lin, H. Chang, “An Improved PSO
Algorithm for Generating Protective SNP Barcodes in Breast
Cancer”, PLOS ONE, vol. 7, no. 5, pp. 1-9, 2012.

[8] C. Yang, L. Chuang, Y. Lin, “CMDR based differential
evolution identifies the epistatic interaction in genome-wide
association studies”, BIOINFORMATICS, vol. 33, no. 15, pp.
2354-2362, 2017.

[9] Y. Wang, X. Liu, K. Robbins, “AntEpiSeeker: detecting
epistatic interactions for case-control studies using a
two-stage ant colony optimization algorithm”, BMC
research notes, vol. 3, pp. 117-129, 2010.

[10] M. Xiang, J. Yu, Z. Yang, H. yu, H. He, “Probabilistic power
flow with topology changes based on deep neural network”,
INTERNATIONAL JOURNAL OF ELECTRICAL POWER &

ENERGY SYSTEMS, vol. 117, pp. 1-13, 2020.
[11] F. Cristovao, S. Cascianelli, A. Canakoglu, M. Carman, L.

Nanni, P. Pinoli, et al., “Investigating Deep Learning Based
Breast Cancer Subtyping Using Pan-Cancer and Multi-Omic
Data”, IEEE-ACM TRANSACTIONS ON
COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,
vol. 19, no. 1, pp. 121-134, 2022.

[12] X. Liu, J. Zhao, J. Li, B. Cao, Z. Lv, “Federated Neural
Architecture Search for Medical Data Security”, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, vol.
18, no. 8, pp. 5628-5636, 2022.

[13] Z. Lin, A. Owen, R. Altman, “Genomic research and human
subject privacy”, SCIENCE, vol. 305, no. 5681, pp. 183-183,
2004.

[14] M. Fredrikson, S. Jha, T. Ristenpart, “Model Inversion
Attacks that Exploit Confidence Information and Basic
Countermeasures”, in the 22th ACM SIGSAC
CONFERENCE ON COMPUTER AND
COMMUNICATIONS SECURITY, pp. 1322-1333, 2015.

[15] W. Serrano, “Genetic and deep learning clusters based on
neural networks for management decision structures”,
NEURAL COMPUTING & APPLICATIONS, vol. 32, no. 9,
pp. 4187-4211, 2020.

[16] Y. Zhang, B. Di, J. Lin, L. Song, “HetMEC: Heterogeneous
Multi-Layer Mobile Edge Computing in the 6 G Era”, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol.
69, no. 4, pp. 4379-4391, 2020.

[17] X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan,
“Deep-Learning-Enhanced Multitarget Detection for
End-Edge-Cloud Surveillance in Smart IoT”, IEEE Internet
of Things Journal, vol. 8, no. 16, pp. 12588-12596, 2021.

[18] X. Zhou, Y. Li, and W. Liang, “CNN-RNN Based Intelligent
Recommendation for Online Medical Pre-Diagnosis
Support”, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 18, no. 3, pp. 912-921, 2021.

[19] S.Uppu, A. Krishna, “A deep hybrid model to detect
multi-locus interacting SNPs in the presence of noise”,
INTERNATIONAL JOURNAL OF MEDICAL
INFORMATICS, vol. 119, pp. 134-151, 2018.

[20] X. Li, L. Liu, J. Zhou, C. Wang, “Heterogeneity Analysis
and Diagnosis of Complex Diseases Based on Deep Learning
Method”, SCIENTIFIC REPORTS, vol. 8, pp. 1-8, 2018.

[21] S.Uppu, A. Krishna, “Convolutional Model for Predicting
SNP Interactions”, NEURAL INFORMATION
PROCESSING, vol. 11305, pp. 127-137, 2018.

[22] X. Zhou, W. Liang, K. Wang, and L. T. Yang, “Deep
Correlation Mining Based on Hierarchical Hybrid Networks
for Heterogeneous Big Data Recommendations”, IEEE
Transactions on Computational Social Systems, vol. 8, no. 1,
pp. 171-178, 2021.

[23] L. Abdollahi, D. Gianola, F. Penagaricano, “Deep learning
versus parametric and ensemble methods for genomic
prediction of complex phenotypes”, GENETICS
SELECTION EVOLUTION, vol. 52, no. 1, pp. 1-15, 2020.

[24] P. Bellot, G. delos Campos, M. Pérez‑Enciso, “Can deep
learning improve genomic prediction of complex human
traits?”, Genetics, vol. 210, pp. 809-819, 2018.

[25] A. Chattopadhyay, T. Lu, “Gene-gene interaction: the curse
of dimensionality”, ANNALS OF TRANSLATIONAL
MEDICINE, vol. 7, no. 24, pp. 1-5, 2019.

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3214863

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 22,2022 at 06:41:18 UTC from IEEE Xplore.  Restrictions apply. 



[26] X. Wu, H. Wang, Y. Wei, Y. Mao, S. Jiang, “An Anonymous
Data Publishing Framework for Streaming Genomic Data”,
Medical Imaging and Health Informatics, vol. 8, no. 3, pp.
546–554, 2018.

[27] H. Wang, X. Wu, “IPP: An Intelligent Privacy-Preserving
Scheme for Detecting Interactions in Genome Association
Studies”, IEEE/ACM transactions on computational biology
and bioinformatics, 2022.

[28] X. Wu, Y. Zhang, A. Ming, “MNSSp3: Medical big data
privacy protection platform based on Internet of things”,
Neural Computing & Application, 2020.

[29] X. Zhou, W. Liang, K. Wang and S. Shimizu,
“Multi-Modality Behavioral Influence Analysis for
Personalized Recommendations in Health Social Media
Environment”, IEEE Transactions on Computational Social
Systems, vol. 6, no. 5, pp. 888-897, 2019.

[30] J. Xia, W. Huang, H, Li, “Gradient-Based Differential
Privacy Optimizer for Deep Learning Model Using
Collaborative Training Mode”, in the 7th IEEE International
Conference on Computer Science and Network Technology
(ICCSNT), pp. 208-215, 2019.

[31] N. Gati, L. Yang, Z. Ren, “Differentially Private Tensor
Deep Computation for Cyber-Physical-Social Systems”,
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL
SYSTEMS, vol. 8, no. 1, pp. 236-245, 2021.

[32] S. Chang, C. Li, “Privacy in Neural Network Learning:
Threats and Countermeasures”, IEEE NETWORK, vol. 32,
no. 4, pp. 61-67, 2018.

[33] M. Hao, H. Li, H. Yang, “Towards Efficient and
Privacy-preserving Federated Deep Learning”, in the 2019
IEEE INTERNATIONAL CONFERENCE ON
COMMUNICATIONS (ICC), 2019.

[34] C. Xu, J. Ren, K. Ren, “EdgeSanitizer: Locally Differentially
Private Deep Inference at the Edge for Mobile Data
Analytics”, IEEE INTERNET OF THINGS JOURNAL, vol. 6,
no. 3, pp. 5140-5151, 2019.

[35] Y. Liu, J. Peng, Y. Wu, “PPGAN: Privacy-preserving
Generative Adversarial Network”, in the 25th IEEE
International Conference on Parallel and Distributed
Systems (IEEE ICPADS), pp. 985-989, 2019.

[36] H. Cheng, P. Yu, Y. Chen, “Towards Decentralized Deep
Learning with Differential Privacy”, in the International
Conference on Cloud Computing (CLOUD) held as Part of
the Services Conference Federation (SCF), pp.130-145, 2019.

[37] J. Yang, J. Wu, X. Wang, “Convolutional neural network
based on differential privacy in exponential attenuation
mode for image classification”, IET IMAGE PROCESSING,
vol. 14, no. 15, pp. 3676-3681, 2020.

[38] N. Hoefer, S. Monroy, N. Abe, et. al, “Performance
Evaluation of a Differentially-private Neural Network for
Cloud Computing”, in the 2018 IEEE INTERNATIONAL
CONFERENCE ON BIG DATA (BIG DATA), pp. 2545, 2018.

[39] Q. Zhang, J. Ma, J. Lou, “Broadening Differential Privacy
for Deep Learning Against Model Inversion Attacks”, in the
IEEE INTERNATIONAL CONFERENCE ON BIG DATA
(BIG DATA), pp. 1061-1070, 2020.

[40] Q. Wang, Z. Li, S. Wang, “Deep Domain Adaptation With
Differential Privacy”, IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, vol. 15, pp.
3039-3106, 2020.

[41] M. Gong, K. Pan, Z. Tang, “Preserving differential privacy
in deep neural networks with relevance-based adaptive
noise imposition”, NEURAL NETWORKS, vol. 125, pp.
131-141, 2020.

[42] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin, ”Siamese
Neural Network Based Few-Shot Learning for Anomaly
Detection in Industrial Cyber-Physical Systems”, IEEE
Transactions on Industrial Informatics, vol. 17, no. 8, pp.
5790-5798, 2021.

[43] D. Tian, F. Yang, Y. Niu, “Loss function of SL (sekiguchi
lesion) in the rice cultivar Minghui 86 leads to enhanced
resistance to (hemi)biotrophic pathogens”, BMC Plant
Biology, vol. 20, no. 1, pp. 507-517, 2020.

[44] T. Lin, P. Goyal, R. Girshick, et. al, “Focal Loss for Dense
Object Detection”, IEEE Transactions on Pattern Analysis &
Machine Intelligence, no. 99, pp. 2999-3007, 2017.

[45] R. Urbanowicz, J. Kiralis, A. Sinnott, T. Heberling, J. Fisher,
J. Moore, “Gametes: A fast, direct algorithm for generating
pure, strict, epistatic models with random architectures”,
Bio Data Mining, vol. 5, no. 16, pp. 5-16, 2012.

[46] Y. Zhang, J. Liu, “Bayesian inference of epistatic
interactions in case-control studies”, Nature Genetics, vol. 39,
no. 9, pp. 1167-1173, 2007.

[47] X. Wan, “Detecting two-locus associations allowing for
interactions in genome-wide association studies”,
Bioinformatics, vol. 26, pp. 2517–2525, 2010.

[48] S. Lin, K. Wang, Y. Wang, D. Zhou, “Universal Consistency
of Deep Convolutional Neural Networks”, IEEE
TRANSACTIONS ON INFORMATION THEORY, vol. 68,
no. 7, pp. 4610-4617, 2022.

[49] M. Xie, J. Li, “Detecting genome-wide epistasis based on
the clustering of relatively frequent items”, Bioinformatics,
2012.

[50] Cao, G. Yu, W. Ren, “DualWMDR: Detecting epistatic
interaction with dual screening and multifactor
dimensionality reduction”, Human Mutation, vol. 41, pp.
1-15, 2020.

[51] R. Klein, “Complement factor polymorphism in
age-relatedmacular degeneration”, Science, vol. 308, pp.
385-389, 2005.

[52] D. Kingma, J. Ba, “Adam: A Method for Stochastic
Optimization”, Computer Science, 2014.

[53] M. Abadi, A. Chu, I. Goodfellow, H. Mcmahan, “Deep
learning with differential privacy” in ACM SIGSAC
conference on computer & communications security, 2016.

[54] H. Liu, Z. Wu, “Privacy-Preserving Data Aggregation
Framework for Mobile Service Based Multiuser
Collaboration”, INTERNATIONAL ARAB JOURNAL OF
INFORMATION TECHNOLOGY, vol. 17, no. 4, pp. 450-460,
2020.

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3214863

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 22,2022 at 06:41:18 UTC from IEEE Xplore.  Restrictions apply. 



Yongting Zhang received the BMS
degree in Nanjing University of
Chinese Medicine Hanlin College,
Taizhou, China, in 2019. She
received the MM degree in Xuzhou
Medical University, Xuzhou, China,
in 2022. She is pursuing the Ph.D
degree in Universiti Malaya. Her
research interest includes privacy
protection and information security.

Email:
301910911596@stu.xzhmu.edu.cn

Yonggang Gao received the B.S.
degree in Xuzhou Medical University,
Xuzhou, China, in 2019. He is
pursuing the M.S. degree in medical
informatics with Xuzhou Medical
University, Xuzhou, China. His
research interest includes medical
information security.

Email: 300109110840@stu.xzhmu.edu.cn

Huanhuan Wang received the
Master’s degree in computer
technology in Anhui University of
Technology, in 2015. She is working
toward PhD degree at China
University of Mining and Technology.
Her research interests include
medical privacy protection, data
mining methods in medical
informatics.

Email: whh@xzhmu.edu.cn.com

Huaming Wu received the BE and
MS degrees from Harbin Institute of
Technology, China, in 2009 and
2011, respectively, both in electrical
engineering, and the PhD degree
with the highest honor in computer
science from Freie Universitat Berlin,
€ Germany, in 2015. He is currently
an assistant professor in the Center
for Applied Mathematics, Tianjin
University. His research interests
include model-based evaluation,
wireless and mobile network

systems, mobile cloud computing, and deep learning. He is a
member of the IEEE.
Email: whming@tju.edu.cn.

Youbing Xia received Ph.D in Philology
of Traditional Chinese Medicine in
Nanjing University of Chinese Medicine,
Nanjing, China. He is currently the
Secretary of the party committee of
Xuzhou Medical University, China. His
research interests include acupuncture
treatment of infertility and study on
acupuncture schools.
Email: 110403@njucm.edu.cn

Xiang Wu received the B.Eng.
degree in Information Engineering,
the M.S. and Ph.D. in
communication and information
system all in China University of
Mining and Technology, Xuzhou,
China, in 2007, 2010 and 2014,
respectively. He is currently the
deputy dean of the School of
Medical Information and
Engineering and the director of the
Institute of Medical Information
Security, Xuzhou Medical University,

China. He is also a visiting professor and doctoral supervisor of
Universiti Malaya. His research interests include privacy
protection and information security.
Email: wuxiang@xzhmu.edu.cn

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3214863

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 22,2022 at 06:41:18 UTC from IEEE Xplore.  Restrictions apply. 

mailto:whhxzhmu@163.com
mailto:wuxiang@xzhmu.edu.cn

