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Abstract—Big data frameworks such as Apache Spark is becoming prominent to perform large-scale data analytics jobs in various
domains. However, due to limited resource availability, the local or on-premise computing resources are often not sufficient to run these
jobs. Therefore, public cloud resources can be hired on a pay-per-use basis from the cloud service providers to deploy a Spark cluster
entirely on the cloud. Nevertheless, using only cloud resources can be costly. Hence, both local and cloud resources nowadays are
used together to deploy a hybrid cloud computing cluster. However, scheduling jobs in a cluster deployed on hybrid clouds is
challenging in the presence of various Service-Level Agreement (SLA) demands such as cost minimization and job deadline
guarantee. Most of the existing works either consider a public or a locally deployed cluster and mainly focus on improving job
performance in the cluster. In this article, we propose efficient scheduling algorithms that leverage from different VM instance pricing in
a hybrid cloud deployed cluster to optimize the Virtual Machine (VM) usage cost for both local and cloud resources and maximize the
job deadline met percentage. We have conducted extensive simulation-based experiments to compare our proposed algorithms with
the baseline approaches. In addition, we have developed a prototype system on top of Apache Mesos cluster manager and performed
real experiments to evaluate the applicability of our proposed approaches in a real platform with benchmark applications. The results

show that our proposed algorithms are highly scalable and reduce the cost of VM usage of a hybrid cluster for up to 20 percent.

Index Terms—Spark, hybrid cloud, cluster-scheduling, SLA, big data applications, deadline, cost-minimization

1 INTRODUCTION

NALYSING data at a massive scale is becoming crucial

due to the availability of huge data in various domains
such as scientific research, social media, business. Several
prominent big data processing platforms such as Hadoop
[1], Spark [2] and Storm [3] are used to analyze this enor-
mous volume of data. A big data processing platform can
be deployed in local-premises using computing resources
owned by a company. Besides, as cloud service providers
offer flexible, scalable, and affordable computing resources
on-demand, it is also becoming popular to deploy a big data
processing cluster in the cloud. Although most of the
deployments of a big data computing cluster are either
local, or on the cloud, many organizations are also using a
hybrid setup where both local and cloud resources are used
together to form the cluster.! However, it is challenging to
schedule jobs in a cluster deployed on hybrid clouds while
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ensuring the SLA parameters such as monetary cost mini-
mization, and deadline. In this paper, we propose schedul-
ing algorithms that can satisfy the SLA requirements of the
jobs in a big data processing cluster deployed in a hybrid-
cloud.

We have chosen Apache Spark as our target big data
processing platform as it is vastly replacing traditional
Hadoop-based platforms. Spark can utilize memory to store
intermediate results to speed up the processing. Moreover,
it is more scalable than other platforms and more suitable
for running complex analytics jobs. Spark programs can be
written in many high-level programming languages, and it
also supports diverse data sources such as HDFS [4], Hbase
[5], Cassandra[6] and Amazon S3.2 The data abstraction of
Spark is called Resilient Distributed Dataset (RDD) [7],
which is fault-tolerant. When a Spark job is launched, it cre-
ates one or more executors that use a fixed chunk of resour-
ces in any cluster nodes. These executors are used by a job
to run multiple tasks in parallel at different stages of the
data processing pipeline to work on various partitions of
the dataset.

The default scheduler of Spark is FIFO?, which schedules
the jobs on a first-come-first-serve basis. The executors from
a job are distributed in different nodes in a round-robin
fashion for balancing the cluster load and improve perfor-
mance. In addition, it can also consolidate the core usages
and minimize the total number of nodes used in the cluster.
However, if the nodes (VMs) are deployed in a public cloud,

2. [Online]. Available: https:/ /aws.amazon.com/s3/
3. [Online]. Available: https://spark.apache.org/docs/latest/job-
scheduling.html
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distributing the executors across different VMs can be costly
as most of the VMs will be always turned on. In addition,
there will be free resources in these VMs in an off-peak
period when not many jobs are running in the cluster at the
same time. Furthermore, if a hybrid cloud setup is consid-
ered, challenges within inter-cluster scheduling exist which
include: design issues for federated multi-cluster, latency
issues between different regional sub-clusters, and locality
of the data. There are numerous works on inter-cluster
schedulers [8], [9], which focus on addressing these chal-
lenges from a performance standpoint. However, these
schedulers do not consider the VM usage cost of the Spark
cluster deployed in a hybrid cloud setup. In this paper, we
complement these works and address two key objectives for
hybrid cloud scheduling: cost-minimization and deadline
violation reduction. We propose scheduling algorithms that
work on the cluster-scheduling level, and utilize the pricing
of different VM instance types in a hybrid cloud to effec-
tively handle the following challenges:

e Performing cluster-level scheduling to make fine-
grained decisions for executor placements on a
hybrid cloud environment.

e Minimizing the deadline violations for the jobs in the
cluster.

e Minimizing the monetary cost of using the Virtual
Machines (VMs) of the whole cluster.

In summary, our work makes the following key

contributions:

e We formulate an optimization problem for SLA-
based scheduling of Spark jobs in a hybrid cloud.

e We propose two job scheduling algorithms. The first
algorithm is a modified version of the First-Fit (FF)
heuristic for solving bin packing problems. The sec-
ond algorithm uses a greedy approach to iteratively
find the cost-optimal placement for each executor of
a job. Both algorithms can improve the cost-effi-
ciency of a hybrid Apache Spark cluster.

e We develop an event-based simulator in Java that
can be used to simulate, test, and compare different
job scheduling policies.

e We implement both of the proposed algorithms on
top of Apache Mesos [10] cluster manager with sepa-
rate extendable modules. Therefore, the imple-
mented system is pluggable to Mesos and can be
easily deployed in a hybrid cloud setup.

e  We conduct extensive experiments in both simulated
and real environments. Furthermore, we use real
applications and workload traces under different
scenarios to showcase the superiority of our pro-
posed algorithms over the existing approaches.

The rest of the paper is organized as follows. In Section 2,
we present the background to different frameworks and
also the architectural considerations for a hybrid cloud
deployment. In Section 3, we discuss the existing works
related to this paper. In Section 4, we show the system
model and formulate the scheduling problem. In Section 5,
we present the proposed algorithms. In Section 6, we show
the simulation experiment setup, baseline algorithms and
experimental results for simulation-based experiments. In

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

Section 7, we showcase the implemented prototype system
in real platforms, discuss the benchmark applications and
real experimental cluster setup, and demonstrate the feasi-
bility of the proposed algorithms with performance evalua-
tion from real experimental results. Section 8 concludes the
paper and highlights future work.

2 BACKGROUND

2.1 Apache Spark

As compared to the disk-based MapReduce tasks of a typi-
cal Hadoop system, Apache Spark allows most of the com-
putations to be performed in memory and provides better
performance for some applications such as iterative algo-
rithms. The intermediate results are written to the disk only
when they cannot be fitted into the memory. Spark uses
Resilient Distributed Datasets (RDD) to hold data in a fault-
tolerant way. Each job/application is divided into multiple
sets of tasks called stages which are inter-dependant. All
these stages form a directed acyclic graph (DAG) and each
stage is executed one after another. In a typical Apache
Spark cluster, applications are submitted through a cluster
manager to run in the cluster. Spark supports Apache Mesos,
or Hadoop Yarn, or Kubernetes as cluster managers to allocate
resources among applications. In addition, its own default
Standalone cluster manager is also sufficient to handle a pro-
duction cluster. All these cluster managers support both
static and dynamic allocation of resources.

Workers are the physical/compute nodes of an Apache
Spark cluster where one or more application processes can
be created depending on the resource capacity. In cloud
deployments, one or more worker nodes can be created
inside each Virtual Machine (VM). A Spark cluster can have
one or more worker nodes but there is only a single Master
node that is responsible for managing the worker nodes.
Each application in Spark has a SparkContext object in its
main program (also called the Driver Program) which creates
and maintains Executor processes on worker nodes. An
application uses its own set of executors to run tasks in par-
allel, in multiple threads and to keep data in memory and
storage. In addition, these executors live for the whole dura-
tion of that application. All the executors of the same appli-
cation must be identical in size. Hence, they will have the
same amount of resources (CPU cores, memory, disk).
There are two benefits of isolating applications from each
other. First, a driver program can independently schedule
its own tasks in the acquired executors. Second, each worker
can have multiple executors from different applications run-
ning in their own JVM processes.

2.2 Apache Mesos

Apache Mesos is considered to be a data-center level cluster
manager due to its capability of efficient resource isolation
and sharing across distributed applications. In Mesos, jobs/
applications are called frameworks and multiple applica-
tions from different data processing frameworks like Spark,
Storm, and Hadoop can run in parallel in the cluster. Mesos
introduces a novel two-level scheduling paradigm where it
decides a possible resource provisioning scheme according
to the weight, quota or role of a framework and offers
resources to it. The framework’s scheduler is responsible for
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either rejecting or accepting those resources offered by
Mesos according to its scheduling policies. Mesos provides
HTTP* APIs to control the resource provisioning and sched-
uling of the whole cluster. Mesos supports dynamic
resource reservations, thus resources can be dynamically
reserved in a set of nodes by using the APIs and then a job/
framework can be scheduled only on those resources. When
a job is completed, resources can be taken back and reserved
for any future job. It is a significant feature of Mesos as any
external scheduler implemented on top of Mesos can have
robust control over the cluster resources. Furthermore, the
external scheduler can perform fine-grained resource alloca-
tion for a job in any set of nodes with any resource require-
ment settings. Lastly, various policies can be incorporated
into an external scheduler without modifying the targeted
big data processing platform or Mesos itself; so the sched-
uler can be extended to work with other big data processing
platforms. For the benefits mentioned above, we have built
a prototype system on top of Mesos to implement our pro-
posed scheduling algorithms. The proposed scheduling
algorithms can be plugged to work with other modern clus-
ter managers, such as Kubernetes, which also supports fine-
grained resource allocation for containers (e.g., pods from
Kubernetes terms). Kubernetes provides a scheduling
framework, which adds new plugin APIs on top of the
default scheduler to implement new scheduling features.
Thus, by utilizing the plugin APIs, pods can be allocated to
a specific node by following a new scheduling policy.

2.3 Scheduling Levels

From the above discussion, we can observe that there are two
levels of scheduling in the cluster. These are (1) Cluster
Level: decision to select an appropriate VM to create an exec-
utor for a Spark job. From the cluster manager perspective, a
container can be created and allocated with a fixed set of
resources and then this container can be assigned to a job’s
executor. (2) Application Level: The Spark application driver
process is responsible for scheduling tasks in the provisioned
executors for a job. This scheduler should consider the local-
ity of the data to improve the performance of a job. In this
paper, we work on the cluster level to decide in which VM
each executor of a job should be created so that we can opti-
mize the overall cluster usage cost. In addition, we also con-
sider the deadline constraint to prioritize jobs with tight
deadlines. As our proposed approaches work on a higher
level, they can be applied to the Hadoop jobs as well. For
example, a cluster manager such as Mesos supports jobs
from different types of frameworks such as Hadoop and
Spark. Thus, the proposed scheduling algorithms can be
extended to support Hadoop jobs, where each Mesos con-
tainer should be provisioned for a map or a reduced task.

2.4 Hybrid Cloud Deployment

There are different architectural considerations regarding
the deployment of a hybrid cloud. For example, in a true
multi-cluster setup, all the executors of a job should be
placed in the same cluster. However, in a multi-cluster

4. [Online]. Available: http://mesos.apache.org/documentation/
latest/operator-http-api/
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federation, there is a central point of control and the same
job’s executors can be distributed across multiple clusters.
The latter approach may result in locality and latency
issues, as the executors from the same job have to communi-
cate over different regional boundaries. However, in a
multi-cluster federation, there is only one cluster (although
over multiple regions) from the job’s perspective. In addi-
tion, there is more room for cost-efficiency as it is possible
to squeeze out the free resources in the cheapest VMs across
multiple clusters. Thus, in this paper, we choose a federated
multi-cluster setup, where a central Mesos cluster manager
is responsible to manage all the VMs across two different
regions. The Mesos cluster manager is deployed in the local
region to work as the central point of control. In addition,
the external scheduler and other resource reservation mod-
ules are also run locally for faster communication with the
cluster manager. Although there can be latency and perfor-
mance issues caused by this setting, we try to capture these
issues in the system model by considering the increase in
job completion times caused by these issues.

3 RELATED WORK

The default framework scheduler for Spark is FIFO, which
places the executors of a job in a round-robin fashion to bal-
ance the load in the cluster and improve performance. In
addition, it can also consolidate the core usage to minimize
the total nodes used in the cluster. However, it does not con-
sider the pricing of VM instances in either a single or a
hybrid cluster setup. Fair’ and DRF [11] based schedulers
can be used to improve the fairness among multiple jobs in
a cluster, but they do not improve the cost-efficiency of the
cluster.

There is some existing research for SLA-based job sched-
uling, which only focuses on Hadoop MapReduce-based
jobs. Hwang et al. [12] proposed a resource provisioning
model that can minimize the VM cost for deadline-con-
strained MapReduce applications in cloud. Mashayekhy
et al. [13] proposed a greedy algorithm that finds the assign-
ments of the map and the reduce tasks in machine slots to
minimize the energy consumption of a Hadoop cluster.
Nayak et al. [14] proposed a negotiation-based adaptive
scheduler for scheduling Hadoop jobs in cloud. Cheng ef al.
[15] have considered future resource availability to improve
job performance and reduce job deadline violations. Zeng
et al. [16] proposed a greedy algorithm that reduces the
monetary cost of using the public cloud while satisfying job
deadlines. ChEsS [17] is a Pareto-based job-to-cluster assign-
ment framework for cost-effective job scheduling across
multiple MapReduce clusters. However, most of these
works either consider a single cluster setup or tries to
improve job performance. Moreover, these approaches are
applicable to Hadoop jobs only as the architecture paradigm
of Hadoop is different from Spark.

There are a few works that tried to improve different
aspects of scheduling for Spark-based jobs. Sparrow [18]
tried to improve the performance of the default Spark
scheduling by using a decentralized, randomized sampling-

5. [Online]. Available: https://hadoop.apache.org/docs/stable/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html
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based scheduler. Wu et al. [19] proposed a framework that
provides the capability to perform large-scale data analytics
across multiple-clusters. Maroulis et al. [20] provided an
energy-efficient scheduler that uses the DVFS technique to
tune the CPU frequencies for the workloads to reduce
energy consumption. However, as our main target is cost-
effectiveness, this approach can not be applied to our prob-
lem. Li et al. [21] also provided an energy-efficient sched-
uler. However, it does not consider cost as an objective. In
addition, the algorithm assumes each job has the same exec-
utor size, which is equal to the total resource capacity of a
VM. However, in reality, each job can have different
resource requirements, and the VM instance size can also
vary. Liu et al. [22] proposed a hierarchical multi-cluster big
data framework for Apache Spark, which only focuses on
improving job performance when the cluster is deployed in
a hybrid-cloud. However, they do not consider any cost-effi-
ciency in these clusters, and job deadlines. Sidhanta et al.
[23] provided a mathematical model to estimate job comple-
tion times of a Spark job given its input size, iteration, and
job type. In addition, they provide an optimal cluster com-
position technique that utilizes the default FIFO scheduler.
However, this work does not consider different VM pricing
in a hybrid-cloud setup. In addition, it is assumed that each
job has the same executor size, which is the total resource
capacity of a VM. However, we model the executor sizes at
a more fine-grained level, so that multiple executors from
one or more jobs can be co-located inside a single VM.

MCTE [24] is a cloud task scheduling strategy to minimize
the task completion time and execution cost for the smart
grid cloud. However, this work did not consider a hybrid
cloud setup and cost minimization as an objective. AsQ [25]
is also a task scheduling algorithm that places the task in
either local or cloud VMs. Peldez et al. [26] introduced the
problem of managing virtual machines and scheduling jobs
in a cost-efficient way while meeting the deadlines. In the
bag of tasks model, the tasks are independent of each other
so the run-time of an individual task does not depend on
whether another task from the same bag is placed in the
cloud or local VM. However, in our work, we focus on the
cluster-level scheduling where an executor runs one or more
interdependent tasks that follows a DAG model.

If a cluster is deployed in a hybrid cloud, some of the VMs
reside in the local premises/region and the rest of the VMs
are hired from a cloud service provider. Thus, the cloud por-
tion of the cluster can be considered to be in a different region.
Therefore, challenges within inter-cluster scheduling exist
which include: choosing a proper federated multi-cluster
setup that determines how the clusters should be managed,
increased latency between different executors deployed in
different regions, and locality of the data required for a job.
There are numerous works on inter-cluster schedulers, e.g.,
Yarn Federation,® Kubernetes Federation,” Medea [8] and
Hyrda [9], which focused on addressing these challenges
with objectives to improve the overall performance of the
production cluster. Because for multiple regional clusters, it

6. [Online]. Available: https:/ /hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/Federation.html

7. [Online]. Available: https:/ /kubernetes.io/blog/2018/12/12/
kubernetes-federation-evolution/
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TABLE 1
Definition of Symbols
Symbol Definition
J The current job to be scheduled
E Total executors required for J
I3 The index set of all the executors of J, { =
{1,2,3,....E}
Tk Profiled completion time for .J for local-only
placement of executors
TH Profiled completion time for J for hybrid
placement of executors
Tc Estimated completion time for J
Tp Deadline for J
Ty Arrival time for J
Ts Start time for J
Tw Ts — T4, waiting time for J
M The total number of local VMs
N The total number of cloud VMs
st The index set for all the local VMs; 6 =
{1,2,...,M}
8¢ The index set for all the cloud VMs; §¢ =
{1,2,...,N}
Pt The Price for a local VM; j € §°
Pe The Price for a cloud VM; j € §¢
CY Available CPU in a local VM, j € 8¢
cs Available CPU in a cloud VM, j € §¢
M /L Currently available Memory in a local VM, j € 8"
M 7C Currently available Memory in a cloud VM, j € §¢
Cr CPU demand of any executor of J, i € £
M? Memory demand of any executor of .J, i € £
th Remaining active time for a VM before placing

executor(s) of .J, j € 8¢
t¢ Remaining active time for a VM before placing
executor(s) of .J, j € 8¢

Atk Change in remaining active time after executor(s)
' of J is placed, j € 8"
Atjc Change in remaining active time after executor(s)

of J is placed, j € 8¢

is more critical to focus on performance improvement and
load-balancing. However, if a hybrid cloud setup is created
with the use of public cloud VMs, minimizing cluster
resource usage cost should be a key objective, along with
maintaining an acceptable performance for the applications.

In summary, most of the existing approaches focus
mainly on performance improvement. In addition, they do
not consider a fine-grained level of executor placement
while scheduling jobs. In contrast, our approach guarantees
to launch a job on its required resources, tries to minimize
deadline violations, can handle different sizes of executors
of jobs and different VM instance sizes, and can reduce the
overall cost of VM usage of a hybrid cloud deployed cluster
by utilizing different pricing.

4 SLA-BASED JOB SCHEDULING

In this section, we describe the hybrid cloud model and for-
mulate the problem of dynamic job scheduling between
local VMs and cloud VMs. Major notations and descriptions
presented in this paper are listed in Table 1.

4.1 System Model

When a hybrid cloud setup is considered, both local and
cloud VM instances can be chosen to be identical in resource

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 08,2022 at 00:06:35 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. Proposed Hybrid Cloud Model. The resource managers (cloud
and local) are controlled by the scheduler to create executors of job in
VMs, turn on/off VMs, and monitor the cluster states.

capacity. However, when the target objective is to reduce
cost, having a setup with different types of VM instances is
more cost-effective, because jobs with fewer resource
requirements can be fitted into small VMs to optimize cost.
In addition, if the local part of the cluster is made with com-
modity resources, it is not possible to create similar VM
instances with a set of heterogeneous physical hosts. There-
fore, to tackle the scheduling problem more efficiently, the
scheduler has to consider different VM instance sizes (as
depicted in Fig. 1) to optimize cost. We consider a federated
multi-cluster deployment where the cluster manager is the
central point of control. The cluster manager controls both
the local and the cloud VMs. The resource managers track
the resource availability of the cluster and dynamically feed
the updated status of the cluster to the scheduler. Thus, the
scheduler has to match the resource requirement of the jobs
with the resource availability in the cluster while trying to
meet the target objectives. In our implemented prototype,
we deploy the external scheduler, both of the resource man-
agers, and the cluster manager in the local cloud.

In an Apache Spark cluster, each job consists of a set of
executors with the same resource requirement. Further-
more, each VM /worker node has a set of available resour-
ces (e.g.,, CPU and memory) which can be used to place
executors. However, executors from different jobs can have
different sizes. For example, suppose the CPU and memory
requirements of an executor of job-1 are 2 cores and 4GB,
respectively. Thus, if job-1 has 5 executors, all the executors
must follow this resource requirement (e.g., 2 cores and
4GB memory). However, job-2 can have different resource
requirements for its executors. For example, 4 cores, and
8GB of memory for each executor, which is different from
the size of the executors from job-1.

For each submitted job in the cluster, the main problem is
to find the mapping of all its executors to one or more avail-
able VMs. Besides, the combined resource requirements of
all the placed executors in a VM are bound by its resource
capacity. Therefore, resource constraints in each VM must
be met while making any scheduling decisions. We consider

1121

a multi-tenant case where multiple jobs from different users
can run on the cluster at the same time. Thus, if one or more
executors from different jobs are placed in the same VM,
then the resource capacity constraints of that VM must be
satisfied by considering all the different sizes of executors
from multiple jobs. This problem can be simplified by track-
ing the resource availability of VMs dynamically. Thus, the
resource availability of the VMs can be presented to the
scheduler, instead of the resource capacity. Initially, the
resource capacity and resource availability of a VM will be
the same. Although the resource capacity of a VM is always
fixed, the resource availability of a VM will be reduced over
time if one or more executors from one or more jobs are
placed in it. In addition, if one or more jobs complete execu-
tion that had executor(s) in this VM, then the resource avail-
ability of the VM will be increased.

We consider the resource requirement of an executor in
two dimensions — CPU cores and memory. Suppose, we are
given a job with F executors where each executor has CPU
and memory requirements of /" and /"“", respectively.
Furthermore, each job has a deadline that needs to be met by
the scheduler. After handling all the constraints, the sched-
uler should try to reduce the resource (or VM) usage cost of
the cluster. In our case, we have a hybrid cloud setup where
some VMs are located in local-premises and some VMs are
hired from the cloud on a pay-per-use basis. We assume that
if the resource requirements are met, the performance of all
the executors from the same job is similar regardless of
whether they are placed on local or cloud VMs.

Suppose J is the current job to be scheduled in the clus-
ter. If one or more previous jobs are still running in the clus-
ter, the scheduler has to make a decision on whether to
utilize the spare resources on the already active VMs to
place one or more executors of J, or turn on new local/
cloud VMs. Therefore, to make a cost-optimal scheduling
decision for each job, the scheduler should use a combina-
tion of both local/cloud VMs.

In our proposed model, the scheduler uses a queue
which follows the EDF (earliest deadline first) order of jobs,
to reduce deadline violations. The scheduler iterates over
each job, dynamically observes the latest cluster resource
availability, and makes scheduling decisions to place the
executors for that job. For simplicity, we present the model
on a per-job basis, which means the model represents what
the scheduler observes for making decisions for the next job
in the scheduling queue. In the following Sections 4.2 and
4.3, we model the cost and resource constraints for both
local and cloud VMs. Then in Section 4.4, we combine the
resource models and constraints to formulate the schedul-
ing problem.

4.2 Local Resource Model

Definition 1. (Local VM Set): Consider a set &=
{1,2,---, M}, where M is the total number of local VMs, 1 <
J < M is the jth VM deployed locally.
The expression of local cost for the current job, J is derived
as follows:

Costt = Z Tj X PIL X Atf, (1)

jesk
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where P} is the unit price for a local VM and we define a
binary decision variable x; to indicate whether a local VM is

active or not, i.e.,
1if Y ccuy > 0;
€Tr; = & ?
i { 0 otherwise ’ 2

where we define a binary decision variable w;; to indicate
whether executor i is placed in a local VM j or not, i.e., Vj €
8T we have

1
uij:{()

At} is the change in the remaining active time for a local VM
Jj if any executor of J is placed in it, which is calculated by:

AL — To -tk if To > th
g 0 otherwise

if executor ¢ is placed in the local VM j;

otherwise ’

(3)

)

Here, t]L is the remaining active time for a local VM before
placing any executor of the current job. Tt is the estimated
completion time of the current job, J]. We assume that the T¢
can be provided for each job, which is generally measured
from the job profile information. Now, the executors of the
job can be placed only on the local VMs, or in a hybrid man-
ner where both local and cloud VMs can be used. However,
if any cloud VMs are used for executor placements, 7t will
be higher than local-only placements, due to local to Cloud
data transmissions and network latency. Suppose, the job is
profiled in both settings, and 7% indicates the profiled com-
pletion time for the job for local-only placement. In addition,
T} indicates the profiled job completion time for a hybrid
setting. Thus, for the local model, 7t can be defined as:

TL  if Yu; == E Vi€ &Vje s
Te =19 ' N : (5)
Ty otherwise

Here, £ is the total number of executors required by the
job, so if the summation of all the local placements equals
E, it indicates that the job will be running entirely in the
local VMs.

Furthermore, the total resource demands of all the execu-
tors placed in a VM should not exceed the total resource
capacity of that VM. Note that, this can be done simply if
the current resource availability of the VM is checked
against the resource demands of executor(s) of the current
job. Suppose, CT and M are the CPU and memory resource
demands for each executor of the current job, respectively.
Thus, the resource constraints for local VMs must be satis-
fied as follows:

Z(u”‘ X CZZ) < Tj X CJL, Vj e SL, (6)
IS
> (uij x M7) < x MY, vj e st 7

=

where Cf and M} are the currently available CPU and
memory resources in the local VM j, respectively. Therefore,
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the scheduler can choose to place one or more executors
from the current job in the same VM if the current resource
availability permits.

4.3 Cloud Resource Model

Definition 2. (Cloud VM Set): Consider a set 8¢ =
{1,2,---, N}, where N is the total number of cloud VMs, 1 <
Jj < N is the jth VM deployed on the cloud.
Similarly, the expression of cloud cost for the current job, J
is derived as follows:

COStC = Z ’[/j X PJC X Atjc, (8)
jesC

where PIC is the unit price for a cloud VM; we define a binary
decision variable y; to indicate whether a cloud VM is active or

not, i.e.,
1

where we define a binary decision variable v;; to indicate
whether executor i is placed in a cloud VM j or not, i.e., Vj €
8¢, we have

1
U,‘j = 0

AtS is the change in the remaining active time for a cloud VM
if any executor of the current job is placed in it, which is calcu-
lated by

if Ziefvzj > 0 (9)

otherwise

if executor i is placed in the cloud VM j;
otherwise

)

(10

H _ ,C ¢ mH C.
AtjC:{TC 6 if TH > 1% (1)

0 otherwise

where TH is the estimated completion time of the current job,
when one or more cloud VMs are used; and t§’ is the remaining
active time for a cloud VM before placing any executor of the
current job. Further, the resource constraints for cloud VMs

must be satisfied as follows:

D vy x CF) <y x CF, vj € 8¢ (12)
icg
D (v x M) <yjx MY, Vel (13)

i€§

On the one hand, because the total number of the local VMs
might be limited, we can use the cloud VMs for computing.
Therefore, we can assume that M/ < N. On the other hand,
however, the usage cost of the VMs in local VMs is usually
lower than that on the cloud; hence we can assume that
Pl < Pf Therefore, similar VM instances deployed in
local-premises cost lower than cloud VM instances.

4.4 Problem Formulation

Based on the system model, we now formulate the job
scheduling problem to minimize the cost of using the whole
cluster while scheduling the current job. The total cost is
modeled as the aggregated cost of using all the VMs from
both local and cloud.
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Executor Placement Constraint. An executor can be placed
only in one of the VMs and this placement constraint is
denoted as:

Zui]‘—i— Zvi]’ =1,

jesl jest

Vi€ €. (14)

Resource Capacity Constraints. The total resource demands
of all the executors placed in a VM should not exceed the
total resource capacity of that VM. These constraints are
described in (6), (7), (12) and (13).

Job Deadline Constraint. If the job deadline is considered,
whether a job fails to complete before the given deadline
can be predicted by using:

Te < Tp —Tw, (15)

where Ty = Ts — T4 is the waiting time for the current job
to be scheduled. Note that, if the executors are not placed
entirely in the local VMs, then 7¢ will be set to T/ in the
local resource model.

On the one hand, if the job deadlines are not considered
in the scheduling algorithm, a job that is predicted to fail
will be scheduled, only to waste resources which could be
used by any future job to successfully complete before their
deadlines. On the other hand, if a job is predicted to violate
its deadline, it can be discarded without passing to the
scheduling algorithms. Thus, more resources will be freed
to ensure that more jobs can be successfully finished before
the deadline. In the experiment section, we show the impact
on deadline violations by the scheduling algorithms for
both cases.

Therefore, the job scheduling problem can be formulated
as Cost-Min:

min : Cost™ = Cost” + Cost?,

(16)
st (6), (7),(12), (13), (14), (15).

The above problem is mixed-integer linear programming
(MILP) [27] and non-convex [28], generally known as NP-
hard problem [29]. The computational complexity will sig-
nificantly increase due to the binary variables.

5 PROPOSED JOB SCHEDULING ALGORITHMS

We try to maximize the deadline met percentage by two
ways: (1) by following an Earliest Deadline First (EDF)
order to schedule jobs, so that if multiple jobs are waiting to
be scheduled at the same time, jobs with tighter deadlines
will have higher priority, and (2) before passing the job
specifications to the scheduler, we utilize a job’s completion
time estimate (7¢) to check whether the job has a chance of
violating the deadline. If so, we remove this job from the
queue and do not schedule it. In this way, we keep some
resources free in the cluster for future jobs to increase the
overall deadline met numbers. The job queue is maintained
externally from the scheduling algorithm, along with the
cluster resource availability. Both the job queue and the
cluster states are updated dynamically. Only the current
job’s specification and the cluster states are passed to a
scheduling algorithm to make placement decisions. In this
way, we reduce the overhead on the scheduling algorithm.

1123

If it is estimated that the job will be completed before the
deadline, it is passed to the scheduler to make cost-effective
executor placement decisions. We propose two algorithms
to solve the scheduling problem. The first algorithm is a
modified version of the First Fit (FF) heuristic algorithm for
the bin packing optimization problem. The second algo-
rithm has a greedy approach and iteratively places all the
executors of a job in the most cost-optimal position.

5.1 First Fit (FF) Heuristic-Based Algorithm

In the bin packing problem, items of different volumes must
be packed into a finite number of bins or containers each of
a fixed given volume in a way that minimizes the number
of bins used. In our case, we have a similar problem where
the executors can be considered as the items which need to
be packed into a finite number of VMs (bins). Thus, the
scheduling problem formulated in Section 4.4 can be
thought of as a two-dimensional (2D) vector bin packing
problem, where each of the VM is a bin having two dimen-
sions, i.e., CPU cores and memory. Each executor from a job
has a fixed resource requirement in these two dimensions;
thus, an executor can be thought of as an item. Therefore,
the objective is to minimize the total number of bins (VMs)
used to pack (place) a given set of items (executors) for each
job. Algorithm 1 shows the modified version of the First Fit
(FF) heuristic [30] algorithm, which can be used for executor
placement in the scheduling process.

Algorithm 1. First Fit (FF) Heuristic Algorithm

Input: Job {E,§, CF, M}, T¢}): The current job to be sched-
uled, ActiveVMList: The list of all the active VMs
(includes both cloud and local VMs)
Output: PlacementList, a list of VMs where the executors
of Job will be placed
1: Procedure (FF(Job, ActiveVMList))
2:  PlacementList < ¢
3:  forall vm € ActiveVMList do
4: while Placement of an executor in vm satisfies all the
resource constraints do

5: Update(vm)
6: Placement List.add(vm)
7: if PlacementList.size = F then
8: return Placement List
9: end
10: end
11: end
12:  if Cluster has unused VM(s) then
13: Turn on the cheapest vm,,, that satisfies all the

resource constraints of an executor
14: ActiveVMList «+— ActiveVMList U vmeq,
15: goto step 3
16: end
17:  return Fuilure
18: end Procedure

The input to this algorithm is the specification of the cur-
rent job (F,&,CT, M}, T¢) to be scheduled, and a list of cur-
rently active VMs (either in local or cloud) in the cluster.
The output is the PlacementList, which is a list of VMs
where the executors of the current job should be placed. For
each active VM, the algorithm first checks whether the
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placement of an executor of the current job will satisfy the
resource constraints (lines 3-4). If so, the resource capacity
of the current VM is updated (line 5), and the current VM is
added to the PlacementList. The algorithm tries to place as
many executors as possible in the same VM if the resource
requirements are met. Otherwise, it tries the next active
VM. If the total number of added VMs to the Placement List
reaches the total required number of executors for the cur-
rent job, the algorithm returns with the placement list. If the
currently active VMs are not sufficient to place any execu-
tor, then the cheapest VM is turned on (if available) and is
added to the active VM list (lines 12-14). Then, steps 3-10
are repeated again. If the cluster does not have sufficient
resources to place all the executors of the current job, the
algorithm returns failure (line 17).

5.2 Greedy lterative Optimization (GIO) Algorithm
The aforementioned MILP problem can be solved in poly-
nomial time if the problem is relaxed from a per-job basis
(finding the most cost-optimal placements of all the execu-
tors of the current job) to a per-executor basis (only find the
most cost-effective placement of one executor from the cur-
rent job). Although solving the relaxed problem will pro-
vide near-optimal results as compared to the original
problem, it can be solved in polynomial time. We propose a
greedy iterative optimization (GIO) algorithm, which uti-
lizes the pricing model of different VM instances and the
estimated completion time of each job to find cost-efficient
executor placement (on a per-executor basis).

Suppose, the executor(s) from one or more jobs are run-
ning in a vm (deployed either in the cloud or in the local
part of the cluster). Let T, be the active remaining time of
the vm. If any executor of the current job J is placed in vm,
the additional active remaining time of vm due to this place-
ment is AT,,,,, which can be found in:

Aﬂ)m = max((), TC - T’wn)~ (17)

Now, if the cluster has sufficient local resources to place
all the executors from the current job, then T¢ can be set to
T, otherwise it can be set to T (Eq. (5)). Hence, we can cal-
culate the cost incurred by placing an executor of J in vm by
using:

COStg = AI—ZI}HL X Pvm~ (18)

Here, if vm is deployed locally, then P,,, = P} (j € s"). Oth-
erwise, if vm is deployed on cloud, then P, = P}C (e 59).
Suppose, vm is already in use and has some free resources
to place one or more executors for the current job. If placing
the new job’s executor(s) in it does not make it run longer
than before (if 7> < T',,), or only makes it run further for a
short period of time (I — 1., approaches 0), we can save
cost by placing the current job’s executor(s) in it.

Algorithm 2 shows the proposed GIO algorithm. The
input to this algorithm is the current job to be scheduled,
and a list of all the local VMs, and the list of all the cloud
VMs. The output is the PlacementList, which is a list of
VMs where the executors of the current job should be
placed. At first, we check whether the current local resource
availability is sufficient to place all the executors of the
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current job (line 3). If yes, we only utilize the local VMs (line
4), otherwise all the VMs (line 5). Then, the VM List is sorted
in an increasing order of Cost! values (line 10). If the
resource constraints are met, then the current vm is greedily
used to place as many executors as possible (lines 12-14). If
the currently chosen vm was inactive, it is turned on (lines
15-16). The steps for executor placement are repeated until
all the executors of the current job are placed (lines 18-19). If
the cluster does not have sufficient resources to place all the
executors for the current job, a failure is returned (line 23).

Algorithm 2. Greedy Iterative Optimization (GIO)
Algorithm

Input: Job {E,§, CT, M}, Tc}: The current job to be sched-
uled, LocalVMList: The list of all the local VMs,
CloudVMList: The list of all the Cloud VMs

Output: PlacementList, a list of VMs where the executors

of Job will be placed
: Procedure (GIO(Job, LocalVMList, CloudVMList))
VMList < ¢
if Local Availability(Job, LocalVMList) == true then
VMList < LocalVM List
end
else
VMList «— LocalVMList U CloudVM List
end
PlacementList «— ¢
Sort(VMList) //Sort the VMs in an increasing
order of Cost! (Eq. (18))
11:  forall vm € VMList do

SO RPN

—_

12: while Placement of an executor in vm satisfies all the
resource constraints do

13: Update(vm)

14: Placement List.add(vm)

15: if vm was unused then

16: Turn on vm

17: end

18: if PlacementList.size == I then

19: return PlacementList

20: end

21: end

22:  end

23:  return Fuilure
24: end Procedure

Note that, for both FF and GIO algorithms, if there are
not enough resources for the current job (a failure is
returned by the algorithms), the scheduler will wait until
more resources are freed so that it can schedule the current
job.

5.3 Complexity Analysis

To calculate the worst-case time complexity of the proposed
algorithms, we first assume that the total number of VMs in
the cluster is m, which includes both cloud and local VMs.
In the worst-case scenario, for every executor, the scheduler
has to iterate through each and every VM to find its place-
ment. Hence, if the current job’s total number of executor
requirements is e, the worst-case time complexity of Algo-
rithm 1 is O(me). For Algorithm 2, the time required to
check the local resource availability is m. In addition, the
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TABLE 2
Simulation Cluster Details
Instance Type CPU Cores Memory (GB) Quantity (small-scale) Quantity (large-scale)
ml.large 4 16 Local=1; Cloud=2 Local=10; Cloud=50
ml.xlarge 8 32 Local=1; Cloud=2 Local=10; Cloud=50
m?2.xlarge 12 48 Local=1; Cloud=2 Local=10; Cloud=50
TABLE 3
VM Instance Pricing Models
Pricing Model 1 Pricing Model 2 Pricing Model 3 Pricing Model 4 Pricing Model (Real)
Instance Price Price Price Price Price Price Price Price Price Price
Type (Cloud)  (Local)  (Cloud)  (Local) (Cloud) (Local) (Cloud) (Local) (Cloud) (Local)
ml.large $0.004/s  $0.001/s $0.002/s $0.001/s  $0.002/s $0/s $0.002/s  $0.002/s  $0.24/h  $0.12/h
m1.xlarge $0.008/s  $0.002/s  $0.004/s  $0.002/s  $0.004/s $0/s $0.004/s  $0.004/s  $0.48/h  $0.24/h
m2.xlarge $0.012/s  $0.003/s  $0.006/s $0.003/s  $0.006/s $0/s $0.006/s  $0.006/s  $0.72/h  $0.36/h

time required to sort the VA/List (which may contain all the
m VMs in worst-case) is mlog(m). Therefore, the worst-case
time complexity of Algorithm 2 is O(m + mlog(m) + me).

6 PERFORMANCE EVALUATION - SIMULATION

We have used both simulation and real experiments to com-
pare our proposed scheduling algorithms with the baseline
algorithms. In this section, we discuss the experimental
setup for simulation experiments, baseline scheduling algo-
rithms used to compare our proposed algorithms, and the
results from the simulation experiments.

6.1 Simulation Setup

Table 2 shows the simulation cluster details. We have used
three types of VMs, each having different resource capacities.
We have designed the clusters for both small-scale and large-
scale experiments. Generally, we have more resources on the
cloud than the local part of the cluster. Therefore, the small-
scale cluster contains 3 VMs from each type of VM instance,
where 1 VM is considered to be deployed locally, and 2 VMs
are considered to be deployed on cloud. For the large-scale
experiment, 60 VMs from each type of VM instance are used,
where 10 VMs are considered to be deployed locally, and 50
VMs are considered to be deployed on cloud.

The cloud VM pricing model is based on the time-based
pricing where a cloud service provider offers different VM
instances to their customers. For a hybrid cloud setting, the
public part of the cluster can be set up by using VMs from
any cloud service provider, so the prices may vary. How-
ever, when optimizing cost for the whole cluster, we need
to differentiate between the price of a local or cloud VM for
a similar instance type. Thus, we have designed different
"pricing models’, where each model indicates how close or
far the price is for the same instance type in the local and
the cloud part of the cluster. As shown in Table 3, the price
of the same instance type in cloud is four times higher than
local in pricing model 1, but only two times higher in pric-
ing model 2. In pricing model 3, the price of using any local
instance is 0. Lastly, in pricing model 4, the price of using
the same type of instance is equal regardless of whether the
instance is in cloud or locally deployed.

The job arrival times are generated from a Poisson distri-
bution. We have designed our experiment to simulate both
a high-load and a light-load period of the cluster. A Poisson
mean of 5 and 100 is used to generate the job arrival rates
for the high-load and light-load periods, respectively. These
mean values for Poisson distribution are chosen to reflect
job arrival rates in real clusters in both low-load and high-
load periods, which is observed in Facebook Hadoop work-
load trace.® The estimated job completion time for each job
is generated using an exponential distribution with lambda
(A = 0.01). In addition, if a scheduler places the executors in
a hybrid setting, where one or more executors are placed in
the cloud VMs, then the simulation environment dynami-
cally increases the job completion times by 30 percent. This
is due to the fact that inter-cluster latency between executors
and data locality issues will cause performance degradation
for the jobs. A relaxed deadline for each job is generated by
adding the job’s estimated completion time with a threshold
value (1000 seconds for the light-load period, 5000 seconds
for the high-load period). All the resource requirements for
each job are generated randomly within a range of 1-6 (for
CPU cores), 1-10 (for memory in GB), and 1-8 (for total exec-
utors). All the simulation experiments are repeated 5 times
to accommodate the randomness while calculating the
statistics.

We have implemented an event-based simulator in Java
to simulate the job scheduling in a hybrid cloud setup. We
have implemented the proposed and baseline algorithms in
this simulator to evaluate and compare them regarding dif-
ferent aspects. The simulator is open-source’, and can be
used to simulate new scheduling policies.

6.2 Baseline Schedulers

e  First in First out (FIFO): It is used as a default sched-
uler in many big data processing frameworks includ-
ing Apache Spark. Here, the executors of a job are
placed in a round-robin fashion. However, as this

8. [Online]. Available: https://github.com/SWIMProjectUCB/
SWIM/wiki/Workloads-repository

9. [Online]. Available: https://github.com/tawfiqul-islam/RM-
Simulator
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default FIFO scheduler does not consider pricing
models or different instance types in the hybrid
cloud, resources are wasted if the cluster is not fully
loaded with jobs.

e  First in First out Consolidate (FIFO-C): Another round-
robin approach used by the Spark scheduler to mini-
mize the total number of VMs used. Note that, it
works by packing executors on the already running
VMs to avoid choosing the unused VMs.

e AsQ [25]: This scheduler addresses the task schedul-
ing problem in hybrid cloud and has similar objec-
tives as our work. AsQ considers the deadline
constraint and tries to minimize the cost of the public
cloud by maximizing the utilization of the private
cloud. In addition, to avoid network latency issues
between the public and private cloud, AsQ places
the tasks for a job either in a local-only or in a cloud-
only manner.

e  Mixed-Integer Linear Programming (MILP): We have
designed a MILP-based scheduler that generates the
optimal cost-efficient placements for all the executors
of each job. We have used SCP Solver API' to solve
the MILP problem in this scheduler. SCP solver uses
a revised branch-and-cut [31] based approach for
solving the MILP problem. However, the solver can
take a significantly long time to solve the scheduling
problem if the problem size is big (large cluster with
many VMs, or jobs with many executors).

6.3 Simulation Results

In this subsection, we demonstrate the results from the sim-
ulation experiments with both small-scale and large-scale
setups. However, as the MILP-based algorithm is not scal-
able and becomes infeasible when the problem size goes

10. [Online]. Available: http:/ /scpsolver.org/

bigger, it is excluded from the large-scale simulation experi-
ments. The small-scale experiment is used to compare the
proposed algorithms with the baseline algorithms regarding
cost-efficiency, scheduling overhead, and deadline viola-
tion. Furthermore, the large-scale setup is used to show the
scalability of the proposed algorithms.

6.3.1 Evaluation of Cost Efficiency

In this evaluation, we have measured the cost of using the
whole cluster to calculate the cost incurred by a specific
scheduling algorithm. We save the turn-on or turn-off status
of every VM in each second. Then we use one of the pricing
models to calculate the cost incurred by using each VM dur-
ing the whole scheduling process. Lastly, the total cost is cal-
culated by summing up the cost of all the VMs. Note that, the
MILP-based algorithm sometimes take exponential time to
complete. Therefore, for fair cost comparison and to show
how close the proposed schedulers performed to the MILP-
based algorithm, the increased amount of VM usage cost due
to the scheduling overhead is excluded. Figs. 2 and 3 depict
the comparison of cost between different scheduling algo-
rithms under different pricing models in both lightly loaded
and highly loaded clusters, respectively. It can be observed
that, under any pricing models, the proposed FF and GIO
scheduling algorithms significantly reduce the cost usage of
the cluster than the default FIFO and FIFO-C scheduling
algorithms. The GIO scheduling algorithm can reduce the
cost by up to 25 percent, whereas the FF scheduling algo-
rithm can reduce the cost up to 15 percent than the FIFO and
FIFO-C algorithms. Although FIFO-C utilizes a round-robin
approach, it tries to do so in the active VMs only. Thus, this
approach reduces the cost as compared to the naive FIFO.
The AsQ algorithm only places the executors from the same
job either in a local-only or cloud-only fashion. However, the
proposed FF and GIO algorithms utilize both cloud and local
VMs, thus, can reduce the cost further. The FF algorithm
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starts the cheapest VM when the current set of VMs do not
have sufficient resource capacity to schedule a new job.
When placing executors, it does not consider VM prices and
job runtimes in VMs, but selects the first available VM which
satisfies the resource constraints. However, as the GIO algo-
rithm takes the job duration and pricing models into consid-
eration, it always performs slightly better than the FF. In
addition, it considers network latency and data transmission
issues into consideration, and only goes for a hybrid place-
ment if there are not sufficient local resources available.
However, even for hybrid placement, it uses the spare
resources from both local and cloud VMs to reduce cost sig-
nificantly. As the MILP algorithm solves the scheduling
problem optimally before placing the executors of each job, it
provides the most cost-efficient solution. However, both FF
and GIO algorithm reduces the cost significantly and oper-
ates very close to the ILP solution. Both algorithms only incur
8-10 percent more cost than the ILP algorithm under differ-
ent pricing models in both lightly loaded and highly loaded
clusters.

6.3.2 Evaluation of Job Deadline

This evaluation is done by taking the percentage of jobs that
finish before the given deadline. We have done experimen-
tation in two cases. In the first case, we have recorded the
deadline met percentage when all the algorithms do not use
the deadline as a constraint. In the second case, all the algo-
rithms consider the deadline as a constraint, and if it can be
predicted from the job estimation time that a job is going to
fail to meet its deadline, that job is not scheduled. The rea-
son to conduct experiments in both cases is to observe the
effects of freeing up resources from the failed jobs (esti-
mated), which creates more room for future jobs so that
they can meet the deadline.

Figs. 4a and 4b depict the deadline met percentage by all
the scheduling algorithms in light load and high load clus-
ters, respectively, when the deadline is not used as a con-
straint. The deadline met percentage is lower in case of high
load scenarios as the cluster is over-utilized, and there is a
shortage of resources which causes many jobs to violate the
deadline. For the light load case, the deadline met percent-
age is higher as there are more resources to accommodate
the jobs whenever they arrive. In both cases, the MILP algo-
rithm performs the best as it creates the least amount of
resource fragments by tightly packing the executors. How-
ever, the FIFO algorithm distributively places executors that
create many resource fragments in the cluster, which causes
resource scarcity and more deadline violations. The FIFO-C

algorithm performs slightly better than FIFO due to the con-
solidated approach. However, the AsQ algorithm chooses
either local-only or cloud-only mode for placement. Thus,
when the cluster is overloaded with many jobs at the same
time, there is an increase in deadline violations due to
resource scarcity. Both the proposed algorithms perform
closely to the MILP-based algorithm where the GIO and FF
algorithms are behind in the deadline met percentage by 5
and 8 percent, respectively. Figs. 4c and 4d exhibit the
deadline met percentage by all the scheduling algorithms in
both light load and high load clusters when the deadline
constraint is used. It can be observed that, as many pre-
dicted to be failed jobs are not scheduled in the cluster, the
overall deadline met percentage improved significantly for
all the scheduling algorithms. The MILP-based algorithm
performs the best in this case as well, followed by the GIO
and FF algorithm, while the AsQ performs the worst.

6.3.3 Evaluation of Scheduling Delay

The scheduling delay is the time an algorithm takes to make
scheduling decisions for all the executors of a job. We have
measured it by measuring the time it takes from calling a
particular scheduling algorithm up to the return from the
scheduling algorithm with all the executor placement deci-
sions for a job. The average scheduling delay for an algo-
rithm is calculated by taking the average of the scheduling
delays for all the jobs scheduled by that algorithm.

Table 4 shows the average scheduling delay by each algo-
rithm in the small-scale setup. As the FIFO and FIFO-C
algorithms follow a round-robin approach while placing
the executors, the decision time is the shortest. Thus these
algorithms have the lowest scheduling overheads. AsQ, FF
and GIO are heuristic-based approaches, so these algo-
rithms also showcase low scheduling delays which are

TABLE 4
Average Scheduling Delay (Small-Scale)

Algorithm Average Scheduling Delay
FIFO 0.18 us
FIFO-C 0.20 ps
AsQ 0.31 us
FirstFit 0.28 us
GIO 0.40 pus
ILP 1.85s
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closed to the native schedulers (FIFO and FIFO-C). How-
ever, the MILP-based solution takes as long as 10-minutes
in the worst-case even in the small-scale cluster setup and
has an average scheduling delay of 1.85 s. Therefore, even
though this algorithm can find the optimal cost-efficient
executor placements, it is not scalable. Thus, it is only appli-
cable to small-scale clusters.

6.3.4 Evaluation of Job Performance

We evaluate the job performance for the scheduling algo-
rithms by measuring the average job duration for each
scheduling algorithm during the whole scheduling process.
As shown in Fig. 5, AsQ algorithm provides the lowest aver-
age job duration as it places the executors from the same job
in the same regional boundary (either local or cloud). How-
ever, FIFO and FIFO-C algorithms always distribute the
executors, so most of the placements are hybrid which
causes the simulation environment to penalize these deci-
sions to simulate the latency issues caused by federated
scheduling. FF, GIO, and MILP algorithms have a slightly
higher average job duration than the AsQ algorithm. How-
ever, due to the tight packing of executors, sometimes these
algorithms also place executors within a single region, thus
the performance overhead negligible if compared with the
FIFO and FIFO-C.

6.3.5 Evaluation of Scalability

We have performed simulation on a large-scale setup where
the cluster has 60 VMs (10 local VMs and 50 cloud VMs).
We simulated the scheduling of 10,000 jobs in one whole
day. As the MILP-based algorithm is not scalable, we only
conducted the experiments with FIFO, FIFO-C, AsQ, FF,
and GIO algorithms.

Fig. 6 shows the cost comparison results between the
scheduling algorithms in both light load and high load
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FIFO incurs a very high cost as round-robin placements of executors
lead to many active VMs simultaneously.
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TABLE 5
Average Scheduling Delay (Large-Scale)

Algorithm Average Scheduling Delay
FIFO 0.20 ps

FIFO-C 0.24 pus

AsQ 0.0.47 ps

FirstFit 0.33 us

GIO 0.83 us

scenarios for the large-scale experiment. It can be seen that
both FF and GIO outperform the default FIFO and FIFO-C
by a significant margin and reduce the cost up to 80 percent.
The AsQ algorithm also tries to find cost-efficient place-
ments in local-only or cloud-only settings. However, as our
approaches leverage the hybrid setting to squeeze out spare
resources in all the VMs across the cluster, the FF and GIO
algorithms reduce the cost up to 15 percent as compared to
the AsQ. Note that, for the small-scale setup, AsQ algorithm
performed poorly as compared to the FIFO-C, this is due to
the fact that there is limited resource availability in a small
cluster, so local-only or cloud-only mode of placement is
heavily punished in a higher load. However, for the large-
scale setup, both the local and cloud portions of the cluster
have sufficient resources, thus the AsQ outperforms the
FIFO-C.

Table 5 presents the average scheduling delay for all the
algorithms. It can be observed that even for a large-scale
setup with many jobs, all the algorithms have a scheduling
overhead at us level thus making all of them extremely
scalable.

7 PERFORMANCE EVALUATION - REAL
EXPERIMENTS

To show the applicability of the proposed algorithms in a
real scenario and to validate the results from the simulation
experiments, we have conducted real experiments on a
Mesos cluster. This section presents the implemented sys-
tem, experimental setup, benchmark applications and exper-
imental results regarding different aspects of job scheduling.

7.1 System Implementation

We have developed a prototype system to evaluate the per-
formance of the proposed job scheduling algorithms in a real
hybrid cloud setup. Fig. 7 shows the architecture of the sys-
tem. To implement any scheduling policy, the capability of
placing an executor in any VM is needed. Apache Mesos [10]
cluster manager provides this functionality by dynamic
resource reservations, where any type of resource (e.g., CPU
cores or memory) can be reserved in any VM so that only the
desired executor can run with the reserved resources. Mesos
provides HTTP APIs'' to control dynamic resource reserva-
tion of a cluster. Therefore, a scheduler can dynamically
place executors in any VM during the scheduling process.
As we have a hybrid cluster comprising of both local and

11. [Online]. Available: http://mesos.apache.org/documentation/
latest/operator-http-api/
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cloud VMs, a Mesos cluster can be set up using these VMs,
where each VM works as a Mesos agent. Here, each Spark
executor runs inside a Mesos container in a Mesos agent.

As shown in the system architecture, we have imple-
mented three additional modules (grey boxes) that work in
collaboration with the Mesos master. All these modules are
deployed into a local VM along with the Mesos master, which
works as a central point of control for both the local and cloud
VMs. Thus, from a job’s perspective, there is a single cluster.
However, the local and cloud VMs are deployed in different
regions to exhibit a true hybrid cloud setup. There are two
resource managers in the implemented system - Cloud and
Local; for managing the VMs. Each resource manager can
communicate with the Mesos master using the HTTP APIs
for performing resource provisioning. Furthermore, resource
managers can fetch cluster states (e.g., job and resource sta-
tus) from the Mesos master. The scheduling module controls
the resource manager modules to perform resource provi-
sioning for any executor. Moreover, it can also instruct the
resource managers to turn on/off any VM. When the resour-
ces are reserved for all the executors of a job, the scheduling
module can directly launch a Spark job in the cluster by using
the SparkLauncher APL'? The developed modules are not
extended from the default Spark’s framework scheduler.
Therefore, it is pluggable to the Mesos cluster manager and
can be extended to work with any other Mesos-supported big
data frameworks. We have implemented our proposed and
baseline scheduling algorithms in the scheduler module.
Java programming language was used to implement the pro-
posed modules and scheduling algorithms. OpenStack Boto
API" was used to automate the VM turn on/off mechanisms.
The developed pluggable modules and the scheduling

12. [Online]. Available: https://spark.apache.org/docs/2.3.0/api/
java/index.html?org/apache/spark/launcher/package-summary.html
13. [Online]. Available: https:/ /pypi.org/project/boto/

algorithms are open source'* and can be used to implement
and test new scheduling policies.

7.2 Experimental Setup

We have used Nectar Cloud,'® a national cloud computing
infrastructure for research in Australia to deploy a Mesos
cluster. It is a cluster consisting of three different types of
VM instances. The detailed VM configurations and quantity
used from each type is the same as the small-scale setup
shown in Table 2. However, the pricing model is different
from the simulation pricing models. As shown in Table 3
(Pricing Model (Real)), the pricing of the real cloud instan-
ces is similar to the VM instance pricing in Amazon AWS
(Sydney, Australia). Also, the price of a locally deployed
instance is set to be half of the same instance price deployed
in cloud. We set up a true hybrid cluster by deploying the
VMs in two different regions: Melbourne and Tasmania.
We have used the VMs deployed in Melbourne as the local
VMs, and the VMs deployed in Tasmania as the cloud VMs.
The end-to-end delay between VMs within the same
regional boundary is approximately 10ms, whereas, the
end-to-end delay between VMs from different regional
boundaries is approximately 40ms. In addition, we have
performed iperf testing to measure the bandwidth between
the VMs. Within the same regional boundary, the band-
width between the VMs is approximately 2Gbps, whereas,
the bandwidth between two VMs from different regional
boundaries is around 600Mbps. We store the input dataset
in the local part of the cluster with an NFS server. Thus, the
worker nodes (VMs) can mount the input data from the
server and only access the portion of the data which they
need to process.

14. [Online]. Available: https://github.com/tawfiqul-islam/
Hybrid-Cloud-Scheduler
15. [Online]. Available: https:/ /nectar.org.au/research-cloud /
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Fig. 8. Cost Comparison between different scheduling algorithms (the
lower the better). (a) shows the total cost incurred over a scheduling
period and (b) shows the cumulative cost incurred over time.

Our experimental cluster has 10 VMs with a total of 76 CPU
(cores) and 304GB of memory. In each VM, we have installed
Apache Mesos (version 1.4.0) and Apache Spark (version
2.3.1). One m1.large type VM instance was used as the Mesos
master while all the remaining VMs were used as Mesos
Agents. The Mesos master node is deployed locally in the Mel-
bourne region. The implemented scheduler and resource man-
ager modules were plugged into the Mesos master node.

7.3 Benchmarking Applications

We have used BigDataBench [32] benchmarking suite for the
real experiments. We have taken three types of applications
from this benchmark, which are: WordCount (compute-inten-
sive), Sort (memory-intensive), and PageRank (network-inten-
sive). We have randomly mixed all these three applications
mentioned above to generate the workload. The job arrival
times from the Facebook Hadoop workload trace'® are
extracted for an hour. Collecting job profiles to estimate the
completion times is a well-known mechanism. In our experi-
ments, each job is profiled in the real cluster for 10 times, and
the average job completion time is taken to use as the estimated
job completion time (7). These estimated job completion
times are used in the problem model by the proposed schedul-
ing algorithms to make scheduling decisions. However, to
determine the schedulers’ performance regarding cost optimi-
zation in the real experiment, we measure both the job comple-
tion time and the use of VM resources in real-time during the
scheduling process for rigorous performance evaluation. The
active time remaining for either a cloud or local VM (At} for
local and Atjc for cloud) can be calculated by using the job com-
pletion time estimates (1¢) for the jobs which have one or more
executors placed in a particular VM. The maximum estimated
completion time is taken among these jobs and is subtracted
from the current clock time to get an estimate on a VM’s active
remaining time.

7.4 Real Experiment Results

We have evaluated the proposed algorithm regarding cost
efficiency, job deadline, and average job completion time.
For these experiments, we have used Pricing Model (Real) as
shown in Table 3 for the VM pricing, which is similar to the
Amazon AWS pricing scheme for the cloud instances. The
price of the same instance type deployed locally is consid-
ered to be half of the cloud instance price.

16. [Online]. Available: https://github.com/SWIMProjectUCB/
SWIM/wiki/Workloads-repository
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7.4.1  Evaluation of Cost Efficiency

In this evaluation, we show the cost efficiency of different
scheduling algorithms in the real experimental setup. Both
the total cost and the cumulative cost is collected while run-
ning 100 jobs (mix of WordCount, Sort, and PageRank) for
one hour. Fig. 8a exhibits the total cost incurred and Fig. 8b
shows the cumulative cost incurred by different scheduling
algorithms. It can be observed that the default FIFO and
FIFO-C algorithms have the highest VM usage cost which
increases linearly over time. However, the MILP and the
proposed FF and GIO algorithms reduce the cost signifi-
cantly as they utilize the pricing model of VMs and uses
the cheaper VMs for executor placement. Although the
AsQ algorithm utilizes the pricing model, it restricts
executor placements to local or cloud-only. Thus, in a
peak load where the cluster does not have sufficient
resources, AsQ algorithm fails to utilize the spare resour-
ces in VMs by avoiding hybrid placement. The MILP
algorithm finds the most cost-optimal placement of exec-
utors for each job, due to the scheduling overhead of
MILP (computational complexity in some cases), the GIO
algorithm performs slightly better and provides a lower
cost. Furthermore, the MILP algorithm is only applicable
to a small cluster as it is not scalable due to the exponen-
tial increase in decision-making for a large cluster.

7.4.2 Evaluation of Job Deadline

In this evaluation, we compare the deadline met percentage
from different scheduling algorithms. Fig. 9 shows the com-
parison of deadline met percentage between the scheduling
algorithms. As the FIFO and FIFO-c algorithms do not con-
sider the EDF strategy, they have higher deadline violations
as compared to the other algorithms. Although AsQ gives a
better deadline met percentage than the default algorithms,
it shows a lower deadline met percentage in a peak load, as
jobs have to wait longer for a local-only or a cloud-only
placement. The proposed FF and GIO algorithms show a
higher deadline met percentage due to tight packing of
executors and utilizing spare resources in the hybrid setting.
Although hybrid placement increases job duration, the jobs
do not have to wait longer as the algorithms schedule the
jobs as soon as the combined resources (in both local and
cloud VMs) are sufficient to place all the executors. MILP
algorithm solves the executor placement in the most cost-
efficient way. However, in many cases, it takes a lot of time
to find a solution (high scheduling delay), which causes
jobs to wait longer and violate deadlines.
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7.4.3 Effects on Job Performance

Although it is possible to minimize the cost of using a hybrid
cluster by packing more executors in fewer nodes, it causes
some performance overhead for CPU/memory-bound jobs.
However, when the executors from the same job are distrib-
uted over multiple regional VMs, the job completion time
increases due to network latency and data transmission
delays. As shown in Fig. 10, the default FIFO and FIFO-C
algorithms always distribute the executors, so most of the
placements are hybrid which causes a high average job dura-
tion. Network-bound jobs (PageRank) suffer the most, where
a lot of network communications take place. The AsQ algo-
rithm provides the lowest average job duration for different
types of jobs, as the data transmissions between executors
only occur within the same regional boundary. Although the
FF, GIO, and MILP algorithms utilize hybrid placement to
reduce cost, they have a slightly higher average job duration
than the AsQ algorithm. However, due to the tight packing
of executors, sometimes these algorithms also place execu-
tors in a single region, thus the performance overhead is not
as extreme as the FIFO and FIFO-C. Nevertheless, this slight
performance degradation is negligible as compared to the
cost-saving in the hybrid cluster.

8 CoONcCLUSION AND FUTURE WORK

In this paper, we have formulated the SLA-based Spark job
scheduling problem in a hybrid cloud as an optimization
problem. We have proposed two greedy heuristics-based
algorithms to solve the scheduling problem. Besides, we
have implemented the proposed algorithms on top of
Apache Mesos to show the applicability in real environ-
ments. We have compared the proposed approaches in both
simulated and real experiments to show the superiority of
them over the baseline approaches. The results show that
our proposed algorithms can significantly reduce VM usage
costs in a hybrid cloud. Although there are performance
overheads due to data transmission delays caused by
hybrid placements, it is negligible as compared to the cost-
saving benefits. Moreover, the proposed approaches are
highly scalable and have low scheduling overhead, which is
similar to the native Spark schedulers.

This paper focuses more on the user’s perspective, and
when a user submits a Spark job, they do not provide net-
work or disk as resource constraints. Thus, we work on a
higher level where we consider resource capacity/demand
constraints which are required at the executor creation stage.
However, we try to capture the network transmission issues
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by considering the job duration increase in the problem
model. In the future, we plan to investigate more on the per-
formance impacts caused by hybrid placements. In addition,
we plan to investigate the trade-offs between cost-efficiency
and job performance. A more sophisticated model needs to
be devised, which can consider both objectives together to
generate efficient job schedules. In addition, we would like
to explore deeper into the effects of VM turn-on/off mecha-
nisms on job performance and cost-efficiency. We also plan
to incorporate the proposed scheduling algorithms in mod-
ern container orchestration systems such as Kubernetes. As
Fog computing and Edge computing are becoming increas-
ingly popular, we plan to extend the scheduling algorithms
to work with a multi-tier Fog-Edge-Cloud deployed cluster.
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